EP0943695B1 - Draht auf Basis von Zink und Aluminium und seine Verwendung beim thermischen Spritzen als Korrosionsschutz - Google Patents

Draht auf Basis von Zink und Aluminium und seine Verwendung beim thermischen Spritzen als Korrosionsschutz Download PDF

Info

Publication number
EP0943695B1
EP0943695B1 EP99104369A EP99104369A EP0943695B1 EP 0943695 B1 EP0943695 B1 EP 0943695B1 EP 99104369 A EP99104369 A EP 99104369A EP 99104369 A EP99104369 A EP 99104369A EP 0943695 B1 EP0943695 B1 EP 0943695B1
Authority
EP
European Patent Office
Prior art keywords
zinc
aluminum
weight
wire
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99104369A
Other languages
English (en)
French (fr)
Other versions
EP0943695A1 (de
Inventor
Jochen Dr. Spriestersbach
Peter Staubwasser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grillo Werke AG
Original Assignee
Grillo Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grillo Werke AG filed Critical Grillo Werke AG
Publication of EP0943695A1 publication Critical patent/EP0943695A1/de
Application granted granted Critical
Publication of EP0943695B1 publication Critical patent/EP0943695B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying

Definitions

  • the present invention relates to wire based on zinc and Aluminum, which can be used in thermal spraying as Corrosion protection, especially as corrosion protection against high Air humidity and high chloride ion concentrations e.g. in marine environment, Road salt etc.
  • DE 30 07 850 C2 describes the use of a zinc alloy as a powder for mechanical plating using an alloy made of zinc and one or more alloy additives, such as 0.1 to 60% Aluminum, up to 5% nickel, up to 3% magnesium, up to 3% copper, up to 2% silicon, up to 1.5% titanium, up to 1% antimony, up to 1% silver, up to 0.5% chromium, 0.5% Beryllium, up to 0.1% calcium, up to 0.1% cobalt, up to 0.1% sodium, up to 0.1% Potassium, 0.1% indium, up to 0.05% lithium, 0.05% strontium, each based on the total weight of the alloy, excluding the weight of the Pollution.
  • alloy additives such as 0.1 to 60% Aluminum, up to 5% nickel, up to 3% magnesium, up to 3% copper, up to 2% silicon, up to 1.5% titanium, up to 1% antimony, up to 1% silver, up to 0.5% chromium, 0.5% Beryllium, up to 0.1% calcium, up to 0.1% co
  • the method according to DE 30 07 850 C2 also mechanically plating parts after degreasing a surface cleaning and Conditioning and an arc coating for Manufactured subject to a coating.
  • the coatings thus produced are additionally subjected to a chromate treatment.
  • This method differs fundamentally from thermal spraying with the help of Wires that are used by wire flame spraying or wire arc spraying Application come. Wire flame spraying and wire arc spraying can also be retrofitted with finished components or on site with bridges, Scaffolding, cranes etc. are used. However, roll cladding is subsequently no longer possible.
  • WO 97/44502 describes the coating of hot rolled Iron metal sheets with approx. 30 ⁇ m of a zinc / aluminum alloy, around which Protect the surface of the sheet from oxidation.
  • JP 77-80657 (DATABASE WPI Section Ch, Week 7745 Derwent Publication) describes sacrificial electrodes made of zinc, 5 to 19% aluminum and 0.03 to 0.4 % By weight indium with increased service life.
  • the DD-PS 4 822 describes that it is possible to use zinc-aluminum alloys in the Area of eutectoid decay by annealing and subsequent Deterred from objects with high reshaping ability to process.
  • a wire can be extruded from this material an alloy with 80% zinc and 20% aluminum.
  • wires for thermal spraying have either been made of fine zinc a pure zinc / aluminum alloy with 15% by weight aluminum or Aluminum with 5% by weight magnesium.
  • thermally sprayed surfaces made of fine zinc or zinc with 15 wt .-% aluminum is that these are among the above Conditions corrode quickly and more than aluminum and 5% magnesium. Therefore, for zinc and zinc-aluminum coatings, under moisture and Chloride pollution, further protective measures such as paint coatings necessary.
  • the invention has therefore set itself the task of zinc wire based on zinc and aluminum, which is both in the condensation test good corrosion resistance in the salt spray test according to DIN 50021 and, if possible, the corrosion resistance of aluminum with 5% magnesium also against high air humidity and high Chloride ion content, i.e. the salt spray test according to DIN 50021 or is even more corrosion resistant.
  • This task has now been solved with zinc and wire Aluminum, which in addition to zinc and the usual impurities 8 to 33 % By weight of aluminum and 10 up to 500 ppm indium and less than 0.1 % By weight copper, less than 0.1% by weight iron and less than 1% by weight lead contains.
  • This wire preferably contains 10 to 24% by weight of aluminum and 10 up to 300 ppm indium.
  • Wire with a content of 15 to 22% by weight is very particularly preferred.
  • the wire according to the invention can be produced by conventional methods be, namely by casting the liquid alloy as Cast strand with subsequent rolling and drawing. For this Processes are again alloys with only 10 to 24% by weight Aluminum preferred as alloys with a higher aluminum content are more difficult to process.
  • the wire according to the invention can be used in the usual way thermal spraying can be used, for example by Wire flame spraying or wire arc spraying. This procedure differ mainly by different process temperatures and therefore also through different order efficiencies.
  • Figure 1 shows that the condensation test the worst according to DIN 50018-KFW 0.2 s pure zinc Has values, but also aluminum with 5% by weight magnesium corroded.
  • the previously common zinc wire with 15% by weight Aluminum has good values here.
  • Zinc wires with 22, 33 and 55 wt .-% aluminum already have worse values.
  • Zinc alloys with more than 25% by weight Aluminum is becoming increasingly difficult to process into wire.
  • Example 2 The same wires as in Example 1 were subjected to the salt spray test subject to DIN 50021 - SS. The results are in the Figure 2 reproduced. It follows that again Feinzink gives the worst results and on top of that in shows considerable red rust formation. In contrast shows that previously chosen aluminum for such conditions with 5% Magnesium significantly better values and no red rust formation.
  • Zinc and aluminum wires containing 22% by weight Aluminum and increasing amounts of indium were subjected to the salt spray test exposed to DIN 50021 - ss. The results are in the Figure 3 compiled, again for comparison Fine zinc and zinc with 15% aluminum are also shown. From this it follows that already 20 ppm indium to a considerable Perform and improve the corrosion behavior increasing amounts of indium further corrosion behavior can be improved. Amounts of over 500 ppm are indium neither responsible for price, nor lead to one further improvement of properties. On top of that is too note that by adding large amounts of indium the Processability of the alloy to wire deteriorates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

