WO2016163307A1 - 熱間鍛造用金型及び熱間鍛造方法 - Google Patents

熱間鍛造用金型及び熱間鍛造方法 Download PDF

Info

Publication number
WO2016163307A1
WO2016163307A1 PCT/JP2016/060732 JP2016060732W WO2016163307A1 WO 2016163307 A1 WO2016163307 A1 WO 2016163307A1 JP 2016060732 W JP2016060732 W JP 2016060732W WO 2016163307 A1 WO2016163307 A1 WO 2016163307A1
Authority
WO
WIPO (PCT)
Prior art keywords
forging
hot forging
hot
die
forging material
Prior art date
Application number
PCT/JP2016/060732
Other languages
English (en)
French (fr)
Inventor
尚史 光永
福井 毅
寺前 俊哉
敏明 野々村
松本 英樹
栄史 下平
聡志 古曵
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP16776474.5A priority Critical patent/EP3281719B1/en
Priority to JP2016575697A priority patent/JP6108258B2/ja
Priority to ES16776474T priority patent/ES2835953T3/es
Publication of WO2016163307A1 publication Critical patent/WO2016163307A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K3/00Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like
    • B21K3/04Making engine or like machine parts not covered by sub-groups of B21K1/00; Making propellers or the like blades, e.g. for turbines; Upsetting of blade roots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/04Shaping in the rough solely by forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J7/00Hammers; Forging machines with hammers or die jaws acting by impact
    • B21J7/02Special design or construction
    • B21J7/14Forging machines working with several hammers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/06Swaging presses; Upsetting presses

