EP1080083A1 - Neue heterocyclisch substituierte amide mit cystein-protease hemmender wirkung - Google Patents
Neue heterocyclisch substituierte amide mit cystein-protease hemmender wirkungInfo
- Publication number
- EP1080083A1 EP1080083A1 EP99920705A EP99920705A EP1080083A1 EP 1080083 A1 EP1080083 A1 EP 1080083A1 EP 99920705 A EP99920705 A EP 99920705A EP 99920705 A EP99920705 A EP 99920705A EP 1080083 A1 EP1080083 A1 EP 1080083A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alkyl
- phenyl
- hydrogen
- branched
- unbranched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D213/28—Radicals substituted by singly-bound oxygen or sulphur atoms
- C07D213/30—Oxygen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/08—Vasodilators for multiple indications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C237/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
- C07C237/28—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
- C07C237/32—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to an acyclic carbon atom of a hydrocarbon radical substituted by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/04—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D207/06—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D213/36—Radicals substituted by singly-bound nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D213/36—Radicals substituted by singly-bound nitrogen atoms
- C07D213/40—Acylated substituent nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/24—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D213/44—Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
- C07D213/46—Oxygen atoms
- C07D213/48—Aldehydo radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/62—Oxygen or sulfur atoms
- C07D213/70—Sulfur atoms
- C07D213/71—Sulfur atoms to which a second hetero atom is attached
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/04—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
- C07D215/06—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/36—Sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D217/00—Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
- C07D217/02—Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
- C07D217/04—Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/12—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
- C07D295/125—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
- C07D295/13—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/14—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D295/155—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/44—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D317/46—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D317/48—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
- C07D317/50—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
- C07D317/54—Radicals substituted by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/44—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D317/46—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D317/48—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
- C07D317/50—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
- C07D317/58—Radicals substituted by nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
Definitions
- isoenzymes and cathepsins for example B and L.
- Calpains are intracellular, proteolytic enzymes from the group of so-called cysteine proteases and are found in many cells. Calpains are activated by increased calcium concentration, with a distinction being made between calpain I or ⁇ -calpain, which is activated by ⁇ -molar concentrations of calcium ions, and calpain II or m-calpain, which is activated by m-molar concentrations of calcium ions activated, differentiates (P.Johnson, Int. J.Biochem. 1990, 22 (8), 811-22). Today, further calpain isoenzymes are postulated (K.Suzuki et al., Biol.Chem. Hoppe- Seyler, 1995, 376 (9), 523-9).
- calpains play an important role in various physiological processes. These include cleavages of regulatory proteins such as protein kinase C, cytoskeleton proteins such as MAP 2 and spectrin, muscle proteins, protein degradation in rheumatoid arthritis, proteins in the activation of platelets, neuropeptide metabolism, proteins in mitosis and others that occur in MJ Barrett et al. , Life Be. 1991, 48, 1659-69 and K.K. ang et al., Trends in Pharmacol. Be . , 1994, 15, 412-9.
- regulatory proteins such as protein kinase C, cytoskeleton proteins such as MAP 2 and spectrin
- muscle proteins protein degradation in rheumatoid arthritis
- proteins in the activation of platelets proteins in mitosis and others that occur in MJ Barrett et al. , Life Be. 1991, 48, 1659-69 and K.K. ang et al., Trends in Pharmacol. Be . , 1994
- Elevated calpain levels were measured in various pathophysiological processes, for example: ischemia of the heart (e.g. heart attack), the kidney or the central nervous system (e.g. "stroke"), inflammation, muscular dystrophies, eye cataracts, injuries to the central nervous system (e.g. trauma), Alzheimer's disease, etc. (see KK ang, above). It is believed that these diseases are associated with increased and persistent intracellular calcium levels. As a result, calcium-dependent processes are overactivated and are no longer subject to physiological regulation. Accordingly, overactivation of calpains can also trigger pathophysiological processes.
- calpain inhibitors show cytotoxic effects on tumor cells (E.Shiba et al. 20th Meeting Int. Ass. Breast Cancer Res., Sendai Jp, 1994, 25th-28th Sept., Int.J.Oncol. 5 (Suppl.), 1994, 381).
- Calpain inhibitors have already been described in the literature, but mostly these are either irreversible or peptide inhibitors.
- Irreversible inhibitors are usually alkali substances and have the disadvantage that they are irr. Organism react unselectively or are unstable. So these inhibitors often show undesirable side effects, such as toxicity, and are then restricted in use or unusable.
- the irreversible inhibitors include, for example, the epoxides E 64 (EBMcGowan et al., Biochem.Biophys.Res.Commun. 1989, 158, 432-5), halogen ketones (H. Angliker et al., J.Med. Cherr. 1992, 35, 216-20) or disulfides (R. Matsueda et al., Chem. Lat. 1990, 191-194).
- peptidic aldehydes in particular dipeptide and tripepidic aldehydes such as, for example, Z-Val-Phe-H (MDL 28170) (S.Mehdi, Tends i Biol. Sci. 1991, 16, 150 -3).
- MDL 28170 Z-Val-Phe-H
- peptidic aldehydes have the disadvantage that they are often instable due to the high reactivity 3 bil are, can be metabolized quickly and tend to non-specific reactions that can be the cause of toxic effects (JA Fehrentz and B. Castro, Synthesis 1983, 676-78.
- Peptide ketone derivatives are also inhibitors of cysteine proteases, especially calpains.
- ketone derivatives are known as inhibitors in the case of serine proteases, the keto group being activated by an electron-withdrawing group such as CF 3 .
- CF 3 an electron-withdrawing group
- derivatives with ketones activated by CF 3 or similar groups are little or ineffective (MRAngelastro et al., J.Med.Chem. 1990, 33, 11-13).
- Ketobenz ⁇ r.ide are already known in the literature.
- the ketoester PhCO-Abu-COOCH 2 CH 3 has been described in WO 91/09801, WO 94/00095 and 92/11850.
- the analog phenyl derivative Ph-CONH-CH (C-: 2 Ph) -CO-COCOOCH 3 was in MRAngelastro et al. , J.Med.Chem .. 1990,33, 11-13 as a weak calpain inhibitor, however. This derivative is also described in JP Burkhardt, Tetra-hedron Lett., 1988, 3433-36. However, the importance of substituted benzamides has never been investigated.
- the active ingredients are administered intravenously, for example as an infusion solution.
- calpain inhibitors which have sufficient water solubility so that an infusion solution can be prepared.
- many of the calpain inhibitors described have the disadvantage that they show little or no water solubility and are therefore not suitable for intravenous administration.
- Such active substances can only be applied with auxiliary substances which are intended to impart water solubility (cf. RT Bartus et al. 4
- substituted non-peptidic aldehydes, ketocarboxylic acid esters and ketoamide derivatives have been described. These compounds are new and surprisingly show the possibility of incorporating rigid structural fragments into potent non-peptide inhibitors of cysteine proteases, e.g. Calpain. Furthermore, salt bonds with acids are possible with the present compounds of the general formula I, which all carry at least one aliphatic amine radical. A large number of these substances show water solubility as a 0.5% solution at pH 0 4-5 and thus they show the desired profile for intravenous application, as is required, for example, in stroke therapy.
- the present invention relates to amides of the general formula I
- R 1 can denote hydrogen, Ci-Cg-alkyl, branched and unbranched, phenyl, naphthyl, quinolinyl, pyridyl, pyrimidyl, pyrazyl, pyridazyl, quinazolyl, quinoxalyl, thienyl, benzothienyl, benzofuranyl, furanyl, and indolyl, the rings also having can be substituted up to 3 radicals R 6 , and
- R 2 is hydrogen, Ci-C ⁇ alkyl, branched or unbranched, O-Ci-Cg-alkyl, branched or unbranched, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, -C-C 6 alkyl- Phenyl, C 2 -C 6 alkenyl phenyl, C 2 -C 6 alkynyl phenyl, OH, Cl, F, Br, J, CF 3 , N0 2 , NH 2 , CN, COOH, COO-C ⁇ -C 4 -alkyl, NHCO-C 4 alkyl, NHCO-phenyl, CONHR 9 , NHS0 2 -C-C 4 alkyl, NHS0 2 -phenyl, S0 2 -C-C 4 alkyl and S0 2 -phenyl mean and
- R 3 can represent NR 7 R 8 or a ring like - NN Rs -N - B '-N ⁇ - ⁇ > - - ⁇ ⁇ N - R »
- R 4 -Ci-C ⁇ -alkyl branched or unbranched, which can also carry a phenyl, pyridyl or naphthyl ring, which in turn is substituted with a maximum of two R 6 radicals, and
- R 5 is hydrogen, COOR 11 and CO-Z, wherein Z is NR 12 R 13 and
- R 6 is hydrogen, C ⁇ -C-alkyl, branched or unbranched
- -OC 1 -C 4 - alkyl OH, Cl, F, Br, J, CF 3 , N0 2 , NH 2 , CN, COOH, COO -CC 4 -alkyl, -NHCO -CC 4 -alkyl , -NHCO-phenyl, -NHS0 2 -C ⁇ -C 4 alkyl, -NHS0 -phenyl, -S0 2 -C ⁇ -C 4 alkyl and -S0_Phenyl means and
- R 7 is hydrogen, C ⁇ -C 6 alkyl, linear or branched, and that can be substituted with a phenyl ring, which itself can be substituted with one or two radicals R 10 , and
- R 8 is hydrogen, Ci-C ⁇ - alkyl, linear or branched, and that can be substituted with a phenyl ring, which itself can also be substituted with one or two radicals R 10 , and
- R 9 is hydrogen, Ci-C ⁇ -alkyl, branched or unbranched, which can also carry a substituent R 16 , phenyl, pyridyl, pyrimidyl, pyridazyl, pyrazinyl, pyrazyl, naphthyl, quinolinyl, imidazolyl, which also have one or two substituents R 14 can, and
- R 10 hydrogen f, -CC 4 alkyl, branched or unbranched
- R 11 is hydrogen, Ci-Cg-alkyl, linear or branched, and that can be substituted with a phenyl ring, which itself can also be substituted with one or two radicals R 10 , and
- R 12 is hydrogen, Ci-Cg-alkyl, branched and unbranched, means, and
- R 13 is hydrogen, Ci-Cg-alkyl, branched or unbranched, that with a phenyl ring, which can still carry a radical R 10 , and with
- R 14 is hydrogen, C ⁇ -Cg-alkyl, branched or unbranched
- 0-C ⁇ -Cg-alkyl branched or unbranched, OH, Cl, F, Br, J, CF 3 , N0 2 , NH 2 , CN, COOH, COO-C ⁇ -C 4 alkyl means or two radicals R 14 one Can represent bridge OC (R 15 ) 2 0 and
- R 15 is hydrogen, Ci-Cg-alkyl, branched and unbranched, means and
- R 16 is phenyl, pyridyl, pyrimidyl, pyridazyl, pyrazinyl,
- 7 B means phenyl, pyridine, pyrimidine, pyrazine, imidazole and thiazole and
- n a number 0, 1 or 2
- n independently of one another means a number 0, 1, 2, 3 or 4.
- the compounds of the formula I can be used as racemates, as enantiomerically pure compounds or as diastereomers. If enantiomerically pure compounds are desired, these can be obtained, for example, by carrying out a classical resolution with the compounds of the formula I or their intermediates using a suitable optically active base or acid. On the other hand, the enantiomeric compounds can also be prepared by using commercially available compounds, for example optically active amino acids such as phenylalanine, tryprophan and tyrosine.
- the invention also relates to compounds of the formula I which are mesomeric or tautomeric, for example those in which the aldehyde or keto group of the formula I is present as an enol tautomer.
- the invention further relates to the physiologically tolerable salts of the compounds I, which can be obtained by reacting compounds I with a suitable acid or base.
- suitable acids and bases are listed, for example, in Progress in Pharmaceutical Research, 1966, Birkhäuser Verlag, Vol. 10, pp. 224-285. These include, for example, hydrochloric acid, citric acid, tartaric acid, lactic acid, phosphoric acid, methanesulfonic acid, acetic acid, formic acid, maleic acid, fumaric acid etc. or sodium hydroxide, lithium hydroxide,. Potassium hydroxide and tris.
- the amides I according to the invention can be prepared in various ways, which have been outlined in the synthesis scheme.
- Heterocyclic carboxylic acids II are combined with suitable amino alcohols III to give the corresponding amides IV.
- Common peptide coupling methods are used, which are described in either CRLarock, Comprehensive Organic Transformations, VCH Publisher, 1989, page 972f. or in Houben-Weyl, Methods of Organic Chemistry, 4th edition, E5, Kap.V.
- L represents a leaving group such as Cl, imidazole and N-hydroxybenzotriazole.
- This activated acid is then reacted with amines to give the amides IV.
- the reaction takes place in anhydrous, inert solvents such as methylene chloride, tetrahydrofuran and dimethylformamide at temperatures from -20 to + 25 ° C.
- These alcohol derivatives IV can be oxidized to the aldehyde derivatives I according to the invention.
- Various customary oxidation reactions can be used for this (see CRLarock, Comprehensive Organic Transformations, VCH Publisher, 1989, page 604 f.) Such as Swern- and Swern-analogous oxidations (TTTidwell, Synthesis 1990, 857-70), sodium hypochlorite / TEMPO (S .L.Harbenson et al., See above) or Dess-Martin (J.Org.Chem. 1983, 48, 4155).
- inert aprotic solvents such as dimethylformamide, tetrahydrofuran or methylene chloride with oxidizing agents such as DMSO / py x S0 3 or DMSO / oxalyl chloride at temperatures from -50 to + 25 ° C., depending on the method (see above literature) .
- the carboxylic acid II can be reacted with aminohydroxamic acid derivatives VI to give benzamides VII.
- the same reaction procedure is used as for the preparation of IV.
- the hydroxam derivatives VI can be obtained from the protected amino acids V by conversion with a hydroxylamine.
- An amide production process already described is also used here.
- the protective group X for example Boc, is split off in the customary manner, for example using trifluoroacetic acid.
- the amide hydroxamic acids VII thus obtained can be converted into the aldehydes I according to the invention by reduction.
- lithium aluminum hydride is used as a reducing agent at temperatures from -60 to 0 ° C in inert solvents such as tetrahydrofuran or ether.
- the heterocyclically substituted amides I bearing a ketoamide or ketoester group according to the invention can be prepared in various ways, which were outlined in synthesis schemes 2 and 3. If appropriate, the carboxylic acid esters Ha are converted into acids II with acids or bases such as lithium hydroxide, sodium hydroxide or potassium hydroxide in an aqueous medium or in mixtures of water and organic solvents such as alcohols or tetrahydrofuran at room temperature or elevated temperatures, such as 25-100 ° C.
- acids or bases such as lithium hydroxide, sodium hydroxide or potassium hydroxide in an aqueous medium or in mixtures of water and organic solvents such as alcohols or tetrahydrofuran at room temperature or elevated temperatures, such as 25-100 ° C.
- This reaction takes place in anhydrous, inert solvents such as methylene chloride, tetrahydrofuran and dimethylformamide at temperatures from -20 to + 25 ° C.
- the derivatives XI which are generally esters, are converted into the ketocarboxylic acids XII analogously to the hydrolysis described above.
- the keto esters I ' are prepared in a Dakin-West analog reaction, using a method by ZhaoZhao Li et 10 al. J.Med.Chem., 1993, 36, 3472-80.
- a carboxylic acid such as XII is reacted with oxalic acid monoester chloride at elevated temperature (50-100 ° C) in solvents such as tetrahydrofuran and then the product thus obtained with bases such as sodium ethanolate in ethanol at temperatures of 25-80 ° C to the ketoester according to the invention I 'implemented.
- the keto esters I 'can for example, be hydrolyzed to ketocarboxylic acids according to the invention.
- ketobenzamides I ' is also carried out analogously to the method by ZhaoZhao Li et al. (see above).
- the keto group in I ' is protected by adding 1,2-ethanedithiol with Lewis acid catalysis, such as, for example, boron trifluoride etherate, in inert solvents, such as methylene chloride, at room temperature, whereupon a dithiane is obtained.
- Lewis acid catalysis such as, for example, boron trifluoride etherate
- inert solvents such as methylene chloride
- keto-carboxylic acids II are derived from aminohydroxycarboxylic acid derivatives XIII (preparation of XIII see S.L. Harenson et al., J.Med.Chem. 1994, 37,2918-29 or JP Burkhardt et al. Tetrahedron Let. 11
- Swern- and Swern-analogous oxidations preferably dimethyl sulfoxide / pyridine-sulfur trioxide complex in solvents such as methylene chloride or tetrahydrofuran, optionally with the addition of dimethyl sulfoxide, at room temperature or temperatures from -50 to 25 ° C, (TTTidwell, Synthesis 1990, 857-70) or sodium hypochlorite / TEMPO (SLHarbenson et al., see above).
- Other esters or amides XVI are prepared by reaction with alcohols or amines under the coupling conditions already described. The alcohol derivative XVI can be oxidized again to ketocarboxylic acid derivatives I according to the invention.
- Ether-bridged derivatives are prepared by alkylation of the corresponding alcohols or phenols with halides.
- the sulfoxides and sulfones are accessible by oxidation of the corresponding thioethers. 12
- Alkene-bridged and alkyne-bridged compounds are prepared, for example, by Heck reaction from aromatic halides and corresponding alkenes and alkynes (cf. I.Sakamoto et al., Chem.Pharm.Bull., 1986, 34, 2754-59).
