EP0935553B1 - Systeme de propulsion a double helice pour navires - Google Patents

Systeme de propulsion a double helice pour navires Download PDF

Info

Publication number
EP0935553B1
EP0935553B1 EP97950145A EP97950145A EP0935553B1 EP 0935553 B1 EP0935553 B1 EP 0935553B1 EP 97950145 A EP97950145 A EP 97950145A EP 97950145 A EP97950145 A EP 97950145A EP 0935553 B1 EP0935553 B1 EP 0935553B1
Authority
EP
European Patent Office
Prior art keywords
screw
housing
propulsion system
water jet
jet propulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97950145A
Other languages
German (de)
English (en)
Other versions
EP0935553A1 (fr
Inventor
Reinhold Reuter
Stefan Kaul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schottel GmbH and Co KG
Original Assignee
Schottel GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27216860&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0935553(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE29619385U external-priority patent/DE29619385U1/de
Priority claimed from DE1996148417 external-priority patent/DE19648417A1/de
Application filed by Schottel GmbH and Co KG filed Critical Schottel GmbH and Co KG
Publication of EP0935553A1 publication Critical patent/EP0935553A1/fr
Application granted granted Critical
Publication of EP0935553B1 publication Critical patent/EP0935553B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/22Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing
    • B63H23/24Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • B63H2005/103Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type of co-rotative type, i.e. rotating in the same direction, e.g. twin propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/125Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
    • B63H2005/1254Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
    • B63H2005/1258Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis with electric power transmission to propellers, i.e. with integrated electric propeller motors