Definitions

  • the present invention relates to a hot forging die and a hot forging method.
  • the root portion of the turbine blade is formed by forging a round bar-shaped hot forging material to a desired diameter, and further forming a near-net shape turbine blade material by stamping forging.
  • a desired round bar-shaped rough ground is formed.
  • the root portion is thick (volume is large) and gradually narrows toward the wing tip. Wasteland is shown.
  • a round bar-like hot forging material is radially forged to a desired diameter to obtain a long round bar, cut into a predetermined size, and further free forging. It is forged into the desired wasteland shape with the equipment.
  • bosses When turbine blades are stamped and forged, roots, wings, and protrusions called bosses may be provided on the blades of turbine blades, and volume and dimensional adjustments are important in turbine blade waste. It becomes. If the volume and dimensions are not adjusted sufficiently, the rough surface will not be fully filled in the die carved surface during die forging, and part of the turbine blade material of the near net shape after die forging will be missing. A problem arises. Moreover, since the material of the turbine blade is an Ni-based super heat-resistant alloy or an expensive alloy such as a Ti alloy, a defect occurs in which a part of the turbine blade material of the near net shape after die-cut forging is missing. And the damage is not small.
  • a processing groove called “segiri” at the time of manufacturing the wasteland, and to perform the processing at the time of the rough ground forming so that the die carved surface at the time of stamping forging is fully filled.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 60-250843
  • a special jig is prepared for forming a sledge, and a processing groove is sequentially formed in a round bar-shaped material by a press device. Become.
  • JP-A-63-238942 Japanese Patent Laid-Open No. 60-250843
  • the shape of the jig for performing the margin shown in Patent Document 2 has a flat pressing portion and the same width, and is not suitable for forming a desired groove in a difficult-to-work material. Further, the groove formed by the margin is narrow and narrow in the vertical direction. When grooves perpendicular to the depth direction of the material are formed, the occurrence of fogging becomes a problem during hot forging in which the forging material is extended to the turbine blade length.
  • An object of the present invention is to provide a hot forging die and a hot forging method that can be easily scored using a radial forging machine even for difficult-to-work materials used for turbine blades. That is.
  • the present invention has been made in view of the above-described problems. That is, the present invention is a hot forging die for hot forging a rod-like forging material by radial forging,
  • the hot forging die has a pair of halved pressing parts for sandwiching the forging material,
  • Each of the half-shaped pressing parts is continuous so as to surround the forging material, and the cross section has a substantially semicircular convex shape,
  • Each of the half-shaped pressing portions is a hot forging die having a rough processed portion and a convex finished processed portion having a radius of curvature larger than that of the rough processed portion.
  • each of the half-shaped pressing portions is a hot forging die having a gradually changing portion in which the radius of curvature of the half-shaped pressing portion gradually increases from the rough processing portion to the finishing processing portion. . More preferably, it is a hot forging die in which the curvature radius of the substantially semicircular convex shape of the finishing portion is 10 mm or more larger than the curvature radius of the substantially semicircular convex shape of the roughing portion.
  • Each of the half-shaped pressing portions is a hot forging die that is used for barring. It is a hot forging die in which a plurality of pressing portions for staking processing are formed in the longitudinal direction of the forging material.
  • the present invention is a hot forging method for hot forging a rod-like forging material by radial forging
  • the mold used for the hot forging has a pair of halved pressing portions for sandwiching the forging material,
  • Each of the half-shaped pressing parts is continuous so as to surround the forging material, and the cross section has a substantially semicircular convex shape,
  • Each of the half-shaped pressing parts has a roughened part and a convex finished processed part having a larger radius of curvature than the roughened part,
  • a forging material heating step for heating the forging material to a hot forging temperature; Hot forging forcing a forging material by rotating the heated forging material while pressing the forging material with each of the halved pressing portions of the two hot forging dies arranged opposite to each other.
  • Is a hot forging method Preferably, it is a hot forging method in which the rod-like forging material is a Ni-base superalloy or Ti alloy.
  • the hot forging method of the present invention is suitable for manufacturing wasteland for turbine blades.
  • the object to be squeezed is a small product called a connecting rod.
  • turbine blades are becoming larger and larger in the future, and their materials are Ni-based super heat-resistant alloys and Ti alloys, which are also known as difficult-to-work materials.
  • some of these alloys have only a small range of temperatures that can be hot forged, and if forging is performed using a jig for staking, the temperature of the forging material will decrease. . Therefore, depending on the weight of the material, for example, in the case of a 40 to 60 inch turbine blade, 7 to 10 times of reheating must be performed. As the size of the turbine blade increases, the number of times of reheating further increases.
  • the radial forging machine usually uses a mold called a anvil with a flat pressing part. For this reason, it has been impossible to squeeze with a radial forging machine using a conventional anvil.
  • the present invention enables this, and the greatest feature is an unprecedented shape that can be applied to rough ground forming for large turbine blades using a radial forging machine.
  • the hot forging die used in the present invention will be described below.
  • FIG. 1 is a schematic side view of a hot forging die 1 according to the present invention, a cross-sectional view of a finishing section of the hot forging die 1 (AA cross-sectional view), and a rough processed cross-sectional view (CC cross-sectional view). ) And a cross-sectional view (BB cross-sectional view) located between the finish processed portion and the rough processed portion.
  • AA cross-sectional view a cross-sectional view of a finishing section of the hot forging die 1
  • CC cross-sectional view rough processed cross-sectional view
  • BB cross-sectional view located between the finish processed portion and the rough processed portion.
  • the radial forging machine pressed from two opposing directions is used.
  • the curvature radius of the half-shaped pressing portion shown in the cross-sectional view gradually increases, and from the BB cross-sectional view to the A
  • the radius of curvature up to the position (bottom part) shown in the -A cross-sectional view is substantially the same.
  • the “finished portion” referred to in the present invention includes a position (bottom portion) shown in the AA sectional view and a place having the same radius of curvature as a finished portion.
  • the hot forging die 1 shown in FIG. 1 is paired with two, for example, as shown in FIG. 4, the hot forging die 1 is disposed so as to sandwich the forging material 21, and a pair of two Two hot forging dies 1 work together to perform the margin.
  • the hot forging molds shown in FIG. 1 are in pairs (pairs) and have a half-shaped pressing portion 2 for sandwiching a forging material (not shown in FIG. 1).
  • the forging material is pressed so as to be sandwiched by the half-shaped pressing portion.
  • the forging material is gripped by the gripping mechanism provided in the radial forging machine, and the forging material is intermittently rotated. As shown in the schematic side view of FIG.
  • each halved pressing portion 2 has a convex shape having a substantially semicircular cross section that is continuous so as to surround the forging material.
  • the forging material is sandwiched between the pressing portions of the two hot forging dies that work together in a halved shape.
  • continuous so as to surround the forging material means a shape in which the periphery of the forging material 21 is surrounded by the roughing portion and the finishing portion as shown in FIG. 4.
  • the half-shaped pressing portion 2 is formed such that a flat surface is formed in a concave shape, and the pressing portion looks like an arc when viewed from the side (a schematic side view of FIG. 1).
  • the half-shaped pressing part 2 has a finishing part 4 and a roughing part 3.
  • the finishing portion 4 is formed around the bottom of the concave shape (arc shape), and the rough processing portion 3 is formed on both sides of the finishing portion (both ends of the concave shape (arc shape)). Then, the distance between the roughing parts widens from the bottom of the finishing part 4 toward the ends of both roughing parts 3, and when the two hot forging dies press the forging material, the forging material Is a shape that can be pressed by a substantially semi-convex convex shape.
  • the hot forging material is hot forged with the hot forging die 1 having this shape, it contacts the forging material from the convex roughened portion formed in the hot forging die, and is necessary for the margin. Grooves can be formed sequentially.
  • the “convex shape having a substantially semicircular cross section” referred to in the present invention refers to a shape when viewed from the direction of each of the above sectional views. That is, it is a cross section when viewed from a direction perpendicular to the longitudinal direction of the forging material.
  • Each of the half-shaped pressing portions 2 includes a roughing portion 3 and a convex finishing portion 4 having a larger curvature radius than that of the roughing portion. This is because the contact area is reduced in the initial stage of forging so that a groove with a predetermined depth can be formed even when the forging material starts forging from the roughened portion, even if it is difficult to forge. Therefore, the groove can be efficiently processed. Then, as forging progresses, it is gradually pressed toward the finished part, increasing the width of the groove and adjusting the shape of the edge. However, even hot forging at the finished part may not reach the depth of the edge, so the finished part also forms a press part with a substantially semicircular cross-section and contacts as much as possible.
  • the edge shape By making the area small, it is possible to efficiently adjust the edge shape. That is, in the present invention, first, the rough machining portion 3 having a small radius of curvature is efficiently grooved first, and then the final shape is efficiently obtained by the finishing portion 4 having a radius of curvature larger than that of the rough machining portion 3. It will be molded. For this reason, the curvature radius is gradually increased from the substantially semicircular pressing portion formed in the rough machining portion 3, and the finish machining portion 4 gradually changes to a convex finish machining portion having a larger curvature radius than the rough machining portion. A gradual change portion will be formed.
  • the actual pressing part may form a substantially semicircular convex part by, for example, overlay welding, or after that, the shape may be machined manually, the convex part having the same curvature radius is not necessarily required. May not be formed. Therefore, the “substantially semicircular shape” in the present invention may be a convex shape having a curvature including an error due to overlay welding or machining, and the curvature may be obtained from an approximate shape. Moreover, what is necessary is just to comprise the curvature of the part to press the forging raw material according to this invention if it is convex shape with the curvature.
  • the curvature radius of the substantially semicircular convex shape of the finished processed portion 4 of the present invention is preferably 10 mm or more larger than the curvature radius of the substantially semicircular convex shape of the rough processed portion 3. This is because the forged material of the present invention becomes a wasteland for large turbine blades, and it is better to increase the contact area between the roughened part and the finished part as a large (long) turbine blade wasteland. This is because it becomes suitable. As another reason, when the curvature radius of the substantially semicircular convex shape of the finished processed portion is large, formation of a wide processed groove is facilitated.
  • the curvature radius of the substantially semicircular convex shape of the finished portion 4 is The radius of curvature of the substantially semicircular convex shape of the roughened portion is 10 mm or more. Preferably, it is formed with a difference of 15 mm or more.
  • the hot forging die 1 of the present invention is suitable for staking processing.
  • the material of the alloy used for the turbine blade is a difficult-to-work material, and therefore it is preferable to complete the forging in as short a time as possible within a temperature range where hot forging is possible.
  • the simultaneous forging at a plurality of locations is possible because the contact area of the pressing portion formed on the hot forging die of the present invention is gradually increased from a small area to a radial area. This could only be realized in combination with a forging machine.
  • the position having the same radius of curvature including the position (bottom part) shown in the EE sectional view (the EE sectional view from the position in the FF sectional view). (Up to the position shown in the figure) is the finishing part.
  • the forging material is extended to have a predetermined wasteland shape.
  • the hot forging die 11 used in that case is provided with an extending portion 7 that extends the forging material.
  • the press portion for forging provided in the extension portion 7 has a flat shape (a flat shape along the longitudinal direction of the forging material 2 and is bent so as to sandwich the forging material 2. Formed).
  • the extending portion 7 for forging has a pair of half-pressing portions 12 for sandwiching the forging material, and each half-pressing portion 12 has a continuous convex shape so as to surround the forging material.
  • the split pressing portion 12 includes a substantially flat rough processing portion 13 and a finishing processing portion 14.
  • the basic configuration is the same as that of the hot forging die suitable for the above-described barring process, and the hot forging die 11 for forging shown in FIG. 3 is a pair (a pair).
  • Forging of the forging material is a gripping mechanism provided in the radial forging machine so that a set of hot forging dies 11 for forging work together to reduce the diameter of the forging material (not shown).
  • the forging material is gripped and the forging material is rotated. Further, with the rotation of the forging material, the gripped forging material moves in the longitudinal direction, and the longitudinal direction of the forging material is also extended.
  • the flat pressing portion of the hot forging die for forging can be efficiently forged by reducing the contact area at the initial stage of forging, and then adjusted to a predetermined shape.