- the chalcones are formed by condensation from acetophenones with aldehydes and can optionally be converted into the analog alkyl derivatives by hydrogenation.
- Amides and sulfonamides are prepared analogously to the methods described above from the amines and acid derivatives.
- dialkylaminoalkyl substituents are obtained by reductive amination of the aldehyde derivatives with the corresponding amines in the presence of borohydrides, such as BH 3 -pyridine complex or or NaBH 3 CN (A: F: Abdel-Magid, C: A: Maryanoff, KG Carson, Tetrahedron Lett 10990, 31, 5595; AE: Moormann, Synth. Commun. 1993, 23, 789).
- borohydrides such as BH 3 -pyridine complex or or NaBH 3 CN
- heterocyclically substituted amides I contained in the present invention are inhibitors of cysteine proteases, in particular cysteine proteases such as calpains I and II and cathepsins B and L.
- the amides I were measured in this way for the inhibitory action of calpain I, calpain II and cathepsin B.
- Cathepsin B inhibition was determined analogously to a method by S.Hasnain et al., J.Biol.Chem. 1993, 268, 235-40.
- an inhibitor solution prepared from inhibitor and DMSO (final concentrations: 100 ⁇ M to 0.01 ⁇ M), are added to 88 ⁇ L cathepsin B (cathepsin B from human liver (Calbiochem), diluted to 5 units in 500 ⁇ M buffer). This mixture is preincubated for 60 minutes at room temperature (25 ° C.) and then the reaction is started by adding 10 ⁇ L 10 mM Z-Arg-Arg-pNA (in buffer with 10% DMSO). The reaction is monitored for 30 minutes at 405nM in a microplate reader. The ICso's are then determined from the maximum gradients. 13
- calpain inhibitors The inhibitory properties of calpain inhibitors are tested in buffer with 50 mM Tris-HCl, pH 7.5; 0.1 M NaCl; 1mM dithiotreithol; 0.11 mM Ca Cl 2 , the fluorogenic calpain substrate Suc-Leu-Tyr-AMC (25 mM dissolved in DMSO, Bachern / Switzerland) being used.
- Human ⁇ -calpain is isolated from erythrocytes and after several chromatographic steps (DEAE-Sepharose, Phenyl-Sepharose, Superdex 200 and Blue-Sepharose), enzyme with a purity> 95% is obtained, assessed according to SDS-PAGE, Western Blot Analysis and N -terminal sequencing.
- the cleavage of the substrate is linear and the autocatalytic activity of calpain is low if the tests are carried out at temperatures of 12 ° C.
- the inhibitors and the calpain substrate are added to the test batch as DMSO solutions, the final concentration of DMSO not exceeding 2%.
- Ki values are determined using the classic equation for reversible inhibition:
- Calpain is an intracellular cysteine protease. Calpain inhibitors must pass through the cell membrane to prevent the breakdown of intracellular proteins by calpain. Some known calpain inhibitors, such as E 64 and leupeptin, only poorly cross the cell membranes and accordingly, although they are good calpain inhibitors, show only poor activity on cells. The aim is to create connections with better membrane 14 common to find. We use human platelets as evidence of the passage of calpain inhibitors into the membrane.
- pp60src After platelet activation, the tyrosine kinase pp60src is cleaved by calpain. This was done by Oda et al. in J. Biol. Chem., 1993, Vol 268, 12603-12608. It was shown that the cleavage of pp60src can be prevented by calpeptin, an inhibitor for calpain. Based on this publication, the cellular effectiveness of our substances was tested. Fresh human blood with citrate was mixed for 15 min. centrifuged at 200g.
- the platelet-rich plasma was pooled and diluted 1: 1 with platelet buffer (platelet buffer: 68 mM NaCl, 2.7 mM KCl, 0.5 mM MgCl 2 ⁇ 6 H 2 O, 0.24 mM NaH 2 PO 4 ⁇ H 2 0, 12 mM NaHC0 3 , 5, 6 mM glucose, 1 mM EDTA, pH 7.4). After a centrifugation and washing step with platelet buffer, the platelets were adjusted to 10 7 cells / ml. The human platelets were isolated at RT.
- test mixture isolated platelets (2 x 10 6 ) with different concentrations of inhibitors (dissolved in DMSO) for 5 min. pre-incubated at 37 ° C. The platelets were then activated with 1 ⁇ M Ionophore A23187 and 5 mM CaCl. After 5 min.
- SDS sample buffer 20 mM Tris-HCl, 5 mM EDTA, 5 mM EGTA, 1 mM DTT, 0.5 mM PMSF, 5 ⁇ g / ml leupeptin, 10 ⁇ g / ml pepstatin, 10% glycerin and 1% SDS.
- the proteins were separated in a 12% gel and pp60src and its 52-kDa and 47-kDa cleavage products were identified by Western blotting.
- the polyclonal rabbit antibody Anti-Cys-src (pp60 c-src ) used was purchased from Biomol Feinchemischen (Hamburg). This primary antibody was detected using an HRP-coupled second goat antibody (Boehringer Mannheim, FRG). Western blotting was carried out according to known methods.
- pp60src The cleavage of pp60src was quantified densitometrically, using controls which were not activated (control 1: no cleavage) and plates treated with ionophore and calcium (control 2: corresponds to 100% cleavage).
- control 1 no cleavage
- control 2 corresponds to 100% cleavage
- the ED 5 o value corresponds to the concentration of inhibitor at which the intensity of the color reaction is reduced by 50%.
- the cortex halves were prepared from 15-day-old mouse embryos and the individual cells were obtained enzymatically (trypsin). These cells (glia and cortical neurons) are sown in 24 well plates. After three days (laminin-coated plates) or seven days (ornithine-coated plates), mitosis treatment is carried out with FDU (5-fluoro-2-deoxyuridine). 15 days after cell preparation, cell death is triggered by adding glutamate (15 minutes). After the glutamate removal, the calpain inhibitors are added. 24 hours later, cell damage is determined by determining lactate dehydrogenase (LDH) in the cell culture supernatant.
- LDH lactate dehydrogenase
- calpain also plays a role in apoptotic cell death (M.K.T. Squier et al. J. Cell. Physiol. 1994, 159, 229-237; T. Patel et al. Faseb Journal 1996, 590, 587-597). Therefore, in another model, cell death was triggered with calcium in the presence of a calcium ionophore in a human cell line. Calpain inhibitors must enter the cell and inhibit calpain there to prevent cell death.
- cell death can be triggered by calcium in the presence of the ionophore A 23187.
- 10 5 cells / well were plated in microtiter plates 20 hours before the experiment. After this period, the cells were incubated with various concentrations of inhibitors in the presence of 2.5 ⁇ M ionophore and 5 mM calcium. After 5 hours, 0.05 ml of XTT (Cell Proliferation Kit II, Boehringer Mannnheim) was added to the reaction mixture. The optical density is determined approximately 17 hours later, according to the manufacturer's instructions, in the Easy Reader EAR 400 from SLT. The optical density at which half of the cells died is calculated from the two controls with cells without inhibitors which were incubated in the absence and presence of ionophore.
- a number of neurological diseases or mental disorders result in increased glutamate activity, which leads to states of overexcitation or toxic effects in the central nervous system (CNS). Glutamate mediates its effects via various receptors. Two of these receptors are classified according to the specific agonists NMDA receptor and AMPA receptor. Antagonists against these glutamate mediated effects 16 can thus be used to treat these diseases, in particular for therapeutic use against neurodegenerative diseases such as Huntington's chorea and Parkinson's disease, neurotoxic disorders after hypoxia, anoxia, ischemia and after lesions such as those occurring after stroke and trauma, or also as antiepileptics (see Pharmaceutical Research 1990, 40, 511-514; TIPS, 1990, 11, 334-338; Drugs of the Future 1989, 14, 1059-1071). De
- EAA Extracerebral application of excitatory amino acids
- EAA antagonists central active ingredients
- An ED 50 value was determined as a measure of the effectiveness of the substances, in which 50% of the animals become symptom-free by a fixed dose of either NMDA or AMPA by the previous ip administration of the measuring substance.
- heterocyclically substituted amides I are inhibitors of cysteine derivatives such as calpain I or II and cathepsin B or L and can thus be used to combat diseases which are associated with an increased enzyme activity of the calpain enzymes or cathepsin enzymes.
- the present amides I can thereafter be used for the treatment of neurodegenerative diseases which occur after ischemia, trauma, subarachnoid bleeding and stroke, and of neurodegenerative diseases such as multiple infarct dementia, Alzheimer's disease, Huntington's disease and epilepsy and furthermore for the treatment of damage to the Heart after cardiac ischemia, kidney damage after renal ischemia, skeletal muscle damage, muscular dystrophy, damage caused by proliferation of smooth muscle cells, coronary vasospasm, cerebral vasospasm, cataracts of the eyes, restenosis of the bloodstream after angioplasty.
- the amides I can be useful in the chemotherapy of doors and their metastasis and for the treatment of diseases in which an increased level of interleukin-1 is 17 occurs, as with inflammation and rheumatic diseases.
- the pharmaceutical preparations according to the invention contain a therapeutically effective amount of the compounds I.
- the active ingredients can be contained in the usual concentrations.
- the active substances are contained in an amount of 0.001 to 1% by weight, preferably 0.001 to 0.1% by weight.
- the preparations are administered in single doses. 0.1 to 100 mg per kg body weight are given in a single dose.
- the preparation can be administered daily in one or more doses depending on the type and severity of the diseases.
- the pharmaceutical preparations according to the invention contain the usual carriers and diluents in addition to the active ingredient.
- pharmaceutical technical auxiliaries such as ethanol, isopropanol, ethoxylated castor oil, ethoxylated hydrogenated castor oil, polyacrylic acid, polyethylene glycol, polyethylene glycol stearate, ethoxylated fatty alcohols, paraffin oil, petroleum jelly and wool fat, can be used.
- Milk sugar, propylene glycol, ethanol, starch, talc and polyvinylpyrrolidone are suitable for internal use.
- Antioxidants such as tocopherol and butylated hydroxyanisole and butylated hydroxytoluene, taste-improving additives, stabilizers, emulsifiers and lubricants can also be present.
- the substances contained in the preparation in addition to the active substance and the substances used in the manufacture of the pharmaceutical preparations are toxicologically harmless and compatible with the respective active substance.
- the pharmaceutical preparations are produced in a customary manner, for example by mixing the active ingredient with other customary excipients and diluents.
- the pharmaceutical preparations can be administered in various modes of administration, for example orally, parenterally and intravenously by infusion, subcutaneously, intraperitoneally and topically.
- Examples 8-28 were prepared analogously to Example 7.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pain & Pain Management (AREA)
- Urology & Nephrology (AREA)
- Psychology (AREA)
- Vascular Medicine (AREA)
- Oncology (AREA)
- Rheumatology (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Pyridine Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Pyrrole Compounds (AREA)
- Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
- Hydrogenated Pyridines (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Die Erfindung betrifft Amide der allgemeinen Formel (I), die Inhibitoren von Enzymen, insbesondere Cystein-Proteasen darstellen.
Description
NEUE HETEROCYCLISCH SUBSTITUIERTE AMIDE MIT CYSTEIN-PROTEASE HEMMENDER WIRKUNG
5 Beschreibung
Die vorliegende Erfindung betrifft neuartige Amide, die Inhibitoren von Enzymen, insbesondere Cystein-Proteasen, wie Calpain (= Calcium dependant cysteine proteases) und dessen Isoenzyme und Cathepsine, zum Beispiel B und L, darstellen.
Calpaine stellen intracelluläre, proteolytische Enzyme aus der Gruppe der sogenannten Cystein-Proteasen dar und werden in vielen Zellen gefunden. Calpaine werden durch erhöhte Kalziumkonzentra- tion aktiviert, wobei man zwischen Calpain I oder μ-Calpain, das durch μ-molare Konzentrationen von Calziu -Ionen aktiviert wird, und Calpain II oder m-Calpain, das durch m-molare Konzentrationen von Kalzium-Ionen aktiviert wird, unterscheidet (P.Johnson, Int. J.Biochem. 1990, 22 (8) , 811-22). Heute werden noch weitere Calpain-Isoenzyme postuliert (K.Suzuki et al . , Biol.Chem. Hoppe- Seyler, 1995, 376 (9) , 523-9) .
Man vermutet, daß Calpaine in verschiedenen physiologischen Prozessen eine wichtige Rolle spielen. Dazu gehören Spaltungen von regulatorischen Proteinen wie Protein-Kinase C, Cytoskelett-Pro- teine wie MAP 2 und Spektrin, Muskelproteine, Proteinabbau in rheumatoider Arthritis, Proteine bei der Aktivierung von Plättchen, Neuropeptid-Metabolismus, Proteine in der Mitose und weitere, die in. M.J.Barrett et al . , Life Sei. 1991, 48, 1659-69 und K.K. ang et al., Trends in Pharmacol. Sei . , 1994, 15, 412-9 aufgeführt sind.
Bei verschiedenen pathophysiologischen Prozessen wurden erhöhte Calpain-Spiegel gemessen, zum Beispiel: Ischämien des Herzens (z.B. Herzinfarkt), der Niere oder des Zentralnervensystems (z.B. "Stroke"), Entzündungen, Muskeldystrophien, Katarakten der Augen, Verletzungen des Zentralnervensystems (z.B. Trauma), Alzheimer Krankheit usw. (siehe K.K. ang, oben) . Man vermutet einen Zusammenhang dieser Krankheiten mit erhöhten und anhaltenden intrazel- lulären Kalziumspiegeln. Dadurch werden Kalzium-abhängige Prozesse überaktiviert und unterliegen nicht mehr der physiologischen Regelung. Dementsprechend kann eine Überaktivierung von Calpainen auch pathophysiologische Prozesse auslösen.
Daher wurde postuliert, daß Inhibitoren der Calpain-Enzyme für die Behandlung dieser Krankheiten nützlich sein können. Verschiedene Untersuchungen bestätigen dies. So haben Seung-Chyul Hong et
2 al., Stroke 1994, 25 (3) , 663-9 und R.T.Bartus et al . , Neurologi- cal Res. 1995, 17, 249-58 eine neuroprotektive Wirkung von Cal- pain-Inhibitoren in akuten neurodegenerativen Störungen oder Ischämien, wie sie nach Hirnschlag auftreten, gezeigt. Ebenso nach experimentellen Gehirntraumata verbesserten Calpain-Inhibi- toren die Erholung der auftretenden Gedächtnisleistungsdefizite und neuromotorischen Störungen (K.E.Saatman et al . Proc.Natl. Acad.Sci. USA, 1996, 53,3428-3433). C.L.Edelstein et al . , Proc.Natl.Acad.Sci. USA, 1995, 92 , 7662-6, fand eine protektive Wirkung von Calpain-Inhibitoren auf durch Hypoxie geschädigten Nieren. Yoshida, Ken Ischi et al . , Jap.Circ.J. 1995, 59 (1 ) , 40-8, konnten günstige Effekte von Calpain-Inhibitoren nach cardialen Schädigungen aufzeigen, die durch Ischämie oder Reperfusion erzeugt wurden. Da Calpain-Inhibitoren die Freisetzung von dem ß-AP4-Protein hemmen, wurde eine potentielle Anwendung als Thera- peutikum der Alzheimer Krankheit vorgeschlagen (J.Higaki et al . , Neuron, 1995, 14 , 651-59) . Die Freisetzung von Interleukin-lα wird ebenfalls durch Calpain-Inhibitoren gehemmt (N.Watanabe et al., Cytokine 1994, 6 (6) , 597-601). Weiterhin wurde gefunden, daß Calpain-Inhibitoren cytotoxische Effekte an Tumorzellen zeigen (E.Shiba et al. 20th Meeting Int .Ass .Breast Cancer Res., Sendai Jp, 1994, 25. -28. Sept. , Int.J.Oncol. 5 (Suppl . ) , 1994, 381).
Weitere mögliche Anwendungen von Calpain-Inhibitoren sind in K.K.Wang, Trends in Pharmacol.Sci . , 1994, 15, 412-8, aufgeführt.
Calpain-Inhibitoren sind in der Literatur bereits beschrieben worden, überwiegend sind dies jedoch entweder irreversible oder peptidische Inhibitoren. Irreversible Inhibitoren sind in der Regel alkvlierende Substanzen und haben den Nachteil, daß sie irr. Organismus unselektiv reagieren oder instabil sind. So zeigen diese Inhibitoren oft unerwünschte Nebeneffekte, wie Toxizität, und sind danach in der Anwendung eingeschränkt oder nicht brauchbar. Zu den irreveriblen Inhibitoren kann man zum Beispiel die Epoxide E 64 (E.B.McGowan et al., Biochem.Biophys.Res.Commun. 1989, 158, 432-5), -Halogenketone (H.Angliker et al . , J.Med.Cherr.. 1992, 35, 216-20) oder Disulfide (R.Matsueda et al . , Chem.Lett. 1990, 191-194) zählen.
