EP0901150B1 - Elektrode und Verfahren sowie Vorrichtung zur Herstellung derselben - Google Patents

Elektrode und Verfahren sowie Vorrichtung zur Herstellung derselben Download PDF

Info

Publication number
EP0901150B1
EP0901150B1 EP98113037A EP98113037A EP0901150B1 EP 0901150 B1 EP0901150 B1 EP 0901150B1 EP 98113037 A EP98113037 A EP 98113037A EP 98113037 A EP98113037 A EP 98113037A EP 0901150 B1 EP0901150 B1 EP 0901150B1
Authority
EP
European Patent Office
Prior art keywords
electrode
tip
hammering
radial
electrode according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98113037A
Other languages
English (en)
French (fr)
Other versions
EP0901150A3 (de
EP0901150A2 (de
Inventor
Bernhard Dr. Altmann
Rudolf Richter
Klaus Stedele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0901150A2 publication Critical patent/EP0901150A2/de
Publication of EP0901150A3 publication Critical patent/EP0901150A3/de
Application granted granted Critical
Publication of EP0901150B1 publication Critical patent/EP0901150B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems

Definitions

  • the invention is based on an electrode according to the preamble of the claim 1. It is in particular an electrode for high-pressure charge lamps like xenon or mercury lamps.
  • the process for making electrodes from tungsten is based on how known, on the pressing and subsequent sintering of the tungsten powder.
  • the blank thus produced is then first subjected to forming and compaction processes, for example by hammering and / or Rollers. It is a radial hammering of the cylindrical Blank.
  • the material can then be Drawing process can be further deformed if an even smaller final one Diameter is desired.
  • a redirection or centering of the grain boundary structure in the area the tip towards the axis or towards a plateau at the electrode tip was not possible so far.
  • a disadvantage of the previous technology is also the large amount of waste that comes with machining Technology has to be accepted. The drop results from the difference between the shape of the finished electrode tip and the corresponding one cylindrical blank.
  • the material of the electrode according to the invention consists of high-melting material, in particular tungsten material.
  • tungsten material in particular tungsten material.
  • a dopant such as ThO 2 can be added to it as an activation material.
  • Dopants such as oxides of aluminum, potassium or silicon are also often added.
  • alloys, especially tungsten are also possible.
  • the electrode consists of a cylindrical base body, often also called a shaft, and a tapered tip, whereby the tip is essentially produced by radial shaping.
  • a decisive advantage is that the gentle radial forming the grain boundaries acting as channels for the dopant tend to the axis aligned and practically exclusively in one area end close to the tip, so that the burning behavior is very calm. In the area of the grain boundaries, the doping promoting the emission may be preferred diffuse.
  • Radial forming allows electrode tips with simple geometries getting produced. Reshaping can advantageously be done either by radial hammering or by transverse rolling. Through this deformation work with free choice of the deformation parameters (e.g. Temperature, opening angle, degree of deformation) is a targeted additional Machining possibility for the structure created, which has a positive effect affects the burning behavior and the life of the electrode.
  • the deformation parameters e.g. Temperature, opening angle, degree of deformation
  • cross rolling The general principle of cross rolling is already from VDI news, for example No. 20, May 17, 1996, p. 11. There, however, it is used for components (Titanium alloy forgings) with large abrupt Jumps in diameter used.
  • the cross roller is also included Round jaws equipped, which are profiled wedge-shaped. The profile is symmetrical. Round jaws are used for the application according to the invention, whose profile is asymmetrical. The profile forms the top of the Electrode off without sudden jumps occurring.
  • Radial hammering may result, depending on the diameter of the Electrode and the deformation parameters, a very fine structure (significant decrease in grain size) due to the additional deformation work is more solidified (significant increase in hardness, possibly also density). Grain size and density at the top can be compared typically change the shaft by a factor of two or more, possibly even by a factor of 3 to 10.