  • the surface width of the substantially flat pressing portion formed in the roughing portion 13 is narrowed, and the surface width of the pressing portion formed in the finishing portion 14 is larger than that of the roughing portion 13. It is preferable to make it wide.
  • the hot forging die 11 for forging is for adjusting the shape while extending the forging material in the longitudinal direction, the pressing portion is flat. If the width of the flat pressing portion (the width in the longitudinal direction of the forging material) is excessively widened, the pressure required for forging may increase. For this reason, it is preferable to select a width suitable for the forging machine in consideration of the contact area as the width of the flat pressing portion so that the forge can be efficiently forged by one impact.
  • FIG. 4 is a schematic view showing an example of a radial forging machine.
  • a hot forging die 1 shown in FIG. 1 is attached to the radial forging machine.
  • One hot forging die 1 is provided on each side of the forging material to sandwich the forging material 21.
  • the forging material 21 is already gripped by the radial forging machine, but the forging material is heated to a predetermined hot forging temperature in a heating furnace (not shown) and attached to the radial forging machine. .
  • the heating temperature varies depending on the material of the forging material.
  • the heating temperature is 950 to 1150 ° C. for a Ni-based superalloy and 800 to 1000 ° C. for a Ti alloy. In addition, it is 900 to 1200 ° C. for precipitation strengthened stainless steel.
  • the forging material has a rod shape.
  • the rod-shaped forging material may be any material that has been adjusted to a predetermined shape by a forging device or a pressing device. It is preferable that it is equivalent to the width between each other.
  • a predetermined round bar-like forging material is attached to a radial forging machine.
  • hot forging while rotating the heated forging material 21, two hot forging dies 1 arranged opposite to each other are made into one set (a pair), and the forging material is pressed by the halved pressing portions. As a result, a forging process is performed on the forging material.
  • the shape of the hot forging die for performing the setting is shown in FIG.
  • hot forging is started from the roughened portion 3 of the hot forging die 1.
  • the forging material is continuous and has a substantially semicircular convex shape that can be pressed.
  • the forging material rotates on the spot (the forging material does not move in the longitudinal direction).
  • the first method will be described from a method emphasizing the shape after finishing the barring process.
  • pressing of the forging material at a predetermined position is started from the roughing portion 3 as shown in FIG.
  • the contact (forging) position between the forging material 21 and the hot forging die during rough machining is indicated by an arrow.
  • a pair of hot forging dies are used to perform forging at four locations (forging process), and the final shape adjustment is performed using a pair of hot forging dies.
  • the shape can be adjusted by forging at several locations. Moreover, it can shape
  • it is convenient when the final finished shape is important.
  • Another method is a method applied when the processing time is short.
  • hot forging from two opposing directions is started, as shown in FIG. 7A, first, pressing of the forging material at a predetermined position is started from the rough processed portion 3.
  • the contact (forging) position between the forging material 21 and the hot forging die during rough machining is indicated by an arrow.
  • the rough-processed part formed in the two hot forging molds that cooperate and forge at the beginning of forging starts pressing, so at the start of forging
  • the finishing portion 4 formed in the pair of hot forging dies is arranged into a predetermined shape.
  • the finishing process used to the bottom of the finishing part is not performed.
  • the finishing process is terminated with four places to be pressed even during the finishing process. Even in this case, it is possible to efficiently form the final shape with the convex finished processed portion 4 having a larger radius of curvature than the rough processed portion, and it is possible to shorten the time by using four pressing points. Gripping can be performed.
  • the radius of curvature of the bottom portion (position shown in the AA cross-sectional view) of the finished portion (the radius of curvature when viewed from the direction perpendicular to the longitudinal direction of the forging material shown in FIG. 7). It is important to make it smaller than the radius of curvature of the diameter after processing. However, it is preferable that the bottom portion of the finished processed portion has a curved surface shape so as to avoid excessive stress concentration during hot forging.
  • the hot forging die 1 is replaced with a hot forging die 11 having a forging press portion.
  • the forging material is reheated to a predetermined forging temperature again.
  • the exchanged hot forging die 11 is provided with an extension portion 7 having a forging press portion for extending the forging material.
  • the forging press part has the shape shown in FIG.
  • the shape of the pressing portion of the hot forging die 11 having the forging press portion viewed from the longitudinal direction of the forging material is also the hot forging die subjected to the staking shown in FIG.
  • the forging material is sequentially moved in the longitudinal direction of the forging material while intermittently rotating by a radial forging machine, sequentially performing hot forging toward the finishing portion, and finishing formed in a pair of hot forging dies. It will be trimmed into a predetermined shape at the processing section. That is, at the final stage of the finishing process, as shown in FIG. 6B, when hot forging is performed in the finishing part 14, there are two pressing points. This method of adjusting to the final shape with the shape of the bottom of the finished portion is advantageous when the final finished shape is important. Also, in the hot forging by this forging press section, in order to shorten the hot forging time, as shown in FIG. 7, the number of pressing points from the initial stage of hot forging to the final stage of hot forging is four. By doing so, the forging material can be extended in a short time.
  • the shape shown in FIG. 8 can be obtained.
  • the hot forging die 11 shown in FIG. 8 is formed with a recess 8 from the bottom in the width of the finish processing portion 14 (width in the longitudinal direction of the forging material) toward the rough processing portion.
  • the pressing part of the finishing part is divided into two parts. By forming one or more recesses within the width of the finish processing portion 14 and using two or more pressing portions of the finish processing portion, bending of the forging material during forging can be more reliably prevented.
  • hot forging is performed using the hot forging die shown in FIG. 8, forging at the final stage can be performed at the bottom of the finished portion shown in the AA section.
  • the forging material is pressed, a portion pressed by the finishing portion and a portion adjacent to the portion pressed by the finishing portion are not pressed.
  • the cross-section of the forging material may become an ellipse.
  • the forged material that has become an ellipse tends to bend during forging.
  • the forging material is intermittently rotated by radial forging at the place where the pressing is first performed. Then, the finish is forged by the next pressing part. At this time, in the structure shown in FIG.
  • the formation of the concave portion includes the bottom portion of the finishing portion (the portion where the straight line indicated by AA in FIG. 8 is in contact) so that the effect of preventing the bending can be maximized.
  • the forging material can be hot-forged into a predetermined wasteland shape continuously using the same radial forging machine from squeezing to forging, after using a jig for staking as in the past It is possible to omit the complicated process of forging again with another forging machine. Therefore, although the number of reheating times can be reduced, it is possible to manufacture a highly accurate waste for turbine blades.
  • the present invention even a difficult-to-work material used for a turbine blade can be easily squeezed using a radial forging machine. Further, according to the unprecedented hot forging method using a radial forging machine, the number of reheatings of the forged material can be drastically reduced, productivity is improved, and energy saving is extremely effective.
  • Example 1 A hot forging die 1 of the present invention shown in FIG. 2 was prepared.
  • the gap portion 5 of the prepared forging die 1 for hot forging has a pair of half-pressing portions for sandwiching the forging material, and each of the half-pressing portions is made of the forging material. Consecutively surrounding, the cut portion has a substantially semicircular convex shape, and each of the half-shaped pressing portions includes a roughened portion and a convex finished processed portion having a larger radius of curvature than the roughened portion. It is what has.
  • the curvature radius of the substantially semicircular convex shape of the rough processed portion 13 was 30 mm, and the curvature radius of the substantially semicircular convex shape of the finished processed portion 14 gradually changed to 50 mm.
  • the forging press portion provided in the extending portion 7 of the hot forging die 11 that extends the forging material after the staking process is formed by pressing the pressing portion in a flat shape. This is shown in FIG.
  • the extending portion 7 for forging has a pair of half-pressing portions 12 for sandwiching the forging material, and each half-pressing portion 12 has a continuous convex shape so as to surround the forging material.
  • the split pressing portion 12 includes a substantially flat rough processing portion 13 and a finishing processing portion 14.
  • the width of the pressing portion for forging is such that the roughened portion 13 is 50 mm and the finished portion 14 is changed to 100 mm, and a hot forging die having a shape focusing on the final shape is used.
  • the above-mentioned hot forging molds were attached to a radial forging machine as a pair in pairs, and preparation for hot forging was performed.
  • a forging material for a 50 inch turbine blade was heated in a heating furnace heated to 950 ° C.
  • the forging material was a titanium alloy, and the dimensions were a diameter of 200 mm and a length of 1100 mm.
  • the forging material was taken out of the heating furnace and hot forging was started with a radial forging machine.
  • the forging material was manipulated by gripping with a manipulator.
  • the hot forging first, the forging material is pressed by pressing each of the half-shaped pressing portions of the two hot forging dies 1 arranged opposite to each other while rotating the heated forging material 21.
  • the sashimi processing was performed.
  • the forging material was hot forged into a predetermined shape while rotating the forging material on the spot (without moving the forging material in the longitudinal direction).
  • a mold in which a plurality of half-pressing portions 2 for slicing was formed on one mold was used to perform squeezing at two locations simultaneously.
  • the hot forging die 11 having a forging press part was replaced.
  • the forging material was removed from the radial forging machine and reheated again to a predetermined forging temperature.
  • the forging material was again attached to the radial forging machine, and hot forging by the forging press part was performed.
  • the forging material was sequentially moved in the longitudinal direction while intermittently rotating with a radial forging machine, adjusted to a predetermined shape, and hot forged into a rough land shape.
  • the waste land 22 after hot forging had a shape as shown in FIG. 7 suitable for forming the root portion, the wing portion, and the boss portion. In the wasteland after hot forging, there were no problems such as fogging.
  • Example 2 As Example 2, the effect of the hot forging die in FIG. 8 was confirmed.
  • the hot forging die used for the setting was the same as in Example 1 above.
  • Example 2 the effect of the hot forging die 11 of FIG. 8 was confirmed.
  • the extending portion 7 for forging has a pair of half-shaped pressing portions 12 for sandwiching the forging material, and each of the half-shaped pressing portions 12 is made of a forging material.
  • Each of the halved pressing parts 12 has a substantially flat roughened part 13 and a finished processed part 14.
  • the width of the pressing portion for forging is 50 mm for the rough processed portion 13 and 100 mm for the finished processed portion 14, and a recess having a width of 80 mm is formed at the center of the finished processed portion.
  • variety of the press part divided into two was 270 mm, respectively.
  • the hot forging die used for staking was the same as that in Example 1 described above.
  • a forging material for a 50 inch turbine blade was heated in a heating furnace heated to 950 ° C.
  • the forging material was a titanium alloy, and the dimensions were a diameter of 200 mm and a length of 1100 mm.
  • the forging material was taken out of the heating furnace and hot forging was started with a radial forging machine.
  • the forging material was manipulated by gripping with a manipulator.
  • the hot forging first, the forging material is pressed by pressing each of the half-shaped pressing portions of the two hot forging dies 1 arranged opposite to each other while rotating the heated forging material 21.
  • the sashimi processing was performed.
  • the forging material was hot forged into a predetermined shape while rotating the forging material on the spot (without moving the forging material in the longitudinal direction).
  • a die having a plurality of half-pressing portions 12 for cutting processing formed on one die was used, and two locations were simultaneously cut.
  • the hot forging die 11 shown in FIG. the forging material was removed from the radial forging machine and reheated again to a predetermined forging temperature.
  • the forging material was again attached to the radial forging machine, and hot forging by the forging press part was performed.
  • the forging material was sequentially moved in the longitudinal direction while intermittently rotating with a radial forging machine, adjusted to a predetermined shape, and hot forged into a rough land shape. Finally, the hot forging die 11 shown in FIG. 8 was replaced, and the forging material was finished by 10-pass radial forging.
  • the waste land 22 after hot forging had a shape as shown in FIG. 5 suitable for forming the root portion, the wing portion, and the boss portion. In the wasteland after hot forging, there were no problems such as fogging. About the bending of the wasteland whose total length is about 1500 mm, compared with the wasteland obtained in Example 1, suppression of the bending of about 5 mm was confirmed.
  • the manufacturing method of the present invention even a difficult-to-work material used for a turbine blade or the like can be easily forged using a radial forging machine. Further, since the forging process can be hot forged into a predetermined rough ground shape using a radial forging machine, a complicated process such as using a jig for staking as in the prior art can be omitted. For this reason, it has become possible to manufacture a highly accurate waste for turbine blades even though the number of times of reheating can be reduced.

