EP2149411B1 - Rundknethammer - Google Patents

Rundknethammer Download PDF

Info

Publication number
EP2149411B1
EP2149411B1 EP08013624A EP08013624A EP2149411B1 EP 2149411 B1 EP2149411 B1 EP 2149411B1 EP 08013624 A EP08013624 A EP 08013624A EP 08013624 A EP08013624 A EP 08013624A EP 2149411 B1 EP2149411 B1 EP 2149411B1
Authority
EP
European Patent Office
Prior art keywords
curvature
hammer
workpiece
impact surface
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08013624A
Other languages
English (en)
French (fr)
Other versions
EP2149411A1 (de
Inventor
Manfred Rahm
Bernd Jeitler
Rene Kraxner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magna Powertrain GmbH and Co KG
Original Assignee
Magna Powertrain GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magna Powertrain GmbH and Co KG filed Critical Magna Powertrain GmbH and Co KG
Priority to AT08013624T priority Critical patent/ATE529203T1/de
Priority to PL08013624T priority patent/PL2149411T3/pl
Priority to EP08013624A priority patent/EP2149411B1/de
Publication of EP2149411A1 publication Critical patent/EP2149411A1/de
Application granted granted Critical
Publication of EP2149411B1 publication Critical patent/EP2149411B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J7/00Hammers; Forging machines with hammers or die jaws acting by impact
    • B21J7/02Special design or construction
    • B21J7/14Forging machines working with several hammers