Definitions

  • the invention relates to a water jet drive with a prime mover and a double propeller which is driven by the prime mover.
  • Such drives are known in a design such that the actual drive machine, in particular a diesel engine, is arranged inside the ship's hull and a transmission as a further part of the drive machine is located in a nacelle below the ship's hull, from the shafts connected to the transmission at opposite ends are led out, which are rotatably connected at their outer ends with one of two propellers shown as the same.
  • a solution is described in DE 44 40 738 A1, the essential feature being a diffuser arranged between the two propellers, which eliminates the swirl in the water after leaving the propeller in the direction of travel, so that this water makes the rear propeller with higher energy in the direction of travel , but just as swirl-free as the front propeller.
  • the guide apparatus is formed by guide vanes and a shaft which connects the nacelle or the underwater housing to the ship's hull.
  • Such a drive is also described with some additional information in "THE MOTORSHIP", October 1996, pages 47, 48 "Double the props: half the problem".
  • This additional information includes the indication that the underwater housing or the nacelle is optimized in terms of flow, without further details being given as to what this means in detail.
  • the gondola in its streamlined design, is the bearer of the guide apparatus, but not part of the guide apparatus, which means that no information is given from which it could be concluded that the gondola functionally supports the guide apparatus.
  • This cladding tube is the aforementioned shaft which, together with guide vanes, forms the guide apparatus.
  • the cladding tube is rotatable at the upper end about its longitudinal axis the hull assigned and carries the nacelle at its lower end so that it can be assigned a servomotor which can forcibly rotate the cladding tube with the nacelle and the propellers assigned to it about the longitudinal axis of the cladding tube, so that the outflow direction of the rear propeller into the open water changes and there is a rudder double propeller system.
  • the cladding tube is formed as part of the guide grill.
  • the solution to this problem according to the invention consists in the combination of individual, appropriately selected individual problem solutions, not only for summation, but for potentiating the individual advantages to an overall concept that is optimal in its entirety.
  • the ship propulsion system relates to a water jet propulsion system with two propellers at the ends of a propeller led out of a gondola outside the ship's hull, a propulsion system arranged in the gondola Energy from the ship's hull is fed through a cladding tube, one end of which is assigned to the ship's hull, the other end of which is assigned to the gondola, the cladding tube being part of a guide apparatus through which the propeller in the direction of travel of the watercraft at one end of the shaft and gondola arranged propeller with enriched flow energy leaving water jet swirl-free in order to supply the water jet leaving the front propeller with high energy but low swirl to the rear propeller in the direction of travel of the watercraft, for which purpose both propellers are driven by the drive in the nacelle in the same direction of rotation and in the area of the jet cross section in are essentially the same.
  • the underwater housing or the nacelle has an optimized shape and the rear of the two propellers in the direction of travel of the watercraft has a special geometry in accordance with "Motorship Vol. 77, No. 915, October 1996, London, pages 47, 48" Double the props: helped the problem ".
  • the two propellers have essentially the same diameter in such a way that the Direction of travel of the watercraft front propeller in the entire diameter range and the rear propeller in the direction of travel of the watercraft in the diameter range, which is determined by the jet contraction when leaving the front propeller, both different blade configurations, while the front propeller in the direction of travel of the watercraft and that in the direction of travel of the watercraft rear propellers in an annular area lying radially outside the diameter range determined by the jet contraction have the same blade configuration.
  • the drive essentially consists of an electric motor 1 ⁇ in a housing 2 ⁇ outside, in particular below the hull and two propellers, 3 ⁇ , 4 ⁇ , which are driven by the electric motor 1 ⁇ .
  • the two propellers will generally be structurally different, although they have 5 ⁇ tip circles with the same diameter and may have a similar wing geometry. They have the same direction of rotation and the same speed and, for example, flow in the same direction according to arrow A ⁇ .
  • the electric motor 1 ⁇ is arranged waterproof in the underwater housing 2 2.
  • the output shaft 7 ⁇ is guided out of it on both sides and is rotatably supported in the side of the motor in one of two bearings 8 ⁇ , 9 ⁇ of the housing 2 ⁇ .
  • Seals are used for seals 10 ⁇ , 11 ⁇ on the side of bearings 8 ⁇ , 9 ⁇ between shaft 7 ⁇ and front housing walls 2a ⁇ , 2b ⁇ in connection with the formation of the end faces as parts of labyrinth seals .
  • Outside the housing 2 ⁇ are flanged to the shaft 7 ⁇ stub shaft 12 ⁇ , 13 ⁇ , one of which is one of the two propellers 3 ⁇ , 4 ⁇ non-rotatable.
  • hub caps 14 ⁇ , 15 ⁇ Close to the front of the housing 2 ⁇ hub caps 14 ⁇ , 15 ⁇ , with a continuous, streamlined outer contour with head 14 ⁇ in the area of the front propeller 3 ⁇ , middle part in the form of the housing 2 ⁇ and end part 15 ⁇ in the area of the rear propeller 4 ⁇ is formed.
  • the housing 2 ⁇ facing end walls 14a ⁇ , 15a ⁇ of hub caps 14 ⁇ , 15 ⁇ are second parts of the labyrinth seals 16 ⁇ , 17 ⁇ whose first part the already mentioned end faces 2a ⁇ , 2b are ⁇ .
  • the housing 2 ⁇ is held on the hull with a foot 18 ⁇ , which is hollow, the outer contour of which is part of the guide apparatus 19 ⁇ between the propellers 3 ⁇ , 4 ⁇ , the further, the housing 2 ⁇ associated blades, one of which the blade 18 ⁇ diametrically opposite blade is designated 20 ⁇ .
  • the blades of the diffuser 19 ⁇ are evenly distributed around the longitudinal axis of the shaft 7 ⁇ and assigned to the housing 2 ⁇ .
  • the propellers 3 ⁇ , 4 ⁇ are designed such that the initial working level of the second propeller 4 ⁇ is approximately the final working level of the first propeller 3 ⁇ and, in conjunction with the guide device 19 ⁇ , the output swirl of the first propeller 3 ⁇ as well as the input swirl of the second Propellers 4 ⁇ are purposefully influenced in such a way that little energy losses occur when the liquid passes from the first to the second propeller.
  • the energy supply to the electric motor takes place through lines 21 ⁇ , which are brought into the foot 18 ⁇ and in the housing 2 ⁇ to the motor, which is why the interior of the foot 18 ⁇ and the housing 2 ⁇ are connected to each other.
  • the entire drive is by appropriate assignment to the ship and an appropriate swivel mechanism known per se around the vertical longitudinal axis 22 ⁇ pivotable in the middle between the two propellers, optionally pivotable through 360 °, the axis 22 ⁇ being directed perpendicular to the axis of rotation of the shaft axis 23 achse .