  • the electrode is advantageously additionally doped, in particular with thorium oxide. It has now been shown that these additional dopants the radial forming are crushed more. This results in a finer one and more homogeneous dispersion of the dopants.
  • the structure at the tip can be influenced in a targeted manner by the deformation be, so that the stability of the structure in the thermally highly stressed Tip area of the electrode can be improved. So opposite the desired structure due to the additional deformation can be set.
  • Radial forming (hammering) always includes a tangential component. Therefore, tips can be used with an entire opening angle Produce ⁇ of at most 90 °, preferred is ⁇ below 60 °. At a The deformation forces only act in the larger opening angle Near the surface. The core area remains unaffected. there the layers near the surface slide off at the lower one Core area. This process can create unwanted voids form.
  • the tip is preferably conical or frustoconical.
  • the latter is particularly preferred because here the grain boundaries along which the doping material is transported, end on a discharge-side plateau can.
  • Figure 1 is an electrode made of tungsten material, with the addition of Potassium, silicon and aluminum, with a diameter of 1.5 mm in Detail shown, the tip of which was ground. It is more conventional Formed with a diamond grinding wheel.
  • FIG Tungsten material with a diameter of 1.5 mm shown in detail, the Tip is hammered round. It is in the manner according to the invention Radial hammers have been formed.
  • Figure 3 shows one possibility using the example of thoriated tungsten material the targeted structure influence by radial hammering in the area the conical tip.
  • the electrode 4 has a diameter of 3 mm and an opening angle of 40 ° at the tip.
  • Figure 3a shows the location of two Image sections in the area of the tip 9 (deformation zone) and the shaft 5.
  • a round kneading structure is formed at the tip (FIG. 3b) by the shaping, that is recrystallized in operation. This structure is much finer than that in the area of the shaft (FIG. 3c), which is the usual previously known drawing structure formed. This also applies after a recrystallizing annealing treatment.
  • the electrode according to the invention is produced by using the tungsten powder as usual, first pressed and then sintered. Subsequently the sintered rod blank is rolled, hammered and, if necessary, pulled until the desired final diameter has been reached. On the generated The blank electrode is now the tip of the electrode by radial hammering generated, with the desired geometry of the Tip is incorporated as a profile.
  • Figure 4 shows a pair of hammer jaws 15 in three views. They exist from cuboid tool bodies, the ones facing the electrode shaft Front 16 with a semicircular cavity 17 that runs along the narrow side 14 runs, is equipped.
  • the cavity 17 narrows down inside, basically conical.
  • the cavity 17 consists of three sections, an input opening 18, which tapers conically, a guide shaft 19 (for the electrode shaft), the diameter of which is kept constant and a tip molding 20 that is tapered with the desired one Opening angle of the tip of the electrode tapers.
  • the cylindrical blank electrode protrudes for processing between the two still spaced Narrow sides 14 of the jaws 15. Before radial hammering, the Blank electrode as usual on a suitable for processing Temperature. Then the tip 15 by means of the jaws hammered.
  • FIG. 5 schematically shows a xenon short-arc lamp operated with direct current 1 shown with 150 W power for photo-optical purposes.
  • the elliptical Discharge vessel 2 made of quartz glass contains an anode 3 and a cathode 4. Each electrode has a shaft 5 which is connected to a molybdenum foil 6 is. This is melted into the ends of the discharge vessel 2 in a vacuum-tight manner.
  • the cathode 4 is shown enlarged again in FIG. It consists of tungsten which is doped with 0.4% by weight of ThO 2 .
  • the cylindrical base body of the cathode forming the shaft 5 tapers in the manner of a truncated cone to a tip 9, the cone jacket 11 of which ends in a plateau 10 on the discharge side.
  • the tip 9 is produced by radial hammering and has the structure shown in FIG. 3.
  • the opening angle ⁇ is 20 ° here. Only the plateau 10 is subsequently treated by grinding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Discharge Lamp (AREA)
  • Powder Metallurgy (AREA)
  • Secondary Cells (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