Abstract

 タービンブレードに使用される難加工性材であっても、ラジアル鍛造機を用いて容易にせぎりを行うことが可能な熱間鍛造用金型と熱間鍛造方法を提供する。 棒状の鍛造素材をラジアル鍛造により熱間鍛造する熱間鍛造用金型であって、前記熱間鍛造用金型は、前記鍛造素材を挟み込むための一対の半割状押圧部を有し、前記各半割状押圧部は前記鍛造素材を取り囲むように連続した、略半円状の凸形状をなし、前記各半割状押圧部は、粗加工部と、該粗加工部よりも曲率半径が大きい凸形状の仕上げ加工部とを有する熱間鍛造用金型。

Description

熱間鍛造用金型及び熱間鍛造方法
 本発明は、熱間鍛造用金型及び熱間鍛造方法に関するものである。
 例えば、タービンブレードを製造するにあたっては、丸棒状の熱間鍛造素材を所望の直径まで鍛伸して、更に、続く型打ち鍛造でニアネットシェイプのタービンブレード素材となるように、タービンブレードの根部や翼部となる部分の体積を確保すべく、所望の丸棒形状の荒地を成形する。この荒地の形状については、例えば、特開昭63-238942号公報(特許文献1)の図2に、根部となる部分が太く(体積が大きく)、翼部先端に向けて次第に細くなる形状の荒地が示されている。
 この荒地の具体的な製造方法としては、例えば、丸棒状の熱間鍛造素材を所望の直径までラジアル鍛造を行って長尺の丸棒材とし、所定の寸法に切断し、更に別な自由鍛造装置で所望の荒地形状に鍛造される。
 タービンブレードを型打ち鍛造する場合、根部、翼部となる部分や、ボス部と呼ばれる突起がタービンブレードの翼部に設けられることもあり、タービンブレード用の荒地では、体積と寸法の調整が重要となる。もし、体積や寸法の調整が不十分であると、型打ち鍛造時の型彫り面内に十分に荒地が満肉せず、型打ち鍛造後のニアネットシェイプのタービンブレード素材の一部が欠寸する問題が生じる。また、タービンブレードの材質はNi基の超耐熱合金や、Ti合金等の高価な合金であるため、型打ち鍛造後のニアネットシェイプのタービンブレード素材の一部が欠寸するような不良が起きると、その損害は小さくはない。
 そのため、荒地の製造時に「せぎり」と呼ばれる加工溝を設けて、型打ち鍛造時の型彫り面内に十分満肉するように荒地成形時に加工を行うことが好ましい。しかしながら例えば、特開昭60-250843号公報(特許文献2)に示されるように、せぎりの形成は特別な治具を用意してプレス装置で順次丸棒状の素材に加工溝を設けることになる。
特開昭63-238942号公報 特開昭60-250843号公報
 特許文献2で示されるせぎりを行う治具の形状は、その押圧部は平坦、且つ同じ幅で形成されており、難加工性材に所望の溝を形成するには不向きである。更に、せぎりで成形される溝は、幅が細く垂直に深い溝となっている。材料の深さ方向に垂直な溝が形成されると、鍛造素材をタービンブレード長さまで伸長する熱間鍛造時に、かぶり疵の発生が問題となる。
 本発明の目的は、タービンブレードに使用される難加工性材であっても、ラジアル鍛造機を用いて容易にせぎりを行うことが可能な熱間鍛造用金型と熱間鍛造方法を提供することである。
 本発明は上述した課題に鑑みてなされたものである。
 すなわち本発明は、棒状の鍛造素材をラジアル鍛造により熱間鍛造するための熱間鍛造用金型であって、
 前記熱間鍛造用金型は、前記鍛造素材を挟み込むための一対の半割状押圧部を有し、
 前記各半割状押圧部は前記鍛造素材を取り囲むように連続した、断面が略半円状の凸形状をなし、
 前記各半割状押圧部は、粗加工部と、該粗加工部よりも曲率半径が大きい凸形状の仕上げ加工部とを有する熱間鍛造用金型である。
 好ましくは、前記各半割状押圧部は、粗加工部から仕上げ加工部に向かって、前記半割状押圧部の曲率半径が徐々に大きくなる徐変部を有する熱間鍛造用金型である。
 更に好ましくは、前記仕上げ加工部の略半円状の凸形状の曲率半径は、前記粗加工部の略半円状の凸形状の曲率半径よりも10mm以上大きい熱間鍛造用金型である。
 前記各半割状押圧部は、せぎり加工用である熱間鍛造用金型である。
 前記せぎり加工用の押圧部が、前記鍛造素材の長手方向に複数個形成されている熱間鍛造用金型である。
 また、本発明は、棒状の鍛造素材をラジアル鍛造により熱間鍛造する熱間鍛造方法であって、
 前記熱間鍛造に用いる金型は、前記鍛造素材を挟み込むための一対の半割状押圧部を有し、
 前記各半割状押圧部は前記鍛造素材を取り囲むように連続した、断面が略半円状の凸形状をなし、
 前記各半割状押圧部は、粗加工部と、該粗加工部よりも曲率半径が大きい凸形状の仕上げ加工部とを有し、
 前記鍛造素材を熱間鍛造温度に加熱する鍛造素材加熱工程と、
 前記加熱された鍛造素材を回転させつつ、対向配置された2つの前記熱間鍛造用金型の前記各半割状押圧部で鍛造素材を押圧することにより、鍛造素材にせぎりを行う熱間鍛造工程、
を含む熱間鍛造方法である。
 好ましくは、前記棒状の鍛造素材がNi基超耐熱合金またはTi合金である熱間鍛造方法である。
 本発明の熱間鍛造方法は、タービンブレード用の荒地製造に好適である。
 本発明によれば、タービンブレードに使用される難加工性材であっても、ラジアル鍛造機を用いて容易にせぎりを行うことができる。
本発明の熱間鍛造用金型の一例を示す模式図である。 本発明の熱間鍛造用金型の一例を示す模式図である。 伸長部の一例を示す模式図である。 ラジアル鍛造機の模式図である。 荒地の形状の一例を示す模式図である。 本発明の熱間鍛造用金型を用いて熱間鍛造を行ったときの鍛造素材を押圧する場所の一例を示す模式図である。 本発明の熱間鍛造用金型を用いて熱間鍛造を行ったときの鍛造素材を押圧する場所の一例を示す模式図である。 伸長部の一例を示す模式図である。
 前述の特許文献2では、せぎりを行う対象物は連接棒と言う小さな製品である。一方で、タービンブレードは今後益々大型化が進み、その材質も難加工性材として知られるNi基超耐熱合金やTi合金である。特にこれらの合金の中には、熱間鍛造可能な温度の幅が僅かしかないものもあり、せぎり用の治具を用いて自由鍛造していては、鍛造素材の温度が低下してしまう。そのため、素材の重量にもよるが、例えば、40~60インチのタービンブレード用の場合では7~10回の再加熱を行わないといけなくなる。タービンブレードの大型化が進むと、再加熱の回数は更に増加してしまう。
 この課題に対しては、ラジアル鍛造機を用いてせぎりを行うことができれば、非常に有効となるが、通常、ラジアル鍛造機は金敷と呼ばれる、押圧部が平坦な金型を使用しているため、従来の金敷を用いたラジアル鍛造機ではせぎりを行うことは不可能であった。
 本発明は、これを可能とするもので、最大の特徴は、ラジアル鍛造機を用いて大型のタービンブレード用の荒地成形にも適用な、従来にない形状にある。以下に本発明で用いる熱間鍛造用金型について説明する。
 図1は本発明の熱間鍛造用金型1の側面模式図と熱間鍛造用金型1の仕上げ加工部断面図(A-A断面図)、粗加工面断面図(C-C断面図)及び前記仕上げ加工部と粗加工部の間に位置する断面図(B-B断面図)である。なお、本発明では、対向する2方向から押圧するラジアル鍛造機を用いるものである。図1では、C-C断面図で示す位置からB-B断面図で示す位置までは、断面図で示す半割状押圧部の曲率半径が徐々に広がって行き、B-B断面図からA-A断面図で示す位置(底部)までの曲率半径はほぼ同じとしている。なお、本発明で言う「仕上げ加工部」とは、前記のA-A断面図で示す位置(底部)を含んで、同じ曲率半径を有する場所を仕上げ加工部とする。