Definitions

  • the present invention relates to rotary swaging tools, in particular round kneading, for non-cutting forming of workpieces with ultimately rotationally symmetrical cross section.
  • Rotary swaging is a pressure forming process which is used to reduce the cross-section of workpieces - usually made of metal.
  • the workpiece to be formed is reshaped by intermittent knocks of round knime hammers or pairs of hammers.
  • radial deformation forces are applied to the workpiece by two or more hammers arranged on the circumference of the workpiece.
  • the workpiece is acted upon by the concave face of the round kneam or the round kneam hammer.
  • the reduction of the cross-section can be constricted or punctured by the forming variants (see also Fig. 1a or 1b) are brought about.
  • the contact zone thus concentrates towards the end of the rotary kneading on the central region of the striking surface along the longitudinal axis of the round kneading hammer.
  • the central area of the clubface is therefore particularly stressed and exposed to wear much more than the edge areas. The uneven wear of the face leads to a reduction in the service life of the round kneading hammer.
  • Another undesirable effect of the increasingly punctiform contact zone in the course of the kneading process is the occurrence of impact grooves on the workpieces.
  • ovalization is meant an undesirable local alternating bending which occurs between the contact zones of, for example, two orthogonal pairs of hammers with each stroke.
  • the four hammers of the two pairs of hammers hit each contact simultaneously on each contact zone.
  • Each stroke thus produces an oval deformation of the workpiece in the respective area between two adjacent hammers.
  • this does not efficiently use the forming work that is required to reduce the cross-section; on the other hand, the material of the workpiece is unnecessarily stressed, which can lead to increased pre-damage and thus to a reduction in component strength.
  • the JP 57-165151 and the JP 2002 263 776 A each describe a Rundknethammer with the features of the preamble of claim 1.
  • the invention is therefore based on the object to provide improved Rundknetkormmer having over the course of a rotary swaging process on average improved osculation of the workpiece.
  • the roundknife hammer according to the invention therefore has a striking surface which has a concave curvature profile in a normal plane of a longitudinal axis of the hammer, the striking surface deviating from a concave cylindrical shape or conical shape.
  • the cross-section of the face of the roundkneading hammer according to the invention can thus not be described by a circle segment, the curvature profile is not circular.
  • the curvature of the striking surface has different radii of curvature and varies between the peak line of the striking surface and the mutual edge regions of the striking surface. This variation of the radius of curvature is provided at least in that area of the striking surface which acts on the workpiece to be machined during operation of the hammer, ie along the contact points already mentioned.
  • a contact point of the striking surface is meant the point where the striking surface contacts the workpiece during a stroke. In practice, this is not a single point in the mathematical sense, but a zone (area) in which touch the face and the workpiece during a strike of Rundknethammers.
  • the contact point has a radius of curvature which defines a circle of curvature due to its direction and magnitude.
  • the center of the circle of curvature lies in a plane that runs along the longitudinal axis of the hammer and contains the apex line of the clubface. In other words, the centers of the circles of curvature of the contact points are always in the said plane even with a shift of the contact points during the forming process.
  • the curvature profile of the face is thus designed such that during the entire forming process, the respective "active" contact points can be described by curvature circles that obey a boundary condition.
  • This constraint is the location of the centers in the level defined above.
  • the slope Y 'of the respective tangent of the curvature profile in the individual contact points is in each case a function of the distance X from the apex line of the striking surface.
  • a curvature profile defined by said relation fulfills the boundary condition discussed above and leads to improved osculation of the round-kneading hammer on the workpiece to be formed during the forming process.
  • the advantageously improved osculation is achieved according to the invention by a variation of the parameter Ra as a function of the distance X, which defines a linear dependence. This proves to be particularly advantageous in order to achieve a spatially and temporally uniform stress on the respective face during the forming process.
  • Ra may also be a linear function dependent on an arc length S, where S is the length of the curvature profile between the point of contact in question and the vertex line.
  • This linear relationship between the distance X and the amount of the respective radius of curvature ensures a uniformly progressive deformation over the course of the entire process, which additionally contributes to the quality of the workpiece and increases the service life of the round-seed hammers. In other words, the loads occurring are distributed evenly over the entire forming process so that "load peaks" are lower.
  • the curvature profile of the striking face is symmetrical to a plane of symmetry. This plane of symmetry runs along the longitudinal axis of the hammer and contains the aforementioned apex of the clubface.
  • the striking surface can also be asymmetrically shaped, in particular if the workpiece is acted upon simultaneously by four hammers arranged in a circumferentially distributed manner.
  • the radius of curvature increases from the apex line of the face to the edge regions.
  • the function of the radius of curvature is a continuous function in order to be able to reliably prevent the occurrence of impact notches.
  • the curvature profile can be selected and adjusted depending on the diameter of the workpiece, the cross-sectional reduction to be achieved and / or depending on other specific requirements of the rotary kneading process.
  • the contact between the hammer and the workpiece at the beginning of the kneading does not take place in a central zone of the striking surface, but in two separate zones - and optionally mirror images - arranged zones of the striking surface. This applies as long as the radius of the workpiece currently being processed is greater than the smallest Hammerschmiegeradius, as it is preferably carried out on the apex line of the clubface.
  • the two disjointed contact zones converge on the face until they unite at the apex line into a single contact zone of the respective hammer.
  • the contact zone is formed over a large area, in particular also in the final phase of shaping, and the formation of harmful impact notches is minimized.
  • the invention further relates to a rotary swaging machine with at least two round kneam hammers according to at least one of the embodiments described above.
  • Fig. 1a schematically illustrates the piercing of a rod-shaped workpiece 10 (eg, shaft) using circular kneaders 12, 12 '.
  • the Rundknetkormmer 12, 12 ' (hereinafter also referred to as hammers) are each arranged in pairs on opposite sides of the workpiece 10.
  • a first pair of hammers with the hammers 12 and a second pair of hammers with the hammers 12 ', wherein the representation of one of the hammers 12' was omitted in order to improve the clarity of the figure.
  • a plurality of pairs of hammers may be provided.
  • the hammers 12, 12 'of a pair of hammers moved along hammer-moving directions 20 simultaneously exert radial compressive forces on the workpiece 10 when they strike through their concave striking surfaces 13.
  • the oscillating hammer pairs 12 and 12 ' At high impact frequency while the workpiece 10 is simultaneously machined by the oscillating hammer pairs 12 and 12 ', wherein the workpiece 10 during the lifting of the hammers 12, 12' rotated stepwise (rotation 18) and optionally also moved in the axial direction.
  • rotationally symmetrical workpieces can be produced.
  • Fig. 1a illustrated example of the so-called Einstechvons a local necking, for example, to produce steep transition angle 14 between the output cross-section of the workpiece 10 and the pierced cross section generated.
  • Fig. 1b is analogous to Fig. 1a the constriction of a workpiece shown schematically.
  • the face surfaces 13 of the round-seed hammers 12, 12 'used in the necking process also have, in addition to cylindrically shaped face surface sections, a conical face surface section 15, which therefore corresponds to a conical segment.
  • a feed 16 of the workpiece 10 and longer sections can be produced with reduced cross section at shallow transition angles 14.
  • a rotation 18 of the workpiece 10 is provided about its own axis, while the pairs of hammer 12, 12 ', the workpiece 10 to transform incrementally.
  • Fig. 2a shows a schematic view of a Rundknethammers 12.
  • the hammer 12 has a striking surface 13, which serves to machine the workpiece 10.
  • the hammer 12 comprises a hammer end face 22, which also corresponds to the cross section of the hammer 12 perpendicular to its longitudinal axis.
  • the hammer 12 is symmetrical about a mid-symmetry plane 24 that extends along the longitudinal axis of the hammer 12 and is perpendicular to the hammer face 22.
  • the mid-symmetry plane 24 also contains the apex line 26 of the striking surface 13.
  • On both sides of the striking surface 13 are inclined surfaces 27. The bevel can not be minimized during a strike by the striking surfaces 13 of the hammers 12, 12 'areas of the workpiece surface.
  • Fig. 2b shows a cross section through the hammer 12 in a plane parallel to the hammer face 22.
  • the striking surface 13 has a concave curvature profile 28, 28 'on.
  • the curvature profile 28 of conventional hammers 12 is a circle segment. In other words, the radius of curvature of all sections of the curvature profile 28 of the face 13 is substantially equal.
  • the curvature profile 28 '(dashed line) of a hammer 12 according to the invention has a variable radius of curvature which varies between the apex line 26' of the hammer 12 according to the invention and the two edge regions 30 of the striking surface 13 adjacent to the inclined surfaces 27.
  • the profile 28 ' is therefore not circular.
  • this is formed symmetrically to the central symmetry plane 24.
  • the curvature decreases starting from the apex line 26 'of the striking surface 13 toward the edge regions 30 (ie the radius of curvature increases).
  • the curve profile 28 ' is also free of cracks, edges or similar discontinuities parallel to the apex line 26' to obtain a uniformly machined surface of the workpiece 10.
  • Fig. 2c illustrates the geometric relationships of the curvature profile 28 'of a round knotter 12 according to the invention.
  • the radius of curvature R of a point P on the face 13 depends on a distance X.
  • the distance X is the distance of the respective point P from the apex line 26 'projected onto a tangential plane 32 at the apex line 26' of the curvature profile 28 '.
  • the function can also be done by the X off.
  • the distance X is the distance of the respective point P from the apex line 26 'projected onto a tangential plane 32 at the apex line 26' of the curvature profile 28 '.
  • the function may also depend on the arc length S of the curvature profile between the apex line 26 'and the point P of the curvature profile.
  • k is an arbitrary constant that indicates how "fast" the radius of curvature should vary.
  • Ra increases with increasing angles ⁇ between the radius of curvature R to be considered as vector and the center symmetry plane 24.
  • the center M of the circle of curvature lies on the mid-symmetry plane 24. Since the radius R must be perpendicular to a tangent Y 'on the curvature profile 28' of the face 13, the center M moves away from the apex line 26 'with increasing distance X, as will be seen below based on Fig. 5 will be explained in detail.
  • FIG. 3a to 3c illustrate the course of a rotary swaging process of a workpiece 10 with conventional hammers 12
  • Fig. 4a to 4c the effect of a hammer 12 according to the invention with a curvature profile 28 'deviating from a circle segment is subsequently clarified.
  • Blacksmith mandrel can be arranged.
  • Fig. 3a to 3c and 4a to 4c only one hammer represented and also an optionally existing forging mandrel not shown.
  • the hammer 12 points in the Fig. 3a to 3c a circular segment-shaped curvature profile 28.
  • the hammer 12 nestles over a large area against the surface of the workpiece 10.
  • a (single) contact zone 34 that is to say the contact surface between the hammer 12 and the tool 10 during impact of the hammer 12, essentially covers the entire striking surface 13.
  • the contact zone 34 becomes continuously smaller (FIG. Fig. 3b ), and in the edge regions 30 of the striking surface 13, the striking surface 13 and the workpiece 10 'no longer touch.
  • this reduction of the contact zone 34 is even more pronounced, and the contact zone 34 comprises only a small part of the striking surface 13 in the region around the crest line 26.
  • the contact zone 34 is limited at the beginning of the process to the edge regions 30 of the impact surface 13, ie there are two separate contact zones 34 ( Fig. 4a ).
  • the contact zones 34 "wander" in the direction of the apex line 26 'of the striking surface 13 (FIG. Fig. 4b ).
  • the contact zone 34 extends essentially in the region of the apex line 26 '(FIG. Fig. 4c ).
  • the contact zone 34 of Fig. 4c includes a significantly larger area than the corresponding contact zone 34 of Fig.
  • Fig. 5 illustrates the changes in the geometric conditions in the course of the forming process. Shown is only a part of a Rundknethammers 12 which is symmetrical to the Mittenymmetrieebene 24 is formed. Furthermore, a section of a workpiece 10 'is shown, which has already undergone a transformation - here a cross-sectional reduction. When a blow of Rundknethammers 12 on the workpiece 10 'they are in contact point KP in contact. In practice, the contact is not limited to one point but comprises a zone that extends around the contact point KP (often symmetrically) (contact zone 34, in FIG Fig. 5 shown disproportionately for clarity). As already from the Fig.
  • the contact points move from outside to inside (KP ', KP, KP "), thereby reducing the workpiece radius R.
  • the radius of curvature R of the striking surface 13 is in the" active "contact point KP That is, the center Mw of the workpiece 10 'and the center M of the circle of curvature (defined by the radius of curvature R of the face 13) coincide.
  • the ratios are in relation to the in Fig. 5 different point of time: the radius of curvature R of the face 13 is greater here than that of FIG Fig. 5 currently "active" point of contact KP.
  • the center point M 'of the circle of curvature associated with the contact point KP' no longer coincides with the workpiece center point Mw in an advanced forming process.
  • the (perpendicular to the workpiece surface) workpiece radius R ' is in the illustrated state according to Fig.
  • the radius of curvature R of the contact point KP is smaller as the in Fig. 5 shown current workpiece radius R '.
  • the center M "of the circle of curvature associated with the contact point KP" is therefore closer to the apex line 26 'than the center of the workpiece Mw.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Percussive Tools And Related Accessories (AREA)
  • Massaging Devices (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