Technisches Gebiet
Die Erfindung geht aus von einer Elektrode gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um eine Elektrode für Hochdruck-Eniladungslampen wie Xenon- oder Quecksilberlampen.
Stand der Technik
Das Verfahren zur Herstellung von Elektroden aus Wolfram basiert, wie an sich bekannt, auf dem Pressen und anschließenden Sintern des Wolfram-Pulvers. Üblicherweise erfährt der so erzeugte Rohling dann zunächst Umform- und Verdichtungsprozesse, beispielsweise durch Hämmern und/oder Walzen. Es handelt sich dabei um ein radial gerichtetes Hämmern des zylindrischen Rohlings. Diese Grundlagen sind beispielsweise in der DE-OS 25 19 014 und US-A 4 859 239 beschrieben.
Beim radial gerichteten Hämmern eines zylindrischen Rohlings wird das Material verformt, während es durch ebene Hämmerbacken hindurchläuft. Das Ziel dieses Verfahrens ist eine gleichmäßige Reduktion des Durchmessers des Rohlings unter gleichzeitiger Längung des Materials. Ähnliches gilt auch für die Verfahrensschritte des Walzens und Ziehens. Typische Reduktionen beim Hämmern liegen pro Verfahrensschritt bei 20% des ursprünglichen Durchmessers.
Ab einem Durchmesser von etwa 4 mm kann das Material dann durch einen Ziehprozeß weiter verformt werden, falls ein noch kleinerer endgültiger Durchmesser gewünscht wird.
Aus der US-A 5 422 539 ist bereits eine Elektrode für Hochdruck-Entladungslampen und ein Herstellverfahren dafür bekannt. Die Herstellung einer Spitze an einer Elektrode wird danach üblicherweise durch spanabhebende Formgebung, also durch Drehen oder Schleifen, erzielt. Dies kann gemäß der Lehre dieser Schrift durch zusätzliches axiales Hämmern (Stauchen) noch verbessert werden, da dabei eine zusätzliche Verdichtung der Spitze stattfindet.
Gemäß diesem Stand der Technik endete bisher die Beeinflußbarkeit der Stabilität des Gefüges beim Elektroden-Rohling. Die Korngrenzenstrukturen verlaufen parallel zur Drahtachse, und zwar nicht nur im Bereich des Schaftes, sondern auch im Bereich der Spitze der Elektrode. Wenn die Geometrie der Elektrodenspitze durch die bekannte spanabhebende Formgebung, wie z.B. durch Drehen und Schleifen, erzeugt wird, mündet die Korngrenzenstruktur also gleichmäßig verteilt an der schrägen Fläche der Spitze und bricht dort ab, wie in Figur 1 dargestellt.
Ein Umlenken oder eine Zentrierung der Korngrenzenstruktur im Bereich der Spitze zur Achse hin oder in Richtung auf ein Plateau an der Elektrodenspitze war somit bisher nicht möglich. Nachteilig an der bisherigen Technik ist außerdem die große Menge an Abfall, die mit der spanabhebenden Technik in Kauf genommen werden muß. Der Abfall ergibt sich aus der Differenz zwischen der Form der fertigen Elektrodenspitze und dem entsprechenden zylindrischen Rohling.
Darstellung der Erfindung
Es ist Aufgabe der vorliegenden Erfindung, eine Elektrode gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, die wenig Abfall bei der Herstellung produziert und ein verbessertes Brennverhalten im Betrieb zeigt.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
Die Technik des radialen Hämmerns zum Erzeugen einer Spitze wird bisher nur für sehr kleine Öffnungswinkel (unter 10° bei Nähnadeln) bei duktilen Metallen (Eisen) angewendet. Wolfram galt für die Anwendung dieser Technik bisher als zu spröde. Öffnungswinkel über 10° galten als nicht machbar.
Beim erfindungsgemäßen radialen Hämmern zum Erzeugen einer Spitze einer Elektrode werden statt ebener Backen, wie sie für das bekannte zylindrische Hämmern eines Sinter-Rohlings benötigt werden, entsprechend der gewünschten Spitze geformte profilierte Hämmerbacken verwendet. Der Verfahrensschritt findet erst statt, nachdem der Sinter-Rohling auf seinen endgültigen Durchmesser transformiert wurde und nachdem dann davon der einzelne Elektroden-Rohling abgelängt wurde.
Das Material der erfindungsgemäßen Elektrode besteht aus hochschmelzendem Material, insbesondere Wolframmaterial. Prinzipiell ist beispielsweise auch Rhenium, Osmium, Tantal(-carbid) o.ä. geeignet. Ihm kann als Aktivierungsmaterial ein Dotierstoff wie beispielsweise ThO2 zugesetzt sein. Häufig werden auch Dotierstoffe wie Oxide des Aluminium, Kalium oder Silizium zugesetzt. Aber auch Legierungen, vor allem des Wolfram, kommen in Frage.
Erfindungsgemäß besteht die Elektrode aus einem zylindrischen Grundkörper, oft auch Schaft genannt, und einer konisch zulaufenden Spitze, wobei die Spitze im wesentlichen durch radiales Umformen hergestellt ist.
Die vorliegende Erfindung bietet eine Reihe von Vorteilen:
  • a) Erhöhung der Stabilität des Gefüges im Spitzenbereich von Elektroden;
  • b) Orientierung der Korngrenzenstrukturen an der Spitze zur Achse der Elektrode hin, insbesondere zu einem Plateau an der Elektrodenspitze;