Viele bekannte reversible Inhibitoren von Cystein-Proteasen wie Calpain stellen peptidische Aldehyde dar, insbesondere dipeptidische und tripepidische Aldehyde wie zum Beispiel Z-Val- Phe-H (MDL 28170) (S.Mehdi, Tends i Biol.Sci. 1991, 16, 150-3). Unter physiologischen Bedingungen haben peptidische Aldehyde den Nachteil, daß sie auf Grund der großen Reaktivität häufig insta-
3 bil sind, schnell metabolisiert werden können und zu unspezifischen Reaktionen neigen, die die Ursache von toxischen Effekten sein können ( J.A.Fehrentz und B.Castro, Synthesis 1983, 676-78. In JP 08183771 (CA 1996, 605307) und in EP 520336 sind Aldehyde, die sich von 4-Piperidinoylamide und l-Carbonyl-piperidino-4-yla- mide ableiten als Calpain-Inhibitoren beschrieben worden. Jedoch sind die hier beanspruchten Aldehyde, die sich von heteroaromatisch substituierten Amiden der allgemeinen Struktur I ableiten bisher noch beschrieben worden.
Peptidische Keton-Derivate sind ebenfalls Inhibitoren von Cystein-Proteasen, insbesondere Calpaine. So sind zum Beispiel bei Serin-Proteasen Keton-Derivate als Inhibitoren bekannt, wobei die Keto-Gruppe von einer elektronenziehenden Gruppe wie CF3 aktiviert wird. Bei Cystein-Proteasen sind Derivate mit durch CF3 oder ähnlichen Gruppen aktivierte Ketone wenig oder nicht wirksam (M.R.Angelastro et al . , J.Med.Chem. 1990,33, 11-13). Überraschenderweise konnten bei Calpain bisher nur Keton-Derivate, bei deneπ einerseits α-ständige Abgangsgruppen eine irreversible Hemmung verursachen und andererseits ein Carbonsäure-Derivat die Keto- Gruppe aktiviert, als wirksame Inhibitoren gefunden werden (siehe M.R.Angelastro et al., siehe oben; WO 92/11850; WO 92,12140; WO 94/00095 und WO 95/00535). Jedoch sind von diesen Ketoamiden und Ketoestem bisher nur peptidische Derivate als wirksam beschrie- ben worder. (Zhaozhao Li et al., J.Med.Chem. 1993, 36, 3472-80; S . L. Harbenson et al . , J.Med.Chem. 1994, 37, 2918-29 und siehe oben M.R.Angelastro et al . ) .
Ketobenzεr.ide sind bereits in der Literatur bekannt. So wurde der Ketoester PhCO-Abu-COOCH2CH3 in WO 91/09801, WO 94/00095 und 92/11850 beschrieben. Das analoge Phenyl-Derivat Ph- CONH-CH(C-:2Ph)-CO-COCOOCH3 wurde in M.R.Angelastro et al . , J.Med.Chem.. 1990,33, 11-13 als jedoch nur schwacher Calpain-Inhibitor gefunden. Dieses Derivat ist auch in J. P. Burkhardt, Tetra- hedron Lett., 1988, 3433-36 beschrieben. Die Bedeutung der substituierten Benzamide ist jedoch bisher nie untersucht worden.
In einer Reihe von Therapien wie Schlaganfall werden die Wirkstoffe intravenös zum Beispiel als Infusionslösung appliziert. Dazu ist es notwendig, Substanzen, hier Calpain-Inhibitoren, zur Verfügung zu haben, die ausreichende Wasserlöslichkeit aufweisen, so daß eine Infusionslösung hergestellt werden kann. Viele der beschriebenen Calpain-Inhibitoren haben jedoch den Nachteil, daß sie nur geringe oder keine Wasserlöslichkeit zeigen und somit nicht für eine intravenöse Applikation in Frage kommen. Derartige Wirkstoffe können nur mit Hilfsstoffen, die die Wasserlöslichkeit vermitteln sollen, appliziert werden (vgl. R.T. Bartus et al.
4
Cereb. Blood Flow Metab. 1994, 14, 537-544). Diese Hilfsstoffe, zum Beispiel Polyethylenglykol, haben aber häufig Begleiteffekte oder sind sogar unverträglich. Ein nicht-peptidischer Calpain-In- hibitor, der also ohne Hilfsstoffe wasserlöslich ist, hätte somit einen großen Vorteil. Ein solcher Inhibitor ist bisher nicht beschrieben worden und wäre damit neu.
In der vorliegenden Erfindung wurden substituierte nicht-peptidi- sche Aldehyde, Ketocarbonsäureester und Ketoamid-Derivate be- schrieben. Diese Verbindungen sind neu und zeigen überraschenderweise die Möglichkeit auf, durch Einbau von rigiden strukturellen Fragmenten potente nicht-peptidische Inhibitoren von Cystein-Proteasen, wie z.B. Calpain, zu erhalten. Weiterhin sind bei den vorliegenden Verbindungen der allgemeinen Formel I, die alle min- destens ein aliphatischen Amin-Rest tragen Salz-Bindungen mit Säuren möglich. Eine Vielzahl dieser Substanzen zeigen als 0.5 %ige Lösung Wasserlöslichkeit bei pH 0 4-5 und damit zeigen sie das gewünschte Profil für eine intravenöse Applikation, wie sie zum Beispiel bei der Schlaganfall-Therapie erforderlich ist.
Gegenstand der vorliegenden Erfindung sind Amide der allgemeinen Formel I
R^A ANA^RE
3 / (CH2)χH O
R und ihre tautomeren und isomeren Formen, möglichen enantiomeren und diastereomeren Formen, sowie mögliche physiologisch verträgliche Salze, worin die Variablen folgende Bedeutung haben:
R1 Wasserstoff, Ci-Cg-Alkyl, verzweigt und unverzweigt, Phenyl, Naphthyl, Chinolinyl, Pyridyl, Pyrimidyl, Pyrazyl, Pyridazyl, Chinazolyl, Chinoxalyl, Thienyl, Benzothienyl, Benzofuranyl , Furanyl, und Indolyl bedeuten kann, wobei die Ringe noch mit zu bis 3 Resten R6 substituiert sein können, und
R2 Wasserstoff, Ci-Cδ-Alkyl, verzweigt oder unverzweigt, O-Ci-Cg-Alkyl, verzweigt oder unverzweigt, C2-C6-Alkenyl, C2-C6-Alkinyl, Cι-C6-Alkyl-Phenyl, C2-C6-Alkenyl-Phenyl, C2-C6-Alkinyl-Phenyl, OH, Cl, F, Br, J, CF3, N02, NH2, CN, COOH, COO-Cι-C4-Alkyl , NHCO-Cι-C4-Alkyl , NHCO-Phenyl, CONHR9, NHS02-Cι-C4-Alkyl, NHS02-Phenyl, S02-Cι-C4-Alkyl und S02-Phenyl bedeuten und
R3 NR7R8 oder einen Ring darstellen kann wie
- N N Rs -N -B' -N^^ — \> — -ζ~ N — R»
I )n / (R )„
R4 -Ci-Cε-Alkyl , verzweigt oder unverzweigt, das noch einen Phenyl-, Pyridyl- oder Naphthyl-Ring tragen kann, der seinerseits mit maximal zwei Resten R6 substituiert ist, und
R5 Wasserstoff, COOR11 und CO-Z bedeutet, worin Z NR12R13 und
\ f *y bedeutet und
R6 Wasserstoff, Cχ-C-Alkyl, verzweigt oder unverzweigt,
-O-C1-C4- Alkyl, OH, Cl, F, Br, J, CF3, N02 , NH2 , CN, COOH, COO-Cι-C4-Alkyl , -NHCO-Cι-C4-Alkyl , -NHCO-Phenyl, -NHS02-Cι-C4-Alkyl, -NHS0 -Phenyl, -S02-Cι-C4-Alkyl und -S0_Phenyl bedeutet und
R7 Wasserstoff, Cχ-C6-Alkyl, geradlinig oder verzweigt, bedeutet und das mit einem Phenylring substituiert kann, der selbst noch mit einem oder zwei Resten R10 substituiert sein kann, und
R8 Wasserstoff, Ci-Cδ-Alkyl, geradlinig oder verzweigt, bedeutet und das mit einem Phenylring substituiert kann, der selbst noch mit einem oder zwei Resten R10 substituiert sein kann, und
R9 Wasserstoff, Ci-Cβ-Alkyl, verzweigt oder unverzweigt, das noch einen Substituenten R16 tragen kann, Phenyl, Pyridyl, Pyrimidyl, Pyridazyl, Pyrazinyl, Pyrazyl, Naphthyl, Chinolinyl, Imidazolyl, das noch einen oder zwei Substituenten R14 tragen kann, und
R10 Wasserstof f , Cι-C4-Alkyl , verzweigt oder unverzweigt ,
-0-Cι-C4-Alkyl , OH Cl , F, Br , J , CF3 , N02 , NH2 , CN, COOH , COO-Cι-C4-Alkyl , -NHCO-Cι-C4-Alkyl , -NHCO- Phenyl , -NHS02-Cι-C4-Alkyl , -NHS02-Phenyl , -S02-Cx-C -Alkyl und -S02- Phenyl bedeuten kann
R11 Wasserstoff, Ci-Cg-Alkyl, geradlinig oder verzweigt, bedeutet und das mit einem Phenylring substituiert kann, der selbst noch mit einem oder zwei Resten R10 substituiert sein kann, und
R12 Wasserstoff, Ci-Cg-Alkyl, verzweigt und unverzweigt, bedeutet, und
•N N R7 - -" -O'
R'
N R' -(CH2)„— N
R*
R13 Wasserstoff, Ci-Cg-Alkyl, verzweigt oder unverzweigt, das noch mit einem Phenylring, der noch einen Rest R10 tragen kann, und mit
substituiert sein kann bedeutet, und
R14 Wasserstoff, Cχ-Cg-Alkyl, verzweigt oder unverzweigt,
0-Cχ-Cg-Alkyl, verzweigt oder unverzweigt, OH, Cl, F, Br, J, CF3, N02, NH2, CN, COOH, COO-Cι-C4-Alkyl bedeutet oder zwei Reste R14 eine Brücke OC(R15)20 darstellen kann und
R15 Wasserstoff, Ci-Cg-Alkyl, verzweigt und unverzweigt, bedeutet und
R16 ein Phenyl-, Pyridyl-, Pyrimidyl-, Pyridazyl-, Pyrazinyl-,
Pyrazyl-, Pyrrolyl-, Naphthyl-, Chinolinyl-, Imidazolyl-Ring sein kann, der noch einen oder zwei Substituenten R6 tragen kann, und
A -(CH2)m "- -(CH2)m -0-(CH2)0 -, -(CH2)0 -S-(CH2)m-, -(CH2)0 -SO-(CH2)m -, -(CH2)0 -S02-(CH2)m -, -CH=CH-, -C≡C-, -CO-CH=CH-, -(CH2)0-CO-(CH2)m -, - (CH2)m -NHCO- (CH2) 0" -(CH2)m
- CONH-(CH2)0 ~ . -(CH2 )m ~NHS02- (CH2) 0- , -NH-CO-CH=CH-, - (CH2)m
- S02NH- (CH2 ) o - - -CH=CH-C0NH- und bedeutet ,
N N und
R1- zusammen auch
bedeuten und
7 B Phenyl, Pyridin, Pyrimidin, Pyrazin, Imidazol und Thiazol bedeutet und
x 1, 2 oder 3 und
n eine Zahl 0, 1 oder 2 bedeutet, und
m, ounabhängig voneinander eine Zahl 0, 1, 2, 3 oder 4 bedeutet.
Die Verbindungen der Formel I können als Racemate, als enantio- merenreine Verbindungen oder als Diastereomere eingesetzt werden. Werden enantiomerereine Verbindungen gewünscht, kann man diese beispielsweise dadurch erhalten, daß man mit einer geeigneten optisch aktiven Base oder Säure eine klassische Racematspaltung mit den Verbindungen der Formel I oder ihren Zwischenprodukten durchführt. Andererseits können die enantiomeren Verbindungen ebenfalls durch Einsatz von kommerziell erwerbbaren Verbindungen, zum Beispiel optisch aktiven Aminosäuren wie Phenylalanin, Tryp- tophan und Tyrosin, hergestellt werden.
Gegenstand der Erfindung sind auch zu Verbindungen der Formel I mesomere oder tautomere Verbindungen, beispielsweise solche, bei denen die Aldehyd- oder Ketogruppe der Formel I als Enol-Tautome- res vorliegt.
Ein weiterer Gegenstand der Erfindung sind die physiologisch verträglichen Salze der Verbindungen I, die sich durch Umsatz von Verbindungen I mit einer geeigneten Säure oder Base erhalten lassen. Geeignete Säuren und Basen sind zum Beispiel in Fortschritte der Arzneimittelforschung, 1966, Birkhäuser Verlag, Bd.10, S. 224-285, aufgelistet. Dazu zählen zum Beispiel Salzsäure, Citronensäure, Weinsäure, Milchsäure, Phosphorsäure, Methan- sulfonsäure, Essigsäure, Ameisensäure, Maleinsäure, Fumarsäure usw. bzw. Natriumhydroxid, Lithiumhydroxid, . Kaliumhydroxid und Tris.
Die Herstellung der erfindungsgemäßen Amide I kann auf verschiedenen Wegen erfolgen, die im Syntheseschema skizziert wurde.
Syntheseschema
Heterocyclische Karbonsäuren II werden mit geeigneten Amino- alkoholen III zu den entsprechenden Amiden IV verknüpft. Dabei benutzt man übliche Peptid-Kupplungs-Methoden, die entweder im C.R.Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, Seite 972f . oder im Houben-Weyl, Methoden der organischen Chemie, 4.Aufl., E5, Kap.V aufgeführt sind. Bevorzugt arbeitet
8 man mit "aktivierten" Säurederivaten von II, wobei die Säuregruppe COOH in eine Gruppe COL überführt wird. L stellt eine Abgangsgruppe wie zum Beispiel Cl, Imidazol und N-Hydroxybenzo- triazol dar. Diese aktivierte Säure wird anschließend mit Aminen zu den Amiden IV umgesetzt. Die Reaktion erfolgt in wasserfreien, inerten Lösungsmitteln wie Methylenchlorid, Tetrahydrofuran und Dimethylformamid bei Temperaturen von -20 bis +25°C.
Diese Alkohol-Derivate IV können zu den erfindungsgemäßen Alde- hyd-Derivaten I oxidiert werden. Dafür kann man verschiedene übliche Oxidationsreaktionen (siehe C.R.Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, Seite 604 f.) wie zum Beispiel Swern- und Swern-analoge Oxidationen ( T.T.Tidwell, Synthesis 1990, 857-70), Natriumhypochlorid/TEMPO ( S .L.Harbenson et al., siehe oben) oder Dess-Martin (J.Org.Chem. 1983, 48, 4155) benutzen. Bevorzugt arbeitet man hier in inerten aprotischen Lösungsmitteln wie Dimethylformamid, Tetrahydrofuran oder Methylen- chorid mit Oxidationsmitteln wie DMSO/ py x S03 oder DMSO/ Oxalyl- chorid bei Temperaturen von -50 bis +25°C, je nach Methode (siehe obige Literatur) .
Alternativ kann man die Karbonsäure II mit Aminohydroxamsäure- Derivate VI zu Benzamiden VII umsetzten. Dabei bedient man sich der gleichen Reaktionsführung wie bei der Darstellung von IV. Die Hydroxam-Derivate VI sind aus den geschützten Aminosäuren V durch Umsatz mit einem Hydroxylamin erhältlich. Dabei benutzt auch hier ein bereits beschriebenes Amidherstellungsverfahren. Die Abspaltung der Schutzgruppe X, zum Beispiel Boc, erfolgt in üblicherweise, zum Beispiel mit Trifluoressigsäure. Die so erhaltenen Amid-hydroxamsäuren VII können durch Reduktion in die erfindungsgemäßen Aldehyde I umgewandelt werden. Dabei benutzt man zum Beispiel Lithiumaluminiumhydrid als Reduktionsmittel bei Temperaturen von -60 bis 0°C in inerten Lösungsmitteln wie Tetrahydrofuran oder Ether.
Analog zum letzten Verfahren kann man auch Karbonsäuren oder Säure-Derivate, wie Ester IX (Y = COOR' , COSR' ) herstellen, die ebenfalls durch Reduktion in die erfindungsgemäßen Aldehyde I überführt werden können. Diese Verfahren sind in R.C.Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, Seite 619-26 aufgelistet.
Die Herstellung der erfindungsgemäßen heterozyklisch substituierten Amide I, eine Ketoamid- oder Ketoester-gruppe tragen, kann auf verschiedenen Wegen erfolgen, die in den Syntheseschemata 2 und 3 skizziert wurden.
Gegebenenfalls werden die Karbonsäureester Ha mit Säuren oder Basen wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid in wäßrigen Medium oder in Gemischen aus Wasser und organischen Lösungsmitteln wie Alkohole oder Tetrahydrofuran bei Raumtemperatur oder erhöhten Temperaturen, wie 25-100°C, in die Säuren II überführt .
Diese Säuren II werden mit einem α-Aminosäure-Derivat verknüpft,wobei man übliche Bedingungen benutzt, die zum Beispiel im Houben-Weyl, Methoden der organischen Chemie, 4.Aufl., E5, Kap. V, und C.R.Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, Ch . 9 aufgelistet sind.
Zum Beispiel werden die Carbonsäuren II in die "aktivierten" Säu- re-Derivate Ilb =Y-COL überführt, wobei L eine Abgangsgruppe wie Cl, Imidazol und N-Hydroxybenzotriazol darstellt und anschließend durch Zugabe von einem Aminosäure-Derivat H2N-CH(R3)-COOR in das Derivat XI überführt. Diese Reaktion erfolgt in wasserfreien, inerten Lösungsmitteln wie Methylenchlorid, Tetrahydrofuran und Dimethylformamid bei Temperaturen von -20 bis +25°C.
