EP0911906B1 - Transparente planare Antennenstruktur - Google Patents

Transparente planare Antennenstruktur Download PDF

Info

Publication number
EP0911906B1
EP0911906B1 EP19980119520 EP98119520A EP0911906B1 EP 0911906 B1 EP0911906 B1 EP 0911906B1 EP 19980119520 EP19980119520 EP 19980119520 EP 98119520 A EP98119520 A EP 98119520A EP 0911906 B1 EP0911906 B1 EP 0911906B1
Authority
EP
European Patent Office
Prior art keywords
transparent
transparent planar
antenna
thin film
radiating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19980119520
Other languages
English (en)
French (fr)
Other versions
EP0911906A3 (de
EP0911906A2 (de
Inventor
Tatsuya Uetake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Sharp Microelectronics Technology Inc
Original Assignee
Sharp Corp
Sharp Microelectronics Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Sharp Microelectronics Technology Inc filed Critical Sharp Corp
Publication of EP0911906A2 publication Critical patent/EP0911906A2/de
Publication of EP0911906A3 publication Critical patent/EP0911906A3/de
Application granted granted Critical
Publication of EP0911906B1 publication Critical patent/EP0911906B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the present invention relates generally to a portable wireless communications device and, more particularly, to a transparent planar antenna structure overlying the device's liquid crystal display (LCD).
  • LCD liquid crystal display
  • wireless communications devices continues to shrink, as the use for such devices expands in both well established, and new communication technologies. These communication technologies include pagers, telephones, televisions, GPS and other satellite receivers, and wireless LAN.
  • communication technologies include pagers, telephones, televisions, GPS and other satellite receivers, and wireless LAN.
  • One of the key elements in the performance of a wireless unit is the unit's antenna.
  • the antenna size is a limiting factor in further reducing the size of wireless devices.
  • Whip type antennas are relatively large, and recently, concerns have surfaced regarding the harmful effects of an omni-directional radiation of hand-held transmitters. Further, the whip antenna extends from the chassis and is easily damaged.
  • Antennas can be incorporated into, or on the device chassis.
  • One obvious choice of antenna is the so-called patch design. As the name suggests this antenna is built as a thin sheet that can be layered over an existing structure.
  • Fig. 13 illustrates the coplanar layout of a panel antenna 10 (prior art).
  • the design of such antennas is well known to consist of a conductive radiating element 12 surrounded by a conductive ground plane 14.
  • the panel antenna 10 can be fabricated, for example, on a PC board with the conductor being a thin film of copper overlying a sheet of dielectric material.
  • the radiating element 12 is patterned to be electrically isolated from the ground plane 14.
  • the radiating element 12 and the ground plane 14 are isolated by etching through the copper until a portion 16 of the underlying dielectric material, represented by cross-hatched lines, is exposed.
  • Fig. 14 is a partial cross-sectional view of the panel antenna 10 of Fig. 13 (prior art).
  • the radiating element 12 and the ground plane 14 (conductive regions), overlying dielectric layer 18, are represented with cross-hatched lines.
  • the design of an antenna for a coplanar arrangement of the radiating element 12 (radiator) and the ground plane 14 is based on well understood relationships such as the separation between ground planes (b), conductor width (a), the dielectric constant ( ⁇ r ) of the dielectric layer 18, thickness (t) of the ground plane 14 (radiator), the thickness (h) of the dielectric layer 18, and the effective wavelength of the intended resonant frequency.
  • the design of a cellular telephone illustrates the difficulties of antenna design.
  • half of the surface area of the phone is occupied with user-operated switches, such as a keypad, and an electronic display for viewing.
  • the keypad and LCD display are co-located on the same "side" of the phone so that the operator can see the results of keypad manipulations. It is difficult to locate an antenna on this user-interface side of the telephone.
  • Consumer preference for larger displays and improvements in technology increasing the size of LCDs act to further limit the area available for the placement of conventional or patch antennas.
  • EP-A-0 331 201 discloses an amorphous oxide film and articles having such a film thereon.
  • the amorphous oxide film is essentially composed of an oxide containing at least one member selected from the group consisting of Zr, Ti, Hf, Sn, Ta and In and at least one member selected from the group consisting of B and Si.
  • articles comprising said amorphous oxide film this document describes surface-coated mirrors, low-reflective glass, heat radiation shielding glass, metal diffusion barrier layers, scratch-resistant protective film provided on a transparent sheet and the like. This document does not describe to use the amorphous oxide film for providing a transparent planar antenna.
  • an antenna could be placed on a chassis in the area of the user-operated functions. Specifically, it would be advantageous if an antenna could be designed to co-exist with the relatively large, planar surface of the visual display panel.
  • the present invention comprises a transparent antenna, comprising a first transparent sheet of thin film and a first transparent planar radiating element having a first operating frequency and overlying said first transparent sheet of thin film, whereby structures underlying said first transparent sheet of thin film are visible, and a first transparent planar ground plane, characterized in that said transparent planar radiating element and said first transparent planar ground plane include highly conductive metal film structures selected from the group consisting of a grid of parallel oriented metal lines and a mesh of orthogonal and parallel oriented metal lines.
  • the present invention further comprises a wireless communication's device which includes a flat panel electronic visual display and at least a first transparent planar antenna having a construction mentioned immediately before, wherein said first transparent planar antenna is located overlying said flat panel electronic visual display.
  • the first antenna includes the radiating element and ground plane being located coplanar overlying the first transparent sheet of thin film.
  • the thin film is selected from the group of materials consisting of polyethylene telephthalate (PET), polyethylesulfone (PES), polyetherimide (PEI), polycarbonate, polyimide, polytetrafluoroethylene, acrylic, glass, and combinations of the above mentioned materials.
  • the first antenna radiator (first transparent planar radiating element) and the ground plane include a metal film structure overlying the first thin film patterned to electrically isolate the radiator from the ground plane.
  • the metal film structure is selected from the group consisting of a grid of parallel oriented metal lines and a mesh of orthogonal and parallel oriented metal lines.
  • the material of the metal film structure is selected from the group of materials consisting of copper, aluminum, gold, silver, nickel, chromium, titanium, molybdenum, tin, tantalum, magnesium, cobalt, platinum, tungsten, manganese, silicon, zirconium, vanadium, niobium, hafnium, indium and other alloys of the above mentioned materials.
  • the grid-like structure of the conductors permit the first antenna to be greater than 65 percent transmissive in the band of visible light wavelengths.
  • a second transparent antenna having a second operating frequency has a radiating element located coplanar to the first transparent planar radiating element.
  • the first and second antenna radiating elements are located coplanar to a shared ground plane.
  • the second antenna has a radiating element located on a second thin film, overlying the first thin film, and the first and second antenna radiating elements share the first transparent planar ground plane.
  • the second transparent antenna operates either at the same frequency as the first antenna, or at a different frequency.
  • Another alternate design includes a first transparent sheet of thin film on which the first radiating element is mounted, and a second transparent sheet of thin film, underlying the first transparent sheet of thin film, on which the first transparent planar ground plane is mounted.
  • the antenna is located in two sheets of overlying thin film.
  • the radiating element is a planar rectangle, or oval shape, as is typical in the design of patch antennas.
  • the radiating elements are configured inter-digitally using either a grid of parallel oriented metal lines, or a mesh of orthogonal and parallel oriented metal lines.
  • a wireless device having a plurality of receivers and transmitters, each operatively connected to an independent transparent antenna, is also provided.
  • the transparent antennas are as described above.
  • the low cost and low profile of the transparent antennas permit each radio frequency (RF) section of the wireless device to have its own antenna, unlike many prior art wireless devices where RF sections must share a single antenna. In this manner, the necessity of a duplexer circuit is eliminated.
  • RF radio frequency
  • Fig. 1 is a cross-sectional view of the transparent panel antenna section of a wireless communications device 30.
  • the wireless communications device 30 comprises a flat panel electronic visual display 32.
  • the flat panel electronic visual display 32 is a liquid crystal display (LCD).
  • the wireless communications device 30 also comprises at least a first transparent planar antenna 34, having a first operating frequency, a highly conductive planar radiating element 36, and a highly conductive first transparent planar ground plane 38.
  • the first transparent planar antenna 34 overlies the flat panel electronic visual display 32 so that the display 32 is viewed through the first transparent planar antenna 34.