  • c) direkte gezielte Formgebung von Elektrodenspitzen;
  • d) Verringerung des Abfalls an Elektrodenmaterial;
  • e) gezielte Einstellung des Gefüges im Bereich der Elektrodenspitze;
  • f) Verringerung des Materialverschleißes bei den Werkzeugen für die Formgebung (z.B. bei Drehstählen, Schleifscheiben etc.).
  • Ein entscheidender Vorteil ist, daß durch das schonende radiale Umformen die als Kanäle für das Dotiermaterial wirkenden Korngrenzen eher zur Achse hin ausgerichtet werden und praktisch ausschließlich in einem Bereich nahe an der Spitze enden, so daß das Brennverhalten sehr ruhig ist. Im Bereich der Korngrenzen kann die die Emission fördernde Dotierung bevorzugt diffundieren.
    Vorteilhaft ist die Spitze ein Kegelstumpf mit einem Kegelmantel und einem Plateau, wobei die Korngrenzen in diesem Fall überwiegend im Bereich des Plateaus enden. In diesem Fall werden die Dotiersubstanzen überwiegend zum Plateaubereich transportiert. Umgekehrt werden Verluste durch Abdampfen der Dotiersubstanzen vom Kegelmantel aus dadurch minimiert. Dies wirkt sich positiv auf die Lebensdauer der Lampe aus.
    Durch radiales Umformen können Elektrodenspitzen mit einfachen Geometrien hergestellt werden. Das Umformen kann vorteilhaft entweder durch radiales Hämmern oder durch Querwalzen erfolgen. Durch diese Verformungsarbeit mit freier Wahl der Verformungsparameter (beispielsweise Temperatur, Öffnungswinkel, Verformungsgrad) wird eine gezielte zusätzliche Bearbeitungsmöglichkeit für das Gefüge geschaffen, die sich positiv auf das Brennverhalten und die Lebensdauer der Elektrode auswirkt.
    Das allgemeine Prinzip des Querwalzens ist beispielsweise bereits aus VDI-Nachrichten Nr. 20, 17.5.96, S. 11, bekannt. Dort wird es allerdings für Bauteile (Schmiedewerkstücke aus Titanlegierungen) mit großen abrupten Sprüngen im Durchmesser verwendet. Des weiteren ist die Querwalze mit Rundbacken ausgestattet, die keilförmig profiliert sind. Das Profil ist symmetrisch. Für die erfindungsgemäße Anwendung werden Rundbacken eingesetzt, deren Profil unsymmetrisch ist. Das Profil bildet die Spitze der Elektrode aus, ohne daß abrupte Sprünge auftreten.
    Durch das radiale Hämmern entsteht u.U., abhängig vom Durchmesser der Elektrode und den Verformungsparametern, ein sehr feines Gefüge (deutliche Abnahme der Korngröße), das durch die zusätzliche Verformungsarbeit stärker verfestigt ist (deutliche Zunahme der Härte, u.U. auch der Dichte). Korngröße und Dichte an der Spitze können sich im Vergleich zum Schaft um typisch einen Faktor zwei oder mehr ändern, evtl. sogar um einen Faktor 3 bis 10.
    Vorteilhaft ist die Elektrode zusätzlich dotiert, insbesondere mit Thoriumoxid. Es hat sich nun gezeigt, daß auch diese zusätzlichen Dotierstoffe durch das radiale Umformen stärker zerkleinert werden. Somit erfolgt eine feinere und homogenere Dispersion der Dotiersubstanzen.
    Durch die Verformung an der Spitze kann die Gefügeausbildung gezielt beeinflußt werden, so daß die Stabilität des Gefüges im thermisch hochbelasteten Spitzenbereich der Elektrode verbessert werden kann. So kann gegenüber dem Schaft durch die zusätzliche Verformung das gewünschte Gefüge eingestellt werden.
    Durch die endformnahe Formgebung entfallen spanabhebende Verarbeitungsschritte, abgesehen von etwaigen geringfügigen Endkorrekturen. Somit wird auch der Materialmehrverbrauch deutlich (um 5 bis 25%) reduziert. Die Reduzierung, die vom Öffnungswinkel abhängt, wirkt sich vor allem auch bei thorierten Werkstoffen günstig aus, weil der als radioaktiver Sondermüll zu behandelnde Abfall reduziert wird.
    Gleichzeitig wird der Bedarf und Verschleiß von Diamant-Schleifscheiben, die sehr teuer sind, drastisch reduziert.
    Je kleiner der Durchmesser der Elektrode, desto leichter kann der radiale Umformprozeß, insbesondere der Hämmerprozeß, durchgeführt werden. Prinzipiell ist jedoch diese Methode auch noch bei relativ großen Durchmessern bis etwa 50 mm anwendbar. Besonders gute Ergebnisse lassen sich bei der Anwendung auf gleichstrombetriebene Kathoden erzielen. Aber auch Kathoden und Anoden für wechselstrombetriebene Lampen lassen sich damit herstellen.
    Das radiale Umformen (Hämmern) beinhaltet immer eine tangentiale Komponente. Deshalb lassen sich damit Spitzen mit einem gesamten Öffnungswinkel α von maximal 90° herstellen, bevorzugt ist α unter 60°. Bei einem größeren Öffnungswinkel wirken die Verformungskräfte nur noch in der Nähe der Oberfläche. Der Kernbereich bleibt davon unberührt. Dabei kommt es zu einem Abgleiten der oberflächennahen Schichten am tieferliegenden Kernbereich. Bei diesem Vorgang können sich unerwünschte Hohlräume bilden.