Gegenstand der vorliegenden Erfindung ist Draht auf Basis von Zink und Aluminium, welcher verwendbar ist beim thermischen Spritzen als Korrosionsschutz, insbesondere als Korrosionsschutz gegen hohe Luftfeuchtigkeit und hohe Chloridionenkonzentrationen z.B. in Meeresumgebung, Streusalz etc.
Die DE 30 07 850 C2 beschreibt die Verwendung einer Zinklegierung als Pulver für das mechanische Plattieren, wobei eine Legierung verwendet werden soll, aus Zink und einem oder mehreren Legierungszusätzen, wie 0,1 bis 60% Aluminium, bis 5% Nickel, bis 3% Magnesium, bis 3% Kupfer, bis 2% Silizium, bis 1,5% Titan, bis 1% Antimon, bis 1% Silber, bis 0,5% Chrom, 0,5% Beryllium, bis 0,1% Calcium, bis 0,1% Cobalt, bis 0,1% Natrium, bis 0,1% Kalium, 0,1% Indium, bis 0,05% Lithium, 0,05% Strontium, jeweils bezogen auf das Gesamtgewicht der Legierung, ausgenommen das Gewicht der Verunreinigung. Beim mechanischen Plattieren mit einem Metallpulver wird dieses Pulver mechanisch auf das Substrat aufgebracht, wobei sich eine Schicht von 10 µm ausbildet. Das Walzplattieren, auch unter Anwendung von Aluminiumpulver ist beispielsweise beschrieben im Aluminium-Taschenbuch, 13. Auflage, 1974, Seite 927, Absatz 1 und 2.
Auch beim Verfahren gemäß DE 30 07 850 C2 werden die mechanisch zu plattierenden Teile nach Entfettung einer Oberflächenreinigung und Konditionierung sowie einer Lichtbogenbeschichtung zur Herstellung einer Überzugs unterworfen. Die so hergestellten Überzüge werden zusätzlich noch einer Chromatbehandlung unterworfen. Dieses Verfahren unterscheidet sich grundsätzlich von dem thermischen Spritzen mit Hilfe von Drähten, die durch Drahtflammspritzen oder Drahtlichtbogenspritzen zur Anwendung kommen. Das Drahtflammspritzen und Drahtlichtbogenspritzen kann auch nachträglich bei fertigen Bauteilen oder aber vor Ort bei Brücken, Gerüsten, Kränen etc. zum Einsatz kommen. Walzplattieren ist hingegen nachträglich nicht mehr möglich.
Die WO 97/44502 beschreibt die Beschichtung von noch heißem gewalzten Eisenmetallblechen mit ca. 30 µm einer Zink/Aiuminiumlegierung, um die Oberfläche des Bleches vor Oxidation zu schützen.
Die JP 77-80657 (DATABASE WPI Section Ch, Week 7745 Derwent Publication) beschreibt Opferelektroden aus Zink, 5 bis 19% Aluminium und 0,03 bis 0,4 Gew.-% Indium mit erhöhter Lebensdauer.
Die DD-PS 4 822 beschreibt, dass es möglich ist, Zink-Aluminiumlegierungen im Bereich des eutektoiden Zerfalls durch Glühung und anschließendes Abschrecken zu Gegenständen mit hohem Formveränderungsvermögen zu verarbeiten. Aus diesem Material lässt sich durch Strangpressen ein Draht aus einer Legierung mit 80% Zink und 20% Aluminium herstellen.
Drähte zum thermischen Spritzen bestehen bisher entweder aus Feinzink, aus einer reinen Zink/Aluminium-Legierung mit 15 Gew.-% Aluminium oder Aluminium mit 5 Gew.-% Magnesium.
Der Nachteil von thermisch aufgespritzten Oberflächen aus Feinzink oder Zink mit 15 Gew.-% Aluminium besteht darin, dass diese unter den oben genannten Bedingungen schnell und stärker korrodieren als Aluminium und 5% Magnesium. Deshalb sind für Zink- und Zink-Aluminium-Beschichtungen, unter Feuchte und Chloridbelastung, weitere Schutzmaßnahmen wie Lacküberzüge notwendig.
Im Kondenswassertest nach DIN 50018-KFW 0,2 s zeigt sich eine starke Korrosion von Feinzink, während sich Zink mit 15% Aluminium deutlich günstiger verhält.