  • Fig. 2 illustrates, in greater detail, the first transparent planar antenna 34 of Fig. 1.
  • the wireless communications device 30 further comprises a first transparent sheet of thin film 40.
  • the first transparent planar antenna 34 includes the first transparent planar radiating element 36 and the first transparent planar ground plane 38 being located coplanar and overlying the first transparent sheet of thin film 40, whereby the first transparent planar antenna 34 is located on the single transparent sheet of thin film 40.
  • the first transparent planar radiating element 36 and the first transparent planar ground plane 38 are mounted under the first transparent sheet of thin film 40, so that the first transparent sheet of thin film 40 overlies the first transparent planar radiating element 36, the first transparent planar ground plane 38, and the flat panel electronic visual display 32.
  • the first transparent sheet of thin film 40 is selected from the group of materials consisting of polyethylene telephthalate (PET), polyethylesulfone (PES), polyetherimide (PEI), polycarbonate, polyimide, polytetrafluoroethylene, acrylic, glass, and combinations of the above mentioned materials.
  • the first transparent sheet of thin film 40 has a thickness t 42 in the range between 100 and 400 microns.
  • the first transparent planar radiating element 36 and the first transparent planar ground plane 38 include a metal film structure 44 overlying the first transparent sheet of thin film 40 patterned to electrically isolate the first transparent planar radiating element 36 (radiator) from the first transparent planar ground plane 38, whereby the metal permits high electrical conductivity in the first transparent planar antenna 34.
  • the metal film structure 44 is fabricated by depositing a sheet of the metal film material overlying the first transparent sheet of thin film 40. Then, the metal film structure 44 is etched with a variety of processes that are well known in the art of integrated circuit (IC) processing, such as using a patterned photo-resist profile as an etch mask.
  • IC integrated circuit
  • the metal film structure 44 is selected from the group consisting of a grid of parallel oriented metal lines and a mesh of orthogonal and parallel oriented metal lines.
  • Fig. 3 illustrates the grid metal film structure 44.
  • the conductive lines appear as parallel bars.
  • Fig. 4 illustrates the mesh metal film structure 44.
  • the conductive lines appear as a screen.
  • the material of the metal film structure 44 is selected from the group of materials consisting of copper, aluminum, gold, silver, nickel, chromium, titanium, molybdenum, tin, tantalum, magnesium, cobalt, platinum, tungsten, manganese, silicon, zirconium, vanadium, niobium, hafnium, indium and other alloys of the above mentioned materials.
  • Fig. 5 is a microscope picture illustrating a detailed section of the grid of Fig. 3.
  • the metal lines have a width in the range between 1 and 30 microns ( ⁇ m). Specifically, Fig. 5 shows a line width of 10 microns.
  • the parallel oriented metal lines are separated by a distance, or gap in the range between 30 microns and 1 mm. Specifically, Fig. 5 shows a gap of 40 microns.
  • the gap between conductive lines is calculated in response to the operating, or resonant first frequency of the first transparent planar antenna 34. In some cases, the gap is chosen, at least partially, in response to pitch, or the spacing between electrical elements of underlying LCD 32 (not shown).
  • each metal line of the metal film structure 44 so as to correspond to a pixel pitch of the flat panel electric visual display 32 (the metal lines which are the non-transparent section of the metal film structure are formed in the non-display area between pixels of the flat panel display section), an improved visibility of the flat panel display section can be achieved.
  • the non-display area between adjacent pixels of the flat panel electric visual display 32 indicates, for example, a space between pixel electrodes of the liquid crystal display, where a black matrix is formed.
  • the gap is chosen to be no greater than one-tenth of the effective first wavelength.
  • the effective wavelength is calculated in response to the thickness t 46 of the metal film structure 44, and the dielectric constant ( ⁇ r ) and thickness t 42 of the first transparent sheet of thin film 40 (Fig. 2). Because the above-mentioned metal materials are good conductors, and the shape of the metal film structure 44 insures good conductivity, the metal film structure 44 remains very conductive when the metal film thickness t 46 is thin.
  • the metal film thickness t 46 is in the range between 300 and 100,000 ⁇ .
  • the line widths and gaps forming the metal film structure 44 are also shaped to provide optical transparency.
  • the minimum gap which provides transparency is approximately 30 microns, which is about the width of 1 pixel in an LCD, and the minimum line width is approximately 1 micron.
  • line widths and gaps between lines are chosen so that the first transparent planar antenna 34 is greater than 65 percent transmissive in the band of visible light wavelengths.
  • the gap between parallel and intersecting lines varies from a square shape to a rectangular shape.
  • the square shape has gap dimensions from 30 microns to 1 mm between the parallel lines oriented in a first direction.
  • the gap between one set of parallel lines differs from the gap between the set of parallel lines oriented orthogonal to the first direction so that a rectangle is formed.
  • the present invention is not limited to any particular pattern of metal lines, although regularly placed lines and gaps are easier to fabricate.
  • the key feature of the present invention is that the metal film structure 44 be both highly conductive and transparent.
  • the metal film structure 44 is selected from the group of materials consisting of indium-tin, indium-tin oxide, and tin oxide. These materials are not as conductive as the metal, named above. Therefore, the thickness t 46 (Fig. 2) must be greater to provide equivalent conductance to the metals. Then, the metal film structure 44 has a metal film thickness t 46 in the range between 0.1 and 10 microns.
  • the wireless communications device 30 further comprises a second transparent planar antenna 50 having a second operating frequency, different than the first operating frequency.
  • the second transparent planar antenna 50 has a second transparent planar radiating element 52 located coplanar to the first transparent antenna radiating element 36.
  • the first and second transparent planar radiating elements 36, 52 are located coplanar to a shared first transparent planar ground plane 38.
  • the second transparent planar antenna 50 has an operating frequency the same as the first operating frequency.
  • the second transparent planar antenna 50 has the second transparent planar radiating element 52 located coplanar to the first transparent antenna radiating element 36, and the first and second transparent planar radiating elements 36, 52 are located coplanar to the shared first transparent planar ground plane 38.
  • the wireless communications device 30 further comprises a plurality of transparent antennas, including at least third and fourth transparent planar antennas 54 and 56. It can be seen from Fig. 6 that the size of the metal film structure 44 is variable to provide enough space for several antennas. For simplicity, only four antennas are shown.
  • Each of the plurality of transparent planar antennas 50, 54, and 56 have a transparent planar radiating element (52, 58 and 60) located coplanar to the first transparent antenna radiating element 36.
  • the plurality of transparent planar radiating elements 36, 52, 58 and 60 are located coplanar to the first transparent planar ground plane 38.
  • Fig. 7 illustrates a plurality of non-coplanar transparent antennas.
  • the wireless communications device 30 further comprises a second transparent sheet of thin film 62 overlying the first transparent sheet of thin film 40.
  • the wireless communications device 30 also comprises a second transparent planar antenna 50 having a second operating frequency different than the first operating frequency.
  • the second transparent planar antenna 50 has the second transparent planar radiating element 52 located overlying the second transparent sheet of thin film 62.
  • the first and second transparent planar radiating elements 36 and 52 share the first transparent planar ground plane 38.
  • the second transparent planar antenna 50 has an operating frequency the same as the first operating frequency.
  • the wireless communications device 30 further comprises a plurality of sheets of thin film overlying the first transparent sheet of thin film 40, and a plurality of transparent antennas having a plurality of corresponding radiating elements.
  • Each one of the plurality of transparent planar radiating elements overlies a corresponding one of the plurality of sheets of thin film, and each radiating element shares the first transparent planar ground plane 38.
  • a third transparent planar antenna 54 including a third transparent sheet of thin film 70 and a third transparent planar radiating element 58, are shown in Fig. 7. However, it can be seen that additional antennas are stackable overlying the third transparent planar antenna 54.
  • a cross-section of the third transparent planar antenna 54 is shown removed to provide a clear view of the second transparent planar antenna 50.
  • Fig. 8 illustrates a touch panel in use with the present invention.
  • the wireless communications device 30 further comprises a transparent user-activated touch panel 74 overlying the flat panel electronic visual display 32.
  • touch panels such as touch panel 74, overlying computer screens and electronic displays is a well known computer interface for use either without, or in addition to, a keypad.