 図1に示す熱間鍛造用金型1は2つで一対となり、例えば、図4に示すように熱間鍛造用金型1が鍛造素材21を挟み込むように対向配置され、且つ、一対の2つの熱間鍛造用金型1が共働してせぎりを行う。具体的には、図1で示す熱間鍛造用金型が2つ1組(一対)となって、鍛造素材(図1では図示せず)を挟み込む半割状押圧部2を有しており、この半割状押圧部で鍛造素材を挟み込むように押圧する。ラジアル鍛造機に備えられた把持機構により、鍛造素材は把持されると共に鍛造素材の間欠的な回転が行われることになる。
 各半割状押圧部2は図1の側面模式図に示すように、前記鍛造素材を取り囲むように連続した、断面が略半円状の凸形状をなす。半割状とすることで共働する2つの熱間鍛造用金型の押圧部に鍛造素材を挟み込むものである。また、「鍛造素材を取り囲むように連続した」とは、図4に示すように鍛造素材21の周囲を粗加工部、仕上げ加工部で取り囲むような形状を言う。半割状押圧部2は平坦面を凹状に形成したように形成されており、その押圧部は側面(図1の側面模式図)から見ると円弧状に見える。そして、半割状押圧部2は、仕上げ加工部4と粗加工部3とを有している。仕上げ加工部4は凹状(円弧状)の底部辺りに形成されており、粗加工部3は、その仕上げ加工部の両側(凹状(円弧状)の両端側)に形成されている。そして、仕上げ加工部4の底部から両方の粗加工部3の端部に向かって粗加工部同士の間隔が広がって行き、2つの熱間鍛造用金型が鍛造素材を押圧したときに鍛造素材を連続した、略半円状の凸形状で押圧可能な形状となっている。この形状を有する熱間鍛造用金型1で鍛造素材を熱間鍛造すると、熱間鍛造用金型に形成された凸形状の粗加工部から鍛造素材に接触していき、せぎりに必要な溝を順次形成することができる。そのため、本発明で言う「断面が略半円状の凸形状」とは、上記の各断面図方向からみたときの形状を指す。つまり、鍛造素材の長手方向に垂直な方向から見たときの断面である。
 また、前記各半割状押圧部2は、粗加工部3と、該粗加工部よりも曲率半径が大きい凸形状の仕上げ加工部4とを有する。これは、鍛造素材が粗加工部から鍛造を開始するときに、難加工性の鍛造素材であっても所定の深さの溝が形成可能なように、鍛造の初期段階では接触面積を少なくして効率よく溝加工が行えるようにしたものである。そして、鍛造が進んで行くと、次第に仕上げ加工部に向かって順次押圧されて行き、溝の幅を広げると共に、せぎりの形状を整えていく。もっとも、仕上げ加工部での熱間鍛造であっても、せぎりの深さに到達しない場合も考えられるため、仕上げ加工部も断面が略半円状の押圧部を形成して、できる限り接触面積を小さくすることで効率よくせぎり形状を整えるものである。
 つまり、本発明では、最初に曲率半径の小さな粗加工部3で効率よく溝加工を行い、その後、粗加工部3の曲率半径よりも大きい曲率半径を有する仕上げ加工部4で最終形状に効率よく成形していくものである。そのため、粗加工部3に形成された略半円状の押圧部から次第に曲率半径を大きくしていき仕上げ加工部4では粗加工部よりも曲率半径が大きい凸形状の仕上げ加工部に徐変する徐変部を形成することになる。
 なお、実際の押圧部は、例えば肉盛溶接などで略半円状の凸部を形成したり、その後に手作業で形状を機械加工したりする場合もあるため、必ずしも同一曲率半径の凸部が形成されない場合がある。そのため、本発明でいう「略半円状」とは、肉盛溶接や機械加工による誤差を含み、曲率を持った凸状のものであれば良く、その曲率はおおよその形状から求めれば良い。また、鍛造素材を押圧する部分が曲率を持った凸状であればよく、その押圧する部分の曲率を本発明に従って構成すればよい。
 本発明の仕上げ加工部4の略半円状の凸形状の曲率半径は、粗加工部3の略半円状の凸形状の曲率半径よりも10mm以上大きいことが好ましい。これは、本発明の鍛造素材が大型のタービンブレード用の荒地となるものであり、粗加工部と仕上げ加工部の接触面積を広げておく方が、大型(長尺)のタービンブレード用荒地として好適になるためである。また、別な理由として、仕上げ加工部の略半円状の凸形状の曲率半径が大きいと幅の広い加工溝の形成が容易となる。せぎりの鍛造後に行う鍛造素材の伸長を行う鍛造時にせぎりを行った場所のかぶり疵防止のために、せぎりで形成する加工溝の幅を広げておく方が望ましいためである。何れも、仕上げ加工部と粗加工部との曲率半径の差が10mm未満では、十分にその効果が得られない場合があるため、仕上げ加工部4の略半円状の凸形状の曲率半径は、粗加工部の略半円状の凸形状の曲率半径よりも10mm以上大きいものとする。好ましくは15mm以上の差をもって形成するのが好ましい。
 上述したように、本発明の熱間鍛造用金型1はせぎり加工用に好適である。なお、図2に示すようにせぎり加工用の半割状押圧部2を鍛造素材の長手方向に複数個形成しても良い。これは、例えば、2ヶ所同時にせぎりによる加工溝を形成する場合、1つの金型に複数個のせぎり加工用の半割状押圧部2を形成しておく方が、生産性向上に有利であるからである。特に、タービンブレードに用いられる合金の材質は難加工性材であることから、熱間鍛造が可能な温度域内でできるだけ短時間で鍛造を終了させることが好ましいためである。この複数個所への同時せぎり加工は、タービンブレードの翼部に設けられるボス部となる部分に対して用いるのが有効である。
 なお、この複数個所同時せぎり鍛造が可能となるのも、本発明の熱間鍛造用金型に形成する押圧部の接触面積が、小さな面積から次第に大きな面積となるようにして、それをラジアル鍛造機と組み合せて初めて実現できたものである。
 この図2に示す構造の熱間鍛造用金型においても、E-E断面図で示す位置(底部)を含んで、同じ曲率半径を有する場所(F-F断面図の位置からE-E断面図の位置まで)を仕上げ加工部とする。
 なお、せぎり鍛造終了後には鍛造素材を伸長して所定の荒地形状とする。その場合に用いる熱間鍛造用金型11には鍛造素材を伸長する伸長部7を備えている。前記の伸長部7に設ける鍛伸用押圧部には、図3に示すように押圧部が平坦状(鍛造素材2の長手方向に沿って平坦状であり、鍛造素材2を挟み込むように曲がっている)に形成されている。鍛伸用の伸長部7は、鍛造素材を挟み込むための一対の半割状押圧部12を有し、各半割状押圧部12は鍛造素材を取り囲むように連続した凸形状をなし、各半割状押圧部12は、略平坦状の粗加工部13と、仕上げ加工部14とを有するものである。基本的な構成は前記のせぎり加工に適した熱間鍛造用金型と同じであり、図3に示す鍛伸用の熱間鍛造用金型11も2つで1組(一対)となる。鍛造素材の鍛伸は、1組の鍛伸用の熱間鍛造用金型11が共働して鍛造素材(図示せず)の直径を細くするように、ラジアル鍛造機に備えられた把持機構により鍛造素材は把持されると共に、鍛造素材の回転が行われることになる。また、この鍛造素材の回転と共に、把持された鍛造素材はその長手方向に移動して行き、鍛造素材の長手方向も伸長させる。
 なお、この鍛伸用の熱間鍛造用金型の平坦状の押圧部も、鍛造の初期段階では接触部積を少なくして効率よく鍛伸して行き、その後、所定の形状に整えることが容易なように、粗加工部13に形成された略平坦状の押圧部の面幅を狭くしておき、前記仕上げ加工部14に形成された押圧部の面幅は前記粗加工部13よりも広くするのが好ましい。
 前記のように、鍛伸用の熱間鍛造用金型11は、鍛造素材を長手方向に伸長しつつ、形状を整えるものであるため、その押圧部は平坦状となる。この平坦状の押圧部の幅(鍛造素材の長手方向における幅)を過度に広げると鍛造に要する圧力が大きくなってしまうことがある。そのため、1度の打撃で効率よく鍛伸できるように平坦状の押圧部の幅は接触面積を考慮し、鍛造機に適した幅を選択することが好ましい。