Aber auch Beschichtungen aus Aluminium und 5% Magnesium, die gegen hohen Feuchtigkeitsgehalt und hohe Chloridionen hohe Stabilität zeigen, korrodieren beim Kondenswassertest stärker als Zink mit 15 Gew.-% Aluminium.
Die Erfindung hat sich somit die Aufgabe gestellt, Zinkdraht auf Basis von Zink und Aluminium zur Verfügung zu stellen, welcher sowohl im Kondenswassertest als auch im Salzsprühtest gemäß DIN 50021 gute Korrosionsbeständigkeit aufweist und somit nach Möglichkeit die Korrosionsbeständigkeit von Aluminium mit 5% Magnesium auch gegen hohe Luftfeuchtigkeit und hohen Chloridionengehalt, d.h. dem Salzsprühtest gemäß DIN 50021 aufweist oder sogar noch korrosionsbeständiger ist.
Diese Aufgabe wurde jetzt gelöst durch Draht auf Basis von Zink und Aluminium, welcher außer Zink sowie den üblichen Verunreinigungen 8 bis 33 Gew.-% Aluminium und 10 bis zu 500 ppm Indium enthält und weniger als 0,1 Gew.-% Kupfer, weniger als 0,1 Gew.-% Eisen und weniger als 1 Gew.-% Blei enthält. Vorzugsweise enthält dieser Draht 10 bis 24 Gew.-% Aluminium und 10 bis 300 ppm Indium.
Ganz besonders bevorzugt ist Draht mit einem Gehalt von 15 bis 22 Gew.-% Aluminium und 20 bis 200 ppm Indium.
In den zahlreichen Beispielen der DE 30 07 850 C2 finden sich drei Beispiele, in denen 0,1% Indium zur Anwendung kam, nämlich die Beispiele 41, 62 und 74. Eine so hohe Menge an Indium führt aber zur starken Versprödung und schlechter Verarbeitbarkeit der Drähte. Erfindungsgemäß ist daher die Menge an Indium auf 500ppm beschränkt und vorzugsweise kommen nur 10 bis 300 ppm Indium zum Einsatz. Ein Zink-Aluminium-Draht mit 0,08% Indium versprödet bereits völlig im Kondenswassertest.
Aus der DE 30 07 850 C2 geht weiterhin hervor, dass der Zusatz von 0,1 Gew. % Indium zu einem Zinkpulver mit 5% Aluminium noch bei weitem nicht zu optimaler Korrosionsbeständigkeit geführt hat. Es hat somit sicherlich nicht nahegelegen, eine Legierung mit weniger Indium zu Draht zu verarbeiten, um ein Material zu erhalten, welches optimale Eigenschaften aufweist, wenn es als Draht nach dem Drahtflammspritzen oder Lichtbogenspritzen zu einem nachträglich auftragbaren Korrosionsschutz verarbeitet wird.
Optimale Ergebnisse werden erzielt, wenn der Gehalt an üblichen Verunreinigungen so niedrig wie möglich gehalten wird. Insbesondere sollte so wenig wie möglich Kupfer, Eisen und Blei in der Legierung enthalten sein.
Als Ausgangsmaterial für den Draht können prinzipiell alle Zinkqualitäten gemäß EN 1179 verwendet werden, wobei Zinksorten der Qualität Z1 bis Z4 bevorzugt sind, da sie deutlich weniger Blei, Eisen und Kupfer enthalten als erfindungsgemäß erwünscht ist.
Als Legierungskomponente Aluminium können prinzipiell die Qualitäten gemäß EN 576 eingesetzt werden, die den gestellten Reinheitsanforderungen genügen.
Der erfindungsgemäße Draht kann durch übliche Verfahren hergestellt werden, nämlich durch Gießen der flüssigen Legierung als Gießstrang mit anschließendem Walzen und Ziehen. Für diese Verfahren sind wiederum Legierungen mit nur 10 bis 24 Gew.-% Aluminium bevorzugt, da Legierungen mit höherem Aluminiumgehalt schwieriger zu verarbeiten sind.