R«
R' -A
B — CONH-^ ^ COOR COOH
<R2>„ . I
C xt C xπ
R<
Ri - A
B — CONH
<R
R5
c = RMCH) x-
Die Derivate XI, die in der Regel Ester darstellen, werden analog der oben beschriebenen Hydrolyse in die Ketokarbonsäuren XII überführt. In einer Dakin-West analogen Reaktion werden die Keto- ester I' hergestellt, wobei nach einer Methode von ZhaoZhao Li et
10 al.. J.Med.Chem., 1993, 36, 3472-80 gearbeitet wird. Dabei werden eine Karbonsäuren wie XII bei erhöhter Temperatur (50-100°C) in Lösungsmitteln, wie zum Beispiel Tetrahydrofuran, mit Oxalsäuremonoesterchlorid umgesetzt und anschließend das so erhaltene Produkt mit Basen wie Natriumethanolat in Ethanol bei Temperaturen von 25-80°C zum erfindungsgemäßen Ketoester I' umgesetzt. Die Ketoester I' können, wie oben beschrieben, zum Beispiel zu erfindungsgemäßen Ketocarbonsäuren hydrolysiert werden.
Die Umsetzung zu Ketobenzamiden I' erfolgt ebenfalls analog der Methode von ZhaoZhao Li et al . (s.oben) . Die Ketogruppe in I' wird durch Zugabe von 1, 2-Ethandithiol unter Lewissäure-Katalyse, wie zum Beispiel Bortrifluoridetherat, in inerten Lösungsmitteln, wie Methylenchlorid, bei Raumtemperatur geschützt, wobei ein Dithian anfällt. Diese Derivate werden mit Aminen R3-H in polaren Lösungsmitteln, wie Alkohole, bei Temperaturen von 0-80°C umgesetzt, wobei die Ketoamide I (R4 -7. oder NR7R8) anfallen.
Schema 2
R'
(R2)„
R' - A
R<
R« (R2)n
(**>„ Oxidaüon
B — CONH
B CONH
R5 R' - A -
R5 ' -A
XV
C = R3 - (CH,)X -
Eine alternative Methode ist im Schema 2 dargestellt. Die Keto- karbonsäuren II werden mit Aminohydroxykarbonsäure-Derivaten XIII ( Herstellung von XIII siehe S .L.Harbenson et al . , J.Med.Chem. 1994, 37,2918-29 oder J.P. Burkhardt et al . Tetrahedron Let.
11
1988, 29, 3433-3436) unter üblichen Peptid-Kupplungs-Methoden (siehe oben, Houben-Weyl) umgesetzt, wobei Amide XIV anfallen. Diese Alkohol-Derivate XIV können zu den erfindungsgemäßen Keto- karbonsäure-Derivaten I oxidiert werden. Dafür kann man ver- schiedene übliche Oxidationsreaktionen (siehe C.R.Larock,
Comprehensive Organic Transformations, VCH Publisher, Seite 604 f.) wie zum Beispiel Swern- und Swern-analoge Oxidationen, bevorzugt Dimethylsulfoxid/ Pyridin-Schwefeltrioxid-Komplex in Lösungsmitteln wie Methylenchorid oder Tetrahydrofuran, gegebe- nenfalls unter Zusatz von Dimethylsulfoxid, bei Raumtemperatur oder Temperaturen von -50 bis 25°C, ( T.T.Tidwell, Synthesis 1990, 857-70) oder Natriumhypochlorid/TEMPO ( S.L.Harbenson et al., siehe oben) , benutzen.
Wenn XIV α-Hydroxyester darstellen ( X = O-Alkyl), können diese zu Karbonsäuren XV hydrolysiert werden, wobei analog zu den obigen Methoden gearbeitet wird, bevorzugt aber mit Lithiumhydroxid in Wasser/Tetrahydrofuran-Gemischen bei Raumtemperatur. Die Herstellung von anderen Estern oder Amiden XVI erfolgt durch Umsetzung mit Alkoholen oder Aminen unter bereits beschriebenen Kupplungsbedingungen. Das Alkohol-Derivat XVI kann erneut zu erfindungsgemäßen Ketokarbonsäure-Derivaten I oxidiert werden.
Die Herstellung der Karbonsäureester II sind teilweise bereits beschrieben worden oder erfolgt entsprechend üblicher chemischen Methoden.
Verbindungen, bei denen X eine Bindung darstellt, werden durch übliche aromatische Kupplung, zum Beispiel die Suzuki-Kupplung mit Borsäure-Derivaten und Halogenide unter Palladiumkatalyse oder Kupferkatalytische Kupplung von aromatischen Halogeniden, hergestellt. Die Alkyl-überbrückten Reste (X= -(CH2)m-) können durch Reduktion der analogen Ketone oder durch Alkylierung der Organolithium , z.B. ortho-Phenyloxazolidine, oder anderer Organometallverbmdungen hergestellt werden (vgl. I.M.Dordor, et al., J.Che .Soc. Perkin Trans . I, 1984, 1247-52).
Ether-überbrückte Derivate werden durch Alkylierung der entsprechenden Alkohole oder Phenole mit Halogeniden hergestellt.
Die Sulfoxide und Sulfone sind durch Oxidation der entsprechenden Thioether zugänglich.
12
Alken- und Alkin- überbrückte Verbindungen werden zum Beispiel durch Heck-Reaktion aus aromatischen Halogeniden und entsprechenden Alkenen und Alkinen hergestellt (vgl. I.Sakamoto et al . , Chem.Pharm.Bull. , 1986, 34, 2754-59).
Die Chalkone entstehen durch Kondensation aus Acetophenonen mit Aldehyden und können gegebenenfalls durch Hydrierung in die analogen Alkyl-Derivate überführt werden..
Amide und Sulfonamide werden analog den oben beschriebenen Methoden aus den Aminen und Säure-Derivaten hergestellt.
Die Dialkylaminoalkylsubstituenten werden durch reduktive Aminierung der Aldehydderivate mit den entsprechenden Aminen in Gegenwart von Borhydriden , wie BH3-Pyridin-Komplex oder oder NaBH3CN erhalten (A:F:Abdel-Magid, C:A:Maryanoff, K.G. Carson, Tetrahedron Lett. 10990, 31, 5595; A.E: Moormann, Synth. Commun. 1993, 23, 789).
Die in der vorliegenden Erfindung enthaltenen heterozyklisch substituierte Amide I stellen Inhibitoren von Cystein-Proteasen dar, insbesondere Cystein-Proteasen wie die Calpaine I und II und Cathepsine B bzw. L.
Die inhibitorische Wirkung der heterozyklisch substituierte Amide I wurde mit in der Literatur üblichen Enzymtests ermittelt, wobei als Wirkmaßstab eine Konzentration des Inhibitors ermittelt wurde, bei der 50% der Enzymaktivität gehemmt wird ( = IC50) . Die Amide I wurden in dieser Weise auf Hemmwirkung von Calpain I, Calpain II und Cathepsin B gemessen.
Cathepsin B-Test
Die Cathepsin B-Hemmung wurde analog einer Methode von S.Hasnain et al., J.Biol.Chem. 1993, 268, 235-40 bestimmt.
Zu 88μL Cathepsin B ( Cathepsin B aus menschlicher Leber (Calbio- chem) , verdünnt auf 5 Units in 500μM Puffer) werden 2μL einer Inhibitor-Lösung, hergestellt aus Inhibitor und DMSO (Endkonzen- trationen: 100μM bis 0,01μM). Dieser Ansatz wird für 60 Minuten bei Raumtemperatur (25°C) vorinkubiert und anschließend die Reaktion durch Zugabe von 10μL lOmM Z-Arg-Arg-pNA (in Puffer mit 10% DMSO) gestartet. Die Reaktion wird 30 Minuten bei 405nM im Mikro- titerplattenreader verfolgt. Aus den maximalen Steigungen werden anschließend die ICso's bestimmt.
13
Calpain I und II Test
Die Testung der inhibitorischen Eigenschaften von Calpain-Inhibitoren erfolgt in Puffer mit 50 mM Tris-HCl, pH 7,5 ; 0,1 M NaCl; 1 mM Dithiotreithol; 0,11 mM Ca Cl2, wobei das fluorogene Calpain- substrats Suc-Leu-Tyr-AMC ( 25 mM gelöst in DMSO, Bachern/Schweiz) verwendet wird. Humanes μ-Calpain wird aus Erythrozyten isoliert und nach mehren chromatographischen Schritten (DEAE-Sepharose, Phenyl-Sepharose, Superdex 200 und Blue-Sepharose) erhält man Enzym mit einer Reinheit >95%, beurteilt nach SDS-PAGE, Western Blot Analyse und N-terminaler Sequenzierung. Die Fluoreszenz des Spaltproduktes 7-Amino-4-methylcoumarin (AMC) wird in einem Spex- Fluorolog Fluorimeter bei λex = 380 nm und λem = 460 nm verfolgt. In einem Meßbereich von 60 min. ist die Spaltung des Substrats linear und die autokatalytische Aktivität von Calpain gering, wenn die Versuche bei Temperaturen von 12° C durchgeführt werden.
Die Inhibitoren und das Calpainsubstrat werden in den Versuchsansatz als DMSO-Lösungen gegeben, , wobei DMSO in der Endkonzentration 2% nicht überschreiten soll.
In einem Versuchsansatz werden 10 μl Substrat (250μM final) und anschließend 10 μl an μ-Calpain (2μg/ml final, d.h.18 nM) in eine 1 ml Küvette gegeben, die Puffer enthält. Die Calpain-vermittelte Spaltung des Substrats wird für 15 - 20 min. gemessen. Anschlie- ßend Zugabe von 10 μl Inhibitor (50 - 100 μM Lösung in DMSO) und Messung der Inhibition der Spaltung für weitere 40 min.
Ki -Werte werden nach der klassischen Gleichung für reversible Hemmung bestimmt:
(Methods in Enzymology, )
Ki = I / (vO/vi) - 1 ; wobei 1= Inhibitorkonzentration, vO = Anfangsgeschwindigkeit vor Zugabe des Inhibitors; vi = Reaktions- geschwindigkeit im Gleichgewicht.
Die Geschwindigkeit wird errechnet aus v = Freisetzung AMC/ Zeit d.h. Höhe /Zeit.
Calpain ist eine intrazelluläre Cysteinprotease. Calpain-Inhibitoren müssen die Zellmembran passieren, um den Abbau von intrazellulären Proteinen durch Calpain zu verhindern. Einige bekannte Calpain-Inhibitoren, wie zum Beispiel E 64 und Leupeptin, überwinden die Zellmembranen nur schlecht und zeigen dementsprechend, obwohl sie gute Calpain-Inhibitoren darstellen, nur schlechte Wirkung an Zellen. Ziel ist es, Verbindungen mit besser Membran-
14 gängigkeit zu finden. Als Nachweis der Membrangängigkeit von Calpain-Inhibitoren benutzen wir humane Plättchen.
Calpain-vermittelter Abbau der Tyrosinkinase pp60src in Plättchen
Nach der Aktivierung von Plättchen wird die Tyrosinkinase pp60src durch Calpain gespalten. Dies wurde von Oda et al . in J. Biol . Chem., 1993, Vol 268, 12603-12608 eingehend untersucht . Hierbei wurde gezeigt, daß die Spaltung von pp60src durch Calpeptin, einen Inhibitor für Calpain, verhindert werden kann. In Anlehnung an diese Publikation wurde die zellulare Effektivität unserer Substanzen getestet. Frisches humanes, mit Zitrat versetztes Blut wurde 15 min. bei 200g zentrifugier . Das Plättchen-reiche Plasma wurde gepoolt und mit Plättchenpuffer 1:1 verdünnt (Plättchenpuf- fer: 68 mM NaCl, 2,7 mM KCl, 0,5 mM MgCl2 x 6 H20, 0,24 mM NaH2P04 x H20, 12 mM NaHC03, 5, 6 mM Glukose, 1 mM EDTA, pH 7,4). Nach einem Zentrifugations-und Waschschritt mit Plättchenpuffer wurden die Plättchen auf 107Zellen/ml eingestellt. Die Isolierung der humanen Plättchen erfolgte bei RT.
Im Testansatz wurden isolierte Plättchen (2 x 106) mit unterschiedlichen Konzentrationen an Inhibitoren (gelöst in DMSO) für 5 min. bei 37°C vorinkubiert . Anschließend erfolgte die Aktivierung der Plättchen mit lμM Ionophor A23187 und 5 mM CaCl . Nach 5 min. Inkubation wurden die Plättchen kurz bei 13000 rpm zentrifugiert und das Pellet in SDS-Probenpuffer aufgenommen (SDS-Proben- puffer: 20 mM Tris-HCl, 5 mM EDTA, 5 mM EGTA, 1 mM DTT, 0 , 5 mM PMSF, 5 μg/ml Leupeptin, 10 μg/ml Pepstatin, 10% Glycerin und 1% SDS) . Die Proteine wurden in einem 12%igen Gel aufgetrennt und pp60src und dessen 52-kDa und 47-kDa Spaltprodukte durch Western- Blotting identifiziert. Der verwendete polyklonale Kaninchen-Antikörper Anti-Cys-src (pp60c-src) wurde von der Firma Biomol Feinchemikalien (Hamburg) erworben. Dieser primäre Antikörper wurde mit einem HRP-gekoppelten zweiten Antikörper aus der Ziege (Boehringer Mannheim, FRG) nachgewiesen. Die Durchführung des Western-Blotting erfolgte nach bekannten Methoden.
Die Quantifizierung der Spaltung von pp60src erfolgte densito- metrisch, wobei als Kontrollen nicht-aktivierte (Kontrolle 1: keine Spaltung) und mit Ionophor- und Kalzium-behandelte Plättchen (Kontrolle 2: entspricht 100% Spaltung) verwendet wurden. Der ED5o -Wert entspricht der Konzentration an Inhibitor bei der die Intensität der Farbreaktion um 50% reduziert wird.
Glutamat induzierter Zelltod an corticalen Neuronen
15
Der Test wurde, wie bei Choi D. w. , Maulucci-Gedde M. A. and Kriegstein A. R. , "Glutamate neurotoxicity in cortical cell culture". J. Neurosci . 1989,7, 357-368, durchgeführt.
Aus 15 Tage alten Mäuseembryos wurden die Cortexhälften präpariert und die Einzelzellen enzymatisch (Trypsin) gewonnen. Diese Zellen (Glia und corticale Neuronen) werden in 24 Well-Platten ausgesät. Nach drei Tagen (Laminin beschichteten Platten) oder sieben Tagen (Ornithin beschichteten Platten) wird mit FDU (5-Fluor-2-Desoxyuridine) die Mitosebehandlung durchgeführt. 15 Tage nach der Zellpräparation wird durch Zugabe von Glutamat (15 Minuten) der Zelltod ausgelöst. Nach der Glutamatentfernung werden die Calpaininhibitoren zugegeben. 24 Stunden später wird durch die Bestimmung der Lactatdehydrogenase (LDH) im Zellkultur- überstand die Zellschädigung ermittelt.
Man postuliert, daß Calpain auch eine Rolle im apoptotischen Zelltod spielt ( M.K.T.Squier et al . J.Cell .Physiol . 1994, 159, 229-237; T.Patel et al . Faseb Journal 1996, 590, 587-597 ). Des- halb wurde in einem weiteren Modell in einer humanen Zellinie der Zelltod mit Kalzium in Gegenwart eines Kalziumionophors ausgelöst. Calpain-Inhibitoren müssen in die Zelle gelangen und dort Calpain hemmen, um den ausgelösten Zelltod zu verhindern.
Kalzium-vermittelter Zelltod in NT2 Zellen
In der humanen Zellinie NT2 läßt sich durch Kalzium in Gegenwart des Ionophors A 23187 der Zelltod auslösen. 105 Zellen/well wurden in Mikrotiterplatten 20 Stunden vor dem Versuch ausplattiert. Nach diesem Zeitraum wurden die Zellen mit verschiedenen Konzentrationen an Inhibitoren in Gegenwart von 2,5 μM Ionophor und 5 mM Kalzium inkubiert. Dem Reaktionsansatz wurden nach 5 Stunden 0,05 ml XTT (Cell Proliferation Kit II, Boehringer Mannnheim ) hinzugegeben. Die optische Dichte wird ungefähr 17 Stunden spä- ter, entsprechend den Angaben des Herstellers, in dem Easy Reader EAR 400 der Firma SLT bestimmt. Die optische Dichte, bei der die Hälfte der Zellen abgestorben sind, errechnet sich aus den beiden Kontrollen mit Zellen ohne Inhibitoren, die in Abwesenheit und Gegenwart von Ionophor inkubiert wurden.