  • the touch panel 74 including user-activated sensors 75 corresponding to visual prompts represented on the flat panel electronic visual display 32 visible through the first transparent planar antenna 34 and the transparent touch panel 74.
  • the thin film materials and thicknesses of the touch panel 74 are similar to the first transparent sheet of thin film 40 of the first transparent planar antenna 34.
  • the touch panel 74 is placed between the first transparent planar antenna 34 and the flat panel electronic visual display 32.
  • the transparent touch panel 74 and the first transparent planar antenna 34 are both mounted on the first transparent sheet of thin film 40.
  • the first transparent planar antenna 34 and the touch panel 74 are fabricated on the same transparent sheet of thin film 40 with the conductive regions of the first transparent planar antenna 34 and the touch panel 74 on opposite sides of the first transparent sheet of thin film 40.
  • Fig. 9 illustrates a non-coplanar embodiment of the present invention.
  • the wireless communications device 30 comprises a fourth transparent sheet of the thin film 76 on which the first transparent radiating element 36 is mounted, and a fifth transparent sheet of thin film 78, underlying the fourth transparent sheet of thin film 76, on which the first transparent planar ground plane 38 is mounted.
  • the first transparent planar antenna 34 is located on two sheets of overlying sheets of thin film 76 and 78.
  • Fig. 10 depicts an inter-digital antenna embodiment of the transparent antenna of the present invention.
  • the wireless communications device 30 of Fig. 1 further comprises a second transparent planar antenna 50 having a second operating frequency.
  • the second transparent planar radiating element 52 is located coplanar to the first transparent antenna radiating element 36.
  • the first and second transparent planar radiating elements 36 and 52 are co-located in the inter-digital metal film structure 44.
  • the first and second transparent planar antennas 34 and 50 are located with a coplanar ground plane (not shown, see Fig. 1). Alternately, the ground is on a different plane (not shown, see Fig. 9) from the transparent planar radiating elements (36, 52).
  • the spacing between the digits of the first and second transparent planar radiating elements 36 and 52 is dependent are the operating frequencies of the first and second transparent planar antennas 34 and 50, the effective wavelengths, and the mutual parasitic effects of antennas being closely located.
  • Fig. 10 is not drawn to scale. The digits, as drawn, appear visible with respect to the overall panel only for the purpose of showing the alternating digits of the first and second transparent planar antennas 34 and 50. Since the grid and mesh line widths and gaps are actually on the order of microns, they are not typically visible to the human eye.
  • the inter-digital metal structure 44 is selected from the group consisting of a grid of parallel oriented lines and a mesh of orthogonal and parallel oriented metal lines.
  • the metal lines have a width in the range between 1 and 30 microns, with a spacing between parallel oriented metal lines in the range between 30 microns and 1 mm.
  • the space between lines or sections of mesh include the digits of another antenna.
  • a mesh version of the second transparent planar radiating element 52 is shown in Section A, and the grid versions of the transparent planar radiating elements 36 and 52 are shown in Section B of Fig. 10.
  • Fig. 11 illustrates non-conductive, or dummy sections of grid and mesh metal structures 80 in use with the first transparent planar antenna 34 of the present invention.
  • the non-conductive metal film structure 80 overlies the first transparent sheet of thin film 40 (not shown) and is patterned to be an electrical isolator.
  • the non-conductive metal film structure 80 is selected from the group consisting of a grid of parallel oriented non-conductive metal lines and a mesh of orthogonal and parallel oriented non-conductive metal lines.
  • the non-conductive grid, Section A of Fig. 11, and the non-conductive mesh, Section B of Fig. 11, are similar to the conductive grid and mesh metal structures 44, discussed above and shown in Figs. 3, 4 and 5. However, there are breaks in the grid and mesh patterns so that they do not conduct electrically.
  • the non-conductive grid and mesh structures 80 are used in the same antenna as conductive grid and mesh structures 44 to normalize transparency. That is, to make the transparency through the non-conductive areas surrounding the first transparent radiating element 36 and the first transparent planar ground plane 38 the same as the first transparent planar radiating element 36 and the first transparent planar ground plane 38.
  • Fig. 12 is a schematic block diagram of the wireless communications device 30 communicating information at a plurality of frequencies.
  • the wireless communications device 30 comprises at least a first receiver 90 (first communicating section) having an input operatively connected to a line 92 to receive information at a first operating frequency.
  • the wireless communications device 30 further comprises at least a second receiver 94 (second communicating section) having an input operatively connected to a line 96 to receive information at a second operating frequency, different than the first operating frequency.
  • the wireless communications device 30 comprises the first transparent planar antenna 34 including a highly conductive first transparent planar radiating element 36 and the first transparent planar ground plane 38, as described above and shown in Figs. 1-5 and 8-11.
  • the first transparent planar antenna 34 is operatively connected to the first receiver 90 without any operative connection to the second receiver 94.
  • the wireless communications device 30 comprises the second transparent planar antenna 50 as described above and shown in Figs. 6 and 7.
  • the second transparent planar antenna 50 includes the highly conductive second transparent planar radiating element 52 and the first transparent planar ground plane 38.
  • the first transparent planar ground plane 38 is coplanar with the second transparent planar radiating element 52 as shown in Fig. 6. Alternately, the first transparent planar ground plane 38 is on a different plane than the second transparent planar radiating element 52, as shown in Fig. 7.
  • the second transparent planar antenna 50 is operatively connected to the second receiver 94 without any operative connection to the first receiver 90.
  • the first and second transparent planar radiating elements 36 and 52 and the first transparent planar ground plane 38 are the metal film structures 44 selected from the group consisting of a grid of parallel oriented metal lines and a mesh of orthogonal and parallel oriented metal lines, as described above and shown in Figs. 3-5.
  • the use of two antennas eliminates the need for a duplexer circuit as is needed in many wireless communications devices to de-couple multiple receivers when they share only one antenna.
  • the second receiver 94 is replaced with at least a transmitter 98 (second communicating section) having a second operating frequency, different than the first operating frequency.
  • the second operating frequency is the same as the first operating frequency.
  • the wireless communications device 30 has separate antennas, the first transparent planar antenna 34 operatively connected to the first receiver 90, and the second transparent planar antenna 50 operatively connected to the transmitter 98.
  • the use of two antennas eliminates the need for a duplexer circuit. Because of the low cost and low profile of the present invention transparent antenna, the wireless communications device 30 is able to provide a separate antenna for each radio frequency section of the communications device without the use of either duplexers or antenna switches.
  • the use of independent transparent antennas for each of a plurality of receiver and transmitter sections is also an application of the present invention.
  • additional circuitry such as amplifiers and filters interface between the first and second transparent planar antennas 34 and 50, and receivers 90 and 94, and transmitter 98, as is well known in the art.
  • additional circuitry such as amplifiers and filters interface between the first and second transparent planar antennas 34 and 50, and receivers 90 and 94, and transmitter 98, as is well known in the art.
  • the above mentioned devices must be interfaced with conductive lines having precisely defined impedances.
  • the conductive lines interfacing the first and second transparent planar radiating elements 36 and 52 are transparent when mounted on the thin film, and fabricated with conductive grid and mesh metal structures 44.
  • amplifiers, filters, and other circuit components are mounted on thin film, even though these elements are not transparent.
  • the non-transparent structures are placed where visibility of underlying the flat panel electronic visual display 32 is not critical.
  • the present invention allows one of the largest surface areas of a wireless communications device, the flat panel LCD, to be used for a second purpose, as a surface to mount an antenna.
  • the fabrication of an antenna from thin films of conductive material on a transparent thin film permits the antenna of the present invention to have the performance characteristics of prior art patch antennas, while being transparent enough to allow the user to view the display through the antenna.
  • the small profile of the transparent antennas makes it relatively easy to design an antenna system of transparent panel antennas with a summing network to add the direction gain of several antennas, yielding an omni-directional antennas gain pattern.
  • the use of just a single transparent antenna, providing essentially hemispherical coverage, to minimize RF output in the direction of the wireless device user, is desirable when RF emissions are a health concern.
  • Other embodiments of the present invention will occur to those skilled in the art.