    Bevorzugt ist die Spitze kegelförmig oder kegelstumpfförmig. Letzteres ist besonders bevorzugt, weil hier die Korngrenzen, an denen entlang das Dotiermaterial transportiert wird, an einem entladungsseitigen Plateau enden können.
    Figuren
    Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen:
    Figur 1
    eine Elektrode aus Wolfram, im Schnitt, deren Spitze geschliffen ist (Stand der Technik);
    Figur 2
    eine Elektrode aus Wolfram, im Schnitt, deren Spitze radial gehämmert ist;
    Figur 3
    eine Prinzipdarstellung (Figur 3a) einer Elektrode gemäß Figur 2, wobei jeweils ein Bereiche an der Spitze (Figur 3b) und am Schaft (Figur 3c) vergrößert dargestellt ist;
    Figur 4
    ein Hämmerbackenpaar für das radiale Hämmern in Seitenansicht (Figur 4a), Frontalansicht (Figur 4b) und Perspektive (Figur 4c);
    Figur 5
    eine Hochdruckentladungslampe mit einer radial umgeformten Kathode gemäß Figur 2;
    Figur 6
    die Kathode aus Figur 5, vergrößert dargestellt.
    Beschreibung der Zeichnungen
    In Figur 1 ist eine Elektrode aus Wolframmaterial, mit einem Zusatz von Kalium, Silizium und Aluminium, mit einem Durchmesser von 1,5 mm im Detail gezeigt, deren Spitze geschliffen wurde. Sie ist in konventioneller Weise mit einer Diamant-Schleifscheibe geformt worden.
    Im Vergleich dazu ist in Figur 2 eine Elektrode aus dem gleichen dotierten Wolframmaterial mit einem Durchmesser von 1,5 mm im Detail gezeigt, deren Spitze rundgehämmert ist. Sie ist in erfindungsgemäßer Weise durch Radialhämmern umgeformt worden.
    Am Beispiel von thoriertem Wolframmaterial zeigt Figur 3 eine Möglichkeit der gezielten Gefügebeeinflussung durch das radiale Hämmern im Bereich der konischen Spitze. Die Elektrode 4 hat einen Durchmesser von 3 mm und einen Öffnungswinkel an der Spitze von 40°. Figur 3a zeigt die Lage zweier Bildausschnitte im Bereich der Spitze 9 (Verformungszone) und des Schaftes 5. An der Spitze (Figur 3b) bildet sich durch das Umformen ein Rundknetgefüge, das im Betrieb rekristallisiert ist. Dieses Gefüge ist wesentlich feiner als das im Bereich des Schafts (Figur 3c), das das übliche vorbekannte Ziehgefüge ausbildet. Dies gilt auch noch nach einer rekristallisierenden Glühbehandlung.
    Die Herstellung der erfindungsgemäßen Elektrode erfolgt, indem das Wolframpulver wie üblich zunächst gepreßt und dann gesintert wird. Anschließend wird der Sinterstab-Rohling gewalzt, gehämmert und ggf. gezogen, bis der gewünschte Enddurchmesser erreicht ist. An dem dadurch erzeugten Elektroden-Rohling wird nun durch radiales Hämmern die Spitze der Elektrode erzeugt, wobei in den Hämmerbacken die gewünschte Geometrie der Spitze als Profil eingearbeitet ist.
    Figur 4 zeigt ein Paar von Hämmerbacken 15 in drei Ansichten. Sie bestehen aus quaderförmigen Werkzeugkörpern, deren zum Elektrodenschaft gewandte Frontseite 16 mit einer halbkreisförmigen Höhlung 17, die entlang der Schmalseite 14 läuft, ausgestattet ist. Die Höhlung 17 verengt sich nach innen, und zwar im Prinzip konisch. Die Höhlung 17 besteht aus drei Abschnitten, einer Eingangsöffnung 18, die stark konisch zuläuft, einem Führungsschaft 19 (für den Elektrodenschaft), dessen Durchmesser konstant gehalten ist, und einem Spitzenformteil 20, das konisch mit dem gewünschten Öffnungswinkel der Spitze der Elektrode zuläuft. Der zylindrische Elektroden-Rohling ragt zur Bearbeitung zwischen die beiden noch beabstandeten Schmalseiten 14 der Backen 15 hinein. Vor dem radialen Hämmern muß der Elektroden-Rohling noch wie üblich auf eine zur Bearbeitung geeignete Temperatur gebracht werden. Dann wird mittels der Backen 15 die Spitze gehämmert.
    In Figur 5 ist schematisch eine mit Gleichstrom betriebene Xenonkurzbogenlampe 1 mit 150 W Leistung für fotooptische Zwecke gezeigt. Das elliptische Entladungsgefäß 2 aus Quarzglas enthält eine Anode 3 und eine Kathode 4. Jede Elektrode besitzt einen Schaft 5, der mit einer Molybdänfolie 6 verbunden ist. Diese ist in die Enden des Entladungsgefäßes 2 vakuumdicht eingeschmolzen.
    Die Kathode 4 ist in Figur 6 nochmals vergrößert gezeigt. Sie besteht aus Wolfram, das mit 0,4 Gew.-% ThO2 dotiert ist. Um eine hohe Bogenstabilität zu sichern, verjüngt sich der den Schaft 5 bildende zylindrische Grundkörper der Kathode nach Art eines Kegelstumpfs zu einer Spitze 9, deren Kegelmantel 11 entladungsseitig in einem Plateau 10 mündet. Die Spitze 9 ist durch radiales Hämmern hergestellt und besitzt die in Figur 3 angegebene Struktur. Der Öffnungswinkel α beträgt hier 20°. Nur das Plateau 10 ist abschließend durch Schleifen nachbehandelt.