  • Die vorliegende Erfindung betrifft Rundknetwerkzeuge, insbesondere Rundknethämmer, zum spanlosen Umformen von Werkstücken mit letztlich rotationssymmetrischem Querschnitt.
  • Rundkneten ist ein Druckumformverfahren, welches zur Querschnittsverminderung von Werkstücken - üblicherweise aus Metall - verwendet wird. Beim Rundkneten wird das umzuformende Werkstück durch intermittierende Schläge von Rundknethämmern bzw. Hammerpaaren umgeformt. Mit anderen Worten werden durch zwei oder mehr am Umfang des Werkstücks angeordnete Hämmer radiale Umformkräfte auf das Werkstück aufgebracht. Das Werkstück wird dabei von der konkaven Schlagfläche des Rundknethammers bzw. der Rundknethämmer beaufschlagt. Durch geeignete Wahl der Schlagfläche kann die Querschnittsreduktion durch die Umformvarianten Einschnüren oder Einstechen (siehe auch Fig. 1a bzw. 1b) herbeigeführt werden.
  • Bekannte Rundknethämmer weisen konkave zylindrische und gegebenenfalls zusätzlich im Einlaufbereich des Werkstücks kegelförmige Schlagflächen auf. Der Querschnitt der Schlagflächen (Krümmungsprofil) ist also in einer Ebene senkrecht zu ihrer Längsachse im Wesentlichen ein Kreissegment.
  • Dadurch schmiegt sich ein derartiger Hammer im Ausgangszustand des Werkstücks, das heißt am Beginn des Knetvorgangs, gut an das Werkstück an. Bei zunehmender Reduktion des Querschnittsdurchmessers des Werkstücks verschlechtert sich allerdings die Schmiegung des Hammers an das Werkstück. Eine am Beginn des Knetvorgangs großflächige Kontaktzone zwischen Hammer und Werkstück wird im Verlauf des Knetvorgangs reduziert. Die Randbereiche des Hammers tragen dann nicht mehr zur Beaufschlagung des Werkstücks mit Umformkräften bei. Die Kontaktzone konzentriert sich folglich gegen Ende des Rundknetens auf den zentralen Bereich der Schlagfläche entlang der Längsachse des Rundknethammers. Der zentrale Bereich der Schlagfläche ist daher besonders beansprucht und weitaus stärker als die Randbereiche dem Verschleiß ausgesetzt. Die ungleichmäßige Abnutzung der Schlagfläche führt zu einer Verringerung der Standzeit des Rundknethammers.
  • Ein weiterer unerwünschter Effekt der zunehmend punktuellen Kontaktzone im Verlauf des Knetvorgangs ist das Auftreten von Schlagkerben an den Werkstücken.
  • Außerdem wird durch die Fokussierung der auf das Werkstück wirkenden Umformkräfte der Effekt der Ovalisierung des Werkstücks verstärkt. Unter Ovalisierung versteht man eine nicht erwünschte örtliche Wechselbiegung, die zwischen den Kontaktzonen von beispielsweise zwei orthogonal zueinander angeordneten Hammerpaaren bei jedem Schlag auftritt. Die vier Hämmer der zwei Hammerpaare treffen bei jedem Schlag gleichzeitig auf die jeweilige Kontaktzone auf. Bei jedem Schlag entsteht somit eine Ovalverformung des Werkstücks in dem jeweiligen Bereich zwischen zwei benachbarten Hämmern. Einerseits wird dadurch aufgewendete Umformarbeit nicht effizient zur Querschnittsreduktion genutzt, andererseits wird das Material des Werkstücks unnötig beansprucht, was zu erhöhter Vorschädigung und damit zu einer Verminderung der Bauteilfestigkeit führen kann. Wird das Werkstück zwischen zwei aufeinander folgenden Schlägen um einen Winkelschritt gedreht, sind im Verlauf der Umformung alle Bereiche der bearbeiteten Werkstückoberfläche von der Ovalisierung betroffen. Bei der Verwendung eines Schmiededorns (Innendorn) bei der Herstellung des Werkstücks leidet dieser ebenfalls durch den Effekt der Ovalisierung.
  • Die JP 57-165151 und die JP 2002 263 776 A beschreiben jeweils einen Rundknethammer mit den Merkmalen des Oberbegriffs des Anspruchs 1.
  • Zwar wird durch die durch die genannten Druckschriften beschriebene Ausgestaltungen der Schlagfläche eine Schmiegung am Anfang und am Ende des Knetvorgangs erreicht. Zwischen diesen beiden Zuständen können die vorstehend beschriebenen nachteiligen Effekte allerdings nicht oder nur unzureichend vermieden werden.
  • Der Erfindung liegt daher die Aufgabe zugrunde, verbesserte Rundknethämmer zu schaffen, die über den Verlauf eines Rundknetprozesses im Mittel eine verbesserte Schmiegung an das Werkstück aufweisen.
  • Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Anspruches 1.
  • Der erfindungsgemäße Rundknethammer weist also eine Schlagfläche auf, die in einer Normalebene einer Längsachse des Hammers ein konkaves Krümmungsprofil besitzt, wobei die Schlagfläche von einer konkaven zylindrischen Formgebung oder Kegelform abweicht. Der Querschnitt der Schlagfläche des erfindungsgemäßen Rundknethammers kann somit nicht durch ein Kreissegment beschrieben werden, das Krümmungsprofil ist nicht kreisrund. Mit anderen Worten weist die Krümmung der Schlagfläche unterschiedliche Krümmungsradien auf und variiert zwischen der Scheitellinie der Schlagfläche und den beiderseitigen Randbereichen der Schlagfläche. Diese Variierung des Krümmungsradius ist zumindest in demjenigen Bereich der Schlagfläche vorgesehen, der im Betrieb des Hammers das zu bearbeitende Werkstück beaufschlagt, also entlang der bereits genannten Kontaktpunkte.
  • Unter einem Kontaktpunkt der Schlagfläche ist der Punkt zu verstehen, an dem die Schlagfläche mit dem Werkstück während eines Schlages in Kontakt tritt. In der Praxis ist dies nicht ein einzelner Punkt im mathematischen Sinn, sondern eine Zone (Bereich), in der sich die Schlagfläche und das Werkstück während eines Schlages des Rundknethammers berühren.
  • Der Kontaktpunkt weist einen Krümmungsradius auf, der aufgrund seiner Richtung und seines Betrages einen Krümmungskreis definiert. Der Mittelpunkt des Krümmungskreises liegt in einer Ebene, die entlang der Längsachse des Hammers verläuft und die die Scheitellinie der Schlagfläche enthält. Mit anderen Worten liegen die Mittelpunkte der Krümmungskreise der Kontaktpunkte auch bei einer Verschiebung der Kontaktpunkte während des Umformprozesses stets in der genannten Ebene.
  • Das Krümmungsprofil der Schlagfläche ist somit derart ausgestaltet, dass während des gesamten Umformprozesses die jeweils "aktiven" Kontaktpunkte durch Krümmungskreise beschrieben werden können, die einer Randbedingung gehorchen. Diese Randbedingung ist die Lage der Mittelpunkte in der vorstehend definierten Ebene.
  • Bei Rundknetprozessen unter Verwendung derartiger Knethämmer ergibt sich eine im Mittel verbesserte Schmiegung über den gesamten Umformvorgang hinweg, wodurch unter anderem weniger Schlagkerben auftreten. Durch die Variation des Krümmungsradius der Schlagfläche "wandert" der Kontaktpunkt - oder die Kontaktpunkte - des Hammers mit dem Werkstück während des Rundknetens. Insgesamt wird daher die Schmiegung, das heißt die wirksame Kontaktfläche zwischen Hammer und Werkstück, verbessert. So wird auch der Effekt der erläuterten Ovalisierung reduziert. Außerdem wird durch das "Wandern" der Kontaktzone der Rundknethammer gleichmäßiger belastet und höhere Standzeiten des Umformwerkzeugs werden erzielt, was deutliche Kosteneinsparungen zur Folge hat.