 次に、一例として、本発明の熱間鍛造用金型を用いて50インチのタービンブレード用の荒地の熱間鍛造方法について説明する。
 図4はラジアル鍛造機の一例を示す模式図である。ラジアル鍛造機には図1で示す熱間鍛造用金型1が取り付けられている。熱間鍛造用金型1は、鍛造素材21を挟み込むために鍛造素材の対面にそれぞれ1つずつ設けられている。図4では既に鍛造素材21がラジアル鍛造機に把持されているが、鍛造素材は加熱炉(図示せず)にて所定の熱間鍛造温度に加熱され、ラジアル鍛造機に取り付けられたものである。
 加熱温度は鍛造素材の材質によって異なり、例えば、Ni基超耐熱合金であれば950~1150℃であり、Ti合金であれば800~1000℃である。この他、析出強化型ステンレス鋼では900~1200℃である。また、鍛造素材の形状は棒状である。棒状の鍛造素材は、鍛造装置やプレス装置で所定の形状に整えたものであれば良く、もし、丸棒状であれば、その直径はせぎりが行える熱間鍛造用金型1の粗加工部同士の幅と同等程度であることが好ましい。
 そして、前述の鍛造素材のうち、所定の丸棒状鍛造素材をラジアル鍛造機に取り付けを行う。
 熱間鍛造は、加熱された鍛造素材21を回転させつつ、対向配置された2つの熱間鍛造用金型1を1組(一対)とし、前記各半割状押圧部で鍛造素材を押圧することにより、鍛造素材にせぎり加工を行う。せぎりを行う熱間鍛造用金型の形状は図1に示すものである。このせぎり加工時は、先ず熱間鍛造用金型1の粗加工部3から熱間鍛造が開始される。本発明の熱間鍛造用金型は、仕上げ加工部4から粗加工部3に向かって粗加工部同士の間隔が広がって行き、2つの熱間鍛造用金型が鍛造素材を押圧したときに鍛造素材を連続した、略半円状の凸形状で押圧可能な形状を有するものである。また、最初に行うせぎり加工は、鍛造素材はその場で回転する(鍛造素材の長手方向の移動は行わない)。
 このせぎり加工時の加工方法としては2通りの方法がある。1つ目の方法として、せぎり加工終了後の形状重視の方法から説明する。
 対向する2方向からの熱間鍛造が開始されると、図6(A)に示すように、先ず、粗加工部3から鍛造素材の所定の位置の押圧が開始される。粗加工時の鍛造素材21と熱間鍛造用金型の接触(鍛造)位置を矢印で示している。そうすると、対向する2方向からの熱間鍛造でありながら、鍛造初期は共働して鍛造する2つ熱間鍛造用金型に形成された粗加工部が押圧を開始することから、鍛造開始時に鍛造素材を押圧している箇所は4ヶ所である。この4ヶ所が同時にせぎり加工を開始すると、接触面積が小さいため効率よく溝加工を行っていく。そして、順次仕上げ加工部に向かって熱間鍛造を行い、一対の熱間鍛造用金型に形成された仕上げ加工部で所定の形状に整えられていくことになる。仕上げ加工の最終段階では、図6(B)で示すように、鍛造素材21を仕上げ加工部の底部で熱間鍛造を行うときは押圧箇所は2ヶ所である。つまり、せぎり加工の初期段階では一対の熱間鍛造用金型を用いて4ヶ所の鍛造(せぎり加工)を行い、最後の形状調整時は一対の熱間鍛造用金型を用いて2ヶ所の鍛造により、形状を整えることができる。また、粗加工部よりも曲率半径が大きい凸形状の仕上げ加工部4で最終形状に効率よく成形することができる。しかも、矢印で示した仕上げ加工部の底部の形状で最終的な形状に整えることか可能であるため、最終仕上げ形状を重視する場合には好都合である。
 もう一つの方法は、加工時間を短時間とする場合に適用する方法である。
 対向する2方向からの熱間鍛造が開始されると、図7(A)に示すように、先ず、粗加工部3から鍛造素材の所定の位置の押圧が開始される。粗加工時の鍛造素材21と熱間鍛造用金型の接触(鍛造)位置を矢印で示している。そうすると、対向する2方向からの熱間鍛造でありながら、鍛造初期は共働して鍛造する2つ熱間鍛造用金型に形成された粗加工部が押圧を開始することから、鍛造開始時に鍛造素材を押圧している箇所は4ヶ所である。この4ヶ所が同時にせぎり加工を開始すると、接触面積が小さいため効率よく溝加工を行っていく。そして、順次仕上げ加工部に向かって熱間鍛造を行い、一対の熱間鍛造用金型に形成された仕上げ加工部4で所定の形状に整えられていくことになる。
 前述のように、B-B断面図からA-A断面図で示す位置(底部)までの曲率半径はほぼ同じとしていることから、仕上げ加工部の底部まで使用する仕上げ加工は行わず、図7(B)に示すように、仕上げ加工時も押圧する箇所を4ヶ所として仕上げ加工を終了させる。この場合であっても、粗加工部よりも曲率半径が大きい凸形状の仕上げ加工部4で最終形状に効率よく成形することができ、且つ、押圧箇所を4ヶ所とすることで短時間でせぎり加工が行える。そのため、鍛造時間を短時間としたい場合には好都合である。
 なお、この鍛造時間重視の方法を用いる場合、仕上げ加工部の底部(A-A断面図で示す位置)の曲率半径(図7で示す鍛造素材の長手方向に垂直方向から見たときの曲率半径)をせぎり加工した後の直径の曲率半径よりも小さく小さくしすることが重要である。但し、仕上げ加工部の底部は曲面形状としておき、熱間鍛造時に過度な応力集中を避けるようにすると良い。
 前記のせぎり加工が終了すると、熱間鍛造用金型1を鍛伸用押圧部を有する熱間鍛造用金型11に交換する。この熱間鍛造用金型の交換時においては、鍛造素材を再度所定の鍛造温度に再加熱する。
 交換した熱間鍛造用金型11は、前記鍛造素材を伸長する鍛伸用押圧部を有する伸長部7が設けられている。鍛伸用押圧部は、図3に示す形状を有するものである。この鍛伸用押圧部を有する熱間鍛造用金型11の、鍛造素材の長手方向から見た押圧部の形状も、図6(A)に示す前記せぎり加工を行った熱間鍛造用金型1と同様であるため、対向する2方向からの熱間鍛造が開始されると、先ず、粗加工部13から鍛造素材の所定の位置の押圧が開始される。そうすると、対向する2方向からの熱間鍛造でありながら、鍛伸(鍛造)初期は共働して鍛造する2つ(一対)の熱間鍛造用金型に形成された粗加工部が押圧を開始することから、鍛造開始時に鍛造素材を押圧している箇所は4ヶ所である。この4ヶ所が同時に鍛伸を開始すると、接触面積が小さいため効率よく鍛造素材を伸長していく。そして、鍛造素材はラジアル鍛造機によって間欠回転しつつ鍛造素材の長手方向に順次移動されて、順次仕上げ加工部に向かって熱間鍛造を行い、一対の熱間鍛造用金型に形成された仕上げ加工部で所定の形状に整えられていくことになる。
 つまり、仕上げ加工の最終段階では、図6(B)で示すように、仕上げ加工部14で熱間鍛造を行うときは押圧箇所は2ヶ所である。この仕上げ加工部の底部の形状で最終的な形状に整える方法は、最終仕上げ形状を重視する場合には好都合である。
 また、この鍛伸用押圧部による熱間鍛造においても、熱間鍛造時間を短時間にするには図7のように、熱間鍛造初期から熱間鍛造の最終段階まで押圧箇所を4ヶ所とすることで短時間で鍛造素材を伸長することができる。