Bei einer Reihe von neurologischen Krankheiten oder psychischen Störungen treten erhöhte Glutamat-Aktivitäten auf, die zu Zuständen von Übererregungen oder toxischen Effekten im zentralen Nervensystem (ZNS) führen. Glutamat vermittelt seine Effekte über verschiedene Rezeptoren. Zwei von diesen Rezeptoren werden nach den spezifischen Agonisten NMDA-Rezeptor und AMPA-Rezeptor klassifiziert. Antagonisten gegen diese Glutamat vermittelten Effekte
16 können somit zur Behandlung dieser Krankheiten eingesetzt werden, insbesondere zur therepeutischen Anwendung gegen neurodegenera- tiven Krankheiten wie Chorea Huntington und Parkinsonsche Krankheit, neurotoxischen Störungen nach Hypoxie, Anoxie, Ischämie und nach Lesionen, wie sie nach Schlaganfall und Trauma auftreten, oder auch als Antiepileptika (vgl. Arzneim. Forschung 1990, 40, 511-514; TIPS, 1990, 11, 334-338; Drugs of the Future 1989, 14, 1059-1071) . De
Schutz gegen zerebrale Übererregung durch exzitatorische Aminosäuren ( NMDA- bzw. AMPA-Antagonismus an der Maus)
Durch intrazerebrale Applikation von exzitatorischen Aminosäuren EAA ( Excitatory Amino Acids) wird eine so massive Übererregung induziert, daß diese in kurzer Zeit zu Krämpfen und zum Tod der Tiere (Maus) führt. Durch systemische, z.B. intraperitoneale, Gabe von zentral-wirksamen Wirkstoffen (EAA-Antagonisten) lassen sich diese Symptome hemmen. Da die excessive Aktivierung von EAA- Rezeptoren des Zentralnervensystems in der Pathogenese verschie- dener neurologischer Erkrankungen eine bedeutende Rolle spielt, kann aus dem nachgewiesenen EAA-Antagonismus in vivo auf eine mögliche therapeutische Verwendbarkeit der Substanzen gegen derartige ZNS-Erkrankungen geschlossen werden. Als Maß für die Wirksamkeit der Substanzen wurde ein EDso-Wert bestimmt, bei dem 50% der Tiere durch eine festgelegte Dosis von entweder NMDA oder AMPA durch die vorangegangene ip.-Gabe der Meßsubstanz symptomfrei werden.
Die heterozyklisch substituierten Amide I stellen Inhibitoren von Cystein-Derivate wie Calpain I bzw. II und Cathepsin B bzw. L dar und können somit zur Bekämpfung von Krankheiten, die mit einer erhöhten Enzymaktivität der Calpain-Enzyme oder Cathepsin-Enzyme verbunden sind, dienen. Die vorliegenden Amide I können danach zur Behandlung von neurodegenerativen Krankheiten, die nach Ischämie, Trauma, Subarachnoidal-Blutungen und Stroke auftreten, und von neurodegenerativen Krankheiten wie multipler Infarkt- Dementia, Alzheimer Krankheit, Huntington Krankheit und von Epilepsien und weiterhin zur Behandlung von Schädigungen des Herzens nach cardialen Ischämien, Schädigungen der Nieren nach renalen Ischämien, Skelettmuskelschädigungen, Muskeldystrophien, Schädigungen, die durch Proliferation der glatten Muskelzellen entstehen, coronaren Vasospasmen, cerebralen Vasospasmen, Katarakten der Augen, Restenosis der Blutbahnen nach Angioplastie dienen. Zudem können die Amide I bei der Chemotherapie von Tu o- ren und deren Metastasierung nützlich sein und zur Behandlung von Krankheiten, bei denen ein erhöhter Interleukin-1-Spiegel auf-
17 tritt, wie bei Entzündungen und rheumatischen Erkrankungen, dienen.
Die erfindungsgemäßen Arzneimittelzubereitungen enthalten neben den üblichen Arneimittelhilfstoffen eine therapeutisch wirksame Menge der Verbindungen I .
Für die lokale äußere Anwendung, zum Beispiel in Puder, Salben oder Sprays, können die Wirkstoffe in den üblichen Konzen- trationen enthalten sein. In der Regel sind die Wirkstoffe in einer Menge von 0,001 bis 1 Gew.-%, vorzugsweise 0,001 bis 0,1 Gew.-% enthalten.
Bei der inneren Anwendung werden die Präparationen in Einzeldosen verabreicht. In einer Einzeldosis werden pro kg Körpergewicht 0,1 bis 100 mg gegeben. Die Zubereitung können täglich in einer oder mehreren Dosierungen je nach Art und Schwere der Erkrankungen verabreicht werden.
Entsprechend der gewünschten Applikationsart enthalten die erfindungsgemäßen ArzneimittelZubereitungen neben dem Wirkstoff die üblichen Trägerstoffe und Verdünnungsmittel. Für die lokale äußere Anwendung können pharmazeutisch-technische Hilfsstoffe, wie Ethanol, Isopropanol, oxethyliertes Ricinusöl, oxethyliertes Hydriertes Ricinusöl, Polyacrylsäure, Polyethylenglykol, Poly- ethylenglykostearat, ethoxylierte Fettalkohole, Paraffinöl, Vaseline und Wollfett, verwendet werden. Für die innere Anwendung eignen sich zum Beispiel Milchzucker, Propylenglykol, Ethanol, Stärke, Talk und Polyvinylpyrrolidon.
Ferner können Antioxidationsmittel wie Tocopherol und butyliertes Hydroxyanisol sowie butyliertes Hydroxytoluol, geschmacksverbessernde Zusatzstoffe, Stabilisierungs-, Emulgier- und Gleitmittel enthalten sein.
Die neben dem Wirkstoff in der Zubereitung enthaltenen Stoffe sowie die bei der Herstellung der pharmazeutischen Zubereitungen verwendeten Stoffe sind toxikologisch unbedenklich und mit dem jeweiligen Wirkstoff verträglich. Die Herstellung der Arznei- mittelzubereitungen erfolgt in üblicher Weise, zum Beispiel durch Vermischung des Wirkstoffes mit anderen üblichen Trägerstoffen und Verdünnungsmitteln.
Die ArzneimittelZubereitungen können in verschiedenen Applikati- onsweisen verabreicht werden, zum Beispiel peroral, parenteral wie intravenös durch Infusion, subkutan, intraperitoneal und topisch. So sind Zubereitungsformen wie Tabletten, Emulsionen,
18
Infusions- und Injektionslösungen, Pasten, Salben, Gele, Cremes, Lotionen, Puder und Sprays möglich.
Beispiele
Beispiel 1
2- ( (4-Phenylpiperazin-l-yl)methyl)benzoesäure-N- (3-phenyl- propan-l-al-2-yl ) amid
a) 2- (4-Phenylpiperazin-l-ylmethyl)benzoesäuremethylester
10.0 g 2-Chlormethylbenzoesäuremethylester, 15 g Kalium- carbonat, 8.8 g Phenylpiperazin und eine Spatelspitze 18-Krone-6 wurden in 200 ml DMF 5 h bei 100 °C erhitzt und anschließend 60 h bei Raumtemperatur gerührt. Das überschüssige Kaliumcarbonat wurde abfiltriert, das Filtrat wurde eingeengt und der Rückstand zwischen Wasser und Essigester verteilt. Nach Trocknen der organischen Phase über Magnesium- sulfat und Einengen des Lösungsmittels fielen 16.8 g (100 %) des Produkts an.
b) 2- (4-Phenylpiperazin-l-ylmethyl)benzoesäure
16.8 g der ZwischenVerbindung la wurden in 150 ml THF vorgelegt und mit 1.7 g LiOH in 150 ml Wasser bei Raumtemperatur versetzt. Die trübe Lösung wurde durch Zugabe von 10 ml MeOH geklärt. Die Reaktionsmischung wurde 12 h bei Raumtemperatur gerührt und mit einer äquimolaren Menge 1 M HC1 hydrolysiert . Die Reaktionsmischung wurde bis zur Trockne eingeengt und der Rückstand in Methanol/Toluol aufgenommen. Nach Entfernen des Lösungsmittels fielen 15.2 g (86 %) des noch salzhaltigen Produkts an.
c) 2-( (4-Phenylpiperazin-l-yl)methyl)benzoesäure-N- (3-phenyl- propan-l-ol-2-yl ) amid
3.0 g der Zwischenverbindung lb und 3 ml Triethylamin wurden in 50 ml DMF vorgelegt. Es wurden 5 g Natriumsulfat zugegeben und 30 min gerührt. 1.5 g Phenylalaninol, 1.4 g HOBT und 2.1 g EDC wurden nacheinander bei 0 °C zugegeben und über Nacht bei Raumtemperatur nachgerührt. Die Reaktionsmischung wurde auf destilliertes Wasser geschüttet, mit NaHC03 alkalisch gestellt, mit NaCl gesättigt und dreimal mit 100 ml Methylen- chlorid extrahiert. Die organischen Phasen wurden zweimal mit Wasser gewaschen und über Magnesiumsulfat getrocknet. Nach
19
Einengen des Lösungsmittels fielen 2.5 g (59 %) des Produkt an.
d) 2- ( (4-Phenylpiperazin-l-yl)methyl)benzoesäure-N- (3-phenyl- propan-l-al-2-yl)amid
2.3 g der Zwischenverbindung lc wurden in Gegenwart von 2.4 g Triethylamin in 50 ml DMSO vorgelegt und mit 2.5 g S03-Pyri- din-Komplex versetzt. Es wurde über Nacht bei Raumtemperatur gerührt. Der Ansatz wurde auf 250 ml destilliertes Wasser geschüttet, mit NaHC03 alkalisch gestellt, mit NaCl gesättigt, mit 100 ml Methylenchlorid extrahiert und über Magnesiumsulfat getrocknet. Nach dem Einengen des Lösungsmittels wurde der Rückstand in THF gelöst und mit HC1 in Dioxan das Hydrochlorid ausgefällt. Der Niederschlag wurde abgesaugt und mehrfach mit Ether gewaschen, wobei 1.9 g (71 %) des Produkts anfielen.
1H-NMR (d6-DMSO) : δ = 2.9 (2H) , 3.0-3.3 (8H), 4.1-4.5 (2H) , 4.7 (1H), 6.8-7.7 (14H), 9.3 (1H), 9.8 (1H) ppm.
Beispiel 2
2-( (4-Benzylpiperazin -l-yl)methyl)benzoesäure-N- (3-phenyl- propan-l-al-2-yl)amid
a) 2- ( (4-Benzylpiperazin-l-yl)methyl)benzoesäuremethylester
10.0 g 2-Chlormethylbenzoesäuremethylester und 9.6 g N-Ben- zylpiperazin wurden analog Beispiel la in 200 ml DMF in
Gegenwart von 15 g Kaliumcarbonat bei 100 °C umgesetzt, wobei 17.6 g (100 %) des Produkts anfielen.
b) 2-( (4-Benzylpiperazin-l-yl)methyl)benzoesäure
17.5 g der Zwischenverbindung 2a in 150 ml THF wurden analog Beispiel lb mit 1.6 g LiOH in 150 ml Wasser hydrolysiert, wobei 9.1 g (54 %) des Produkts anfielen.
c) 2-( (4-Benzylpiperazin-l-yl)methyl)benzoesäure-N- (3-phenyl- propan-l-ol-2-yl ) amid
3.0 g der Zwischenverbindung 2b wurden analog Beispiel lc in 60 ml DMF mit 3 ml Triethylamin, 1.5 g Phenylalaninol, 1.3 g HOBT und 2.0 g EDC versetzt, wobei 2.0 g (46 %) des Produkts anfielen.
20 d) 2- ( (4-Benzylpiperazin-l-yl)methyl)benzoesäure-N- (3-phenyl- propan-l-al-2-yl ) amid
1.5 g der Zwischenverbindung 2c wurden analog Beispiel ld in 40 ml DMSO in Gegenwart von 2.3 ml Triethylamin mit 1.9 g
S03-Pyridin-Komplex in 20 ml DMSO oxidiert, wobei 0.4 g (21 %) des Produkts in Form des Fumarats anfielen.
1H-NMR (dg-DMSO) : δ = 2.1-2.3 (8H), 2.9-3.0 (1H) , 3.3-3.6 (6H), 4.5 (1H), 6.6 (2H) , 7.1-7.7 (14H), 9.7 (1H) , 10.3 (1H) ppm.
Beispiel 3
2- ( (4-Benzylpiperazin-l-yl)methyl)benzoesäure-N- (1-carbamoyl-l- oxo-3-phenylpropan-2-yl ) amid
a) 2-( (4-Benzylpiperazin-l-yl)methyl)benzoesäu- re-N- ( l-carbamoyl-l-ol-3-phenylpropan-2-yl ) amid
1.5 g der Zwischenverbindung lb wurden analog Beispiel lc in
40 ml DMF mit 0.7 ml Triethylamin, 1.0 g
3-Amino-2-hydroxy-4-phenylbuttersäureamid-Hydrochlorid, 0.6 g
HOBT und 0.9 g EDC versetzt, wobei 0.8 g (38 %) des Produkts anfielen.
b) 2- ( (4-Benzylpiperazin-l-yl)methyl)benzoesäure-N- (1-carbamoyl- l-oxo-3-phenylpropan-2-yl ) amid
0.7 g der Zwischenverbindung 3a wurden analog Beispiel ld in 20 ml DMSO in Gegenwart von 0.8 g Triethylamin mit 0.7 g S03-Pyridin-Komplex oxidiert, wobei 0.1 g (18 %) des Produkts in Form der freien Base anfielen.
1H-NMR (d6-DMSO) : δ = 2.3 (4H) , 2.8-3.5 (8H), 5.3 (1H), 6.7-7.5 (16H), 7.8 (1H) , 8.1 (1H), 10.3 (1H) ppm.
Beispiel 4
2-(4-( (3-Methylphenyl)piperazin-l-yl)methyl)benzoesäure-N- ( l-carbamoyl-l-oxo-3-phenylpropan-2-yl ) amid
a) 2-(4-( (3-Methylphenyl)piperazin-l-yl)methyl)benzoesäure- methylester
21
4.0 g 2-Chlormethylbenzoesäremethylester und 4.4 g 3-Methyl- phenylpiperazin wurden in 200 ml DMF in Gegenwart von 4.5 g Kaliumcarbonat 3 h bei 140 °C erhitzt. Die Reaktionsmischung wurde auf Wasser geschüttet und dreimal mit Essigester extra- hiert. Die vereinigten organischen Phasen wurden dreimal mit gesättigter Kochsalzlösung gewaschen, über Magnesiumsulfat getrocknet und eingeengt, wobei 6.5 g (92 %) des Produkts anfielen.
b) 2- (4-( (3-Methylphenyl)piperazin-l-yl)methyl)benzoesäure
5.9 g des Zwischenprodukts 4a wurde in 75 ml THF gelöst und analog Beispiel lb mit 0.9 g LiOH in 75 ml Wasser hydrolysiert, wobei 2.9 g (51 %) des Produkts anfielen.
c) 2-(4-( (3-Methylphenyl)piperazin-l-yl)methyl)benzoesäu- re-N- ( l-carbamoyl-l-ol-3-phenylpropan-2-yl ) amid
1.8 g der Zwischenverbindung 4b wurden analog Beispiel lc in 50 ml DMF in Gegenwart von 2.7 ml Triethylamin vorgelegt und nacheinander mit 0.8 g HOBT, 1.3 g 3-Amino-2-hydroxy-4-phe- nylbuttersäureamid-Hydrochlorid und 1.2 EDC versetzt, wobei 1.4 g (50 %) des Produkts anfielen.
d) 2- (4-( (3-Methylphenyl)piperazin-l-yl)methyl)benzoesäu- re-N- (l-carbamoyl-l-oxo-3-phenylpropan-2-yl)amid
1.2 g der Zwischenverbindung 4c wurden analog Beispiel ld in 30 ml DMSO gelöst und in Gegenwart von 1.5 ml Triethylamin mit 1.6 g S03-Pyridin-Komplex oxidiert, wobei 1.0 g (83 %) des Produkts anfielen.
MS: m/e = 484 (M+)
Beispiele 5 und 6 wurden analog Beispiel 1 synthetisiert.
Beispiel 5
3- ( (4-Phenylpiperazin-l-yl)methyl)benzoesäure-N- (3-phenyl- propan-l-al-2-yl)amid -Fumarat
1H-NMR (d6-DMS0) : δ = 2.5 (4H), 2.9 (IH), 3.2 (4H), 3.3 (IH), 3.7 (2H), 4.5 (IH), 6.6 (2H) , 6.75 (IH), 6.9 (2H) , 7.2 (2H) , 7.2-7.3 (5H), 7.45 (IH), 7.55 (IH), 7.75 (IH) , 7.8 (2H) , 8.9 (IH) , 9.7 (IH) ppm.
22
Beispiel 6
3- ( (4- (2-tert-Butyl-4-trifluormethylpyrimidin-6-yl)homopipera- zin-l-yl )methy1 ) benzoesäure-N- (3-phenylpropan-l-al-2-yl ) amid
MS: m/e = 568 (M++1)
Beispiel 7
4- (N- (3 , 4-Dioxomethylen)benzyl-N-methylaminomethyl )benzoesäure-N- (3-phenylpropan-l-al-2-yl)amid
a) 4-(N-(3, 4-Dioxomethylen)benzyl-N-methylaminomethyl)benzoe- säure
11.5 g N-(3, 4-Dioxomethylen)benzyl-N-methylamin und 15.5 g Triethylamin wurden in vorgelegt und mit 15.0 g 4-Brommethyl- benzoesäure in 100 ml THF versetzt. Die Reaktionsmischung wurde kurz zum Rückfluß erhitzt und anschließend 15 h bei Raumtemperatur nachgerührt. Nach Abfiltrieren der Salze wurde die Mutterlauge eingeengt, der Rückstand in Essigester gelöst und mit Wasser gewaschen. Die wäßrige Phase wurde alkalisch gestellt und mit Essigester mehrfach extrahiert, wobei 6.6 g (32 %) des Produkts als weißer Feststoff anfielen.
b) 4- (N- (3 , 4-Dioxomethylen)benzyl-N-methylaminomethyl ) enzoesäure-N- (3-phenylpropan-l-ol-2-yl)amid
4.4 g der Zwischenverbindung 5a wurden analog Beispiel lc in 50 ml DMF in Gegenwart von 2.9 ml Triethylamin vorgelegt und nacheinander mit 1.8 g HOBT, 2.0 g Phenylalanin und 2.8 EDC versetzt, wobei 2.3 g (40 %) des Produkts anfielen.
c) 4-(N- (3, 4-Dioxomethylen)benzyl-N-methylaminomethyl)benzoesäu- re-N- ( 3-phenylpropan-l-al-2-yl ) mid
2.0 g der Zwischenverbindung 5b wurden analog Beispiel ld in
60 ml DMSO gelöst und in Gegenwart von 1.8 ml Triethylamin mit 2.1 g S03-Pyridin-Komplex oxidiert, wobei 1.3 g (68 %) des Produkts anfielen.