  • Durch die erfindungsgemäßen Rundknethämmer können somit qualitativ hochwertigere Werkstücke effizienter hergestellt werden, wobei auch die Produktionskosten durch Verlängerung der Standzeiten der Rundknethämmer und eines eventuell verwendeten Schmiededorns gesenkt werden.
  • Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen, der Beschreibung und den Zeichnungen angegeben.
  • Gemäß einer Ausführungsform der Erfindung gehorcht die Steigung Y' einer Senkrechten auf den jeweiligen Krümmungsradius in den Kontaktpunkten der Relation Y' = tan(arcsin(X/Ra)), wobei X der auf die Tangentialebene der Scheitellinie projizierte Abstand des betreffenden Kontaktpunkts von der Scheitellinie der Schlagfläche ist, und wobei Ra der Betrag des jeweiligen Krümmungsradius ist. Mit anderen Worten ist die Steigung Y' der jeweiligen Tangente des Krümmungsprofils in den einzelnen Kontaktpunkten jeweils eine Funktion des Abstands X von der Scheitellinie der Schlagfläche. Ein durch die genannte Relation definiertes Krümmungsprofil erfüllt die vorstehend diskutierte Randbedingung und führt zu einer verbesserten Schmiegung des Rundknethammers am umzuformenden Werkstück während des Umformprozesses.
  • Die vorteilhaft verbesserte Schmiegung wird erfindungsgemäβ durch eine Variation des Parameters Ra als Funktion des Abstands X erreicht, die eine lineare Abhängigkeit definiert. Diese erweist sich als besonders vorteilhaft, um eine räumlich und zeitlich gleichmäßige Beanspruchung der jeweiligen Schlagfläche während des Umformprozesses zu erreichen.
  • Ra kann auch eine von einer Bogenlänge S abhängige lineare Funktion sein, wobei S die Länge des Krümmungsprofils zwischen dem betreffenden Kontaktpunkt und der Scheitellinie ist.
  • Bevorzugt ist Ra durch die Gleichung Ra = k*X+R0 oder Ra = k*S+R0 beschreibbar, wobei k eine beliebige Konstante ist und R0 dem Betrag des Krümmungsradius der Schlagfläche in der Scheitellinie entspricht. Dieser lineare Zusammenhang zwischen dem Abstand X und dem Betrag des jeweiligen Krümmungsradius stellt eine gleichmäßig fortschreitende Umformung im Verlauf des gesamten Prozesses sicher, was zusätzlich einen Beitrag zur Werkstückqualität liefert und die Standzeiten der Rundknethämmer erhöht. Mit anderen Worten werden die auftretenden Belastungen gleichmäßig auf den gesamten Umformprozess verteilt, sodass "Belastungsspitzen" geringer ausfallen.
  • In einer Ausführungsform des erfindungsgemäßen Rundknethammers ist das Krümmungsprofil der Schlagfläche symmetrisch zu einer Symmetrieebene. Diese Symmetrieebene verläuft entlang der Längsachse des Hammers und enthält die genannte Scheitellinie der Schlagfläche.
  • Grundsätzlich kann die Schlagfläche aber auch asymmetrisch geformt sein, insbesondere wenn das Werkstück von vier umfänglich verteilt angeordneten Hämmern gleichzeitig beaufschlagt wird.
  • Bevorzugt nimmt der Krümmungsradius ausgehend von der Scheitellinie der Schlagfläche zu den Randbereichen hin zu.
  • Gemäß einer weiteren Ausführungsform ist die Funktion des Krümmungsradius eine stetige Funktion, um das Auftreten von Schlagkerben zuverlässig verhindern zu können.
  • Das Krümmungsprofil kann je nach Durchmesser des Werkstücks, der zu erzielenden Querschnittsreduktion und/oder in Abhängigkeit anderer spezieller Anforderungen des Rundknetvorgangs gewählt und angepasst werden.
  • Besonders vorteilhaft ist es hierbei, wenn der Kontakt zwischen dem Hammer und dem Werkstück zu Beginn der Knetbearbeitung nicht in einer zentralen Zone der Schlagfläche, sondern in zwei voneinander getrennt - und gegebenenfalls spiegelbildlich - angeordneten Zonen der Schlagfläche stattfindet. Dies gilt, solange der Radius des gerade in Bearbeitung befindlichen Werkstücks größer ist als der kleinste Hammerschmiegeradius, wie er vorzugsweise an der Scheitellinie der Schlagfläche ausgeführt ist. Durch diese räumlich günstig angeordneten Mehrfachkontakte werden die Ovalisierungseffekte und die damit einhergehende Materialbeanspruchung reduziert.
  • Während der Radius des Werkstücks in der bearbeiteten Zone schrittweise auf den kleinsten Hammerschmiegeradius reduziert wird, wandern die beiden getrennt angeordneten Kontaktzonen an der Schlagfläche aufeinander zu, bis sie sich an der Scheitellinie zu einer einzigen Kontaktzone des betreffenden Hammers vereinigen. Dadurch ist die Kontaktzone insbesondere auch in der Endphase der Formgebung großflächig ausgebildet und die Entstehung schädlicher Schlagkerben wird minimiert.
  • Die Erfindung betrifft weiterhin eine Rundknetmaschine mit wenigstens zwei Rundknethämmern gemäß zumindest einer der vorstehend beschriebenen Ausführungsformen.
  • Die Erfindung wird im Folgenden rein beispielhaft anhand vorteilhafter Ausführungsformen und unter Bezugnahme auf die Zeichnungen beschrieben. Es zeigen:
  • Fig. 1a
    eine Anordnung von Rundknethämmern zum Umformen (Einstechen),
    Fig. 1b
    eine Anordnung von Rundknethämmern zum Umformen (Einschnüren),
    Fig. 2a
    eine schematische Ansicht eines Rundknethammers,
    Fig. 2b und 2c
    eine schematische Querschnittsansicht eines Rundknet- hammers (Krümmungsprofil),
    Fig. 3a bis c
    den Verlauf eines Rundknetprozesses mit herkömmlichen Rundknethämmern,
    Fig. 4a bis c
    den Verlauf eines Rundknetprozesses mit erfindungsge- mäßen Rundknethämmern, und
    Fig. 5
    eine schematische Darstellung der Veränderung der geo- metrischen Verhältnisse im Laufe des Umformprozesses.
  • Fig. 1a illustriert schematisch das Einstechen eines stangenförmigen Werkstücks 10 (z. B. Welle) unter Verwendung von Rundknethämmern 12, 12'. Die Rundknethämmer 12, 12' (im Folgenden auch lediglich Hämmer genannt) sind jeweils paarweise an gegenüberliegenden Seiten des Werkstücks 10 angeordnet. In dem dargestellten Fall der Fig. 1a handelt es sich um ein erstes Hammerpaar mit den Hämmern 12 und ein zweites Hammerpaar mit den Hämmern 12', wobei auf die Darstellung eines der Hämmer 12' verzichtet wurde, um die Übersichtlichkeit der Abbildung zu verbessern. Grundsätzlich kann aber auch eine Vielzahl von Hammerpaaren vorgesehen sein.
  • Um den Querschnitt des Werkstücks 10 zu reduzieren, üben die entlang von Hammerbewegungsrichtungen 20 bewegten Hämmer 12, 12' eines Hammerpaars bei einem Schlag durch ihre konkaven Schlagflächen 13 gleichzeitig radiale Druckkräfte auf das Werkstück 10 aus. Mit hoher Schlagfrequenz wird dabei das Werkstück 10 gleichzeitig von den oszillierenden Hammerpaaren 12 und 12' bearbeitet, wobei das Werkstück 10 während des Abhebens der Hämmer 12, 12' schrittweise gedreht (Rotation 18) und gegebenenfalls auch in Axialrichtung verschoben wird. Dadurch können rotationssymmetrische Werkstücke erzeugt werden.
  • Bei dem in Fig. 1a dargestellten Beispiel des sogenannten Einstechverfahrens wird eine örtliche Querschnittsverminderung, beispielsweise zur Erzeugung steiler Übergangswinkel 14 zwischen dem Ausgangsquerschnitt des Werkstücks 10 und dem eingestochenen Querschnitt, erzeugt.
  • In Fig. 1b ist analog zu Fig. 1a das Einschnüren eines Werkstücks schematisch dargestellt. Die Schlagflächen 13 der bei dem Einschnürverfahren verwendeten Rundknethämmer 12, 12' weisen neben zylindrisch ausgeformten Schlagflächenabschnitten auch einen konischen Schlagflächenabschnitt 15 auf, der also einem Kegelsegment entspricht. Dadurch werden vergleichsweise flache Übergangswinkel 14 erzeugt. Durch einen Vorschub 16 des Werkstücks 10 können auch längere Abschnitte mit reduziertem Querschnitt bei flachen Übergangswinkeln 14 erzeugt werden. Auch bei diesem Verfahren ist eine Rotation 18 des Werkstücks 10 um seine eigene Achse vorgesehen, während die Hammerpaare 12, 12' das Werkstück 10 inkrementell umformen.
  • Fig. 2a zeigt eine schematische Ansicht eines Rundknethammers 12. Wie vorstehend beschrieben, weist der Hammer 12 eine Schlagfläche 13 auf, die der Bearbeitung des Werkstücks 10 dient. Weiterhin umfasst der Hammer 12 eine Hammerstirnseite 22, die auch dem Querschnitt des Hammers 12 senkrecht zu seiner Längsachse entspricht. Der Hammer 12 ist symmetrisch zu einer Mittensymmetrieebene 24, die entlang der Längsachse des Hammers 12 verläuft und senkrecht zu der Hammerstirnseite 22 angeordnet ist. Die Mittensymmetrieebene 24 enthält auch die Scheitellinie 26 der Schlagfläche 13. Beiderseits der Schlagfläche 13 befinden sich Schrägflächen 27. Durch die Abschrägung können die während eines Schlags nicht von den Schlagflächen 13 der Hämmer 12, 12' beaufschlagten Bereiche der Werkstückoberfläche minimiert werden.
  • Fig. 2b zeigt einen Querschnitt durch den Hammer 12 in einer Ebene parallel zu der Hammerstirnseite 22. Die Schlagfläche 13 weist ein konkaves Krümmungsprofil 28, 28' auf. Das Krümmungsprofil 28 herkömmlicher Hämmer 12 ist ein Kreissegment. Mit anderen Worten ist der Krümmungsradius aller Abschnitte des Krümmungsprofils 28 der Schlagfläche 13 im Wesentlichen gleich.
  • Demgegenüber weist das Krümmungsprofil 28' (gestrichelte Linie) eines erfindungsgemäßen Hammers 12 einen variablen Krümmungsradius auf, der zwischen der Scheitellinie 26' des erfindungsgemäßen Hammers 12 und den beiderseitigen an die Schrägflächen 27 angrenzenden Randbereichen 30 der Schlagfläche 13 variiert. Das Profil 28' ist also nicht kreisrund.
  • In der dargestellten Ausführungsform des erfindungsgemäßen Hammers 12 mit dem Krümmungsprofil 28' ist dieses symmetrisch zu der Mittensymmetrieebene 24 ausgebildet. Die Krümmung nimmt ausgehend von der Scheitellinie 26' der Schlagfläche 13 zu den Randbereichen 30 hin ab (das heißt der Krümmungsradius nimmt zu).
  • Das Krümmungsprofil 28' ist auch frei von Sprüngen, Kanten oder ähnlichen Unstetigkeiten parallel zu der Scheitellinie 26', um eine gleichmäßig bearbeitete Oberfläche des Werkstücks 10 zu erhalten.
  • Fig. 2c illustriert die geometrischen Verhältnisse des Krümmungsprofils 28' eines erfindungsgemäßen Rundknethammers 12. Der Krümmungsradius R eines Punktes P auf der Schlagfläche 13 hängt von einem Abstand X ab. Der Abstand X ist die auf eine Tangentialebene 32 an der Scheitellinie 26' des Krümmungsprofils 28' projizierte Entfernung des betreffenden Punkts P von der Scheitellinie 26'. Die Funktion kann aber auch von der X ab. Der Abstand X ist die auf eine Tangentialebene 32 an der Scheitellinie 26' des Krümmungsprofils 28' projizierte Entfernung des betreffenden Punkts P von der Scheitellinie 26'. Die Funktion kann aber auch von der Bogenlänge S des Krümmungsprofils zwischen der Scheitellinie 26' und dem Punkt P des Krümmungsprofils abhängen.
  • Das Krümmungsprofil 28' ist so gestaltet, dass der Betrag Ra des Krümmungsradius R linear von X abhängt und durch die Gleichung Ra(X) =k* X+RO beschrieben werden kann. k ist dabei eine beliebige Konstante, die angibt wie "schnell" der Krümmungsradius variieren soll. Der Parameter RO gibt an, wie groß der Krümmungsradius R in der Scheitellinie 26' ist (X = 0). In der Regel wird RO entsprechend dem gewünschten Radius des Werkstücks 10 am Ende des Umformprozesses gewählt.
  • Mit anderen Worten nimmt Ra mit zunehmenden Winkeln α zwischen dem - als Vektor zu betrachtenden - Krümmungsradius R und der Mittensymmetrieebene 24 zu. Jedem Punkt P auf dem Krümmungsprofil 28' ist somit ein eigener Krümmungskreis zugeordnet, dessen Radius den Betrag Ra(X) aufweist (Ra = |R|). Der Mittelpunkt M des Krümmungskreises liegt auf der Mittensymmetrieebene 24. Da der Radius R senkrecht auf einer Tangente Y' an dem Krümmungsprofil 28' der Schlagfläche 13 stehen muss, wandert der Mittelpunkt M mit zunehmenden Abstand X von der Scheitellinie 26' weg, wie nachfolgend noch anhand von Fig. 5 eingehend erläutert wird.
  • Die Fig. 3a bis 3c stellen den Verlauf eines Rundknetprozesses eines Werkstücks 10 mit herkömmlichen Hämmern 12 dar. Anhand der Fig. 4a bis 4c wird anschließend die Wirkung eines erfindungsgemäßen Hammers 12 mit einem von einem Kreissegment abweichenden Krümmungsprofil 28' verdeutlicht. Mit Fortschreiten des Umformens des Werkstückes 10 Schmiededorn angeordnet sein kann. Aus Gründen der Übersichtlichkeit wird in den Fig. 3a bis 3c und 4a bis 4c jeweils nur ein Hammer dargestellt und auch ein gegebenenfalls vorhandener Schmiededorn nicht gezeigt.
  • Der Hammer 12 weist in den Fig. 3a bis 3c ein kreissegmentförmiges Krümmungsprofil 28 auf. Zu Beginn des Umformens (Fig. 3a) schmiegt sich der Hammer 12 großflächig an die Oberfläche des Werkstücks 10 an. Eine (einzige) Kontaktzone 34, das heißt die Berührungsfläche zwischen dem Hammer 12 und dem Werkzeug 10 während eines Schlages des Hammers 12, umfasst im Wesentlichen die gesamte Schlagfläche 13. Bei Fortschreiten des Prozesses wird die Kontaktzone 34 kontinuierlich kleiner (Fig. 3b), und in den Randbereichen 30 der Schlagfläche 13 berühren sich die Schlagfläche 13 und das Werkstück 10' nicht mehr. Gegen Ende des Umformprozesses wird diese Verringerung der Kontaktzone 34 noch deutlicher, und die Kontaktzone 34 umfasst nur noch einen geringen Teil der Schlagfläche 13 im Bereich um die Scheitellinie 26.
  • Es ist deutlich zu ersehen, dass der Bereich um die Scheitellinie 26 stets belastet wird und daher besonders beansprucht ist. Durch die sehr kleine Kontaktzone 34 in Fig. 3c können außerdem Schlagkerben und damit Schädigungen am Werkstück 10" entstehen. In einem solchen Stadium, wie in Fig. 3c dargestellt, tritt auch der Effekt der Ovalisierung besonders stark auf. Mit anderen Worten reagiert das Werkstück 10" auf eine Hammerbewegung 20 durch eine Verformung außerhalb der Kontaktzone 34 des jeweiligen Hammers 12, 12'. Diese Verformungsrichtung ist durch die Pfeile V symbolisiert. Bei anschließenden Schlägen der Hammerpaare 12, 12' erfährt das Werkstück 10" diese Ovalisierung jeweils an einer um einen Winkelschritt weiter gedrehten Position. In den seitlichen Bereichen bzw. Spalten außerhalb der jeweiligen Kontaktzone 34 der Hammerpaare 12, 12', insbesondere zwischen benachbarten Hämmern 12, 12', wird das Werkstück 10' einer schädigenden Wechselbiegung (Ovalisierung) ausgesetzt.
  • Bei Verwendung eines erfindungsgemäßen Rundknethammers 12 mit einem Krümmungsprofil 28', welches von einem kreisförmigen Krümmungsprofil 28 abweicht, liegen die in den Fig. 4a bis 4c gezeigten Verhältnisse vor. Analog zu den Fig. 3a bis 3c ist der Verlauf eines Rundknetumformprozesses dargestellt.
  • Aufgrund des variierenden Krümmungsprofils 28' ist die Kontaktzone 34 zu Beginn des Prozesses auf die Randbereiche 30 der Schlagfläche 13 beschränkt, d.h. es liegen zwei getrennte Kontaktzonen 34 vor (Fig. 4a). Im weiteren Verlauf des Umformprozesses "wandern" die Kontaktzonen 34 in Richtung der Scheitellinie 26' der Schlagfläche 13 (Fig. 4b). Gegen Ende des Umformens erstreckt sich die Kontaktzone 34 im Wesentlichen im Bereich der Scheitellinie 26' (Fig. 4c). Die Kontaktzone 34 der Fig. 4c umfasst allerdings eine deutlich größere Fläche als die entsprechende Kontaktzone 34 der Fig. 3c. Es treten also geringere punktuelle Kräfte bei einem erfindungsgemäßen Rundknethammer 12 auf als bei herkömmlichen Rundknethämmem 12. Dadurch können Schlagkerben und Schädigungen durch Ovalisieren vermieden werden. Gleichzeitig wird die Standzeit des erfindungsgemäßen Hammers 12 im Vergleich zu herkömmlichen Hämmern 12 verlängert, da die Schlagfläche 13 gleichmäßiger beansprucht wird. Bei der Verwendung eines Schmiededorns wirkt sich die Verwendung eines erfindungsgemäßen Hammers 12 ebenso positiv aus, da ein Überschmieden verhindert wird bzw. die Wandstärke der Ausgangsgeometrie verringert werden kann.
  • Bei der Verwendung von Rundknethämmern 12 mit einem erfindungsgemäßen Krümmungsprofil 28' wird also bewusst auf ein vollständiges Anschmiegen der Schlagfläche 13 des Hammers 12 an das Werkstück 10 zu Beginn des Rundknetprozesses verzichtet. Im Verlauf des Rundknetens ergeben sich aber bei dem erfindungsgemäßen Rundknethammer 12 verbesserte Umformbedingungen verglichen mit herkömmlichen Hämmern 12.
  • Fig. 5 verdeutlicht die Veränderungen der geometrischen Verhältnisse im Laufe des Umformprozesses. Gezeigt ist lediglich ein Teil eines Rundknethammers 12, der symmetrisch zu der Mittensymmetrieebene 24 ausgebildet ist. Weiterhin ist ein Abschnitt eines Werkstücks 10' gezeigt, das bereits eine Umformung - hier eine Querschnittsreduktion - erfahren hat. Bei einem Schlag des Rundknethammers 12 auf das Werkstück 10' stehen diese in einem Kontaktpunkt KP miteinander in Berührung. In der Praxis beschränkt sich der Kontakt nicht lediglich auf einen Punkt sondern umfasst eine Zone, die sich - oftmals symmetrisch - um den Kontaktpunkt KP erstreckt (Kontaktzone 34, in Fig. 5 zur Verdeutlichung überproportioniert dargestellt). Wie bereits aus den Fig. 4a bis 4c ersichtlich, liegt ein weiterer - in Fig. 5 nicht gezeigter - Kontaktpunkt zwischen dem Werkstück 10' und der Schlagfläche 13 des Rundknethammers 12 vor, der symmetrisch zu der Symmetrieebene 24 angeordnet ist.
  • Im Laufe eines Umformprozesses bewegen sich die Kontaktpunkte von außen nach innen (KP', KP, KP"). Dabei nimmt der Werkstückradius R' ab. Zu jedem Zeitpunkt des Umformprozesses sind in dem jeweils "aktiven" Kontaktpunkt KP der Krümmungsradius R der Schlagfläche 13 und der Werkstückradius R' gleich groß. Das heißt der Mittelpunkt Mw des Werkstücks 10' und der Mittelpunkt M des (durch den Krümmungsradius R der Schlagfläche 13 definierten) Krümmungskreises fallen zusammen.
  • In dem Kontaktpunkt KP', der in einer früheren Phase des Umformprozesses "aktiv" war, liegen die Verhältnisse zu dem in Fig. 5 gezeigten Zeitpunkt anders: Der Krümmungsradius R der Schlagfläche 13 ist hier größer als der des gemäß Fig. 5 derzeit "aktiven" Kontaktpunkts KP. Der Mittelpunkt M' des dem Kontaktpunkt KP' zugeordneten Krümmungskreises stimmt bei einer fortgeschrittenen Umformung nicht mehr mit dem Werkstückmittelpunkt Mw überein. Der (senkrecht auf der Werkstückoberfläche stehende) Werkstückradius R' ist in dem dargestellten Zustand gemäß Fig. 5 somit inzwischen kleiner als der Krümmungsradius R im Kontaktpunkt KP', der in der früheren Phase der Umformung mit dem Werkstück 10' in Berührung kam, nämlich als der Werkstückradius R' noch dem Krümmungsradius R der Schlagfläche 13 im Kontaktpunkt KP' entsprach.
  • Im Kontaktpunkt KP", in dem erst bei einer noch weiter fortgeschrittenen Umformung des Werkstücks 10' die Schlagfläche 13 mit dem Werkstück 10' in Kontakt treten wird, sind die Verhältnisse umgekehrt wie im Kontaktpunkt KP': Der Krümmungsradius R des Kontaktpunkts KP" ist kleiner als der in Fig. 5 gezeigte derzeitige Werkstückradius R'. Der Mittelpunkt M" des Krümmungskreises, der dem Kontaktpunkt KP" zugeordnet ist, liegt daher näher an der Scheitellinie 26' als der Werkstückmittelpunkt Mw.
  • Somit liegen alle Mittelpunkte M, M', M" der die Schlagfläche 13 beschreibenden Krümmungskreise in der Mittensymmetrieebene 24. Im Zuge der Umformung wandert der Werkstückmittelpunkt Mw aufgrund der Querschnittsreduktion des Werkstücks 10' hin zu der Scheitellinie 26' der Schlagfläche 13. Vorzugsweise ist der Krümmungsradius R der Schlagfläche 13 in der Scheitellinie 26' gleich dem zu erzielenden Werkstückradius R'. Den vorstehenden geometrischen Betrachtungen ist zu entnehmen, dass die Mittelpunkte M, M', M" und Mw die Mittensymmetrieebene 24 während der Umformung nicht verlassen.
  • Simulationsrechnungen haben ergeben, dass durch die Wahl einer linearen Variation des Betrags Ra der Krümmungsradien R der Kontaktpunkte KP, KP' und KP" als Funktion des Abstands X (Abstand der in die Tangentialebene 32' projizierten Kontaktpunkte KP", KP, KP' von der Scheitellinie 26'; vgl. Fig. 2c) eine gleichmäßige Umformung des Werkstücks sichergestellt wird. Die Ausgestaltung der Schlagfläche 13 führt nicht nur zu einer Reduktion der Belastungen sowohl der verwendeten Rundknethämmer 12 als auch des Werkstücks 10', sondern reduziert auch die erforderliche Umformarbeit, um eine gewünschte Werkstückumformung zu erzielen.
  • Bezugszeichenliste
  • 10, 10', 10"
    Werkstück
    12, 12'
    Rundknethammer
    13
    Schlagfläche
    14
    Übergangswinkel
    15
    Schlagflächenabschnitt
    16
    Vorschub
    18
    Rotation
    20
    Hammerbewegungsrichtung
    22
    Hammerstirnseite
    24
    Mittensymmetrieebene
    26, 26'
    Scheitellinie
    27
    Schrägfläche
    28, 28'
    Krümmungsprofil
    30
    Randbereich
    32, 32'
    Tangentialebene
    34
    Kontaktzone
    M, M', M"
    Krümmungskreismittelpunkt
    Mw
    Werkstückmittelpunkt
    P
    Punkt
    KP, KP', KP"
    Kontaktpunkt
    R
    Krümmungsradius
    Ra
    Betrag des Krümmungsradius
    R'
    Werkstückradius
    S
    Bogenlänge
    V
    Verformung
    α
    Winkel
    Y'
    Tangente

Claims (7)

  1. Rundknethammer mit einer Schlagfläche zum Umformen eines Werkstücks an verschiedenen Kontaktpunkten der Schlagfläche, wobei die Schlagfläche (13) in einer Normalebene einer Längsachse des Hammers ein konkaves Krümmungsprofil aufweist, das zwischen einer Scheitellinie (26') der Schlagfläche (13) und beiderseitigen Randbereichen (30) der Schlagfläche (13) variiert, wobei jeder Kontaktpunkt (KP, KP', KP") der Schlagfläche (13) einen Krümmungsradius (R) besitzt, der einen Krümmungskreis mit einem Krümmungskreismittelpunkt (M, M', M") definiert, wobei die Krümmungskreismittelpunkte (M, M', M") der Kontaktpunkte (KP, KP', KP") der Schlagfläche (13) in einer Ebene (24) liegen, die entlang der Längsachse des Hammers (12, 12') verläuft und die die Scheitellinie (26') der Schlagfläche (13) enthält, dadurch gekennzeichnet, dass
    der Betrag Ra des jeweiligen Krümmungsradius (R, R') eine von dem Abstand X oder von einer Bogenlänge S abhängige lineare Funktion ist, wobei X der auf die Tangentialebene (32) der Scheitellinie (26') projizierte Abstand des betreffenden Kontaktpunkts von der Scheitellinie (26') der Schlagfläche (13) ist und S die Länge des Krümmungsprofils zwischen dem betreffenden Kontaktpunkt (KP, KP', KP") und der Scheitellinie (26') ist.
  2. Rundknethammer nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Steigung Y' einer Senkrechten auf den jeweiligen Krümmungsradius (R) in den Kontaktpunkten (KP, KP', KP") der Relation Y' = tan(arcsin(X/Ra)) gehorcht.
  3. Rundknethammer nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    Ra durch die Gleichung Ra = k*X+RO oder Ra =k*S+RO beschreibbar ist, wobei k eine beliebige Konstante ist und RO dem Betrag des Krümmungsradius (R) der Schlagfläche (13) in der Scheitellinie (26') entspricht.
  4. Rundknethammer nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Krümmungsprofil (28') der Schlagfläche (13) symmetrisch zu einer Mittensymmetrieebene (24) ist, die entlang der Längsachse des Hammers (12, 12') verläuft und die die Scheitellinie (26') enthält.
  5. Rundknethammer nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Krümmungsradius (R) ausgehend von der Scheitellinie (26') der Schlagfläche (13) zu den Randbereichen (30) hin zunimmt.
  6. Rundknethammer nach zumindest einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Krümmungsradius (R) gemäß einer stetigen Funktion variiert.
  7. Rundknetmaschine mit wenigstens zwei Rundknethämmern nach zumindest einem der vorstehenden Ansprüche, und mit einer Antriebseinrichtung zum oszillierenden Antrieb der Rundknethämmer.
EP08013624A 2008-07-29 2008-07-29 Rundknethammer Not-in-force EP2149411B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT08013624T ATE529203T1 (de) 2008-07-29 2008-07-29 Rundknethammer
PL08013624T PL2149411T3 (pl) 2008-07-29 2008-07-29 Młotek do kucia na kowarce
EP08013624A EP2149411B1 (de) 2008-07-29 2008-07-29 Rundknethammer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08013624A EP2149411B1 (de) 2008-07-29 2008-07-29 Rundknethammer

Publications (2)

Publication Number Publication Date
EP2149411A1 EP2149411A1 (de) 2010-02-03
EP2149411B1 true EP2149411B1 (de) 2011-10-19

Family

ID=40229929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08013624A Not-in-force EP2149411B1 (de) 2008-07-29 2008-07-29 Rundknethammer

Country Status (3)

Country Link
EP (1) EP2149411B1 (de)
AT (1) ATE529203T1 (de)
PL (1) PL2149411T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163308A1 (ja) * 2015-04-06 2016-10-13 日立金属株式会社 熱間鍛造用金型及び熱間鍛造方法
WO2016163307A1 (ja) * 2015-04-06 2016-10-13 日立金属株式会社 熱間鍛造用金型及び熱間鍛造方法
DE102021131279A1 (de) * 2021-11-29 2023-06-01 Aesculap Ag Medizinischer Clip, Umformwerkzeug, Umformmaschine und Verfahren zum Herstellen eines medizinischen Clips

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB473241A (en) * 1936-03-19 1937-10-08 Gen Electric Co Ltd Improvements in swaging devices employing revolving swaging members
JPS5952012B2 (ja) 1981-04-06 1984-12-17 日産自動車株式会社 スウエ−ジング装置のダイス
JP2002263776A (ja) * 2001-03-12 2002-09-17 Kobayashi Gankyo Kogyosho:Kk スウェージング加工用ダイス装置および該ダイス装置により加工された製品

Also Published As

Publication number Publication date
PL2149411T3 (pl) 2012-02-29
ATE529203T1 (de) 2011-11-15
EP2149411A1 (de) 2010-02-03

Similar Documents

Publication Publication Date Title
DE19911927B4 (de) Formfräser und Verfahren zur Formung einer Nut unter Verwendung desselben
DE10144649C5 (de) Verfahren zur drallfreien spanenden Bearbeitung von rotationssymmetrischen Flächen
EP1915225B1 (de) Verfahren zur erzeugung von innen- und aussenverzahnungen an dünnwandigen, zylindrischen hohlteilen
DE19654584B4 (de) Käfig für Nadellager und Verfahren zu dessen Herstellung
DE60024344T2 (de) Rollenlager und ein Herstellungsverfahren desselben
DE2100204C3 (de) Vorrichtung zum Herstellen selbstschneidender Schrauben durch Walzen eines Gewindes in einen Rohling
EP2825340A1 (de) Verfahren und vorrichtung zum bruchtrennen eines werkstücks
EP1106292A1 (de) Gewindefurcher und dessen Anwendung
DE102013112123B4 (de) Metallhülse und Verfahren zu deren Herstellung
EP2349625A1 (de) Herstellungsverfahren für geschlossene laufräder
EP2149411B1 (de) Rundknethammer
DE19854481C2 (de) Verfahren und Vorrichtung zum Drückwalzen
DE102017126988A1 (de) Werkzeug, Maschine und Verfahren zum Glattwalzen von verzahnten Werkstücken
DE19516595C2 (de) Lochwalzverfahren und Lochwalzvorrichtung für nahtlose Stahlrohre
EP2841218B1 (de) Vorrichtung und verfahren zur herstellung von mit einer innenliegenden laufradverzahnung versehenen dickwandigen hohlrädern
EP3246104B1 (de) Verfahren und vorrichtung zum herstellen eines umformteils
EP3544758B1 (de) Gewindeformer
WO2006000463A1 (de) Verfahren zum bruchtrennen eines werkstücks und werkstück bruchtrennt durch dieses verfahren
DE3401595C2 (de)
EP3497344B1 (de) Rundlager und pleuel
DE102016114631B4 (de) Verfahren und Computerprogrammprodukt zur Erzeugung von Gewinden in Bauteilen
DE19632279C2 (de) Verfahren zur Herstellung eines scheibenförmigen Teiles
DE102016110707B4 (de) Nuterzeugungswerkzeug, insbesondere kombiniertes Nut- und Gewindeerzeugungswerkzeug, mit stirnseitiger Aussparung
DE102015100615A1 (de) Werkzeug und Verfahren zur Herstellung einer Nut in einem Kernloch
DE102014112165A1 (de) Gewindeformwerkzeug, insbesondere Gewindefurcher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100716

17Q First examination report despatched

Effective date: 20100817

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008005215

Country of ref document: DE

Effective date: 20111215

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111019

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111019

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 10867

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120119

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008005215

Country of ref document: DE

Representative=s name: GABRIELE RAUSCH, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008005215

Country of ref document: DE

Representative=s name: RAUSCH, GABRIELE, DIPL.-PHYS. DR.RER.NAT., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120119

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E013781

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

26N No opposition filed

Effective date: 20120720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008005215

Country of ref document: DE

Effective date: 20120720

BERE Be: lapsed

Owner name: MAGNA POWERTRAIN AG & CO. KG

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140721

Year of fee payment: 7

Ref country code: CZ

Payment date: 20140722

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20140725

Year of fee payment: 7

Ref country code: HU

Payment date: 20140721

Year of fee payment: 7

Ref country code: PL

Payment date: 20140701

Year of fee payment: 7

Ref country code: AT

Payment date: 20140611

Year of fee payment: 7

Ref country code: GB

Payment date: 20140721

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008005215

Country of ref document: DE

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 10867

Country of ref document: SK

Effective date: 20150729

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 529203

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150729

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160202

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150729