Der erfindungsgemäße Draht kann in bisher üblicher Weise zum thermischen Spritzen eingesetzt werden, beispielsweise durch Drahtflammspritzen oder Drahtlichtbogenspritzen. Diese Verfahren unterscheiden sich vor allem durch verschiedene Prozeßtemperaturen und damit auch durch unterschiedliche Auftragswirkungsgrade.
Aus den nachfolgenden Beispielen und Vergleichsbeispielen geht hervor, daß der neue Draht deutlich verbesserte Eigenschaften aufweist und in der Summe seiner Eigenschaften dem gesamten Stand der Technik überlegen ist.
Beispiel 1
Aus der anliegenden Abbildung 1 geht hervor, daß beim Kondenswassertest nach DIN 50018-KFW 0,2 s Reinzink die schlechtesten Werte besitzt, aber auch Aluminium mit 5 Gew.-% Magnesium stark korrodiert. Der bisher übliche Draht aus Zink mit 15 Gew.-% Aluminium weist hierbei gute Werte auf. Durch Zugabe von 400 ppm Indium wird das Verhalten weder verbessert noch verschlechtert. Zinkdrähte mit 22, 33 und 55 Gew.-% Aluminium weisen bereits schlechtere Werte auf. Zinklegierungen mit mehr als 25 Gew.-% Aluminium lassen sich zunehmend schwieriger zu Draht verarbeiten.
Beispiel 2
Die gleichen Drähte wie im Beispiel 1 wurden dem Salzsprühtest nach DIN 50021 - ss unterworfen. Die Ergebnisse sind in der Abbildung 2 wiedergegeben. Hieraus ergibt sich, daß wiederum Feinzink die schlechtesten Ergebnisse liefert und obendrein in erheblichem Umfang Rotrostbildung zeigt. Demgegenüber zeigt, daß bisher für derartige Bedingungen gewählte Aluminium mit 5% Magnesium deutlich bessere Werte und keine Rotrostbildung.
Zink mit 15% Aluminium ist demgegenüber wesentlich weniger korrosionsbeständig und zeigt Rotrostbildung. Durch Zusatz von mehr Aluminium zum Zink, nämlich 22%, 33% und 55% wird zwar das Korrosionsverhalten gegenüber nur 15% Aluminium deutlich verbessert, jedoch wird noch immer Rotrostbildung beobachtet. Erst durch Zusatz von 400 ppm Indium zu einer Zink/Aluminium-Legierung mit 15% Aluminium werden Ergebnisse erzielt, die gleichwertig, wenn nicht sogar besser sind als mit Aluminium dem 5% Magnesium zugesetzt sind. Insbesondere bei nur kurzzeitiger Auslagerung ist diese Legierung sogar dem Aluminium mit 5% Magnesium überlegen.
Beispiel 3
Drähte auf Basis von Zink und Aluminium enthaltend 22 Gew.-% Aluminium und steigenden Mengen an Indium wurden dem Salzsprühtest nach DIN 50021 - ss ausgesetzt. Die Ergebnisse sind in der Abbildung 3 zusammengestellt, wobei zum Vergleich noch einmal Feinzink und Zink mit 15% Aluminium mit dargestellt sind. Hieraus ergibt sich, daß bereits 20 ppm Indium zu einer erheblichen Verbesserung des Korrosionsverhaltens führen und durch steigende Mengen von Indium das Korrosionsverhalten weiter verbessert werden kann. Mengen von über 500 ppm Indium sind weder preislich zu verantworten, noch führen sie zu einer weiteren Verbesserung der Eigenschaften. Obendrein ist zu beachten, daß durch den Zusatz größerer Mengen von Indium die Verarbeitbarkeit der Legierung zu Draht verschlechtert wird.
Beispiel 4
Orientierende Untersuchungen mit verschiedenen Reinheitsgraden von Zink und Aluminium ergaben, daß insbesondere Verunreinigungen von mehr als 0,1 Gew.-% Kupfer und mehr als 0,1 Gew.-% Eisen zu verschlechterten Eigenschaften führen und insbesondere die interkristalline Korrosion verstärken, während es bei mehr als 1 Gew.-% Blei zu verschlechterten mechanischen Eigenschaften kommt.