Landscapes

  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Claims (28)

  1. Transparente Antenne, umfassend:
    - eine erste transparente Folienbahn aus Dünnschicht (40); und
    - ein erstes transparentes planares Abstrahlelement (36) mit einer ersten Betriebsfrequenz, das über der ersten transparenten Folienbahn aus Dünnschicht (40) liegt, wodurch unter der ersten transparenten Folienbahn aus Dünnschicht (40) liegende Strukturen sichtbar sind, und
    - eine erste transparente planare Grundplatte (38),

    dadurch gekennzeichnet, dass:
    das transparente planare Abstrahlelement (36) und die erste transparente planare Grundplatte (38) hoch leitfähige Metallschichtstrukturen (44) beinhalten, die aus der aus einem Gitter von parallel orientierten Metallleitungen und einem Netz von orthogonal und parallel orientierten Metallleitungen bestehenden Gruppe ausgewählt sind.
  2. Transparente Antenne nach Anspruch 1, dadurch gekennzeichnet, dass:
    die erste transparente planare Grundplatte (38) über der ersten transparenten planaren Folienbahn aus Dünnschicht (40) liegt, wodurch das erste transparente planare Abstrahlelement (36) und die erste transparente planare Grundplatte (38) planparellel zu einander angeordnet sind.
  3. Transparente Antenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass:
    die erste transparente Folienbahn aus Dünnschicht (40) eine Dicke in dem Bereich zwischen 100 und 400 µm aufweist.
  4. Transparente Antenne nach Anspruch 1, gekennzeichnet durch:
    eine zweite transparente Folienbahn aus Dünnschicht (62), die über der ersten transparenten Folienbahn aus Dünnschicht (40) liegt;