1H-NMR (CF3COOD) : δ = 2.9 (3H) , 3.2 (2H) , 4.3-4.9 (5H), 6.1 (2H), 6.6 (IH), 6.9 (3H) , 7.2-7.4 (5H), 7.8 (2H) , 8.25 (2H) ppm.
MS: m/e = 430 (M+)
23
Beispiele 8-28 wurden analog Beispiel 7 dargestellt.
Beispiel 8
4- (N-Benzyl-N-methylaminomethyl)benzoesäure-N- (3-phenyl- propan-l-al-2-yl ) amid
IH-NMR (CF3COOD) : δ = 2.9 (3H) , 3.2 (2H) , 4.3-5.0 (5H), 6.7 (IH), 7.25-7.5 (8H), 7.55 (2H), 7.8 (2H) , 8.2 (2H) ppm.
MS: m/e = 386 (M+)
Beispiel 9
4- (N- ( 4-Methoxy)benzyl-N-methylaminomethyl )benzoesäure-N- (3-phenylpropan-l-al-2-yl)amid
IH-NMR (CF3COOD): δ = 2.9 (3H) , 3.3 (2H) , 4.0 (3H) , 4.3-4.9 (5H), 6.7 (IH), 7.1-7.4 (7H) , 7.5 (2H) , 7.8 (2H) , 8.2 (2H) ppm.
MS: m/e = 416 (M+)
Beispiel 10
4- (N-Benzyl-N-methylaminomethyl)benzoesäure-N- (3-butan-l-al-2-yl)amid
IH-NMR (CF3COOD) : δ = 1.1 (3H) , 1.6 (2H) , 2.0 (2H) , 2.9 (3H) , 4.3-4.5 (3H), 4.7 (IH), 4.8 (IH) , 6.6 (IH), 7.3-7.6 (5H), 7.8 (2H) , 8.3 (2H) ppm.
MS: m/e = 338 (M+)
Beispiel 11
4- (N- (3 , 4-Dioxomethylen)benzyl-N-methylaminomethyl) enzoesäure-N- (3-butan-l-al-2-yl ) amid
IH-NMR (CF3COOD): δ = 1.1 (3H) , 1.6 (2H) , 1.9 (2H) , 2.9 (3H) , 4.25-4.6 (4H), 4.75 (IH), 6.1 (2H) , 6.6 (IH), 6.9 (3H) , 7.8 (2H) , 8.3 (2H) ppm.
MS: m/e = 382 (M+)
Beispiel 12
24
4- (N- (4-Methoxy)benzyl-N-methylaminomethyl)benzoesäure-N- (3-butan-l-al-2-yl) amid
MS: m/e = 368 (M+)
Beispiel 13
4- (N- (3 , 4-Dioxomethylen)benzyl-N-methylaminomethyl)benzoesäure-N- (3-cyclohexylpropan-l-al-2-yl)amid
IH-NMR (CF3COOD): δ = 1.0-2.0 (13H), 2.9 (3H) , 4.3-4.9 (4H) , 6.1 (2H) , 6.6 (IH), 6.9 (3H) , 7.8 (2H) , 8.3 (2H) ppm.
MS: m/e = 436 (M+)
Beispiel 14
4- (N- ( 4-Benzyl-N-methylaminomethyl )benzoesäure-N- ( 3-cyclohexyl- propan-l-al-2-yl ) amid
IH-NMR (dg-DMSO): δ = 1.0-1.8 (13H), 2.1 (3H) , 3.4 (2H) , 3.5 (2H) , 4.3 (IH), 7.1-7.4 (5H), 7.5 (2H), 7.8 (2H) , 8.8 (IH), 9.5 (IH) ppm.
Beispiel 15
4- (N- (4-Methoxy) benzyl-N-methylaminomethyl )benzoesäure-N- (3-cy- clohexylpropan-l-al-2-yl ) amid
IH-NMR (CDC13) : δ = 1.0-1.8 (13H), 2.1 (3H) , 3.4 (2H) , 3.5 (2H) , 3.7 (3H), 4.3 (IH), 6.8 (2H) , 7.25 (2H) , 7.5 (2H) , 7.9 (2H) , 8.8 (IH) , 9.5 (IH) ppm.
Beispiel 16
4- ( (2-Phenylpyrrolid-l-yl)methyl)benzoesäure-N- (3-cyclohexylpro- pan-l-al-2-yl) mid
MS: m/e = 420 (M+)
Beispiel 17
4- ( (2-Phenylpyrrolid-l-yl)methyl)benzoesäure-N- (3-butan-l-al-2-yl ) amid
MS: m/e = 364 (M+)
25
Beispiel 18
4- ( (2-Phenylpyrrolid-l-yl)methyl)benzoesäure-N- (3-phenyl- propan-l-al-2-yl)amid
MS: m/e = 412 (M+)
Beispiel 19
4-( (1, 2, 3, 4-Dihydrochinolin-l-yl)methyl)benzoesäure-N- (3-cyclohe- xylpropan-l-al-2-yl ) amid
IH-NMR (CDC13): δ = 1.0-1.9 (13H), 2.0 (2H) , 2.8 (2H) , 3.3 (2H) , 4.5 (2H), 4.8 (IH), 6.4 (IH), 6.5 (2H) , 7.0 (2H), 7.4 (2H) , 7.8 (2H) , 9.7 (IH) ppm.
MS: m/e = 404 (M+)
Beispiel 20
4- ( (1, 2, 3, 4-Dihydrochinolin-l-yl)methyl)benzoesäure-N- (3-phenyl- propan-l-al-2-yl ) amid
IH-NMR (dg-DMSO): δ = 1.9 (2H) , 2.75 (2H) , 2.9 (IH) , 3.3 (IH) , 3.4 (2H) , 4.4 (IH), 4.5 (2H) , 6.3 (2H) , 6.8 (2H) , 7.1-7.25 (5H) , 7.3 (2H) , 7.7 (2H), 8.8 (IH) , 9.5 (IH) ppm.
MS: m/e = 398 (M+)
Beispiel 21
4- ( (1, 2, 3, 4-Dihydrochinolin-l-yl )methyl) enzoesäure-N- (3-butan-l-al-2-yl ) amid
IH-NMR (d6-DMSO): δ = 0.9 (3H) , 1.2-2.0 (6H), 2.7 (2H) , 3.3 (2H) , 4.2 (IH), 4.5 (2H), 6.4 (2H) , 6.8 (2H) , 7.3 (2H), 7.8 (2H) , 8.8 (IH) , 9.5 (IH) ppm.
MS: m/e = 350 (M+)
Beispiel 22
4- ( (1,2,3, 4-Dihydroisochinolin-2-yl)methyl)benzoesäure-N-(3-cy- clohexylpropan-l-al-2-yl ) amid
26
IH-NMR (dg-DMSO): δ = 0.9-1.8 (13H), 2.7-2.9 (4H), 3.6 (2H) , 3.75 (2H), 4.4 (IH), 6.9-7.1 (4H) , 7.4 (2H) , 7.8 (2H) , 8.8 (IH), 9.5 (IH) ppm.
MS: m/e = 404 (M+)
Beispiel 23
4- ( (1, 2, 3, 4-Dihydroisochinolin-2-yl)methyl)benzoesäu- re-N- (3-phenylpropan-l-al-2-yl ) amid
IH-NMR (dg-DMSO): δ = 2.7 (2H) , 2.8 (2H) , 2.9 (IH), 3.2 (IH), 3.5 (2H) , 3.7 (2H) , 4.5 (IH), 6.9-7.1 (4H) , 7.2-7.3 (5H), 7.5 (2H) , 7.75 (2H), 8.8 (IH) , 9.5 (IH) ppm.
MS: m/e = 398 (M+)
Beispiel 24
4- ( (1, 2, 3, 4-Dihydroisochinolin-2-yl)methyl)benzoesäu- re-N-(3-butan-l-al-2-yl)amid-Hydrochlorid
IH-NMR (dg-DMSO): δ = 0.9 (3H) , 1.2-2.0 (4H), 3.0 (IH), 3.3 (2H) , 3.6 (IH), 4.1-4.6 (5H), 7.2 (4H) , 7.8 (2H) , 8.0 (2H) , 9.0 (IH) , 9.5 (IH) , 11.75 (IH) ppm.
Beispiel 25
4- ( (6, 7-Dimethoxy-l, 2,3, 4-dihydroisochinolin-2-yl)methyl)benzoe- säure-N- (3-cyclohexylpropan-l-al-2-yl) amid
IH-NMR (dg-DMSO): δ = 0.9-1.9 (13H), 2.7 (4H), 3.4 (2H) , 3.6 (3H) , 3.65 (2H), 3.7 (3H) , 4.3 (IH) , 6.5 (IH) , 6.6 (IH), 7.5 (2H) , 7.8 (2H) , 8.8 (IH) , 9.5 (IH) ppm.
MS: m/e = 464 (M+)
Beispiel 26
4- ( (6, 7-Dimethoxy-l, 2,3, 4-dihydroisochinolin-2-yl)methyl)benzoe- säure-N- (3-phenylpropan-l-al-2-yl) amid
IH-NMR (dg-DMSO): δ = 2.7 (4H), 2.9 (IH), 3.25 (IH) , 3.6 (6H), 3.7 (2H) , 4.5 (IH), 6.6 (IH), 6.7 (IH), 7.2-7.3 (5H), 7.4 (2H) , 7.8 (2H) , 8.9 (IH), 9.6 (IH) ppm.
27
MS: m/e = 458 (M+)
Beispiel 27
4- ( (6, 7-Dimethoxy-l, 2,3, 4-dihydroisochinolin-2-yl)methyl)benzoe- säure-N- (3-butan-l-al-2-yl)amid
IH-NMR (dg-DMSO): δ = 0.9 (3H) , 1.4 (2H) , 1.5-1.8 (2H) , 2.7 (4H), 3.4 (2H), 3.7 (3H), 3.75 (3H) , 3.8 (2H) , 4.3 (IH) , 6.6 (IH), 6.7 (IH), 7.4 (2H) , 7.8 (2H) , 8.8 (IH) , 9.5 (IH) ppm.
MS: m/e = 410 (M+)
Beispiel 28
2- ( (1, 2, 3, 4-Dihydrochinolin-l-yl )methyl)benzoesäure-N- (3-butan-l-al-2-yl ) amid
MS: m/e = 441 (M+)
5
Tabelle 4-i. W o
R2 0
Nr. Rl A R2
B R3 (CH2)X- R4 R5 b3 (CH2)X" -H m
30
Bu S02NH H A^y^y 0 f N H
σ
A CO tυ ∞
30 2-Py S02NH H N H m G)
m
r- I
A^^^^CO-
S02NH H Me2N H
CO
S02NH H i
Ph H O
N02
*0
©
29
PS
o
X X X X υ
CM CM PS
/
X u
£
/ \ / \ / \
PS
o=
DS- — PQ
/ \ e
X u
es
PS
K ffi ffi K
o es
X o o o u u O
S
>
CM Q I 3 (0
CM CM £ £
LD CO
£
30
PS
X ö ö u u X ö u
CM
PS
u X
£ £ es w / \ CJ CJ S
CQ
/ \. es s
-tt. es
PS
X X
< es es I I o O O o O o CO CO I I
PS
J->
Q
3 (0
CM £ CM CM
£
31
in S
o o u X X X u
PS
/ /
X u
£ £
'.)
/ \ / \ CJ
PS
o- s
PS- CQ
/ V
X u
es PS
X X X X X
c es o o o o
S
CN
in co
£
32
S
o o u X X
CM
PS
X
£
/ \ S
w
r
PO
/ V es
X u
es
PS
X X X X
es o o o O O O
PS
JJ
Q
3 r 3
X £
£ o ^ϊ1
CN CM
33
PS
o o o u X u u
CM
PS
X u
S CJ
CJ CJ
«
/ \. es
X υ
es
PS
X X X X X
<
I I o O O O O ι o i I
PS J
>,
1 fö
CM CN CM CM £ in
£ m oo
(N CM CM
34
in PS
O O
X U X U X
S
X υ jj S ω
PQ
/ \.
< x u
PS
X X X X X
es I es o o o O O
CO CO I CO O
S
3 I
CN CM
£ o N n
35
in PS
O O O U U U X X
PS
X u
JJ JJ Φ JJ ω w
g ω
PS
Λ/V(Λ
m
es s
o o
PS φ φ
X X X g g
I i es o O o o o ι i CO u u
PS
JJ
(0
CM CM CM £
S-i £ in r- oo ro ro ro m ro
36
in PS
X X X X o u
CM
PS
X u
£ es £ es £ es Φ JJ Φ JJ g W g ω
PS
n o u«
y
es S JJ JJ JJ ω ffi w w ffi
tf es o o o
O u u
S
JJ
3 (0
£ CM
£ o CN ro
"3* <*
37
in S
O
X U X X X
PS
X u φ £ g
PS
/ \
*PS X
I \. es δ
ro
-∑ .
O
PS Φ g X X X X
o
II o I
o o II o e I
S
JJ
Q
3 (0
£ K
£ in V£> oo
38
PS
o o o u u
u X
PS
X u φ
PS g
s
PS-
r
-OS. o S Φ
X g X X X
;
I es
O o O i u o o CO
PS
JJ Λ a Cu
3 I
£ PO CM CN M £ o CN ro in in in in
39
in S
Ö U X b u X X
S
X u
£ es S J
w φ Jj g
w
PO
/ \. :
X u
PS o φ g X X X X
5 o ό" o o u O O O CO
PS
3
CM O M £ in vo r- oo in in in in m
40
in PS
O o o U X X u u
PS
X u
PS J
g g
PO
/ \. es s
Jtt.
PS Jj w X X X X
<
o u \
S
IM
£ o ro
41
S
ö ö ö u
u X u
CM
PS
X u
£
PS CJ es JJ
w
PS-
PS o φ g X X X X
< es ö o o o u O o O O O
S
3
CM CM CM CM PO
£ m vo co
VO VO VO vo
42
"PS
o ö ö
X u X u u
CM CM ps
X u
ro PS CJ
ro es S JJ
X X ω ffi x
o o
CO CO δ o u CO O
PS
3
CM PO CM
V-l
£ o N ro " T
43
in
PS
o o o
X X u u u
X
X
PS
X u
S
J J
S. S ffi ffi X X X
es o o O O CO o o
CO CO CO
(0 S X J
£
IM
£ in vo r- oo r- r—
44
PS
X o o u u o u
X S
X u
PS
PS-
PS o φ g X X X X
es es o o o o o u CO CO O CO
H
PS X X JJ JJ JJ X a X X
(0 (0 a £ £ £
IM
£ o ro
O0 00 00
45
in PS
O o U X X u o u
£ S
es U
£
PS
CJ φ g
/ \
ΛΛ Λ
PO
X u
PS
X X X X X
<
CO es o O
PS
X X X X X
IM
£ in vo co oo co oo oo oo
46
in S
o
X X u o u X
X X S
X u
ro PS
CJ Φ JJ g w
_fli es S
X X X X X
< es o o o O O o co co O
S X Jj X >1 >ι a (0 I
£ CN CN
£ o ro σ> < ι
47
S
o o o u X u u o u
X X
PS
X υ
S CJ 4J
w
DO
/ \. es
X u
J3
PS
X X X X X
o II es O o o O II II o co O £ e co
PS
3
X X PO in £ n o r- oo
48
J
PS
o
X u X X o u
X
PS
X u
£ £
PS
/ \ / \
O: s PS- DO
/ \.
<
X u
ro
_ttL
PS
X X X X X
< o o
II II es O o o o II o o CO ε o
PS
X I 3
CN X X OO
IM o CM ro £ o o o o
49
in PS
O O O
X U U U X
X S
~{
X £ U *Y
£ CJ
PS
/ \
PO
/ V es
X u
PS
X X X X X
*C o o o o o II II II o co ε ε
S
>
X I CN ffi ffi ffi in o r- co o o
£ o o o
50
PS
X o o u CJ o
X u
X X
PS
X u
£ £
PS
/ \
/ \ CJ
DO
/ \. es
X U
PS
X X X X X
o II o es
II o o o O ε o o o O
PS
X X I
CN
IM £
51
PS
X X X o
X u
X
PS
X u
£
JJ
PS w JJ
/ \ w
Λ/y v
DO
s
es
PS
K w w ffi X
o
II o o es o II II o o o ε ε co co
PS
JJ
X a (0 ffi K £ co £
52
in PS
X X X o
X u
X
PS
k
X u
£ es Φ Φ
PS g g
CJ
o= S- PO
/ \.