Claims (4)

  1. Draht geeignet zum thermischen Spritzen als Korrosionsschutz auf Basis von Zink und Aluminium dadurch gekennzeichnet, dass er außer Zink sowie üblichen Verunreinigungen 8 bis 33 Gew.-% Aluminium und 10 bis zu 500 ppm Indium enthält und weniger als 0,1 Gew.-% Kupfer, weniger als 0,1 Gew.-% Eisen und weniger als 1 Gew.-% Blei enthält.
  2. Draht gemäß Anspruch 1 dadurch gekennzeichnet, dass er 10 bis 24 Gew.-% Aluminium und 10 bis 300 ppm Indium enthält.
  3. Verwendung eines Drahtes gemäß einem der Ansprüche 1 oder 2 beim thermischen Spritzen als Korrosionsschutz.
  4. Verwendung gemäß Anspruch 3 als Korrosionsschutz gegen hohe Luftfeuchtigkeit und hohe Chloridionenkonzentrationen gemäß DIN 50021.
EP99104369A 1998-03-17 1999-03-04 Draht auf Basis von Zink und Aluminium und seine Verwendung beim thermischen Spritzen als Korrosionsschutz Expired - Lifetime EP0943695B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19811447 1998-03-17
DE19811447A DE19811447C2 (de) 1998-03-17 1998-03-17 Draht auf Basis von Zink und Aluminium und seine Verwendung beim thermischen Spritzen als Korrosionsschutz