    wobei die erste transparente Grundplatte (38) auf der zweiten transparenten Folienbahn aus Dünnschicht (62) angebracht ist, wodurch die erste transparente planare Antenne (34) auf zwei transparenten Folienbahnen aus über einander liegenden Dünnschichten (40, 62) angeordnet ist.
  5. Transparente Antenne nach Anspruch 1, dadurch gekennzeichnet, dass:
    die Metallschichtstrukturen (44) aus der aus Kupfer, Aluminium, Gold, Silber, Nickel, Chrom, Titan, Molybdän, Zinn, Tantal, Magnesium, Kobalt, Platin, Wolfram, Mangan, Silizium, Zirkonium, Vanadium, Niobium, Hafnium, Indium und anderen Legierungen der vorstehen erwähnten Werkstoffe bestehenden Gruppe von Werkstoffen ausgewählt sind.
  6. Transparente Antenne nach Anspruch 1 oder 5, dadurch gekennzeichnet, dass:
    die Metallleitungen eine Breite in dem Bereich zwischen 1 und 30 µm aufweisen, und
    wobei parallel orientierte Metallleitungen durch einen Abstand in dem Bereich zwischen 30 µm und 1 mm getrennt sind.
  7. Transparente Antenne nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass:
    die über der ersten transparenten Folienbahn aus Dünnschicht (40) liegenden Metallschichtstrukturen (44) eine Metallschichtdicke in dem Bereich zwischen 0,03 µm und 10 µm aufweisen.
  8. Transparente Antenne nach Anspruch 1, dadurch gekennzeichnet, dass:
    der Werkstoff der Metallschichtstrukturen (44) aus der aus Indium-Zinn, Indium-ZinnOxid und Zinnoxid bestehenden Gruppe von Werkstoffen ausgewählt ist, und wobei die Metallschicht eine Metallschichtdicke in dem Bereich zwischen 0,1 und 10 µm aufweist.
  9. Transparente Antenne nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass:
    die transparente Antenne in dem Band von Wellenlängen sichtbaren Lichts mehr als 65 Prozent lichtdurchlässig ist.
  10. Transparente Antenne nach Anspruch 2, gekennzeichnet durch:
    ein zweites transparentes planares Abstrahlelement (52), wobei das zweite transparente planare Abstrahlelement (52) planparallel zu dem ersten transparenten planaren Abstrahlelement (38) angeordnet ist, wodurch das erste und das zweite transparente planare Abstrahlelement (38, 52) planparallel zu der ersten transparenten planaren Grundplatte (38) angeordnet sind.
  11. Transparente Antenne nach Anspruch 2, gekennzeichnet durch:
    eine Vielzahl von transparenten planaren Abstrahlelementen (52, 58, 60), wobei die Vielzahl von transparenten planaren Abstrahlelementen (52, 58, 60) planparallel zu dem ersten transparenten planaren Abstrahlelement (36) und der ersten transparenten planaren Grundplatte (38) angeordnet sind.
  12. Drahtlose Kommunikationseinrichtung, welche eine flachplattenförmige elektronische Sichtanzeige (32) und zumindest eine erste transparente planare Antenne (34) nach einem der Ansprüche 1 bis 9 beinhaltet, wobei
    die erste transparente planare Antenne (34) über der flachplattenförmigen elektronischen Sichtanzeige (32) liegend angeordnet ist.
  13. Drahtlose Kommunikationseinrichtung nach Anspruch 12, dadurch gekennzeichnet, dass:
    die erste transparente Folienbahn aus Dünnschicht (40) aus der aus Polyethylen-Terephtalat (PET), Polyethylen-Sulfon (PES), Polyether-Imid (PEI), Polycarbonat, Polyimid, Polytetrafluorethylen, Acryl, Glas und Kombinationen der vorstehend erwähnten Werkstoffe bestehenden Gruppe von Werkstoffen ausgewählt ist.
  14. Drahtlose Kommunikationseinrichtung nach Anspruch 12 oder 13, gekennzeichnet durch:
    einen Blindabschnitt aus einer nicht leitenden Metallschichtstruktur (80) mit derselben Transparenz wie die der Metallschichtstruktur (44),
    wobei der Blindabschnitt (80) dieselben Metallleitungen wie die Vielzahl von Metallleitungen der Metallschichtstruktur (44) beinhaltet, und
    der Blindabschnitt (80) durch Abschneiden eines Teils jeder der Metallleitungen eine nicht leitende Schichtstruktur hat.
  15. Drahtlose Kommunikationseinrichtung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass:
    die flachplattenförmige elektronische Sichtanzeige (32) eine Flüssigkristallanzeige (LCD) ist.
  16. Drahtlose Kommunikationseinrichtung nach Anspruch 12, gekennzeichnet durch:
    eine zweite transparente planare Antenne (50) mit einer zweiten Betriebsfrequenz, die sich von der ersten Betriebsfrequenz unterscheidet, wobei die zweite transparente planare Antenne (50) ein zweites transparentes planares Abstrahlelement aufweist, das planparallel zu dem ersten transparenten planaren Abstrahlelement (36) angeordnet ist, und wobei das erste und das zweite transparente planare Abstrahlelement (36, 52) planparallel zu der gemeinsamen ersten transparenten Grundplatte (38) angeordnet sind.
  17. Drahtlose Kommunikationseinrichtung nach Anspruch 12, gekennzeichnet durch:
    eine zweite transparente planare Antenne (50) mit einer zweiten Betriebsfrequenz, die gleich der ersten Betriebsfrequenz ist, wobei die zweite transparente planare Antenne (50) ein zweites transparentes planares Abstrahlelement (52) aufweist, das planparallel zu dem ersten transparenten Antennenabstrahlelement (36) angeordnet ist, und wobei das erste und das zweite planare Abstrahlelement (36, 52) planparallel zu der gemeinsamen transparenten planaren Grundplatte (38) angeordnet sind.
  18. Drahtlose Kommunikationseinrichtung nach Anspruch 12, ferner umfassend:
    eine zweite transparente Folienbahn aus Dünnschicht (62), die über der ersten transparenten Folienbahn aus Dünnschicht (40) liegt; und
    eine zweite transparente planare Antenne (50) mit einer zweiten Betriebsfrequenz, die sich von der ersten Betriebsfrequenz unterscheidet, wobei die zweite transparente planare Antenne (50) ein zweites transparentes planares Abstrahlelement (52) aufweist, das über der zweiten transparenten Folienbahn aus Dünnschicht (62) liegend angeordnet ist, und wobei das erste und das zweite transparente planare Abstrahlelement (36, 52) sich die erste transparente planare Grundplatte (38) teilen.
  19. Drahtlose Kommunikationseinrichtung nach Anspruch 12, gekennzeichnet durch:
    eine zweite transparente Folienbahn aus Dünnschicht (62), die über der ersten transparenten Folienbahn aus Dünnschicht (40) liegt; und
    eine zweite transparente planare Antenne (50) mit einer zweiten Betriebsfrequenz, die gleich der ersten Betriebsfrequenz ist,