    Claims (10)

    1. Elektrode (4) aus hochschmelzendem Material, insbesondere Wolframmaterial, für eine Hochdruckentladungslampe, mit einem zylindrischen Schaft (5) und einer konisch zulaufenden Spitze (9), wobei der Schaft und die Spitze aus einem Elektrodenrohling geformt sind, dadurch gekennzeichnet, daß die Spitze (9) im wesentlichen durch radiales Umformen hergestellt ist.
    2. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß das Wolframmaterial dotiert ist.
    3. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß das Umformen durch radiales Hämmern oder durch Querwalzen erfolgt ist.
    4. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß die Härte und evtl. auch die Dichte im Bereich der Spitze (9) gegenüber der im Schaft (5) erhöht ist.
    5. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß die Spitze (9) in einem Plateau (10) mündet.
    6. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß die mittlere Korngröße im Bereich der Spitze kleiner als im Bereich des Schafts ist.
    7. Hochdruckentladungslampe mit einer Elektrode nach einem der vorhergehenden Ansprüche.
    8. Verfahren zur Herstellung einer Elektrode aus Wolfram für Hochdruck-Entladungslampen, wobei die Elektrode einen Schaft (5) und eine konische Spitze (9) aufweist, dadurch gekennzeichnet, daß die Spitze (9) im wesentlichen durch radiales Umformen erzeugt wird.
    9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das radiale Umformen durch Hämmem oder Querwalzen erfolgt.
    10. Vorrichtung zum radialen Hämmern einer Elektrode gemäß Anspruch 1, bestehend aus einem Paar von quaderförmigen Hämmerbacken (15), mit einer Frontseite (16) und einer der Elektrode zugewandten Schmalseite (14), wobei sich eine halbkreisähnliche Höhlung (17), die sich in einer konischen Weise nach innen verengt von der entsprechenden Schmalseite (14) aus, zur Aufnahme eines Teils der Elektrode von der Frontseite (16) aus entlang der Schmalseite (14) erstreckt.
    EP98113037A 1997-09-04 1998-07-14 Elektrode und Verfahren sowie Vorrichtung zur Herstellung derselben Expired - Lifetime EP0901150B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19738574 1997-09-04
    DE19738574A DE19738574A1 (de) 1997-09-04 1997-09-04 Elektrode und Verfahren sowie Vorrichtung zur Herstellung derselben