  • the drive essentially consists of an electric motor 1 .. in a housing 2 .. outside, in particular below the hull and two propellers 3 .. , 4 .. which are driven by the electric motor 1 ..
  • the two propellers will generally be structurally different, although they have tip circles 5 .. with the same diameter and may have a similar wing geometry. They have the same direction of rotation and the same speed and, for example, flow in the same direction according to arrow A ..
  • the electric motor 1 .. is arranged in the underwater housing 2 .. watertight.
  • the output shaft 7 .. is guided out of it on both sides and laterally rotatably mounted in one of two bearings 8 .. , 9 .. of the housing 2 .. in the side of the motor.
  • the seals serve seals 10 .. , 11 .. on the side of the bearings 8 .. , 9 .. between shaft 7 .. and front housing walls 2a .. , 2b .. in connection with the formation of the end faces as parts of labyrinth seals.
  • Outside of the housing 2 .. are flanged to the shaft 7 .. stub shaft 12 .. , 13 ..
  • the housing is connected to 2 .. hub caps 14 .. , 15 .. , with a continuous, streamlined outer contour with head 14 .. in the area of the front propeller 3 .. , middle part in the shape of the housing 2 .. and end part 15 . . in the region of the rear propeller 4 .. is formed.
  • the housing 2 .. facing end walls 14a .., .. 15a of hub caps 14 .., 15 .. are second parts of the labyrinth seals 16 .., 17 .., the first parts, the already mentioned end faces 2a .., 2b.
  • the housing 2 .. is held on the ship's hull with a foot 18 .. , which is hollow, the outer contour of which is part of the diffuser 19 .. between the propellers 3 .. , 4 .. , the other, assigned to the housing 2 .. having blades, of which the foot 18 .. diametrically opposite blade is indicated at 20 ...
  • the blades of the diffuser 19 .. are distributed uniformly around the longitudinal axis of the shaft 7 .. and assigned to the housing 2 ..
  • the propellers 3 .. , 4 .. are designed in such a way that the initial working level of the second propeller 4 .. is approximately the final working level of the first propeller 3 .. and in connection with the guide device 19 .. the initial twist of the first propeller 3 .. as well as the input twist of the second propeller 4 .. are influenced in a purposeful manner so that at most slight energy losses occur when the liquid passes from the first to the second propeller.
  • the energy supply to the electric motor takes place through lines 21 .. , in the base 18 .. and in the housing 2 .. to the motor are introduced, which is why the interiors of the foot 18 .. and the housing 2 .. are connected.
  • the entire drive In order to be able to use the drive not only to generate a thrust in the longitudinal direction of the ship (longitudinal axis of the drive shaft), but also to control the ship, the entire drive must be appropriately assigned to the ship and an appropriate swivel mechanism known per se about the vertical longitudinal axis 22 . . swiveling in the middle between the two propellers, possibly swiveling 360 ° all around; wherein the axis 22 .. is directed perpendicular to the axis of rotation of the longitudinal axis 23 ...
  • Motor 1 .. is designed as a permanent synchronous motor and is therefore an electrical machine with a very high power density.
  • the technology of such a motor makes it possible to design the housing 2 .. between the two propellers to be hydrosdynamic in such a way that a very high degree of efficiency is achieved.
  • the foot 18 .. can be designed as a shaft, that it too has an optimal hydrodynamic design.
  • the shaft 18 .. is formed in its lower, the housing 2 .. near area, so that it forms together with a second, diametrically opposite guide fin 20 .. a pair of guide fins and thus a guide device, so that an optimal inflow of water to the seen in the flow direction A .. second propeller 4 .. is possible.
  • the guide fins end in the diameter circles 5 .. of the two propellers 3 .. , 4 ..
  • a drive system is achieved that is characterized by an extreme Improved effectiveness both electrically and hydrodynamically.
  • the design of the motor 1 .. as a permanent synchronous motor makes it possible to reduce the diameter of the housing 2 .. by up to 20% compared to other motors known per se.
  • the advantages are obvious: only smaller masses and more favorable flow conditions or lower flow resistance should be mentioned.
  • Another embodiment according to the invention relates to the rotor bearing of the permanent motor, which also includes the propeller shaft bearing.
  • the rotor ie the drive shaft 7 .. is connected to the propeller shafts 12 .. , 13 .. via diaphragm couplings 23 .. , 24 .. . This allows a minimal air gap between the stator and rotor, which means a significant, additional improvement in efficiency.
  • FIG. 3 shows a ship drive designed as a rudder double propeller with a drive machine arranged in the ship's hull and having a vertical drive shaft 1 . and propellers outside the hull.
  • FIG. 3 acts on the upper end of the vertical drive shaft 1 .
  • a drive machine consisting of engine and transmission to drive shaft 1 . with variable speed in rotation around its longitudinal axis 2 . to move.
  • the lower end of the drive shaft 1 . is the input bevel gear 3 . an angular drive 3 . ; 4. non-rotatably assigned, which is in operative connection with the output bevel gear 4 . of the bevel gear 3 . ; 4. stands.
  • the output bevel gear 4 rotatably supports a horizontal output shaft 5 extending in both directions . , at the free ends of each a propeller 6 . , 7th is rotatably arranged.
  • the propellers will generally be structurally different, although top circles 14 . with the same diameter and similar wing geometries may be possible. Due to the common assignment to output shaft 5 . same direction of rotation and the same speed and are, for example, according to the arrow A. flowed in the same direction.
  • the bevel gear 3 . ; 4. is from a housing 9 . surrounded in which by means of two bearings 10 . , 11th the output shaft 5 . is rotatably mounted.
  • the underwater part of the drive system can be inside a nozzle 12 . be arranged.
  • the front propeller 6 generates a residual or re-swirl in its outflow, which represents lost energy.
  • the downstream, co-rotating propeller 7 becomes with the outflow of the front propeller. Without a guide device between the two propellers 6 . , 7th the above-mentioned unfavorable outflow would lead to increased cavitation and increased energy losses.
  • a guide device 8 provided, with which the Nachdrall of the front propeller. 6 is judged.
  • lost energy is recovered by generating a propulsive force in the flow around the guide device.
  • the second propeller 7 takes this criterion into account . preferably one from the first propeller 6 . have different structural designs.
  • the control device 8 . 3 consists of two guide vanes 8a . and 8b . , the one guide vane 8a . through which the vertical drive shaft 1 . surrounding casing tube 9a . is formed.
  • the second guide vane 8b . is located on the bottom 9b . the horizontal output shaft 5 . surrounding housing 9 . , ie offset by 180 ° from the first guide vane.
  • Both guide vanes 6 . , 7th form with the overall housing 9 . , 9a . a unit.