    wobei die zweite transparente planare Antenne (50) ein erstes transparentes planares Abstrahlelement (52) beinhaltet, das über der zweiten transparenten Folienbahn aus Dünnschicht (62) liegend angeordnet ist, und
    sich das erste transparente planare Abstrahlelement (36) und das zweite transparente planare Abstrahlelement (52) die erste transparente planare Grundplatte (38) teilen.
  20. Drahtlose Kommunikationseinrichtung nach Anspruch 12, gekennzeichnet durch:
    eine Vielzahl von transparenten planaren Antennen (50, 54, 56), wobei jede der Vielzahl von Antennen ein transparentes planares Abstrahlelement (52, 58, 60) aufweist, das planparallel zu dem ersten transparenten planaren Abstrahlelement (36) angeordnet ist, und
    wobei jedes der Vielzahl von transparenten planaren Abstrahlelementen (52, 58, 60) planparallel zu der ersten transparenten planaren Grundplatte (38) angeordnet ist.
  21. Drahtlose Kommunikationseinrichtung nach Anspruch 12, gekennzeichnet durch:
    eine Vielzahl von transparenten Folienbahnen aus Dünnschicht (62, 70) in einer laminierten Struktur,
    eine Vielzahl von transparenten planaren Antennen (50, 54, 60), wobei die Vielzahl von transparenten planaren Antennen jeweils transparente planare Abstrahlelemente (52, 58 und 60) beinhalten und sich die erste transparente planare Grundplatte (38) teilen, und
    die Vielzahl von transparenten planaren Antennen (50, 54, 60), wobei jedes eine der Vielzahl von transparenten planaren Abstrahlelementen (52, 58, 60) über einer entsprechenden einen der Vielzahl von Folienbahnen aus Dünnschicht (62, 70, 76) liegt.
  22. Drahtlose Kommunikationseinrichtung nach Anspruch 12, gekennzeichnet durch:
    ein transparentes benutzerbetätigtes Sensorfeld (74), das über der planaren elektronischen Anzeigeplatte (32) liegt, wobei das transparente benutzerbetätigte Sensorfeld benutzerbetätigte Sensoren (75) einschließt, entsprechend zu visuellen Eingabeaufforderungen, die auf der planaren elektrischen Anzeige durch die erste transparente planare Antenne (34) und das transparente Sensorfeld (74) sichtbar angezeigt werden.
  23. Drahtlose Kommunikationseinrichtung nach Anspruch 22, dadurch gekennzeichnet, dass:
    das transparente Sensorfeld (74) und die erste transparente planare Antenne (34) beide auf der ersten transparenten Folienbahn aus Dünnschicht (40) angebracht sind.
  24. Drahtlose Kommunikationseinrichtung nach Anspruch 12, gekennzeichnet durch:
    eine zweite transparente planare Antenne (50) mit einer zweiten Betriebsfrequenz, wobei das zweite transparente planare Abstrahlelement (52) planparallel zu dem ersten transparenten planaren Abstrahlelement (36) angeordnet ist;

    wobei das erste und das zweite transparente planare Abstrahlelement (36, 38) in einer interdigitalen Metallschichtstruktur (44) nebengeordnet sind;
    wobei die interdigitale Metallschichtstruktur (44) aus der aus einem Gitter von parallel orientierten Metallleitungen und einem Netz von orthogonal und parallel orientierten Metallleitungen bestehenden Gruppe ausgewählt ist; und
    wobei die Metallleitungen eine Breite in dem Bereich zwischen 1 und 30 µm aufweisen, mit einem Abstand zwischen parallel orientierten Metallleitungen in dem Bereich zwischen 30 µm und 1 mm.
  25. Drahtlose Kommunikationseinrichtung nach Anspruch 12 oder 24, dadurch gekennzeichnet, dass:
    jede Metallleitung der Metallschichtstruktur (44) in einem Nichtanzeigeteil zwischen Pixeln der planaren elektrischen Sichtanzeige (32) ausgebildet ist.
  26. Drahtlose Kommunikationseinrichtung nach Anspruch 14, gekennzeichnet durch:
    einen ersten Kommunikationsabschnitt (90) zum Kommunizieren von Informationen bei der ersten Betriebsfrequenz;
    einen zweiten Kommunikationsabschnitt (94, 98) zum Kommunizieren von Informationen bei der zweiten Betriebsfrequenz, wobei

    die erste transparente planare Antenne (34) ohne jegliche wirksame Verbindung zu dem zweiten Kommunikationsabschnitt (94, 98) wirkend mit dem ersten Kommunikationsabschnitt (90) verbunden ist; und
    die zweite transparente planare Antenne (50) ohne jegliche wirksame Verbindung zu dem ersten Kommunikationsabschnitt (90) wirkend mit dem zweiten Kommunikationsabschnitt (94, 98) verbunden ist, und
    wodurch die Verwendung der beiden transparenten planaren Antennen (34, 50) die Notwendigkeit einer Duplexer-Schaltung beseitigt.
  27. Drahtlose Kommunikationseinrichtung nach Anspruch 26, dadurch gekennzeichnet, dass:
    der erste Kommunikationsabschnitt (90) ein erster Empfangsabschnitt (90) ist, der mit einem Eingangsabschnitt zum Empfangen von Informationen bei der ersten Betriebsfrequenz versehen ist, und
    der zweite Kommunikationsabschnitt (94, 98) ein zweiter Empfangsabschnitt (94) ist, der mit einem Eingangsabschnitt zum Empfangen von Informationen bei der zweiten Betriebsfrequenz versehen ist.
  28. Drahtlose Kommunikationseinrichtung nach Anspruch 26, dadurch gekennzeichnet, dass
    der erste Kommunikationsabschnitt (90) ein erster Empfangsabschnitt (90) ist, der mit einem Eingangsabschnitt zum Empfangen von Informationen bei der ersten Betriebsfrequenz versehen ist, und
    der zweite Kommunikationsabschnitt (94, 98) ein Sendeabschnitt (98) ist, der mit einem Ausgangsabschnitt zum Senden von Informationen bei der zweiten Betriebsfrequenz versehen ist.
EP19980119520 1997-10-17 1998-10-15 Transparente planare Antennenstruktur Expired - Lifetime EP0911906B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US953251 1992-09-30
US95325197A 1997-10-17 1997-10-17

Publications (3)

Publication Number Publication Date
EP0911906A2 EP0911906A2 (de) 1999-04-28
EP0911906A3 EP0911906A3 (de) 2000-12-06
EP0911906B1 true EP0911906B1 (de) 2006-03-08

Family

ID=25493750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19980119520 Expired - Lifetime EP0911906B1 (de) 1997-10-17 1998-10-15 Transparente planare Antennenstruktur

Country Status (3)

Country Link
EP (1) EP0911906B1 (de)
JP (1) JP3490304B2 (de)
DE (1) DE69833716T2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120050222A1 (en) * 2010-09-01 2012-03-01 Tsuyoshi Magami Touch Sensor And Fluorescent Display Having The Same
WO2017201197A1 (en) * 2016-05-20 2017-11-23 Kymeta Corporation Free space segment tester (fsst)
US10521063B2 (en) 2012-07-11 2019-12-31 Dai Nippon Printing Co., Ltd. Touch panel sensor, touch panel device and display device
US11133596B2 (en) 2018-09-28 2021-09-28 Qualcomm Incorporated Antenna with gradient-index metamaterial
EP3346354B1 (de) * 2015-10-05 2022-03-09 Samsung Electronics Co., Ltd. Elektronische vorrichtung mit eine anzeige mit mehreren flächen