Publications (2)

Publication Number Publication Date
EP0943695A1 EP0943695A1 (de) 1999-09-22
EP0943695B1 true EP0943695B1 (de) 2003-10-29

Family

ID=7861119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99104369A Expired - Lifetime EP0943695B1 (de) 1998-03-17 1999-03-04 Draht auf Basis von Zink und Aluminium und seine Verwendung beim thermischen Spritzen als Korrosionsschutz

Country Status (5)

Country Link
EP (1) EP0943695B1 (de)
DE (2) DE19811447C2 (de)
DK (1) DK0943695T3 (de)
NO (1) NO328823B1 (de)
PT (1) PT943695E (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT500948B8 (de) * 2004-12-16 2007-02-15 Brunner Verzinkerei Brueder Ba Korrosionsschutzschicht, verfahren zum erzeugen einer korrosionsschutzschicht, mittel und anlage zum durchführen des verfahrens
EP1762639A1 (de) * 2005-09-13 2007-03-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Wärmeübertragungsrohr für LNG-Verdampfer, sein Herstellungsprozess und LNG-Verdampfer mit diesem Wärmeübertragungsrohr
CN102653831A (zh) * 2012-03-30 2012-09-05 长兴县华峰喷焊材料电炉有限公司 一种热喷涂锌铝合金丝及其制备方法
EP2803751A1 (de) * 2013-05-16 2014-11-19 Linde Aktiengesellschaft Verfahren zum Aufbringen einer Antikorrosionsbeschichtung
DE102016101478A1 (de) 2016-01-28 2017-08-03 Balver Zinn Josef Jost GmbH & Co. KG Verwendung einer Legierungszusammensetzung zur Herstellung thermisch gespritzter Korrosionsschutzschichten
CN111496006B (zh) * 2020-06-03 2022-04-19 铜陵龙峰新材料有限公司 一种金属化薄膜电容器端面喷金用锌合金丝的制备方法
DE102021005998A1 (de) 2021-12-04 2023-06-07 Dr. Rosert RCT GmbH Zusatzwerkstoff zum thermischen Spritzen sowie Herstellungsverfahren

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD4822A (de) *
GB2046302A (en) * 1979-03-02 1980-11-12 Mitsui Mining & Smelting Co Zinc alloy powder
GB2313382A (en) * 1996-05-23 1997-11-26 Vidal Henri Brevets Metal coating

Also Published As

Publication number Publication date
DE19811447A1 (de) 1999-09-30
NO991268D0 (no) 1999-03-16
NO328823B1 (no) 2010-05-25
PT943695E (pt) 2004-03-31
NO991268L (no) 1999-09-20
DE19811447C2 (de) 2002-08-08
EP0943695A1 (de) 1999-09-22
DE59907492D1 (de) 2003-12-04
DK0943695T3 (da) 2004-03-15