< es
X u
-Ü-. es PS
X X X X X
< es o o o co
S X Jj X
X X X a (0
X £ o ro
£ CN
53
in PS
O O o
X U U u X
PS
X u
£ es φ Φ
PS JJ g g
w
O: s DS-
es PS
X X X X
< es O CO O o O O CO
PS
X X 3
CM DO
00
IM in £ CN CN rH
54
PS
o o o o o u u u u u
PS
X u ^r £
CJ
Jj
PS
W CJ
O: s
PS- DO
/ \. x u
PS
X X X X X
o
II o o es o o X X co co u u
PS
>ι
X X I CN o ro
£ ro ro ro ro ro
55
in S
O O U X X u
X X
PS
X CJ
£ es £ es £ es Φ Φ
PS g CJ Φ g g
s
PS-
PS
X X X X X
o es
X X X u u u X X u υ
S
O O Eπ
I I I ro ro
in r- co
£ ro ro ro ro ro
56
in PS
O o
X u u o o υ u
X
Cw
PS
X u
£ es
PS CJ Φ Φ g g JJ
ΛΛVW
DO
/ \
<
X u
_B_.
PS
X X X X
< o o II es o
X o o o u u u u
PS X JJ x JJ X
X ( a0 (Ö £ £ o CN ro £ • t1 «3* <3<
57
in PS
O
X υ x x x
x X X CM
PS
X u
£
PS
ro
S ffi ffi ffi X X
< o II o
X X o u u u υ
PS
>ι ro
in VO
IM r-- co
£ « 1
58
in
PS
o ö
X u X u
PS
X u J
PS CJ CJ CJ
DO
/ \.
< es
X u
_α es
PS
X X X X X
ö
X u u u u
S
JJ
O O
( a0 I
£ ro o ro
£ in m m in in
59
PS
o o o
X u u X u
X
PS
X u
JJ £ es
PS W
φ φ
g g
DO
/ \.
< es
X u
es S
X X X X
< o II o
X X II o o u u ε u u
S X JJ X
x a (0
X £ CM in o r- oo
£ in in ιn in in
60
in PS
X o
X X u X
X
PS
IX u
J Φ
PS ω
g
s PS-
ro
es
PS
X X X X X
< o o es o rs
II X X X X ε u u u u
PS 1
X
X ro
IM o ro £ o o O
61
in PS
O o υ X X u x
X X X X
PS
X u
£ es
JJ Φ JJ
PS ω g
w
o
PS φ
X X X g
o es
X X X X o o u u o
PS o 1
C I X ro
«31
IM in vo co £ o o o VO
62
in PS
O U o
X X u
X
PS
X u
JJ φ φ ω
PS g g
ro es O PS Φ J g X X ω
o x o o o ü u u o
PS X JJ JJ X o a X
EH I X ( a0 3 £ ro £ PO
SH o <N ro
£ f-
63
in PS
O o
X u X X u
X
PS
X u
JJ JJ
PS ω w
PS-
es PS
X X X
< o es o es o es
X X X X X u u u u u
PS o O ι
EH
I I I I X ro ro «* in vo r- co
£ r- r-
64
in PS
O O O U U U X o u
X X X
PS
X υ
Φ JJ
PS
g
ω
PS-
ro
SU.
PS
X X X X X
o o O es es
X II X X X o ε U u u
PS ι
X X
X
o CN ro
£ 00 00 00 co co
65
S
o u X X X X
X S
X u
£ es ro Φ Φ Φ JJ Φ PS g g g ω g
j&.
PS x x x X X
o o X X u u
u u
PS X JJ X O
X
£ CM ro ro 0
IM m o 0 oo co oo 00 co £
66
S
o ö ö u u X X u
X X PS
es X u
PS
CJ φ g
ro
-01
PS
X X X X X
< o o I es o I es o
X X X II ö u u u ε u
PS 1 o
EH
I
X
X o ro «*
£ CTi
67
S
o o u u o o
X u u
S
es
X u
φ φ
PS
g
g
s PS
X X X X
< o II o o es o es o II X X X u ε u U u
PS X JJ X >1 ι O a ro I I I
£ X CN ro m vo co C3-ι «
£ CA C
68
PS
o o o
X u X u u
X X
PS
X u
£ £ es £ es es Φ
PS JJ Φ ω g g Φ
g
DO
/ \.
<
X u
es
PS
X X X X X
< o es
X X X X X u u u u u
S
>1
X I
«*
i-l
IM o ro £ o o σ o o
69
in
PS
o o
X u X X u
X X
«* PS
X u
£ £ es es £ es ro Φ JJ Φ Φ PS
g ω g g
PS-
PS x X X X X
< o es o es
X X X o o u u u u u
DS X jJ 1 O H a
X X (0 £ vo 00
IM in £ o o o o o
70
in PS
o o o
X X u u o
X S
X u
£ £ £ es es es £ es
Φ JJ
PS g
ω Φ Φ g g
PS
X X X X X
o r>ι o es
X X X
o u u u u
PS
>,
X X ro
SH o CN ro £ CN CN
71
in S
O o U X u X X
«a1 PS
X U
PS CJ
PO
/ \. es X u
ro
-01 es S
X X X X X
< o
II o o
X X II X u u ε u
PS o >1
I ro X
IM in £ t-i
CN CM
72
in PS
O o
IX u u o u IX
X X X
«a> PS
X u
φ
PS J φ
g
g
-01 es
PS
IX IX IX IX IX
o es o es o es
X X IX X X u u u u u
PS
O O
EH EH
I I ro «* «*
o ro
£
73
S
o
X υ x o
X u
X S
X u
ro JJ Φ PS ω
g CJ
PS
IX X X X
< o es o es o
X X X IX II u u u u ε
S
>1 O
C
I X I
«=f ro
IX m r-
£
74
in PS
O O o U U X u IX
«* PS
X u
JJ JJ φ
PS
w w g
PS-
PS
X X X X X
o es o o u X IX X u u u u
PS
JJ X o o a EH
(0 I
CM £ ro o ro
£ ro ro ro ro ro
CN CN
75
in PS
O o J X X X u
X X X X
PS
es
X u
PS
CJ JJ φ φ w g g
S
IX IX X X X
< o es
X X X X X u CJ u u u
PS
X
1H m £ ro ro ro ro ro
76
J S
o o u K u X X
X X X X CM
PS
X U
£ es
Φ JJ
PS
g
w
-DS¬
PS
X X X X X
< o
II o o es o es
II x IX IX ε u x u υ u
PS 1 O
EH
X
X ro C F lH o ro «C
£ «31 «* «31
CM CN CN CN CN
77
in PS
O o U IX X u X
X X X! X X ps
X u
φ JJ
PS
g w
CJ
O: PS-
ro
-oi
PS
IX IX IX IX X
< o es o es
X X IX IX o u u u u u
S o >1 I I X ro
CM in r»
£ «* «* «a<
CN
78
in PS
O U IX IX t IX
X
«* PS
X u
Φ
PS CJ
g
_ül
PS JJ
X X X W X
o o o o X u u o υ
PS X J X x X a (0 X X
£
IM o ro «*
£ in in m in in
79
PS
o o o u X u u o u
X
PS
X u
φ
PS CJ
g
PS-
-01
PS
X X X X X
< o es o es o es
X IX IX X X u υ o u u
X
>1 >l o o I
ro ro in vo r- co σv.
£ in in in in in
<N
80
in S es o
X u IX X ffi
/ X
X X X
\ S
( < < ( (
X
X CJ
) ( > ) ) /
£ £ ro Φ
PS n n £ g 0 £ es JJ W
ΛΛ Λ
ΛΛJW , vψw / W Λ W o
<PS DO o o o 8 u u u
XX f / \ / \ ( yy \ ^ πS
IX J \J ^
1 ro < < tf es o
PS φ J
IX IX ffi g w
< o o o § g es es es es es
X IX K O O u u u CO CO
PS h W JJ X o o / X 3 &
\ (0 DO £ o r-H CM ro «*
£ vo O VO o o
(N CM CM CM CM
81
PS
O o o CJ tx u u o u
X X
X
PS
X J
£ £ es es ro JJ JJ Jj S ω
w ω
-01
PS
IX IX X X X
< o es o es
IX IX o
X u u u
S 1 o ι
EH
I X X I
«=F ro r- 00
IM in o r, £ vo vo vo o o
CN CN <N
82
S
o o o u X u u X
X X X X
C S
X u
JJ
PS w
CJ JJ w
AΛ|TW
^
s
PS JJ
K ffi K IX
:
IX IX IX X o J u u υ co
PS o
EH
X I X ro
o ro
£ r- r-
<N
83
in PS
O O CJ CJ X X X
X X X PS
X u
Φ Φ Φ
PS JJ ω g g
g
ro
_oi o o o
PS JJ Φ Φ φ tx ω g g g
< es es es
X O O O O u O O O CO
PS X X Jj JJ X X
(0 X a (0 3 £ £ DO m vo 00
IM £ r- r- CN N CN CN CN
84
in PS
O o O IX u X X
X X
«* PS
X U
PS CJ JJ φ w g
CJ
JÜ es PS
X X X X X
o es o o
X IX IX X IX u CJ u u u
PS
>ι
X
X I
IM o ro «*
£ co o 00 00 CN
85
PS
o o o u X u X u
X X
X
IX u
£ es ro JJ J PS
c
w
PS
X X x X X
o es
X X IX IX u o υ u
PS
>, O
EH
X ro in vo r-
IM £ o co co co oo
86
PS
o u o
X J o o o u
X X
PS
X J
£ es
JJ J CJ £ es
PS w JJ
ω
PS-
-01
PS
IX IX IX IX IX
o es o es o X X IX IX u J u CJ CJ
PS
>1 >1 o o
X
o
IM ro σ
£ N CM CN
87
PS
IX X X X
PS
X u
PS
ΛΛΛ
ΛΛΛΛ ΛΛΛΛ
'PS DO
es
IX u y ro
-oi
PS
X X X X
o o
II II o o
II II ε ε x X u u
PS o ι
EH
I
X X ro CN in oo
£ σv
CM CM (N
88
in PS
O U X
«*
PS
X υ
Φ
PS g CJ
-01 es PS
IX X
o es
X X u υ
S o
EH
σv co
£ σv.
CN (N
ΓDCΛT7PI fiTTfRFGEL26^
Claims
89
Patentansprüche
1. Amide der allgemeinen Formel I
(R2) ° f4
c ^b o 0 und ihre tautomeren und isomeren Formen, möglichen enantio- meren und diastereomeren Formen, sowie mögliche physiologisch verträgliche Salze, worin die Variablen folgende Bedeutung haben: 5
R1 Wasserstoff, Ci-Cg-Alkyl, verzweigt und unverzweigt, Phenyl, Naphthyl, Chinolinyl, Pyridyl, Pyrimidyl, Pyrazyl, Pyridazyl, Chinazolyl, Chinoxalyl, Thienyl, Benzothienyl, Benzofuranyl, Furanyl, und Indolyl bedeuten 0 kann, wobei die Ringe noch mit zu bis 3 Resten R6 substituiert sein können, und
R2 Wasserstoff, Cι-C6-Alkyl, verzweigt oder unverzweigt,
0-Cι-C6-Alkyl , verzweigt oder unverzweigt, C2-C6-Alkenyl , 5 C2-C6-Alkinyl , Ci-Cε-Alkyl-Phenyl, C2-C6-Alkenyl-Phenyl,
C2-C6-Alkinyl-Phenyl, OH, Cl, F, Br, J, CF3, N02, NH2, CN, COOH, COO-Cι-C4-Alkyl , NHCO-Cι-C4-Alkyl , NHCO-Phenyl, CONHR9, NHS02-Cι-C4-Alkyl, NHS02-Phenyl, S02-Cι-C4-Alkyl und S02-Phenyl bedeuten und
30
R3 NR7R8 oder einen Ring darstellen kann wie
- , _ "^R' - f^S
35
—
I <">„ \Rβ) /
40 R4 -Cι-C6-Alkyl, verzweigt oder unverzweigt, das noch einen Phenyl-, Pyridyl-, Thienyl-, Cyclohexyl-, Indolyl- oder Naphthyl-Ring tragen kann, der seinerseits mit maximal zwei Resten R6 substituiert ist, und
45 302/98 Dp/AS
90
R5 Wasserstof f , COOR11 und CO-Z bedeutet , worin Z NR12R13 und
R?
-rT \-J -" . - •\^r - " ^>
bedeutet und
R6 Wasserstoff, Cι-C-Alkyl, verzweigt oder unverzweigt, -0-Cχ-C4- Alkyl, OH, Cl, F, Br, J, CF3, N02 , NH2 , CN ,
COOH , COO-Cι-C4-Alkyl , -NHCO-C1-C-Alkyl , -NHCO-Phenyl , -NHS02-C1-C-Alkyl, -NHS02-Phenyl, -S02-Cι-C4-Alkyl und - S02_Phenyl bedeutet und
R7 Wasserstoff, Cι-C6-Alkyl, geradlinig oder verzweigt, bedeutet und das mit einem Phenylring substituiert kann, der selbst noch mit einem oder zwei Resten R10 substituiert sein kann, und
R8 Wasserstoff, Ci-Cß-Alkyl, geradlinig oder verzweigt, bedeutet und das mit einem Phenylring substituiert kann, der selbst noch mit einem oder zwei Resten R10 substituiert sein kann, und
R9 Wasserstoff, Ci-Cß-Alkyl, verzweigt oder unverzweigt, das noch einen Substituenten R16 tragen kann, Phenyl, Pyridyl, Pyrimidyl, Pyridazyl, Pyrazinyl, Pyrazyl, Naphthyl, Chinolinyl, Imidazolyl, das noch einen oder zwei Substituenten R14 tragen kann, und
R10 Wasserstoff, Cι-C4-Alkyl, verzweigt oder unverzweigt,
-0-Cx-C-Alkyl , OH Cl, F, Br, J, CF3, N02 , NH2 , CN, COOH, COO-Cι-C4-Alkyl , -NHCO-Cι-C-Alkyl , -NHCO-Phenyl, -NHS02-Cι-C-Alkyl , -NHS02-Phenyl, -S02-Cι~C-Alkyl und -S02-Phenyl bedeuten kann
R11 Wasserstoff, Ci-Cε-Alkyl, geradlinig oder verzweigt, bedeutet und das mit einem Phenylring substituiert kann, der selbst noch mit einem oder zwei Resten R10 substi- tuiert sein kann, und
R12 Wasserstoff, Ci-Cg-Alkyl, verzweigt und unverzweigt, bedeutet, und
91 N N R' N /Jl- R7 . N -""' ; N -J— R?
R' N
i3 Wasserstoff, Ci-Cg --Aclkyl- (CH2)o-
R8
R , verzweigt oder unverzweigt, das noch mit einem Phenylring, der noch einen Rest R10 tragen kann, und mit
substituiert sein kann bedeutet, und
R14 Wasserstoff, Cχ-Cg-Alkyl, verzweigt oder unverzweigt,
O-Ci-Cg-Alkyl , verzweigt oder unverzweigt, OH, Cl, F, Br, J, CF3, N02, NH2, CN, COOH, COO-Cι-C4-Alkyl bedeutet oder zwei Reste R14 eine Brücke OC(R15)2< darstellen kann und
R15 Wasserstoff, Ci-Cg-Alkyl, verzweigt und unverzweigt, bedeutet und
R16 ein Phenyl-, Pyridyl-, Pyrimidyl-, Pyridazyl-,
Pyrazinyl-, Pyrazyl-, Pyrrolyl-, Naphthyl-, Chinolinyl-, Imidazolyl-Ring sein kann, der noch einen oder zwei Substituenten R6 tragen kann, und
A -(CH2)m -, -(CH2)m -0-(CH2)0 -, -(CH2)0 -S-(CH2)m-, -(CH2)0 -SO-(CH2)m -, -(CH2)0 -S02-(CH2)m -, -CH=CH-, -C≡C-, -CO-CH=CH-, -(CH2)0-CO-(CH2)m -, - (CH2)m -NHCO- (CH2)0-, -(CH2)m - CONH-(CH2)0 "- -( H2)m -NHS02- (CH2 ) 0-, -NH- CO-CH=CH-,-(CH2)m - S02NH-(CH2)0 -, -CH=CH-CONH- und bedeutet, R6)„ 0 R6)„ 0 o
// (R6)o. 0 \ (R6)„ π
N
0 , t 0 . ti H - bo H
Rx-A zusammen auch
bedeuten und
B Phenyl, Pyridin, Pyrimidin, Pyrazin, Imidazol und Thiazol bedeutet und
x 1, 2 oder 3 und
n eine Zahl 0 , 1 oder 2 bedeutet, und
92 m, o unabhängig voneinander eine Zahl 0, 1, 2, 3 oder 4 bedeutet .
2. Heterocyclisch substituierte Amide der Formel I gemäß dem Anspruch 1, wobei
B Pyridin oder Phenyl und
R5 Wasserstoff bedeutet und
R9 Wasserstoff, Ci-Cg-Alkyl, verzweigt oder unverzweigt, das noch einen Substituenten R16 tragen
R16 Phenyl, der noch einen oder zwei Substituenten R14 tragen kann, und
n 0 und 1 und
x 1.