  • the drive essentially consists of an electric motor 1 in a housing 2 outside, in particular below of the hull and two propellers 3, 4, which are driven by the electric motor 1.
  • the two propellers will generally be structurally different, although they have tip circles 5 with the same diameter and may have a similar wing geometry. They have the same direction of rotation and the same speed and, for example, flow in the same direction according to arrow A (FIG. 1).
  • the electric motor 1 is arranged watertight in the underwater housing 2.
  • the output shaft 7 is guided out of it on both sides and is rotatably supported in the side of the motor in one of two bearings 8, 9 of the housing 2.
  • the seal is provided by seals 10, 11 on the side of bearings 8, 9 between shaft 7 and end housing walls 2a, 2b in connection with the formation of the end faces as parts of labyrinth seals.
  • shaft ends 12, 13 are flanged to the shaft 7, each of which carries one of the two propellers 3, 4 in a rotationally fixed manner.
  • hub caps 14, 15 connect to the housing, a continuous, streamlined outer contour with head 14 being formed in the area of the front propeller 3, middle part in the form of the housing 2 and end part 15 in the area of the rear propeller 4.
  • the end walls 14a, 15a of the hub caps 14, 15 facing the housing 2 are second parts of the labyrinth seals 16, 17, the first parts of which are the end surfaces 2a, 2b already mentioned.
  • the housing 2 is held on the ship's hull with a foot 18 which is hollow, the outer contour of which is part of the guide apparatus 19 between the propellers 3, 4 and which has further blades associated with the housing 2, one of which has a blade diametrically opposite the foot 18 is designated by 20.
  • Overall are the blades of the diffuser 19 uniformly distributed around the longitudinal axis of the shaft 7 and assigned to the housing 2.
  • the propellers 3, 4 are designed such that the initial working level of the second propeller 4 is approximately the final working level of the first propeller 3 and, in conjunction with the guide device 19, the output swirl of the first propeller 3 and the input swirl of the second propeller 4 are purposefully influenced that at most small energy losses occur when the liquid passes from the first to the second propeller.
  • the energy supply to the electric motor takes place through lines 21 which are brought to the motor in the foot 18 and in the housing 2, which is why the interiors of the foot 18 and the housing 2 are connected to one another.
  • the entire drive In order to be able to use the drive not only to generate a thrust in the longitudinal direction of the ship (longitudinal axis of the drive shaft), but also to steer the ship, the entire drive must be appropriately assigned to the ship and an appropriate swivel mechanism known per se about the vertical longitudinal axis 22 in the middle between the two propellers can be pivoted, possibly pivoted 360 ° all around, the axis 22 being directed perpendicular to the axis of rotation of the shaft axis 23.
  • the electric motor 1 is a permanently excited synchronous motor with the permanent magnet rotor 25 and the stator laminated core 26. Such motors are known per se, which is why the electric motor designed as a permanently excited synchronous motor does not have to be described in detail either.
  • Such a permanently excited synchronous motor 1 is now arranged in a further embodiment in the nacelle-like housing 2 such that the continuous propeller shaft 12, 13 and the rotor 25 have a common bearing with the two bearings 8, 9. Specifically, this is done in such a way that the permanent rotor 25 is seated on a support tube 27 which it concentrically surrounds and which, near its two ends, is assigned to the propeller shaft 12, 13 in a rotationally fixed manner via one of two annular membrane couplings 28, 29, with both shaft ends the diaphragm coupling 28 or 29 and the associated bearing 8 or 9 are close together. Because the propeller shaft and the electric motor tube have a common bearing, component minimization and increased reliability of the drive unit are achieved.
  • an integration of the underwater housing shaft 18 (referred to as “foot” in connection with FIG. 1) in the drive is possible in a particularly expedient manner.
  • This housing shaft can be made very slim, which considerably reduces the flow resistance of the system.
  • This slim underwater housing shaft 18 is profiled in cross-section so that in connection with a lateral pair of guide fins offset by 90 ° (not shown) and the counter fin 20 offset by 180 °, an additional jet swirl of the propeller outflow of the front propeller 3 is achieved, which improves the efficiency means that the concept on which the drive is based should bring the two essentially identical and rotating propellers (speed and direction of rotation).
  • a parking brake for holding the propeller shaft 12, 13 and thus the assembly, the parts of which are the propeller shaft, is arranged within the underwater pod 2 and is identified by 33.
  • Rudder propellers mountable / demountable on a floating ship are offered by various rudder propeller manufacturers.
  • the corresponding assembly effort is still considerable.
  • the present invention in particular in the embodiment according to FIGS. 2, 3, enables a greatly simplified underwater assembly / disassembly at the separation point of the underwater housing shaft support cone.
  • the underwater housing shaft is also identified in FIG. 3 by the reference symbol 18, its upper end lies in the plane 24 of the ship's outer skin and is connected to the supporting cone 30.
  • the support cone is mounted in a control bearing 31 in the support structure of a ship.
  • This control bearing 31 has an inner ring 31a with an inner ring gear 31b and this inner bearing ring 31a is firmly assigned to the outer circumference of the support cone 30.
  • the outer ring 31c interacts with the inner ring via the rolling elements and it is firmly integrated into the supporting structure of the ship.
  • the pinion (not shown) of a drive (not shown) engages in the inner ring gear of the inner ring of the control bearing, so that the entire drive can be rotated through 360 ° about the longitudinal axis 22 to control the ship.
  • the detachable connection between housing shaft 18 and support cone 30 is symbolized by a flange connection 32.
  • the front propeller 3 in the inflow direction A has optimal blading for increasing the energy of the fluid.
  • the rear propeller 4 in the inflow direction A has the same blading in a peripheral area.
  • This peripheral area surrounds a central area in which the blading deviates from that of the front propeller 3, as has been described several times above, ie it increases the energy increased in the first propeller again from this energy level after that of the first propeller 3 leaving fluid swirled in the diffuser 19 and the energy loss caused by the swirl was compensated.
  • the core and peripheral areas are separated from one another by the contraction surface 100, ie the lateral surface which surrounds the flowing fluid after it has left the first propeller 3 and which circumscribes a cross section which is significantly smaller than the inflow cross section.
  • the second propeller is consequently flowed by the fluid B in the same way as the first propeller by the fluid, which is indicated by the arrows A.