    Publications (3)

    Publication Number Publication Date
    EP0901150A2 EP0901150A2 (de) 1999-03-10
    EP0901150A3 EP0901150A3 (de) 1999-04-21
    EP0901150B1 true EP0901150B1 (de) 2004-09-22

    Family

    ID=7841107

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98113037A Expired - Lifetime EP0901150B1 (de) 1997-09-04 1998-07-14 Elektrode und Verfahren sowie Vorrichtung zur Herstellung derselben

    Country Status (7)

    Country Link
    US (1) US6109995A (de)
    EP (1) EP0901150B1 (de)
    JP (1) JPH11135011A (de)
    CN (1) CN1151537C (de)
    AT (1) ATE277423T1 (de)
    DE (2) DE19738574A1 (de)
    HU (1) HU221580B (de)

    Families Citing this family (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP2001319617A (ja) * 2000-05-08 2001-11-16 Ushio Inc 超高圧水銀ランプ
    JP4436547B2 (ja) * 2000-07-31 2010-03-24 株式会社ユメックス 放電ランプ用の陰極、その陰極を備える放電ランプ、及びその陰極の製造方法
    JP4475774B2 (ja) * 2000-08-22 2010-06-09 株式会社ユメックス 放電ランプ用の陰極の製造方法
    JP2002352772A (ja) * 2001-05-24 2002-12-06 Phoenix Denki Kk 超高圧放電灯
    DE10137794B4 (de) * 2001-08-07 2008-06-12 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektrode für Hochdruckentladungslampen und Hochdruckentladungslampe
    US6578970B2 (en) 2001-09-19 2003-06-17 Advanced Radiation Corporation Point-like lamp with anode chimney
    JP3899898B2 (ja) * 2001-10-30 2007-03-28 ウシオ電機株式会社 ショートアーク型水銀ランプ
    CN1942999B (zh) * 2004-04-21 2012-04-25 皇家飞利浦电子股份有限公司 一种用于对高压放电灯的不含氧化钍的钨电极的热处理方法
    DE102004043247B4 (de) * 2004-09-07 2010-04-15 Osram Gesellschaft mit beschränkter Haftung Elektrode für Hochdruckentladungslampen sowie Hochdruckentladungslampe mit derartigen Elektroden
    AT9340U1 (de) * 2005-12-23 2007-08-15 Plansee Metall Gmbh Verfahren zur herstellung eines hochdichten halbzeugs oder bauteils
    CN100433238C (zh) * 2006-03-13 2008-11-12 成都三普电光源实业有限公司 用于超高压汞灯的高亮度电极
    DE102006061375B4 (de) 2006-12-22 2019-01-03 Osram Gmbh Quecksilber-Hochdruckentladungslampe mit einer Wolfram und Kalium enthaltenden Anode, die eine Kornzahl größer 200 Körner pro mm2 und eine Dichte größer 19,05g/cm3 aufweist
    JP5024466B1 (ja) * 2011-03-10 2012-09-12 ウシオ電機株式会社 ショートアーク型放電ランプ
    JP5823770B2 (ja) * 2011-08-09 2015-11-25 プランゼー エスエー ショートアーク高圧放電ランプ
    AT15459U1 (de) * 2016-04-11 2017-09-15 Plansee Se Anode
    JP6826310B2 (ja) * 2016-11-07 2021-02-03 ウシオ電機株式会社 放電ランプ用電極およびその製造方法
    JP7313791B2 (ja) * 2018-08-23 2023-07-25 株式会社オーク製作所 放電ランプ及び放電ランプの電極の製造方法
    CN112262454B (zh) * 2019-02-18 2024-04-09 株式会社东芝 放电灯用阴极部件、放电灯及放电灯用阴极部件的制造方法
    US11043352B1 (en) 2019-12-20 2021-06-22 Varex Imaging Corporation Aligned grain structure targets, systems, and methods of forming

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE325464C (de) * 1911-10-03 1920-09-10 Heinrich Leiser Dr Verfahren zur Herstellung von mechanisch widerstandsfaehigen gepressten Formkoerpern
    US3678575A (en) * 1970-03-10 1972-07-25 Hitachi Ltd Manufacturing method of a magnetron anode
    NL7406379A (nl) * 1974-05-13 1975-11-17 Philips Nv Hogedrukontladingslamp.
    JPS62224495A (ja) * 1986-03-24 1987-10-02 Toho Kinzoku Kk タングステン電極材料
    FR2603749B1 (fr) * 1986-09-08 1992-06-05 Eyquem Procede de fabrication d'une electrode centrale bimetallique a pointe de platine pour bougie d'allumage et electrode obtenue selon ce procede
    DE3723271A1 (de) * 1987-07-14 1989-01-26 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Kathode fuer eine hochdruckentladungslampe
    US4859239A (en) * 1988-12-20 1989-08-22 Gte Products Corporation Tungsten electrode and method of producing same
    GB2234920A (en) * 1989-08-11 1991-02-20 Ford Motor Co Forming an erosion resistant tip on an electrode
    JPH0378929A (ja) * 1989-08-22 1991-04-04 Yokogawa Electric Corp 微細電極の製造方法
    DE4229317A1 (de) * 1992-09-02 1994-03-03 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe
    DE4442161C1 (de) * 1994-11-27 1996-03-07 Bayerische Metallwerke Gmbh Verfahren zur Herstellung eines Formteils

    Also Published As

    Publication number Publication date
    HUP9802006A3 (en) 2001-03-28
    EP0901150A3 (de) 1999-04-21
    HUP9802006A2 (hu) 1999-06-28
    ATE277423T1 (de) 2004-10-15
    US6109995A (en) 2000-08-29
    EP0901150A2 (de) 1999-03-10
    HU221580B (hu) 2002-11-28
    HU9802006D0 (en) 1998-10-28
    DE59811983D1 (de) 2004-10-28
    CN1210360A (zh) 1999-03-10
    DE19738574A1 (de) 1999-03-11
    CN1151537C (zh) 2004-05-26
    JPH11135011A (ja) 1999-05-21

    Similar Documents

    Publication Publication Date Title
    EP0901150B1 (de) Elektrode und Verfahren sowie Vorrichtung zur Herstellung derselben
    EP0917179A2 (de) Elektrodenbauteil für Entladungslampen
    EP0369114B1 (de) Verfahren zur Herstellung von legierten Wolframstäben
    EP1066666B1 (de) Laser mit einer einrichtung zur veränderung der verteilung der intensität des laserlichtes über den laserstrahlquerschnitt
    EP0713738B1 (de) Gesintertes Formteil aus hochschmelzendem Metallpulver mit Dotierungen
    DE2357716C3 (de) Verfahren zur Herstellung einer geschichteten Röntgendrehanode
    EP1987531B1 (de) Hochdruckentladungslampe mit keramischem entladungsgefäss
    DE102006061375B4 (de) Quecksilber-Hochdruckentladungslampe mit einer Wolfram und Kalium enthaltenden Anode, die eine Kornzahl größer 200 Körner pro mm2 und eine Dichte größer 19,05g/cm3 aufweist
    DE2755213C2 (de) Nichtabschmelzende Elektrode und Verfahren zu ihrer Herstellung
    EP1027177A1 (de) Verfahren zum herstellen von nickel-titan-hohlprofilen
    EP2149411B1 (de) Rundknethammer
    EP1861862B1 (de) Verfahren zur herstellung einer elektrode und entladungslampe mit einer derartigen elektrode
    EP3737514B1 (de) Verfahren und vorrichtung zum herstellen von hohlen, innengekühlten ventilen
    EP1279896B1 (de) Glühkerzen und Verfahren zu deren Herstellung
    EP0062243A1 (de) Verfahren zur Herstellung von Bimetallkontaktnieten
    DE202006004567U1 (de) Elektrode für Hochdruckentladungslampen und zugehörige Lampe
    EP2223331A1 (de) Elektrode für eine hochdruckentladungslampe und verfahren zu ihrer fertigung
    WO2005062343A2 (de) Elektrode für eine hochdruckentladungslampe
    AT16085U1 (de) Kathode
    WO2012156161A1 (de) Gasentladungslampe und elektrode für eine gasentladungslampe
    WO2021104688A1 (de) Verfahren und vorrichtung zum herstellen von hohlen, innengekühlten ventilen
    DE1565605A1 (de) Elektrode fuer die Punitschweissung und Verfahren zu ihrer Herstellung
    EP0430922A2 (de) Metallische Matrize zum Strangpressen und Verfahren zur Herstellung derselben
    DE1055697B (de) Verfahren zur Herstellung eines Metallkonus fuer eine Kathodenstrahlroehre

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE DE FR GB IT NL

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: STEDELE, KLAUS

    Inventor name: RICHTER, RUDOLF

    Inventor name: ALTMANN, BERNHARD, DR.

    K1C3 Correction of patent application (complete document) published

    Effective date: 19990421

    17P Request for examination filed

    Effective date: 19990520

    AKX Designation fees paid

    Free format text: AT BE DE FR GB IT NL

    17Q First examination report despatched

    Effective date: 20021007

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE DE FR GB IT NL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040922

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20040922

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040922

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20040922

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59811983

    Country of ref document: DE

    Date of ref document: 20041028

    Kind code of ref document: P

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20040922

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050731

    26N No opposition filed

    Effective date: 20050623

    EN Fr: translation not filed
    BERE Be: lapsed

    Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

    Effective date: 20050731

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59811983

    Country of ref document: DE

    Owner name: OSRAM GMBH, DE

    Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

    Effective date: 20111130

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20120906

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59811983

    Country of ref document: DE

    Owner name: OSRAM GMBH, DE

    Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

    Effective date: 20130205

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20120615

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 59811983

    Country of ref document: DE

    Owner name: OSRAM GMBH, DE

    Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

    Effective date: 20130822

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 277423

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20130714

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140201

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59811983

    Country of ref document: DE

    Effective date: 20140201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130714