EP0941456A1 - Messvorrichtung zur messung der masse eines strömenden mediums - Google Patents

Messvorrichtung zur messung der masse eines strömenden mediums

Info

Publication number
EP0941456A1
EP0941456A1 EP98951183A EP98951183A EP0941456A1 EP 0941456 A1 EP0941456 A1 EP 0941456A1 EP 98951183 A EP98951183 A EP 98951183A EP 98951183 A EP98951183 A EP 98951183A EP 0941456 A1 EP0941456 A1 EP 0941456A1
Authority
EP
European Patent Office
Prior art keywords
sensor element
sensor
adhesive
measuring device
flow direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98951183A
Other languages
German (de)
English (en)
French (fr)
Inventor
Erhard Renninger
Hans Hecht
Gerhard HÜFTLE
Uwe Konzelmann
Matthias Kallabis
Andreas Stark
Michael Rudloff
Henning Marberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, US Department of Navy filed Critical Robert Bosch GmbH
Publication of EP0941456A1 publication Critical patent/EP0941456A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/82Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted using a driven wheel as impeller and one or more other wheels or moving elements which are angularly restrained by a resilient member, e.g. spring member as the measuring device

Definitions

  • the adhesive area does not extend over the entire sensor element, but the sensor element is only glued into the recess of the sensor carrier on one side and the area of the sensor element which has the electrical membrane is located self-supporting in the recess.
  • a flow channel is provided which is formed in the sensor carrier as a groove-shaped depression and extends around the sensor element.
  • the sensor carrier has at least one adhesive displacement space, in which excess adhesive used to form the adhesive seam can be displaced when the sensor element is inserted into the recess of the sensor carrier. In this way, an accumulation of adhesive at unfavorable points, in particular in the cavity of the sensor element formed below the membrane, is prevented.
  • an elastic silicone adhesive By using an elastic silicone adhesive, the mechanical tensioning of the sensor element is minimized even with different thermal expansion coefficients between the material of the sensor element and the material of the sensor carrier.
  • Fig. 3 is a plan view of a measuring device according to a second embodiment of the invention and 4 shows a section along the line IV-IV in FIG. 3.
  • the sensor carrier 1 is preferably made of metal and can be produced by folding a thin metal strip, for which stamping, bending, folding, deep-drawing and embossing processes are suitable. In the final state of the bent metal strip, approximately two elements 14 and 15 of equal size lie against one another.
  • the non-curved element 14 surrounding the sensor element 2 is referred to as a frame element 14 and the element 15 bent below it is referred to as a holding element 15.
  • the holding element 15 covers in the finished bent state of approximately 180 degrees an opening 16 of the non-bent frame element 14 in order to limit a recess 17 for receiving the sensor element 2 together with the frame element 14.
  • the frame element 14 or the recess 17 has a cross section which corresponds approximately to the rectangular shape of the sensor element 2, for example.
  • the sensor element 2 is accommodated in the recess 17 with its surface 8 approximately flush with a surface 18 of the frame element 14.
  • the holding element 15 Before the metal strip is folded, the holding element 15 can be deformed by means of a tool acting on the outer surface 22 of the holding element 15, for example an embossing tool, in such a way that two elevations 20, 21 are formed in cross section in the exemplary embodiment.
  • the elevations 20, 21 are each delimited in the cross section shown in FIG. 1 by adhesive displacement spaces 23, 24 and 25 to be described in more detail.
  • the sensor carrier 1 has a flattened portion 49 on its end face facing the flow direction 9 in order to improve the inflow behavior and to counteract the deposition of dirt particles.
  • the plate-shaped sensor element 2 is glued into the recess 17 of the sensor carrier 1 by means of an adhesive applied along adhesive seams 26, 27 in the form of beads of adhesive. As can be seen better from FIG.
  • a first adhesive seam 26 is cruciform and is used for gluing the sensor element 2 onto the plateau-shaped elevation 20.
  • Pads formed connecting elements 28 are provided, which are used for the electrical connection of conductor tracks of the sensor element 2 with connecting lines 10.
  • the first adhesive seam 26 serves to fix the sensor element 2 in the area of the connection elements 28 in order to achieve a secure bond connection.
  • the second adhesive seam 27 is, as can be seen from FIG. 2, U-shaped in the embodiment shown in Figures 1 and 2.
  • the second adhesive seam 27 is used to glue the sensor element 2 in the region of the plateau-shaped elevation 21.
  • the two adhesive seams 26 and 27 are each formed between the bottom surface 29 of the sensor element 2 and the surface 31 or 30 of the elevations 20 and 21 of the holding element 15.
  • the opening cross section of the recess 40 defines a throttle point.
  • This opening cross-section is expediently determined such that there is a sufficiently rapid pressure compensation, preventing destruction of the membrane 4, between the front of the membrane 4 facing the flowing medium and the back 44 of the membrane 4 facing away from the flowing medium and facing the cavity 5.
  • the opening cross section of the cutout 40 is to be dimensioned so small that a flow of the medium in the cavity 5 is prevented or at least sufficiently suppressed.
  • the opening cross section of the cutout 40 is determined on the one hand by the width b of the cutout 40 shown in FIG. 2 and on the other hand by the thickness d of the adhesive seam 27 shown in FIG. 1.
  • the thickness of the adhesive seam d can, for. B.
  • spacers 43a - 43i can be adjusted by spacers 43a - 43i.
  • the spacers 43a-43i can e.g. B. by an embossing process using a z. B. needle-shaped embossing tool which engages the holding element 15 on the outer surface 22 are formed.
  • the adhesive seams 26 and 27 can be applied as fine beads of adhesive using a conventional metering method.
  • a suitable adhesive is preferably an adhesive that remains elastic after curing, in particular an elastic silicone adhesive. Mechanical stresses between the sensor element 2 and the sensor carrier 1 are thereby minimized. Mechanical stresses occur in particular as a result of the different thermal expansion coefficients of the sensor carrier 1, which is preferably made of a metal sheet, and of the sensor element 2, which is preferably made of a semiconductor material.
  • FIG. 3 and 4 show a second exemplary embodiment of the measuring device according to the invention.
  • 3 shows a plan view of the measuring device according to the invention
  • FIG. 4 shows a section along the line IV-IV in FIG. 3.
  • Elements already described are labeled with the same reference numerals, so that a repetitive description is not necessary.
  • the adhesive seam 60 can extend into the edge region of the recess 17 formed in the frame element 14.
  • a recess 66 is formed in the holding element 15 of the sensor carrier 1. B. introduced by means of a deep embossing process.
  • the recess 66 serves as an adhesive displacement space and receives excess adhesive.
  • the depression 66 also serves to vent the cavity 5 of the sensor element 2.
  • the depression 66 is essentially L-shaped and extends through the cutout 40 of the adhesive seam 60 to an extended section 67.
  • the extended section 67 is therefore not covered by the sensor element 2 and is with the flowing medium to be measured for pressure equalization z. B. connected via holes, not shown, in the holding element 15.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
EP98951183A 1997-10-01 1998-08-21 Messvorrichtung zur messung der masse eines strömenden mediums Withdrawn EP0941456A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19743409 1997-10-01
DE19743409A DE19743409A1 (de) 1997-10-01 1997-10-01 Meßvorrichtung zur Messung der Masse eines strömenden Mediums
PCT/DE1998/002441 WO1999018415A1 (de) 1997-10-01 1998-08-21 Messvorrichtung zur messung der masse eines strömenden mediums

Publications (1)

Publication Number Publication Date
EP0941456A1 true EP0941456A1 (de) 1999-09-15

Family

ID=7844293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98951183A Withdrawn EP0941456A1 (de) 1997-10-01 1998-08-21 Messvorrichtung zur messung der masse eines strömenden mediums

Country Status (8)

Country Link
US (1) US6318170B1 (zh)
EP (1) EP0941456A1 (zh)
JP (1) JP3784420B2 (zh)
KR (1) KR100579429B1 (zh)
CN (1) CN1109879C (zh)
DE (1) DE19743409A1 (zh)
RU (1) RU2196965C2 (zh)
WO (1) WO1999018415A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3514666B2 (ja) * 1999-06-30 2004-03-31 株式会社日立製作所 熱式空気流量センサ
JP3555017B2 (ja) * 1999-09-22 2004-08-18 三菱電機株式会社 感熱式流量センサ
DE19952055A1 (de) * 1999-10-28 2001-05-17 Bosch Gmbh Robert Massenflußsensor mit verbesserter Membranstabilität
US6325886B1 (en) * 2000-02-14 2001-12-04 Redwood Microsystems, Inc. Method for attaching a micromechanical device to a manifold, and fluid control system produced thereby
JP3712907B2 (ja) * 2000-03-06 2005-11-02 株式会社日立製作所 流量計測装置
JP2001349759A (ja) * 2000-06-08 2001-12-21 Mitsubishi Electric Corp 熱式流量センサ
DE10035538A1 (de) * 2000-07-21 2002-02-07 Bosch Gmbh Robert Sensor
DE10036290A1 (de) 2000-07-26 2002-02-07 Bosch Gmbh Robert Vorrichtung zur Bestimmung zumindest eines Parameters eines strömenden Mediums
JP2002139360A (ja) * 2000-10-31 2002-05-17 Mitsubishi Electric Corp 感熱式流量センサ
DE10210734B4 (de) * 2002-03-12 2004-01-29 J. Eberspächer GmbH & Co. KG Wärmetauscheranordnung, insbesondere für ein Fahrzeugheizgerät
JP2004028631A (ja) * 2002-06-21 2004-01-29 Mitsubishi Electric Corp 流量センサ
DE10343793A1 (de) * 2003-09-22 2005-04-14 Robert Bosch Gmbh Heissfilmluftmassensensor mit Kontaktierung mittels anisotropem Leitkleber
JP4428023B2 (ja) * 2003-11-04 2010-03-10 株式会社デンソー 流量測定装置
JP4609019B2 (ja) * 2004-09-24 2011-01-12 株式会社デンソー 熱式流量センサ及びその製造方法
DE102005016449A1 (de) * 2005-04-11 2006-10-12 Robert Bosch Gmbh Beheizter Heißfilmluftmassenmesser
JP2007024589A (ja) * 2005-07-13 2007-02-01 Hitachi Ltd 気体流量計測装置
JP4317556B2 (ja) * 2006-07-21 2009-08-19 株式会社日立製作所 熱式流量センサ
JP2008058131A (ja) * 2006-08-31 2008-03-13 Hitachi Ltd 熱式ガス流量計
JP5243348B2 (ja) * 2009-06-12 2013-07-24 三菱電機株式会社 流量検出装置
JP5256264B2 (ja) * 2010-09-03 2013-08-07 日立オートモティブシステムズ株式会社 熱式空気流量センサ
JP5197714B2 (ja) * 2010-10-29 2013-05-15 三菱電機株式会社 流量検出装置
DE102011076170A1 (de) * 2011-05-20 2012-11-22 Robert Bosch Gmbh Vorrichtung zur Erfassung mindestens einer Eigenschaft eines strömenden fluiden Mediums
DE102012220098B4 (de) * 2012-11-05 2024-08-29 Robert Bosch Gmbh Sensorvorrichtung zur Erfassung mindestens einer Strömungseigenschaft eines fluiden Mediums
JP6361523B2 (ja) * 2014-04-01 2018-07-25 株式会社デンソー 流量センサの製造方法
US20180313681A1 (en) * 2015-03-05 2018-11-01 Hitachi Automotive Systems, Ltd. Air Flow Rate Detecting Device
DE102021203219B3 (de) 2021-03-30 2022-06-23 Vitesco Technologies GmbH Luftmassensensor und Kraftfahrzeug
WO2023217637A1 (en) * 2022-05-09 2023-11-16 X-Celeprint Limited High-precision printed structures and methods of making