Abstract

Système de propulsion à double hélice pour navires comportant deux hélices (3, 4) placées sur un même axe, en dehors des extrémités d'un carter immergé (2) conçu en forme de gondole pour favoriser l'écoulement, sous la coque du navire. Ce système comporte également un élément moteur pour les deux hélices (3, 4), situé dans le carter immergé. De l'énergie provenant de la coque du navire à travers un canal (18) ménagé dans le carter est acheminée à cet élément moteur dont une extrémité est associée à la coque (24) du navire et l'autre au carter immergé (2). Ce système de propulsion est caractérisé en ce que le carter (2) fait partie d'un organe de guidage (20) permettant d'acheminer à l'hélice (4) située à l'arrière dans le sens de déplacement du navire, à l'autre extrémité du carter, le jet d'eau quittant avec une énergie important l'hélice (3) située à l'avant dans le sens d'énergie et à favoriser l'absence de torsion. Les deux hélices (3, 4) sont entraînées dans le même sens de rotation par l'élément moteur situé dans le carter et sont conçues, au niveau de chaque section transversale du jet, de sorte que l'énergie d'écoulement, différente à l'entrée des deux hélices (3, 4), soit exploitée de façon optimale.

Claims (28)

  1. Dispositif de propulsion par jet d'eau pour bateaux, comportant deux hélices (3, 4) de même diamètre et disposées suivant le même axe à l'extérieur des extrémités d'un carter immergé (2) réalisé, de façon optimale, en forme de gondole de manière à favoriser l'écoulement et placé sous la coque du bateau, et comportant un moyen d'entraînement de forme optimale placé dans le carter immergé et destiné aux deux hélices (3, 4), et auquel est fournie l'énergie, à partir de la coque du bateau, par une tige de montage de carter (18) dont une extrémité est associée à la coque de bateau (24) et dont l'autre extrémité est associée au carter immergé (2), un dispositif directeur (20) étant prévu afin de permettre au jet d'eau, qui quitte, avec une énergie augmentée, l'hélice (3) située à l'avant dans le sens de la marche du bateau, d'arriver avec une perte minimisée d'énergie et d'une manière irrotationnelle optimisée, au niveau de l'autre extrémité du carter immergé, à l'hélice (4) située à l'arrière dans le sens de la marche du bateau et ayant une géométrie spéciale, caractérisé en ce que
    la forme optimale du carter immergé (2) réside dans le fait que celui fait partie, de même que la tige de montage de carter (18) et des pales directrices, du dispositif directeur (20), qui se compose dans son ensemble des pales directrices, du carter immergé (2) et de la tige de montage de carter (18), et par lequel le jet d'eau, qui quitte avec une énergie augmentée l'hélice (3) située à l'avant dans le sens de la marche du bateau, est amené, avec une perte minimisée d'énergie et d'une manière irrationnelle optimisée, au niveau de l'autre extrémité du carter immergé, à l'hélice (4) située à l'arrière dans le sens de la marche du bateau, et
    en ce que la géométrie spéciale de celle des deux hélices (3, 4), entraînées dans le même sens de rotation et ayant des diamètres identiques, qui est située à l'arrière dans le sens de l'écoulement, consiste en ce que cette hélice arrière est réalisée, dans la zone centrale, c'est-à-dire la zone de la section transversale du jet provenant de l'hélice avant, de la même manière que l'hélice avant, de telle sorte que l'énergie du flux, différente à l'entrée des deux hélices (3, 4), soit utilisée de manière optimale tandis que, sur la zone de bord faisant suite à la zone centrale, le flux arrive librement comme pour l'hélice avant et que son ailettage correspond à l'ailettage de l'hélice avant (3).
  2. Dispositif de propulsion par jet d'eau selon la revendication 1, caractérisé en ce que le pas des pales de l'ailettage de l'hélice (4), située à l'arrière dans le sens de la marche du bateau, représente, dans la zone correspondant à la contraction de l'acier, de 1,04 à 1,52 fois le pas des pales de l'ailettage de l'hélice (3) située à l'avant dans le sens de la marche du bateau.
  3. Dispositif de propulsion par jet d'eau selon la revendication 2, caractérisé en ce que l'ailettage égal des deux hélices (3, 4) autorise une différence de +/- 5 % dans la totalité de la zone de la section transversale de l'hélice (3) située à l'avant dans le sens de la marche du bateau et dans la zone extérieure de forme annulaire de l'hélice (4) située à l'arrière dans le sens de la marche du bateau.
  4. Dispositif de propulsion par jet d'eau selon la revendication 2, caractérisé en ce que l'ailettage différent des deux hélices (3, 4) est obtenu, en plus du pas différent des pales, également par une courbure différente des pales, le pas différent des pales, dans la zone indiquée dans la revendication 2, représentant de 0,9 à 1,6.
  5. Dispositif de propulsion par jet d'eau selon la revendication 4, caractérisé en ce que l'ailettage différent des deux hélices (3, 4) est obtenu par une courbure différente en conséquence des pales, à la place d'un pas différent des pales.
  6. Dispositif de propulsion par jet d'eau selon la revendication 1, caractérisé en ce que les pales directrices (20) disposent d'un rapport de longueur de courbure situé dans la plage de 0,0 à 0,2 et d'une incidence comprise dans la fourchette de - 7° à + 7°, lorsque les pales directrices constituent la partie essentielle du dispositif directeur.
  7. Dispositif de propulsion par jet d'eau selon la revendication 6, caractérisé en ce que le dispositif directeur présente deux pales directrices, disposées à symétrie de révolution autour de l'axe commun de rotation des hélices (3, 4).
  8. Dispositif de propulsion par jet d'eau selon l'une des revendications 1 à 7, caractérisé en ce que le moyen d'entraînement, situé dans le carter immergé (2), consiste en un engrenage (4', 5') avec deux parties d'arbre de sortie pour les deux hélices (3, 4) au niveau des extrémités du carter immergé, et avec un élément d'amenée de force mécanique (2') à partir d'un moteur situé à l'intérieur de la coque du bateau, de préférence un moteur à combustion interne ou un moteur hydraulique, à l'aide d'un arbre de transmission, passant dans la tige de montage du carter.
  9. Dispositif de propulsion par jet d'eau selon l'une des revendications 1 à 7, caractérisé en ce que le moyen d'entraînement, situé dans le carter immergé (2), consiste en un moteur électrique avec deux parties d'arbre (13, 14) de l'arbre de sortie pour les deux hélices (3, 4) au niveau des extrémités du carter immergé, et avec une amenée d'énergie, provenant d'un générateur de courant situé à l'intérieur de la coque du bateau, par l'intermédiaire de lignes d'alimentation, qui passent dans la tige de montage de carter (18).
  10. Dispositif de propulsion par jet d'eau selon l'une des revendications 1 à 7, caractérisé en ce que le moyen d'entraînement, situé dans le carter immergé (2), consiste en un moteur hydraulique avec deux parties d'arbre de sortie (12, 13) pour les deux hélices (3, 4) au niveau des extrémités du carter immergé, et avec une amenée d'énergie provenant d'un dispositif d'augmentation de l'énergie du moyen de commande par moteur hydraulique, situé à l'intérieur de la coque du bateau, à l'aide de moyens conducteurs tubulaires, passant dans la tige de montage du carter.