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6621410B1 (en) * 1996-08-26 2003-09-16 Rf Code, Inc. System for item and orientation identification
US6388621B1 (en) * 2000-06-20 2002-05-14 Harris Corporation Optically transparent phase array antenna
DE10135951A1 (de) * 2001-07-24 2003-02-20 Siemens Ag Mobilfunk-Endgerät
ITMI20032080A1 (it) * 2003-10-23 2005-04-24 Egidio Broggi S N C Schermatura antiradiazioni, elettroconduttrice, metallica o di altri materiali, per telefoni portatili, cellulari o simili
ATE397795T1 (de) * 2004-06-02 2008-06-15 Sony Ericsson Mobile Comm Ab Transparente leitende antenne für ein tragbares kommunikationsgerät
KR101060424B1 (ko) * 2005-04-01 2011-08-29 니폰샤신인사츠가부시키가이샤 차량용 투명 안테나 및 안테나 부착 차량용 유리
CN101180765B (zh) * 2005-04-01 2013-06-05 日本写真印刷株式会社 显示器用透明天线和带天线的显示器用透光性构件以及带天线的壳体用构件
JP2007134818A (ja) * 2005-11-08 2007-05-31 Maspro Denkoh Corp 平面アンテナ
JP4770497B2 (ja) * 2006-02-03 2011-09-14 日立電線株式会社 アンテナ
JP4816171B2 (ja) * 2006-03-15 2011-11-16 ソニー株式会社 電子機器、電子機器システム及び通信方法
JP2007336415A (ja) * 2006-06-19 2007-12-27 Mitsubishi Cable Ind Ltd 周波数選択膜およびその製造方法ならびに電波遮蔽材
EP1914832A1 (de) 2006-10-17 2008-04-23 Laird Technologies AB Verfahren zur Herstellung eines Antennenmusters
JP4853329B2 (ja) * 2007-02-28 2012-01-11 株式会社豊田中央研究所 電波反射板及びアンテナ
JP5079378B2 (ja) 2007-04-16 2012-11-21 日本写真印刷株式会社 携帯機器
CN102016768B (zh) 2008-02-28 2014-11-19 3M创新有限公司 具有变化的薄层电阻的触屏传感器
EP2257969B1 (de) 2008-02-28 2017-12-20 3M Innovative Properties Company Verfahren zum strukturieren eines leiters auf einem substrat
KR101822350B1 (ko) 2008-02-28 2018-01-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 터치 스크린 센서
US8284332B2 (en) 2008-08-01 2012-10-09 3M Innovative Properties Company Touch screen sensor with low visibility conductors
KR101397200B1 (ko) 2008-02-28 2014-05-20 쓰리엠 이노베이티브 프로퍼티즈 컴파니 저 가시성 도체를 구비한 터치 스크린 센서
US8144018B1 (en) * 2008-03-06 2012-03-27 Sensormatic Electronics, LLC Combination electronic article surveillance/radio frequency identification antenna and method
US8279187B2 (en) 2008-08-01 2012-10-02 3M Innovative Properties Company Touch sensitive devices with composite electrodes
US8872703B2 (en) 2009-01-16 2014-10-28 Saint-Gobain Glass France Transparent, flat antenna, suitable for transmitting and receiving electromagnetic waves, method for the production thereof, and use thereof
EP3056978A1 (de) 2009-02-26 2016-08-17 3M Innovative Properties Company Berührungsbildschirmsensor und gemustertes substrat mit überlagerten mikromustern mit niedriger sichtbarkeit
US8264548B2 (en) 2009-06-23 2012-09-11 Sony Corporation Steering mirror for TV receiving high frequency wireless video
US8279356B2 (en) 2009-07-07 2012-10-02 Sony Corporation Active suppression by TV of white space device interference
KR20140030120A (ko) 2010-12-16 2014-03-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 투명한 미세 패턴화된 rfid 안테나 및 이를 포함하는 물품
US8786516B2 (en) * 2011-05-10 2014-07-22 Harris Corporation Electronic device including electrically conductive mesh layer patch antenna and related methods
US8872711B2 (en) 2011-05-11 2014-10-28 Harris Corporation Electronic device including a patch antenna and photovoltaic layer and related methods
US8665161B2 (en) 2011-05-11 2014-03-04 Harris Corporation Electronic device including a patch antenna and visual display layer and related methods
TWI647988B (zh) * 2012-05-04 2019-01-11 柯達公司 使用有機金屬油墨和帶狀的傳墨輥製造觸控感測器、rf天線及高解析傳導圖案的方法
DE102013210157B4 (de) * 2013-05-31 2015-09-03 Bundesdruckerei Gmbh Verfahren und Vorrichtung zur Dokumentenerfassung
US9660344B2 (en) 2013-07-23 2017-05-23 Intel Corporation Optically transparent antenna for wireless communication and energy transfer
US9553352B2 (en) 2014-09-26 2017-01-24 Intel Corporation Communication device and display incorporating antennas between display pixels
KR20160080444A (ko) * 2014-12-29 2016-07-08 삼성전자주식회사 안테나 장치 및 그를 구비하는 전자 장치
KR102429283B1 (ko) * 2015-05-27 2022-08-05 삼성전자주식회사 디스플레이 장치
US10401548B2 (en) * 2015-09-24 2019-09-03 Intel Corporation Integrated antenna with display uniformity
JP6948607B2 (ja) * 2016-03-25 2021-10-13 大日本印刷株式会社 アンテナ
WO2018043526A1 (ja) * 2016-08-31 2018-03-08 シャープ株式会社 Nfcアンテナ及び表示装置
KR102264790B1 (ko) * 2016-12-20 2021-06-15 한국전자기술연구원 신축성 있는 안테나 소자
WO2018186375A1 (ja) * 2017-04-04 2018-10-11 株式会社デンソー 光透過型アンテナ、窓部貼付型通信モジュール、及び、周辺監視ユニット
JP6809499B2 (ja) * 2017-04-04 2021-01-06 株式会社Soken 光透過型アンテナ、窓部貼付型通信モジュール、及び、周辺監視ユニット
JP6325719B1 (ja) 2017-05-31 2018-05-16 日本航空電子工業株式会社 ループアンテナ
KR102158204B1 (ko) 2017-08-24 2020-09-22 동우 화인켐 주식회사 필름 안테나 및 이를 포함하는 디스플레이 장치
KR102468879B1 (ko) * 2017-08-31 2022-11-21 삼성전자주식회사 디스플레이 패널의 구성을 이용한 안테나를 포함하는 전자 장치
JP7078718B2 (ja) 2017-11-06 2022-05-31 東友ファインケム株式会社 フィルムアンテナ及びそれを含むディスプレイ装置
KR102041690B1 (ko) * 2017-12-14 2019-11-27 주식회사 제이마이크로 투명 안테나, 투명 안테나 결합형 디바이스 및 제조방법
US10620250B2 (en) 2018-01-17 2020-04-14 Kymeta Corporation Localized free space tester
KR101962821B1 (ko) 2018-01-18 2019-07-31 동우 화인켐 주식회사 필름 안테나 및 이를 포함하는 디스플레이 장치
US10461428B2 (en) 2018-02-23 2019-10-29 Qualcomm Incorporated Multi-layer antenna
CN110679038B (zh) * 2018-02-23 2021-09-24 日本电业工作株式会社 具备网眼状透明导电体的构造体、天线构造体、电波屏蔽构造体以及触摸面板
JP6498367B1 (ja) * 2018-05-23 2019-04-10 三菱電機株式会社 アンテナ装置およびアレーアンテナ
WO2020071316A1 (ja) * 2018-10-03 2020-04-09 Agc株式会社 平面アンテナ及び窓ガラス
TWI691949B (zh) * 2019-02-27 2020-04-21 友達光電股份有限公司 顯示面板
KR102647754B1 (ko) * 2019-04-16 2024-03-13 동우 화인켐 주식회사 안테나 패키지 및 이를 포함하는 화상 표시 장치
KR102233687B1 (ko) * 2019-04-19 2021-03-29 동우 화인켐 주식회사 안테나 소자 및 이를 포함하는 디스플레이 장치
CN216354784U (zh) * 2019-05-16 2022-04-19 株式会社村田制作所 天线元件、天线模块以及通信装置
CN110519953A (zh) * 2019-07-27 2019-11-29 南昌欧菲光科技有限公司 电子设备及其盖板
CN112928438B (zh) * 2019-11-20 2023-10-20 华为技术有限公司 盖板及电子设备
KR20210097342A (ko) * 2020-01-30 2021-08-09 동우 화인켐 주식회사 안테나 소자 및 이를 포함하는 디스플레이 장치
WO2021201323A1 (ko) * 2020-04-02 2021-10-07 엘지전자 주식회사 안테나를 구비하는 전자 기기
KR20210151611A (ko) * 2020-06-05 2021-12-14 삼성전자주식회사 안테나를 포함하는 전자 장치
KR20220046321A (ko) * 2020-10-07 2022-04-14 삼성전자주식회사 안테나를 포함하는 전자 장치
CN115441158A (zh) * 2021-06-03 2022-12-06 华为技术有限公司 一种显示装置及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176201A (ja) * 1985-01-31 1986-08-07 Yagi Antenna Co Ltd アンテナ装置
AU616736B2 (en) * 1988-03-03 1991-11-07 Asahi Glass Company Limited Amorphous oxide film and article having such film thereon
JPH06305777A (ja) * 1993-04-27 1994-11-01 Nissan Motor Co Ltd 車両用ガラス
US5627548A (en) * 1995-11-30 1997-05-06 Trimble Navigation Limited Navigation wristwear