3. Heterocyclisch substituierte Amide der Formel I gemäß dem Anspruch 1, wobei
B Pyridin oder Phenyl und
R5 CONR12R13 bedeutet und
R9 Wasserstoff, Ci-Cg-Alkyl, verzweigt oder unverzweigt, das noch einen Substituenten R16 tragen
R16 Phenyl, der noch einen oder zwei Substituenten R14 tragen kann, und
n 0 und 1 und
Heterocyclisch substituierte Amide der Formel I gemäß dem Anspruch 1, wobei
B Pyridin oder Phenyl und
R2 Wasserstoff
R5 Wasserstoff bedeutet und
93
R9 Wasserstoff, Ci-Cg-Alkyl, verzweigt oder unverzweigt, das noch einen Substituenten R16 tragen
R16 Phenyl, der noch einen oder zwei Substituenten R14 I tragen kann, und
n 0 und 1 und
x 1.
5. Heterocyclisch substituierte Amide der Formel I gemäß dem Anspruch 1, wobei
B Pyridin oder Phenyl und
R2 Wasserstoff
R5 CONR12R13 bedeutet und
R9 Wasserstoff, Ci-Cg-Alkyl, verzweigt oder unverzweigt, das noch einen Substituenten R16 tragen
R16 Phenyl, der noch einen oder zwei Substituenten R14 tragen kann, und
n 0 und 1 und
x 1.
6. Heterocyclisch substituierte Amide der Formel I gemäß dem Anspruch 1, wobei
A "(CH2)m -, -(CH2)m -0-(CH2)0 -, -(CH2)0 -S-(CH2)m-, -CH=CH-, -C≡C-, -(CH2)m - CONH-(CH2)0 -, -(CH2)m - S02NH-(CH2)o - bedeutet und
B Pyridin oder Phenyl und
R2 Wasserstoff und
R5 Wasserstoff bedeutet und
R9 Wasserstoff, Ci-Cg-Alkyl, verzweigt oder unverzweigt, das noch einen Substituenten R16 tragen kann, und
R16 Phenyl und
94 m, n , o 0 und 1 und
x 1 .
7. Heterocyclisch substituierte Amide der Formel I gemäß dem Anspruch 1, wobei
A -(CH2)m -, -(CH2)m -0-(CH2)0 -, "(CH2)0 -S-(CH2)m-, -CH=CH-, -C≡C-, -(CH2)m - CONH-(CH2)0 -, -(CH2)m - S02NH-(CH2)0 - bedeutet und
B Pyridin oder Phenyl und
R2 Wasserstoff
R5 CONR12R13 bedeutet und
R9 Wasserstoff, Ci-Cg-Alkyl, verzweigt oder unverzweigt, das noch einen Substituenten R16 tragen kann, und
R16 Phenyl und
m, n, o 0 und 1 und
x 1.
8. Heterocyclisch substituierte Amide der Formel I gemäß dem Anspruch 1, wobei
B Pyridin oder Phenyl und
R^R2 Wasserstoff und
R5 Wasserstoff bedeutet und
R9 Wasserstoff, Ci-Cg-Alkyl, verzweigt oder unverzweigt, das noch einen Substituenten R16 tragen kann, und
R16 Phenyl und
m, n, o 0 und
95
9. Heterocyclisch substituierte Amide der Formel I gemäß dem Anspruch 1, wobei
B Pyridin oder Phenyl und
5
R^R2 Wasserstoff
R5 C0NR12R13 bedeutet und
10 R9 Wasserstoff, Ci-Cg-Alkyl, verzweigt oder unverzweigt, das noch einen Substituenten R16 tragen kann, und
R16 Phenyl und
15 m, n, o 0
x 1.
10. Verwendung von Amiden der Formel I gemäß dem Anspruch 1-5 zur 20 Behandlung von Krankheiten.
11. Verwendung von Amiden der Formel I gemäß dem Anspruch 1-5 als Inhibitoren von Cysteinproteasen.
25 12. Verwendung nach Anspruch 6 als Inhibitoren von Cysteinproteasen wie Calpaine und Cathepsine, insbesondere Calpaine I und II und Cathepsine B und L.
13. Verwendung von Amiden der Formel I gemäß dem Anspruch 1-5 zur 30 Herstellung als Arzneimittel zur Behandlung von Krankheiten, bei denen erhöhte Calpain-Aktivitäten auftreten.
14. Verwendung der Amiden der Formel I gemäß dem Anspruch 1-5 zur Herstellung von Arzneimitteln zur Behandlung von neuro-
35 degenerativen Krankheiten und neuronalen Schädigungen.
15. Verwendung nach Anspruch 9 zur Behandlung von solchen neurodegenerativen Krankheiten u neuronalen Schädigungen, die durch Ischämie, Trauma oder Massenblutungen ausgelöst werden.
40
16. Verwendung nach Anspruch 10 zur Behandlung von Hirnschlag und Schädel-Hirntrauma .
17. Verwendung nach Anspruch 10 zur Behandlung von Alzheimerschen 45 Krankheit und der Huntington-Krankheit.
96
18. Verwendung nach Anspruch 10 zur Behandlung von Epilepsien.
19. Verwendung der Verbindungen der Formel I gemäß dem Anspruch 1-5 zur Herstellung von Arzneimitteln und Behandlung von
5 Schädigungen des Herzens nach cardialen Ischämien, Schädigungen der Nieren nach renalen Ischämien, Skelettmuskelschädigungen, Muskeldystrophien, Schädigungen, die durch Proliferation der glatten Muskelzellen entstehen, coronarer Vasospas- mus, cerebraler Vasospasmus, Katarakten der Augen und 10 Restenosis der Blutbahnen nach Angioplastie.
20. Verwendung der Amiden der Formel I gemäß dem Anspruch 1-5 zur Herstellung von Arzneimitteln zur Behandlung von Tumoren und deren Metastasierung.
15
21. Verwendung der Amiden der Formel I gemäß dem Anspruch 1-5 zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten, bei denen erhöhte Interleukin-1-Spiegel auftreten.
20 22. Verwendung der Amide gemäß Anspruch 1-5 zur Behandlung von immunologischen Krankheiten wie Entzündungen und rheumatische Erkrankungen.
23. Arzneimittelzubereitungen zur peroralen, parenteralen und 25 intraperitonalen Anwendung, enthaltend pro Einzeldosis, neben den üblichen Arzneimittelhilfsstoffen, mindestens eines Amides I gemäß Anspruch 1-5.
30
35
40
45
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19817460 | 1998-04-20 | ||
DE19817460 | 1998-04-20 | ||
PCT/EP1999/002620 WO1999054320A1 (de) | 1998-04-20 | 1999-04-19 | Neue heterocyclisch substituierte amide mit cystein-protease hemmender wirkung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1080083A1 true EP1080083A1 (de) | 2001-03-07 |
Family
ID=7865112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99920705A Withdrawn EP1080083A1 (de) | 1998-04-20 | 1999-04-19 | Neue heterocyclisch substituierte amide mit cystein-protease hemmender wirkung |
Country Status (18)
Country | Link |
---|---|
EP (1) | EP1080083A1 (de) |
JP (1) | JP2002512240A (de) |
KR (1) | KR20010042839A (de) |
CN (1) | CN1306526A (de) |
AU (1) | AU3818799A (de) |
BG (1) | BG104885A (de) |
BR (1) | BR9909819A (de) |
CA (1) | CA2328720A1 (de) |
HR (1) | HRP20000788A2 (de) |
HU (1) | HUP0101839A3 (de) |
ID (1) | ID26728A (de) |
IL (1) | IL138999A0 (de) |
NO (1) | NO20005261L (de) |
PL (1) | PL343551A1 (de) |
SK (1) | SK15062000A3 (de) |
TR (1) | TR200003071T2 (de) |
WO (1) | WO1999054320A1 (de) |
ZA (1) | ZA200006714B (de) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10114762A1 (de) * | 2001-03-26 | 2002-10-02 | Knoll Gmbh | Verwendung von Cysteinprotease-Inhibitoren |
EP1935885A3 (de) * | 2001-05-22 | 2008-10-15 | Neurogen Corporation | Rezeptorliganden des melaninkonzentrierenden Hormons: substituierte 1-Benzyl-4-Aryl-Piperazinanaloga |
IL158941A0 (en) | 2001-05-22 | 2004-05-12 | Neurogen Corp | Melanin concentrating hormone receptor ligands: substituted 1-benzyl-4-aryl piperazine analogues |
US7282512B2 (en) | 2002-01-17 | 2007-10-16 | Smithkline Beecham Corporation | Cycloalkyl ketoamides derivatives useful as cathepsin K inhibitors |
AU2003291227A1 (en) | 2002-11-05 | 2004-06-07 | Smithkline Beecham Corporation | Antibacterial agents |
WO2004043916A1 (en) | 2002-11-12 | 2004-05-27 | Merck & Co., Inc. | Phenylcarboxamide beta-secretase inhibitors for the treatment of alzheimer's disease |
US7084154B2 (en) | 2003-02-11 | 2006-08-01 | Pharmacopeia Drug Disclovery, Inc. | 2-(aminomethyl) arylamide analgesics |
RU2485114C2 (ru) | 2006-12-29 | 2013-06-20 | Эбботт Гмбх Унд Ко.Кг | Карбоксамидные соединения и их применение в качестве ингибиторов кальпаинов |
JP2010518123A (ja) | 2007-02-08 | 2010-05-27 | ザ・ボード・オブ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・イリノイ | 癌をキュプレドキシンで予防するための組成物および方法 |
TWI453019B (zh) | 2007-12-28 | 2014-09-21 | Abbvie Deutschland | 甲醯胺化合物 |
TWI519530B (zh) | 2009-02-20 | 2016-02-01 | 艾伯維德國有限及兩合公司 | 羰醯胺化合物及其作為鈣蛋白酶(calpain)抑制劑之用途 |
US8236798B2 (en) | 2009-05-07 | 2012-08-07 | Abbott Gmbh & Co. Kg | Carboxamide compounds and their use as calpain inhibitors |
US9051304B2 (en) | 2009-12-22 | 2015-06-09 | AbbVie Deutschland GmbH & Co. KG | Carboxamide compounds and their use as calpain inhibitors V |
US8598211B2 (en) | 2009-12-22 | 2013-12-03 | Abbvie Inc. | Carboxamide compounds and their use as calpain inhibitors IV |
US8609672B2 (en) | 2010-08-27 | 2013-12-17 | University Of The Pacific | Piperazinylpyrimidine analogues as protein kinase inhibitors |
JP2013544866A (ja) | 2010-12-09 | 2013-12-19 | アッヴィ・ドイチュラント・ゲー・エム・ベー・ハー・ウント・コー・カー・ゲー | カルボキサミド化合物及びカルパイン阻害剤vとしてのその使用 |
RU2014144285A (ru) | 2012-04-03 | 2016-05-27 | Эббви Дойчланд Гмбх Унд Ко. Кг | Карбоксамидные соединения и их применение в качестве ингибиторов кальпаина v |
US10071584B2 (en) | 2012-07-09 | 2018-09-11 | Apple Inc. | Process for creating sub-surface marking on plastic parts |
US10590084B2 (en) | 2016-03-09 | 2020-03-17 | Blade Therapeutics, Inc. | Cyclic keto-amide compounds as calpain modulators and methods of production and use thereof |
WO2018009417A1 (en) | 2016-07-05 | 2018-01-11 | Blade Therapeutics, Inc. | Calpain modulators and therapeutic uses thereof |
WO2018064119A1 (en) | 2016-09-28 | 2018-04-05 | Blade Therapeutics, Inc. | Calpain modulators and therapeutic uses thereof |
EP3886854A4 (de) | 2018-11-30 | 2022-07-06 | Nuvation Bio Inc. | Pyrrol- und pyrazolverbindungen und verfahren zu deren verwendung |
WO2023165334A1 (zh) * | 2022-03-01 | 2023-09-07 | 成都威斯克生物医药有限公司 | 酮酰胺类衍生物及其制药用途 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0564561A4 (en) * | 1990-12-28 | 1994-08-10 | Georgia Tech Res Inst | Peptides ketoamides, ketoacids, and ketoesters |
CA2071621C (en) * | 1991-06-19 | 1996-08-06 | Ahihiko Hosoda | Aldehyde derivatives |
JP2848232B2 (ja) * | 1993-02-19 | 1999-01-20 | 武田薬品工業株式会社 | アルデヒド誘導体 |
JPH11506923A (ja) * | 1995-06-06 | 1999-06-22 | アセナ ニューロサイエンシーズ,インコーポレイテッド | 新しいカテプシンならびにその阻害のための方法および組成物 |
DE19642591A1 (de) * | 1996-10-15 | 1998-04-16 | Basf Ag | Neue Piperidin-Ketocarbonsäure-Derivate, deren Herstellung und Anwendung |
DE19648793A1 (de) * | 1996-11-26 | 1998-05-28 | Basf Ag | Neue Benzamide und deren Anwendung |
DE19650975A1 (de) * | 1996-12-09 | 1998-06-10 | Basf Ag | Neue heterocyclisch substituierte Benzamide und deren Anwendung |
CA2274464C (en) * | 1996-12-11 | 2007-01-02 | Basf Aktiengesellschaft | Ketobenzamides as calpain inhibitors |
-
1999
- 1999-04-19 TR TR2000/03071T patent/TR200003071T2/xx unknown
- 1999-04-19 SK SK1506-2000A patent/SK15062000A3/sk unknown
- 1999-04-19 BR BR9909819-9A patent/BR9909819A/pt not_active IP Right Cessation
- 1999-04-19 CA CA002328720A patent/CA2328720A1/en not_active Abandoned
- 1999-04-19 EP EP99920705A patent/EP1080083A1/de not_active Withdrawn
- 1999-04-19 HU HU0101839A patent/HUP0101839A3/hu unknown
- 1999-04-19 AU AU38187/99A patent/AU3818799A/en not_active Abandoned
- 1999-04-19 WO PCT/EP1999/002620 patent/WO1999054320A1/de not_active Application Discontinuation
- 1999-04-19 CN CN99807637A patent/CN1306526A/zh active Pending
- 1999-04-19 PL PL99343551A patent/PL343551A1/xx not_active Application Discontinuation
- 1999-04-19 JP JP2000544659A patent/JP2002512240A/ja active Pending
- 1999-04-19 ID IDW20002133A patent/ID26728A/id unknown
- 1999-04-19 IL IL13899999A patent/IL138999A0/xx unknown
- 1999-04-19 KR KR1020007011604A patent/KR20010042839A/ko not_active Application Discontinuation
-
2000
- 2000-10-19 NO NO20005261A patent/NO20005261L/no not_active Application Discontinuation
- 2000-10-24 BG BG104885A patent/BG104885A/xx unknown
- 2000-11-17 ZA ZA200006714A patent/ZA200006714B/en unknown
- 2000-11-17 HR HR20000788A patent/HRP20000788A2/hr not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO9954320A1 * |
Also Published As
Publication number | Publication date |
---|---|
NO20005261D0 (no) | 2000-10-19 |
HRP20000788A2 (en) | 2001-06-30 |
JP2002512240A (ja) | 2002-04-23 |
KR20010042839A (ko) | 2001-05-25 |
NO20005261L (no) | 2000-10-19 |
ID26728A (id) | 2001-02-01 |
AU3818799A (en) | 1999-11-08 |
ZA200006714B (en) | 2001-11-19 |
BG104885A (en) | 2001-05-31 |
CN1306526A (zh) | 2001-08-01 |
HUP0101839A2 (hu) | 2001-11-28 |
PL343551A1 (en) | 2001-08-27 |
BR9909819A (pt) | 2000-12-19 |
HUP0101839A3 (en) | 2002-01-28 |
CA2328720A1 (en) | 1999-10-28 |
WO1999054320A1 (de) | 1999-10-28 |
SK15062000A3 (sk) | 2001-05-10 |
IL138999A0 (en) | 2001-11-25 |
TR200003071T2 (tr) | 2001-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1082308B1 (de) | Heterocyclisch substituierte amide als calpainhemmer | |
EP0944582B1 (de) | Ketobenzamide als calpain-inhibitoren | |
WO1999054320A1 (de) | Neue heterocyclisch substituierte amide mit cystein-protease hemmender wirkung | |
EP1073638B1 (de) | Heterozyklische substituierte amide, deren herstellung und anwendung | |
EP1080074B1 (de) | Heterocyclische substituierte Amide, deren Herstellung und Verwendung | |
EP1073641B1 (de) | Neue substituierte amide, deren herstellung und anwendung | |
WO1999054293A1 (de) | Substituierte benzamide, deren herstellung und anwendung als inhibitoren von cystein-proteasen | |
WO1999054294A1 (de) | Neue substituierte amide, deren herstellung und anwendung | |
EP0934273A1 (de) | Neue piperidin-ketocarbonsäure-derivate, deren herstellung und anwendung | |
WO1998025899A1 (de) | Neue heterocyclisch substituierte benzamide und deren anwendung bei der bekämpfung von krankheiten | |
EP0944584A1 (de) | Benzamidoaldehyde und deren anwendung als inhibitoren von cystein-proteasen | |
WO2003049738A1 (de) | Verwendung von pyridin-2,4-dicarbonsäurediamiden und pyrimidin-4,6-dicarbonsäurediamiden zur selektiven inhibierung von kollagenasen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20001007 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: RO PAYMENT 20001007;SI PAYMENT 20001007 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ABBOTT GMBH & CO. KG |
|
17Q | First examination report despatched |
Effective date: 20030827 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20040108 |