  11. Dispositif de propulsion par jet d'eau selon la revendication 9, caractérisé en ce que la dissipation de la chaleur provenant du moteur (1) s'effectue par l'intermédiaire de la paroi du carter immergé (2), les éléments du moteur (1), qui dégagent de la chaleur, étant reliés de manière à conduire la chaleur.
  12. Dispositif de propulsion par jet d'eau selon l'une des revendications 1 à 10, caractérisé en ce que l'hélice (3), située à l'avant dans le sens de la marche du bateau, est entourée par une tuyère d'accélération, dont la section transversale va en diminuant depuis l'entrée jusqu'au plan d'hélice.
  13. Dispositif de propulsion par jet d'eau selon l'une des revendications 1 à 10, caractérisé en ce que chaque hélice (3, 4) est entourée par une tuyère de décélération, dont la section transversale va en augmentant depuis l'entrée de la tuyère correspondante jusqu'au plan d'hélice de la première hélice (3).
  14. Dispositif de propulsion par jet d'eau selon l'une des revendications 1 à 13, caractérisé par le raccordement de la tige verticale de montage de carter (18) au niveau de la coque du bateau, de telle sorte qu'elle puisse tourner, autour de son axe longitudinal, avec le carter immergé, au niveau de son extrémité inférieure.
  15. Dispositif de propulsion par jet d'eau selon la revendication 14, caractérisé en ce que la rotation de la tige de montage de carter (18) autour de son axe longitudinal est possible sur 360°, à l'aide d'un moteur de positionnement.
  16. Dispositif de propulsion par jet d'eau selon la revendication 9, caractérisé en ce que la fixation de chaque hélice (3, 4) sur l'arbre (7) ou bien sur chaque partie d'arbre (12, 17) est entourée par, chaque fois, un moyeu (14, 15), et en ce que la forme optimale du carter immergé (2) comprenant les moyeux (14, 15) aboutit à un profil d'écoulement réalisé de façon à favoriser l'écoulement, et dont le nez (14) présente l'hélice (3) dans cette zone en tant qu'hélice avant dans le sens du flux (A), tandis que la queue (15) du profil d'écoulement présente l'hélice (4) dans cette zone en tant qu'hélice arrière dans le sens du flux.
  17. Dispositif de propulsion par jet d'eau selon la revendication 9 et/ou la revendication 16, caractérisé en ce que le moteur électrique (1) est un moteur synchrone à excitation par aimants permanents.
  18. Dispositif de propulsion par jet d'eau selon la revendication 17, caractérisé en ce que le rotor (25) du moteur (1) est placé de manière concentrique à l'intérieur du stator (26).
  19. Dispositif de propulsion par jet d'eau selon la revendication 10, caractérisé en ce que le rotor (25) est relié, de manière solidaire en rotation, par l'intermédiaire d'accouplements à membrane (28, 29) à l'arbre d'hélice (7, ou bien 12, 13), passant de manière concentrique dans le rotor et sortant du rotor (25) aux deux extrémités pour recevoir les hélices (3, 4).
  20. Dispositif de propulsion par jet d'eau selon la revendication 19, caractérisé en ce qu'un palier (8, 9) est prévu, à l'extérieur du rotor (25) et immédiatement à côté de chacun des accouplements à membrane (28, 29), et en ce que l'ensemble, constitué par le rotor (25) et l'arbre d'hélice (12, 13), est monté par ces paliers dans le carter immergé (2) du dispositif de propulsion du bateau.
  21. Dispositif de propulsion par jet d'eau selon l'une des revendications 16 à 21, caractérisé en ce que le rotor (25) est relié, par l'intermédiaire d'un tube support de rotor (27), à l'arbre d'hélice (12, 13).
  22. Dispositif de propulsion par jet d'eau selon l'une des revendications 16 à 21, caractérisé en ce que le carter immergé (2) peut être amené à pivoter, par l'intermédiaire de la tige de montage de carter (18), avec un cône d'attache (30) et ce, de 360° en continu autour d'un axe de pivotement (22) qui s'étend verticalement par rapport à l'arbre d'hélice (12, 13) et qui coupe l'axe longitudinal (23) de l'arbre d'hélice.
  23. Dispositif de propulsion par jet d'eau selon la revendication 22, caractérisé en ce que la tige de montage de carter (18) et le cône d'attache (30) sont reliés l'un à l'autre dans le plan du bordé (24) du bateau, de manière détachable (liaison par brides).
  24. Dispositif de propulsion par jet d'eau selon l'une des revendications 22 et 23, caractérisé en ce que la plus petite section transversale est dirigée vers la tige de montage de carter (18), tandis que le cône d'attache est monté (palier 31), dans la zone de la section transversale supérieure plus grande de manière à pivoter dans le bateau autour de l'axe vertical (22) qui coupe l'axe longitudinal (23) de l'arbre d'hélice (12, 13).
  25. Dispositif de propulsion par jet d'eau selon l'une des revendications 16 à 24, caractérisé en ce que la tige de montage de carter (18) est réalisée en tant que l'une de plusieurs pales directrices (18, 20) similaires du dispositif directeur (19), entre les deux hélices (3, 4), ces pales étant réparties sur la périphérie du carter (2) avec des distances égales entre elles.
  26. Dispositif de propulsion par jet d'eau selon l'une des revendications 1 à 10, caractérisé en ce que l'hélice (3), située à l'avant dans le sens de la marche du bateau, est entourée par une tuyère de décélération, dont la section transversale va en s'élargissant depuis l'entrée jusqu'au plan d'hélice.
  27. Dispositif de propulsion par jet d'eau selon l'une des revendications 1 à 10, caractérisé en ce que chaque hélice est entourée par une tuyère d'accélération, dont la section transversale va en diminuant depuis l'entrée jusqu'au plan d'hélice, ou bien par une tuyère de décélération dont la section transversale va en augmentant depuis l'entrée jusqu'au plan d'hélice.
  28. Dispositif de propulsion par jet d'eau selon l'une des revendications 1 à 10, caractérisé en ce que les deux hélices sont entourées par une tuyère commune, qui est une tuyère d'accélération, et dont la section transversale va en diminuant depuis l'entrée de la tuyère jusqu'au plan d'hélice de la première hélice, ou bien par une tuyère de décélération, et dont la section transversale va en augmentant depuis l'entrée de la tuyère jusqu'au plan d'hélice de la première hélice.
EP97950145A 1996-11-07 1997-11-07 Systeme de propulsion a double helice pour navires Expired - Lifetime EP0935553B1 (fr)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE29619385U DE29619385U1 (de) 1996-11-07 1996-11-07 Schiffsantrieb mit einem Ruderpropeller
DE29619385U 1996-11-07
DE19648417 1996-11-22
DE1996148417 DE19648417A1 (de) 1996-11-22 1996-11-22 Schiffsantrieb mit einem Ruderpropeller
DE29707028U 1997-04-18
DE29707028U DE29707028U1 (de) 1996-11-07 1997-04-18 Schiffsantrieb mit einem Ruderpropeller
PCT/EP1997/006207 WO1998019907A1 (fr) 1996-11-07 1997-11-07 Systeme de propulsion a double helice pour navires