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120050222A1 (en) * 2010-09-01 2012-03-01 Tsuyoshi Magami Touch Sensor And Fluorescent Display Having The Same
US8842093B2 (en) * 2010-09-01 2014-09-23 Futaba Corporation Touch sensor and fluorescent display having the same
US10521063B2 (en) 2012-07-11 2019-12-31 Dai Nippon Printing Co., Ltd. Touch panel sensor, touch panel device and display device
US10901563B2 (en) 2012-07-11 2021-01-26 Dai Nippon Printing Co., Ltd Touch panel sensor, touch panel device and display device
EP3346354B1 (de) * 2015-10-05 2022-03-09 Samsung Electronics Co., Ltd. Elektronische vorrichtung mit eine anzeige mit mehreren flächen
WO2017201197A1 (en) * 2016-05-20 2017-11-23 Kymeta Corporation Free space segment tester (fsst)
US10312600B2 (en) 2016-05-20 2019-06-04 Kymeta Corporation Free space segment tester (FSST)
US11133596B2 (en) 2018-09-28 2021-09-28 Qualcomm Incorporated Antenna with gradient-index metamaterial

Also Published As

Publication number Publication date
DE69833716D1 (de) 2006-05-04
JP3490304B2 (ja) 2004-01-26
JPH11177336A (ja) 1999-07-02
EP0911906A3 (de) 2000-12-06
DE69833716T2 (de) 2006-10-19
EP0911906A2 (de) 1999-04-28

Similar Documents

Publication Publication Date Title
EP0911906B1 (de) Transparente planare Antennenstruktur
JP2000138512A (ja) 平面アンテナを備えた液晶表示装置
KR101962820B1 (ko) 필름 안테나 및 이를 포함하는 디스플레이 장치
CN110718739B (zh) 电子设备
US9287612B2 (en) Transparent antennas for wireless terminals
WO2019172609A1 (ko) 안테나 소자 및 이를 포함하는 디스플레이 장치
CN109216888B (zh) 图案化导电层中的天线调谐部件
US20200251813A1 (en) Antenna device and display device including the same
KR20180101064A (ko) 안테나가 구비된 터치 센서
US8889998B2 (en) Conductor structure, transparent device, and electronic device
WO2020204613A1 (ko) 안테나 소자 및 이를 포함하는 디스플레이 장치
CN217114774U (zh) 天线元件、包含其的天线装置和显示装置
US11973265B2 (en) Antenna device and display device including the same
KR101962822B1 (ko) 필름 안테나 및 이를 포함하는 디스플레이 장치
CN111638813B (zh) 一种显示装置及其制造方法
US10707560B1 (en) Display panel structure for wireless communication with antenna on side surface
US20220263224A1 (en) Antenna structure and image display device including the same
KR102541132B1 (ko) 안테나 어레이, 이를 포함하는 안테나 장치 및 디스플레이 장치
US11955432B2 (en) Antenna structure and image display device including the same
WO2021049885A1 (ko) 안테나 소자 및 이를 포함하는 디스플레이 장치
US20230216178A1 (en) Antenna device and display device including the same
CN113161715A (zh) 显示基板及其制造方法
CN216958496U (zh) 天线元件、天线封装和显示装置
CN114498053A (zh) 毫米波超材料混合透明天线及使用其的显示单元
JPH0746515A (ja) 情報入出力装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010216

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20040811

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69833716

Country of ref document: DE

Date of ref document: 20060504

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131031

Year of fee payment: 16

Ref country code: GB

Payment date: 20131009

Year of fee payment: 16

Ref country code: DE

Payment date: 20131028

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69833716

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141015

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031