Similar Documents

Publication Publication Date Title
DE69703420T2 (de) Produkt aus AlMgMn-Legierung für Schweissstrukturen mit verbesserter Korossionsbeständigkeit
DE19604699C1 (de) Wärmedämmendes Schichtsystem für transparente Substrate
DE3114533C2 (de)
DE3887520T2 (de) Thermisches spritzen von rostfreiem stahl.
EP1978131B1 (de) Mittel zur Herstellung von Korrosionsschutzschichten auf Metalloberflächen
DE3829911A1 (de) Aluminiumblech mit verbesserter schweissfaehigkeit, filiformer korrosionsfestigkeit, waermebehandlungshaertbarkeit und verformbarkeit sowie verfahren zur herstellung desselben
EP2055799A1 (de) Stahlflachprodukt mit einem vor Korrosion schützenden metallischen Überzug und Verfahren zum Erzeugen eines vor Korrosion schützenden metallischen Zn-Mg Überzugs auf einem Stahlflachprodukt
DE69806596T2 (de) Verfahren zur herstellung von aluminiumbändern durch rollen-bandgiessen
DE2502284C2 (de) Galvanisches Verchromungsbad und Verfahren zum galvanischen Abscheiden von Chromüberzügen unter Verwendung dieses Bades
DE3444540A1 (de) Feuerverzinkte staehle und verfahren zu deren herstellung
DE69103152T2 (de) Zusammensetzung und verfahren zur chromatierung von metallen.
DE3223630C2 (de)
DE69106552T2 (de) Oberflächenbehandeltes Stahlband mit verbesserter Schweissfähigkeit und Beschichtungseigenschaften und seine Herstellung.
DE2607547A1 (de) Verfahren zur herstellung von seil und federdraht aus kohlenstoffstahl mit verbesserter korrosionsbestaendigkeit
DE10297178B4 (de) Korrosionsbeständige Beschichtungsfilmstruktur, die kein kein sechswertiges Chrom enthält
DE69520350T2 (de) Galvanisiertes stahlblech und verfahren zur herstellung
EP2090425A1 (de) Verbundwerkstoff mit Korrosionsschutzschicht und Verfahren zu dessen Herstellung
EP0943695B1 (de) Draht auf Basis von Zink und Aluminium und seine Verwendung beim thermischen Spritzen als Korrosionsschutz
DE2453668A1 (de) Korrosionsfestes aluminiumverbundmaterial
DE3242625A1 (de) Verfahren zur herstellung von feuerverzinkten stahlblechen
DE19722023B4 (de) Oberflächenbehandeltes Eisenmaterial und Verfahren zur Oberflächenbehandlung von Eisenmaterial
DE69011461T2 (de) Verfahren zur Herstellung eines Stahlbleches, das beschichtet ist mit Haftung einer Zn-Mg-Legierung, die sowohl einen höheren Plattierungs- als einen höheren Korrosionswiderstand aufweist, und damit plattiertes Stahlblech.
DD298436A5 (de) Verfahren zum passivierenden nachspuelung von phosphatschichten
EP2992127B1 (de) Verfahren zur oberflächenbehandlung eines metallischen substrats
DE69115350T2 (de) Korrosionsbeständige Legierung auf Aluminiumbasis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK FR GB IT LU NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000315

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB LI

RBV Designated contracting states (corrected)

Designated state(s): BE DE DK FR GB IT LU NL PT SE

17Q First examination report despatched

Effective date: 20020809

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): BE DE DK FR GB IT NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): BE DE DK FR GB IT LU NL PT SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK FR GB IT LU NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59907492

Country of ref document: DE

Date of ref document: 20031204

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040119

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040304

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20040127

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20050303

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050323

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050425

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060305

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060331

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061003

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Effective date: 20060904

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20110328

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110401

Year of fee payment: 13

Ref country code: NL

Payment date: 20110328

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110324

Year of fee payment: 13

Ref country code: BE

Payment date: 20110328

Year of fee payment: 13

BERE Be: lapsed

Owner name: *GRILLO-WERKE A.G.

Effective date: 20120331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121001

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120304

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120304

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331