Publications (2)

Publication Number Publication Date
EP0935553A1 EP0935553A1 (fr) 1999-08-18
EP0935553B1 true EP0935553B1 (fr) 2001-09-19

Family

ID=27216860

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97950145A Expired - Lifetime EP0935553B1 (fr) 1996-11-07 1997-11-07 Systeme de propulsion a double helice pour navires

Country Status (11)

Country Link
EP (1) EP0935553B1 (fr)
JP (1) JP3214568B2 (fr)
KR (1) KR100306261B1 (fr)
CN (1) CN1080677C (fr)
CA (1) CA2271034C (fr)
DK (1) DK0935553T3 (fr)
ES (1) ES2163204T3 (fr)
HK (1) HK1023971A1 (fr)
NO (1) NO324212B1 (fr)
PT (1) PT935553E (fr)
WO (1) WO1998019907A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004008805A1 (de) * 2004-02-20 2005-09-22 Siemens Ag Zweipropellerantrieb für Schiffe
CN109863082A (zh) * 2016-08-09 2019-06-07 艾特赛富公司 由驱动轴制动及锁定系统构成的用于船舶的驱动单元

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69921432T2 (de) * 1998-12-21 2006-03-02 Mitsubishi Heavy Industries, Ltd. Azimuth-Propellervorrichtung
FI115042B (fi) * 2000-01-28 2005-02-28 Abb Oy Aluksen moottoriyksikkö
US6244912B1 (en) * 2000-03-20 2001-06-12 Electric Boat Corporation Strut-mounted marine propulsion unit
DE10044101A1 (de) * 2000-09-07 2002-04-04 Schottel Gmbh & Co Kg Antrieb für schnelle Wasserfahrzeuge
JP4674841B2 (ja) * 2001-06-08 2011-04-20 ヤマハ発動機株式会社 小型船舶における電動式推進装置
JP4203416B2 (ja) * 2001-08-30 2009-01-07 シーメンス アクチエンゲゼルシヤフト 耐衝撃型船舶用回転電機
KR101429010B1 (ko) * 2005-06-09 2014-08-11 숏텔 게엠베하 선박 추진 장치와 선박 추진 방법
EP2432689B1 (fr) * 2009-05-22 2013-07-17 Bell Helicopter Textron Inc. Disques rotors empilés co-rotatifs pour des performances de vol stationnaire améliorées
US20110263165A1 (en) * 2010-04-26 2011-10-27 Twin Disc, Inc. Electric Marine Surface Drive
KR20130024467A (ko) * 2011-08-31 2013-03-08 에스티엑스조선해양 주식회사 언더워터 마운팅 아지무스 스러스터의 평판 형 수밀 장비 및 그 탑재 방법
JP5996788B2 (ja) * 2012-05-10 2016-09-21 サムスン ヘビー インダストリーズ カンパニー リミテッド 船舶用推進装置及びこれを含む船舶
CN104229113B (zh) * 2014-09-24 2017-11-17 江苏科技大学 吊舱式船舶电力直驱推进装置、推进系统及推进方法
EP3069985A1 (fr) * 2015-03-20 2016-09-21 ABB Oy Récipient avec une coque et une unité de propulsion
CN105015753B (zh) * 2015-07-01 2017-08-22 胡景威 一种船舵
CN105151265B (zh) * 2015-10-25 2017-06-20 宁波市鄞州发辉机械科技有限公司 一种潜水器的传动装置
CN107963196A (zh) * 2017-12-07 2018-04-27 张立 一种船舶用推进器
CN108045534A (zh) * 2017-12-30 2018-05-18 殷红平 一种用于万向机器人的定向桨叶驱动机构
ES2815925T3 (es) * 2018-08-03 2021-03-31 Sealence S P A Dispositivo de propulsión a chorro de agua fuera de borda para vehículos marinos
CN109436268A (zh) * 2018-09-26 2019-03-08 湖北环电磁装备工程技术有限公司 船舶吊舱式推进器
CN109278969A (zh) * 2018-10-12 2019-01-29 邓建军 同轴双桨电动喷水推进器
CN110316345A (zh) * 2019-07-15 2019-10-11 南京高精船用设备有限公司 一种新型对转桨船舶侧向推进系统
CN112937822A (zh) * 2021-03-09 2021-06-11 北京航空航天大学 一种单驱动可折叠共轴螺旋桨装置
CN114572370A (zh) * 2021-12-28 2022-06-03 深圳潜行创新科技有限公司 一种对转双桨水下推进器
CN115009489A (zh) * 2022-05-22 2022-09-06 哈尔滨广瀚动力传动有限公司 一种电动对转对转桨推进吊舱

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE293611C (fr) *
GB515469A (en) * 1938-03-05 1939-12-06 John Taylor Mcintyre Improvements in cased screw propeller type fans, pumps and the like
US2691356A (en) * 1950-11-28 1954-10-12 Waterval William Multiple propeller drive for ships
DE1094622B (de) * 1957-10-12 1960-12-08 Volkswerft Stralsund Veb Doppelpropeller, vorzugsweise fuer Schiffe
GB832164A (en) * 1958-09-26 1960-04-06 Murray & Tregurtha Inc Reversible propeller
DE1556851A1 (de) * 1967-02-01 1970-01-29 Grim Otto Dr Ing Schiffsschraube
US4182118A (en) * 1971-04-18 1980-01-08 Chronic Bill M Jet propulsion engine
US4074652A (en) * 1976-07-26 1978-02-21 Jackson William M Steering and propulsion device for watercraft
DE2911830A1 (de) * 1979-03-26 1980-10-09 Ernst August Werner Wasserstrahlantrieb fuer wasserfahrzeuge, insbesondere gleitboote
FI79991C (fi) * 1986-04-29 1990-04-10 Hollming Oy Propelleranordning foer ett fartyg.
US5222863A (en) * 1991-09-03 1993-06-29 Jones Brian L Turbine multisection hydrojet drive
FI96590B (fi) 1992-09-28 1996-04-15 Kvaerner Masa Yards Oy Laivan propulsiolaite
JPH07132469A (ja) 1993-11-08 1995-05-23 Kaijirushi Hamono Kaihatsu Center:Kk 各種道具の柄及びその製造方法
DE4440138C1 (de) * 1994-11-10 1996-01-25 Volker Wagner Vorrichtung zur Halterung von Kerzen
DE4440738A1 (de) * 1994-11-15 1996-05-23 Schottel Werft Schiffsantrieb mit einer Antriebsmaschine im Schiffsrumpf und einem von der Antriebsmaschine angetriebenen Propeller außerhalb des Schiffsrumpfes
JPH08207895A (ja) * 1995-02-06 1996-08-13 Ishikawajima Harima Heavy Ind Co Ltd 船舶の操舵装置
DE19618247A1 (de) * 1996-05-07 1997-11-13 Blohm & Voss Int Propulsionseinrichtung für Schiffe, bestehend aus zwei gleichsinnig drehenden Propellern
DE29619385U1 (de) * 1996-11-07 1997-03-13 Schottel Werft Schiffsantrieb mit einem Ruderpropeller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004008805A1 (de) * 2004-02-20 2005-09-22 Siemens Ag Zweipropellerantrieb für Schiffe
DE102004008805B4 (de) * 2004-02-20 2008-08-14 Siemens Ag Zweipropellerantrieb für Schiffe
CN109863082A (zh) * 2016-08-09 2019-06-07 艾特赛富公司 由驱动轴制动及锁定系统构成的用于船舶的驱动单元
CN109863082B (zh) * 2016-08-09 2021-11-16 艾特赛富公司 由驱动轴制动及锁定系统构成的用于船舶的驱动单元

Also Published As

Publication number Publication date
JP2000515095A (ja) 2000-11-14
CA2271034A1 (fr) 1998-05-14
CN1236347A (zh) 1999-11-24
NO992215D0 (no) 1999-05-06
KR20000053042A (ko) 2000-08-25
DK0935553T3 (da) 2002-01-28
CA2271034C (fr) 2004-06-22
NO992215L (no) 1999-05-06
PT935553E (pt) 2002-03-28
JP3214568B2 (ja) 2001-10-02
NO324212B1 (no) 2007-09-10
ES2163204T3 (es) 2002-01-16
WO1998019907A1 (fr) 1998-05-14
CN1080677C (zh) 2002-03-13
KR100306261B1 (ko) 2001-09-24
HK1023971A1 (en) 2000-09-29
EP0935553A1 (fr) 1999-08-18

Similar Documents

Publication Publication Date Title
EP0935553B1 (fr) Systeme de propulsion a double helice pour navires
EP2279111B1 (fr) Sous-marin doté d'un mécanisme de propulsion comportant un moteur annulaire électrique
DE102009040471B4 (de) Mechanisch angetriebener Schiffpropulsor mit hohem Wirkungsgrad
EP2279112B1 (fr) Turbomachine presentant au moins deux rotors tournant en sens opposes et une compensation mecanique du couple
EP1796959B1 (fr) Module pod de propulsion d'un bateau comportant une transmission hydrodynamique
EP2279113A2 (fr) Turbomachine pourvue de deux rotors
DE60118157T3 (de) Motoreinheit für schiffe
EP0111908B1 (fr) Propulseur pour bateau entraîné par l'électricité et son utilisation
WO2000068073A1 (fr) Helice de gouvernail electrique a faible encombrement en hauteur
EP0790921B1 (fr) Mecanisme de propulsion de navires avec une helice de gouvernail actif
DE19648417A1 (de) Schiffsantrieb mit einem Ruderpropeller
EP2445783B1 (fr) Bateau dote de deux helices disposees l'une derriere l'autre
DE3141339C2 (de) Elektrischer Antrieb für Wasserfahrzeuge, insbesondere für Unterwasserfahrzeuge
DE3508203A1 (de) Schiffsantrieb
DE1506372A1 (de) Zusatzschuberzeuger an Wasserfahrzeugen
DE10158320A1 (de) Schiffsantrieb
EP1315653B1 (fr) Dispositif de propulsion pour bateaux rapides
EP2948366B1 (fr) Arrangement de propulsion pour bateaux
DE4440791A1 (de) Unterwasser-Strahlantrieb
EP1336561B1 (fr) Entrainement pour bateaux
DE102004008805B4 (de) Zweipropellerantrieb für Schiffe
EP1108645A2 (fr) Dispositif pour gouverner des embarcations
DE102004058259B4 (de) Drehzahlvariabler Schiffsantrieb
DE1808637A1 (de) Propellersystem
DE2838392A1 (de) Anordnung zur schuberzeugung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FI FR GB GR IE IT NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010308

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHOTTEL GMBH & CO KG.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FI FR GB GR IE IT NL PT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010919

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59704689

Country of ref document: DE

Date of ref document: 20011025

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2163204

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20011207

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20010402484

Country of ref document: GR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20121126

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20121120

Year of fee payment: 16

Ref country code: FI

Payment date: 20121122

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20120507

Year of fee payment: 16

Ref country code: IT

Payment date: 20121122

Year of fee payment: 16

Ref country code: GR

Payment date: 20121121

Year of fee payment: 16

Ref country code: ES

Payment date: 20121122

Year of fee payment: 16

Ref country code: GB

Payment date: 20121126

Year of fee payment: 16

Ref country code: BE

Payment date: 20121129

Year of fee payment: 16

Ref country code: SE

Payment date: 20121122

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121217

Year of fee payment: 16

Ref country code: NL

Payment date: 20121122

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130130

Year of fee payment: 16

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20140507

BERE Be: lapsed

Owner name: *SCHOTTEL G.M.B.H. & CO. K.G.

Effective date: 20131130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140601

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20131130

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131107

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20010402484

Country of ref document: GR

Effective date: 20140603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140507

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131108

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131107

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140601

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59704689

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131107

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131108