 また、前記の鍛伸用押圧部を有する熱間鍛造用金型において、図8に示す形状とすることができる。図8に示す熱間鍛造用金型11は、その仕上げ加工部14の幅(鍛造素材の長手方向における幅)内の底部から粗加工部に向かって凹部8が形成され、前記凹部8により、前記仕上げ加工部の押圧部が2ヶ所に分かれている。凹部は仕上げ加工部14の幅内に1つ以上形成し、仕上げ加工部の押圧部を2つ以上にすることで鍛伸時の鍛造用素材の曲りをより確実に防止することができる。図8に示す熱間鍛造用金型を用いて熱間鍛造していくと、A-A断面で示す仕上げ加工部の底部にて最終段階の鍛造が行える。鍛造用素材が押圧された瞬間においては、仕上げ加工部によって押圧されている部分と、その仕上げ加工部によって押圧されている部分に隣り合う部分は押圧されいない部分が生じている。押圧された部分の肉が押圧されていない部分に流れ、その肉が流れることにより、僅かであるが鍛造用素材の断面が楕円となることがある。楕円となった鍛造素材は鍛造中に曲りを生じやすくなる。しかし、図8の熱間鍛造用金型の構造によれば、凹部によって押圧部(仕上げ加工部)が分けられていることから、最初に押圧した場所がラジアル鍛造によって鍛造素材が間欠的に回転して、次の押圧部によって仕上げ鍛造される。このとき、図8の構造では、合計4ヶ所で押圧されているため、上述のとおり次の押圧部によって楕円を矯正しつつ曲りも矯正できるものである。なお、凹部の形成箇所は仕上げ加工部の底部(図8のA-Aで示す直線が接している箇所)を含むように形成することで曲り防止の効果を最大限発揮できる。
 このようにして、せぎりから鍛伸へと同じラジアル鍛造機を用いて連続して鍛造素材を所定の荒地形状に熱間鍛造が行えるため、従来のようにせぎり用の治具を用いた後に、別な鍛造機であらためて鍛伸を行うと言った、煩雑な工程を省略できる。そのため、再加熱回数を低減できるにもかかわらず、精度の高いタービンブレード用の荒地を製造することが可能となる。
 本発明によれば、タービンブレードに使用される難加工性材であっても、ラジアル鍛造機を用いて容易にせぎりを行うことができる。また、前例のないラジアル鍛造機を用いた熱間鍛造方法によれば、鍛造材の再加熱の回数を飛躍的に低減させることができ、生産性を向上させ、省エネルギーにも極めて有効となる。
 (実施例1)
 図2に示す本発明の熱間鍛造用金型1を用意した。
 用意したせぎり加工用の熱間鍛造用金型1のせぎり部5は、前記鍛造素材を挟み込むための一対の半割状押圧部を有し、前記各半割状押圧部は前記鍛造素材を取り囲むように連続した、断部が略半円状の凸形状をなし、前記各半割状押圧部は、粗加工部と、該粗加工部よりも曲率半径が大きい凸形状の仕上げ加工部とを有するものである。粗加工部13の略半円状の凸形状の曲率半径は30mmとし、仕上げ加工部14の略半円状の凸形状の曲率半径は50mmに徐変するものであった。
 また、せぎり加工後に鍛造素材を伸長する熱間鍛造用金型11の伸長部7に設けられた鍛伸用押圧部は、押圧部が平坦状に形成されたものであり、その形状は図3に示すものである。鍛伸用の伸長部7は、鍛造素材を挟み込むための一対の半割状押圧部12を有し、各半割状押圧部12は鍛造素材を取り囲むように連続した凸形状をなし、各半割状押圧部12は、略平坦状の粗加工部13と、仕上げ加工部14とを有するものである。鍛伸用押圧部の幅は粗加工部13を50mmとし、仕上げ加工部14を100mmに除変するものであり、最終形状を重視した形状を有する熱間鍛造用金型を用いて行った。
 上記の熱間鍛造用金型を2つ1組で一対としてラジアル鍛造機に取り付けて熱間鍛造の準備を行った。
 50インチタービンブレード用の鍛造素材を950℃に加熱された加熱炉で加熱を行った。鍛造素材はチタン合金であり、その寸法は直径がφ200mm、長さが1100mmであった。
 鍛造素材を加熱炉から取り出して、ラジアル鍛造機で熱間鍛造を開始した。なお、鍛造素材は、マニプレータで把持して操作した。
 熱間鍛造は、まず、加熱された鍛造素材21を回転させつつ、対向配置された2つの熱間鍛造用金型1の前記各半割状押圧部で鍛造素材を押圧することにより、鍛造素材にせぎり加工を行った。最初に行うせぎり加工は、鍛造素材はその場で回転(鍛造素材の長手方向の移動は行わない)しつつ、所定の形状に熱間鍛造した。図2に示すように1つの金型に複数個のせぎり加工用の半割状押圧部2を形成された金型を使用し、2ヶ所同時にせぎりを行った。
 前記のせぎり加工の終了後、鍛伸用押圧部を有する熱間鍛造用金型11に交換した。このとき、鍛造素材はラジアル鍛造機から取り外して、再度所定の鍛造温度に再加熱行った。鍛伸用押圧部を有する熱間鍛造用金型11に交換終了後に再度鍛造素材をラジアル鍛造機に取り付けて鍛伸用押圧部による熱間鍛造を行った。鍛造素材はラジアル鍛造機によって間欠回転しつつ長手方向に順次移動されて、所定の形状に整えて荒地形状に熱間鍛造した。熱間鍛造後の荒地22は、根部、翼部、ボス部の成形に好適な図7に示すような形状であった。熱間鍛造後の荒地には、特にかぶり疵等の問題も発生しなかった。
 (実施例2)
 実施例2として、図8の熱間鍛造用金型の効果を確認した。用いたせぎり用の熱間鍛造用金型は前記の実施例1と同じである。
 実施例2として、図8の熱間鍛造用金型11の効果を確認した。図8に示す熱間鍛造用金型は、鍛伸用の伸長部7は、鍛造素材を挟み込むための一対の半割状押圧部12を有し、各半割状押圧部12は鍛造素材を取り囲むように連続した凸形状をなし、各半割状押圧部12は、略平坦状の粗加工部13と、仕上げ加工部14とを有するものである。鍛伸用押圧部の幅は粗加工部13を50mmとし、仕上げ加工部14を100mmに除変するものであり、その仕上げ加工部の中央に幅が80mmの凹部を形成し、仕上げ加工部の押圧部を2つにしたものである。なお、2つに分けた押圧部の幅はそれぞれ270mmであった。また、用いたせぎり用の熱間鍛造用金型は前述の実施例1と同じである。
 50インチタービンブレード用の鍛造素材を950℃に加熱された加熱炉で加熱を行った。鍛造素材はチタン合金であり、その寸法は直径がφ200mm、長さが1100mmであった。
 鍛造素材を加熱炉から取り出して、ラジアル鍛造機で熱間鍛造を開始した。なお、鍛造素材は、マニプレータで把持して操作した。
 熱間鍛造は、まず、加熱された鍛造素材21を回転させつつ、対向配置された2つの熱間鍛造用金型1の前記各半割状押圧部で鍛造素材を押圧することにより、鍛造素材にせぎり加工を行った。最初に行うせぎり加工は、鍛造素材はその場で回転(鍛造素材の長手方向の移動は行わない)しつつ、所定の形状に熱間鍛造した。図3に示すように1つの金型に複数個のせぎり加工用の半割状押圧部12を形成された金型を使用し、2ヶ所同時にせぎりを行った。
 前記のせぎり加工の終了後、鍛伸用押圧部を有する図3の熱間鍛造用金型11に交換した。このとき、鍛造素材はラジアル鍛造機から取り外して、再度所定の鍛造温度に再加熱行った。鍛伸用押圧部を有する熱間鍛造用金型11に交換終了後に再度鍛造素材をラジアル鍛造機に取り付けて鍛伸用押圧部による熱間鍛造を行った。鍛造素材はラジアル鍛造機によって間欠回転しつつ長手方向に順次移動されて、所定の形状に整えて荒地形状に熱間鍛造した。最後に、図8に示す熱間鍛造用金型11に交換して鍛造用素材に対して10パスのラジアル鍛造による仕上げ加工を行った。熱間鍛造後の荒地22は、根部、翼部、ボス部の成形に好適な図5に示すような形状であった。熱間鍛造後の荒地には、特にかぶり疵等の問題も発生しなかった。全長が約1500mmの荒地の曲りについては実施例1で得られた荒地と比較して、約5mm程度の曲りの抑制が確認された。
 本発明の製造方法により、タービンブレード等に使用される難加工性材であっても、ラジアル鍛造機を用いて容易に鍛伸することが可能であった。また、せぎり加工をラジアル鍛造機を用いて所定の荒地形状に熱間鍛造が行えるため、従来のようにせぎり用の治具を用いるといった、煩雑な工程を省略できた。そのため、再加熱回数を低減できるにもかかわらず、精度の高いタービンブレード用の荒地を製造することが可能となった。
1 熱間鍛造用金型
2 半割状押圧部
3 粗加工部
4 仕上げ加工部
5 せぎり部
7 伸長部
8 凹部
11 熱間鍛造用金型(鍛伸用)
12 半割状押圧部(鍛伸用)
13 粗加工部(鍛伸用)
14 仕上げ加工部(鍛伸用)
21 鍛造素材
22 荒地
31 熱間鍛造用金型