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129042A (en) * 1977-11-18 1978-12-12 Signetics Corporation Semiconductor transducer packaged assembly
US4220852A (en) * 1978-09-13 1980-09-02 Westinghouse Electric Corp. Radiation dosimeter assembly
DE4219454C2 (de) * 1992-06-13 1995-09-28 Bosch Gmbh Robert Massenflußsensor
DE4426102C2 (de) * 1994-07-22 1997-07-10 Bosch Gmbh Robert Sensorträger für eine Vorrichtung zur Messung der Masse eines strömenden Mediums und Verfahren zum Herstellen eines Sensorträgers
DE4443767A1 (de) * 1994-12-08 1996-06-13 Giesecke & Devrient Gmbh Elektronisches Modul und Datenträger mit elektrischem Modul
DE19524634B4 (de) * 1995-07-06 2006-03-30 Robert Bosch Gmbh Vorrichtung zur Messung der Masse eines strömenden Mediums

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9918415A1 *

Also Published As

Publication number Publication date
CN1109879C (zh) 2003-05-28
WO1999018415A1 (de) 1999-04-15
DE19743409A1 (de) 1999-04-08
KR100579429B1 (ko) 2006-05-15
US6318170B1 (en) 2001-11-20
JP3784420B2 (ja) 2006-06-14
KR20000069206A (ko) 2000-11-25
JP2001508879A (ja) 2001-07-03
CN1241256A (zh) 2000-01-12
RU2196965C2 (ru) 2003-01-20

Similar Documents

Publication Publication Date Title
EP0941456A1 (de) Messvorrichtung zur messung der masse eines strömenden mediums
DE19524634B4 (de) Vorrichtung zur Messung der Masse eines strömenden Mediums
EP2167930B1 (de) Anschlusseinheit für eine druckmesszelle
DE10153319B4 (de) Mikrosensor
EP1182432B1 (de) Flusssensor mit Gehäuse
DE10016843B4 (de) Wärmeempfindlicher Flussratensensor
DE4426102C2 (de) Sensorträger für eine Vorrichtung zur Messung der Masse eines strömenden Mediums und Verfahren zum Herstellen eines Sensorträgers
DE3003449A1 (de) Drucksensor
DE19744997A1 (de) Vorrichtung zur Messung der Masse eines strömenden Mediums
DE4447570C2 (de) Vorrichtung zur Messung der Masse eines strömenden Mediums
DE10223035A1 (de) Elektronisches Bauteil mit Hohlraumgehäuse, insbesondere Hochfrequenz-Leistungsmodul
DE10049356A1 (de) Halbleitersensor
DE10352002A1 (de) Sensormodul
DE102008043517A1 (de) Sensormodul und Verfahren zur Herstellung eines Sensormoduls
DE102013216901A1 (de) Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
DE19840829A1 (de) Verfahren zum Befestigen eines mikromechanischen Sensors in einem Gehäuse und Sensoranordnung
DE3853432T2 (de) Verfahren zur Herstellung von Sensoren auf Siliziumgrundlage.
WO1992001914A1 (de) Druckgeber zur druckerfassung im brennraum von brennkraftmaschinen
WO1995023338A1 (de) Sensoranordnung für heissfilmanemometer
DE112017005171B4 (de) Halbleitermodul
DE19939824A1 (de) Vorrichtung zur Messung der Masse eines strömenden Mediums
DE102017202605A1 (de) Mikromechanische Anordnung mit einem sensitiven Element und dazugehöriges Herstellungsverfahren
DE102009029281A1 (de) Modul und Verfahren zur Herstellung eines Moduls
DE102004045854B4 (de) Verfahren zur Herstellung mehrerer Halbleitersensoren mit Halbleitersensorchips in Hohlraumgehäusen
DE10316057A1 (de) Verfahren zur Herstellung einer Erkennungsvorrichtung für eine dynamische Größe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19991015

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MARBERG, HENNING

Inventor name: RUDLOFF, MICHAEL

Inventor name: STARK, ANDREAS

Inventor name: KALLABIS, MATTHIAS

Inventor name: KONZELMANN, UWE

Inventor name: HUEFTLE, GERHARD

Inventor name: HECHT, HANS

Inventor name: RENNINGER, ERHARD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060830