 

Claims (8)

  1.  棒状の鍛造素材をラジアル鍛造により熱間鍛造するための熱間鍛造用金型であって、
     前記熱間鍛造用金型は、前記鍛造素材を挟み込むための一対の半割状押圧部を有し、
     前記各半割状押圧部は、前記鍛造素材を取り囲むように連続した、断面が略半円状の凸形状をなし、
     前記各半割状押圧部は、粗加工部と、該粗加工部よりも曲率半径が大きい凸形状の仕上げ加工部とを有することを特徴とする熱間鍛造用金型。
  2.  前記各半割状押圧部は、粗加工部から仕上げ加工部に向かって、前記半割状押圧部の曲率半径が徐々に大きくなる徐変部を有することを特徴とする請求項1に記載の熱間鍛造用金型。
  3.  前記仕上げ加工部の略半円状の凸形状の曲率半径は、前記粗加工部の略半円状の凸形状の曲率半径よりも10mm以上大きいことを特徴とする請求項1または2に記載の熱間鍛造用金型。
  4.  前記各半割状押圧部は、せぎり加工用であることを特徴とする請求項1乃至3の何れかに記載の熱間鍛造用金型。
  5.  前記せぎり加工用の押圧部が、前記鍛造素材の長手方向に複数個形成されていることを特徴とする請求項4に記載の熱間鍛造用金型。
  6.  棒状の鍛造素材をラジアル鍛造により熱間鍛造する熱間鍛造方法であって、
     前記熱間鍛造に用いる金型は、前記鍛造素材を挟み込むための一対の半割状押圧部を有し、
     前記各半割状押圧部は前記鍛造素材を取り囲むように連続した、断面が略半円状の凸形状をなし、
     前記各半割状押圧部は、粗加工部と、該粗加工部よりも曲率半径が大きい凸形状の仕上げ加工部とを有し、
     前記鍛造素材を熱間鍛造温度に加熱する鍛造素材加熱工程と、
     前記加熱された鍛造素材を回転させつつ、対向配置された2つの前記熱間鍛造用金型の前記各半割状押圧部で鍛造素材を押圧することにより、鍛造素材にせぎりを行う熱間鍛造工程、
    を含むことを特徴とする熱間鍛造方法。
  7.  前記棒状の鍛造素材がNi基超耐熱合金またはTi合金であることを特徴とする請求項6に記載の熱間鍛造方法。
  8.  前記熱間鍛造材が、タービンブレード用の荒地であることを特徴とする請求項6または7に記載の熱間鍛造方法。

     
PCT/JP2016/060732 2015-04-06 2016-03-31 熱間鍛造用金型及び熱間鍛造方法 WO2016163307A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16776474.5A EP3281719B1 (en) 2015-04-06 2016-03-31 Hot forging die and hot forging method
JP2016575697A JP6108258B2 (ja) 2015-04-06 2016-03-31 熱間鍛造用金型及び熱間鍛造方法
ES16776474T ES2835953T3 (es) 2015-04-06 2016-03-31 Matriz de forjado en caliente y procedimiento de forjado en caliente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015077337 2015-04-06
JP2015-077337 2015-04-06

Publications (1)

Publication Number Publication Date
WO2016163307A1 true WO2016163307A1 (ja) 2016-10-13

Family

ID=57072486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060732 WO2016163307A1 (ja) 2015-04-06 2016-03-31 熱間鍛造用金型及び熱間鍛造方法

Country Status (4)

Country Link
EP (1) EP3281719B1 (ja)
JP (1) JP6108258B2 (ja)
ES (1) ES2835953T3 (ja)
WO (1) WO2016163307A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535056A (en) * 1976-07-05 1978-01-18 Kobe Steel Ltd Method of forming shaft blank with flange* back cutting jig used therefor and device for forming same
JPS55136535A (en) * 1979-04-10 1980-10-24 Sumitomo Metal Ind Ltd Roughening method in die forging
JPS561236A (en) * 1979-06-18 1981-01-08 Nippon Steel Corp Production of rough shape billet by forging
JPH07185725A (ja) * 1993-12-28 1995-07-25 Daido Steel Co Ltd ロールとその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US611574A (en) * 1898-09-27 Die fob and method of swaging metallic balls
AT320383B (de) * 1973-05-17 1975-02-10 Gfm Fertigungstechnik Werkzeug für Durchlaufschmiedemaschinen
JPS60250843A (ja) * 1984-05-28 1985-12-11 Daido Steel Co Ltd 背切り加工用の刃
JP3208818B2 (ja) * 1992-02-28 2001-09-17 石川島播磨重工業株式会社 プレス用金型およびプレス方法
RU2220020C1 (ru) * 2002-04-04 2003-12-27 Открытое акционерное общество "Чепецкий механический завод" Способ изготовления поковок преимущественно из металлов и сплавов подгруппы титана и ковочный комплекс для его осуществления
PL2149411T3 (pl) * 2008-07-29 2012-02-29 Magna Powertrain Ag & Co Kg Młotek do kucia na kowarce

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535056A (en) * 1976-07-05 1978-01-18 Kobe Steel Ltd Method of forming shaft blank with flange* back cutting jig used therefor and device for forming same
JPS55136535A (en) * 1979-04-10 1980-10-24 Sumitomo Metal Ind Ltd Roughening method in die forging
JPS561236A (en) * 1979-06-18 1981-01-08 Nippon Steel Corp Production of rough shape billet by forging
JPH07185725A (ja) * 1993-12-28 1995-07-25 Daido Steel Co Ltd ロールとその製造方法

Also Published As

Publication number Publication date
JP6108258B2 (ja) 2017-04-05
EP3281719A1 (en) 2018-02-14
EP3281719B1 (en) 2020-09-23
EP3281719A4 (en) 2018-12-19
JPWO2016163307A1 (ja) 2017-04-27
ES2835953T3 (es) 2021-06-23

Similar Documents

Publication Publication Date Title
JP6774625B2 (ja) 熱間鍛造用金型及び熱間鍛造方法
CN105458631B (zh) 轮圈的制作方法及轮圈制作用轧辊组
JP6541024B2 (ja) 熱間鍛造用金型及び熱間鍛造方法
JP6108259B2 (ja) 熱間鍛造用金型及び熱間鍛造方法
JP6108258B2 (ja) 熱間鍛造用金型及び熱間鍛造方法
CN205324588U (zh) 一种斗齿的剖分式锻造模具
TWI647048B (zh) 扳手工具成型方法
RU2380209C1 (ru) Способ изготовления полой лопатки
US2972181A (en) Process for making turbine blades
JP6761579B2 (ja) 熱間鍛造用金型及び熱間鍛造方法
CN113399609B (zh) 一种轴-盘-叉形传力关键件热近成形控制方法
JP6761576B2 (ja) 曲り取り用金型及び曲り取り方法並びにタービンブレード用荒地の製造方法
CN105458136B (zh) 一种斗齿的剖分式锻造方法及其模具
RU2381083C1 (ru) Способ изготовления лопаточных заготовок
JP2018051617A (ja) 熱間鍛造方法
JP6032620B2 (ja) 可変容量タービン機構におけるレバープレートの製造方法
JP6206739B2 (ja) タービンブレードの製造方法
DK2937159T3 (en) Process for making a wrench
RU2252835C1 (ru) Способ изготовления заготовки лопатки газотурбинного двигателя
US2593139A (en) Plowshare manufacture
CN112719177B (zh) 一种非对称结构ta19合金机匣锻件的锻造工艺方法
RU2366530C1 (ru) Способ изготовления полой лопатки
US2151258A (en) Nut and like machine element and method of making
SU1162541A1 (ru) Способ получени деталей,преимущественно выт нутой формы
RU150113U1 (ru) Устройство для изготовления режущих инструментов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776474

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016575697

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE