EP0880674B1 - Systeme de mesure point par point de coordonnees spatiales - Google Patents

Systeme de mesure point par point de coordonnees spatiales Download PDF

Info

Publication number
EP0880674B1
EP0880674B1 EP96935602A EP96935602A EP0880674B1 EP 0880674 B1 EP0880674 B1 EP 0880674B1 EP 96935602 A EP96935602 A EP 96935602A EP 96935602 A EP96935602 A EP 96935602A EP 0880674 B1 EP0880674 B1 EP 0880674B1
Authority
EP
European Patent Office
Prior art keywords
camera
point
laser
rangefinder
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96935602A
Other languages
German (de)
English (en)
Other versions
EP0880674A1 (fr
Inventor
Alf Pettersen
Yvind R Tvold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metronor Industrial AS
Original Assignee
Metronor AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19898655&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0880674(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Metronor AS filed Critical Metronor AS
Publication of EP0880674A1 publication Critical patent/EP0880674A1/fr
Application granted granted Critical
Publication of EP0880674B1 publication Critical patent/EP0880674B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • G01S5/163Determination of attitude

Definitions

  • the present application relates to a system for point-by-point measuring of spatial coordinates, as disclosed in the preamble of the attached claim 1.
  • Modern photogrammetry systems are based on video camera technique. These register the position of points in the form of active light sources, reflecting points or characteristics of the object to be measured (e.g., holes).
  • the points may be registered simultaneously by two or more cameras, or they can be imaged sequentially from a number of different camera positions.
  • the spatial position of the points is calculated using mathematical methods which include the automatic determination of the position and orientation of the cameras for each individual image, and also correction for the cameras' lens errors and other factors which produce a non-ideal image.
  • the cameras may also be pre-calibrated, i.e., correction of the image points is based on a calibration table or other mathematical correction.
  • Metronor's system is based on pre-calibrated cameras.
  • the system is optimised in order to determine the position of active light sources.
  • a measuring tool known as a light pen is used to mark the points that are to be measured.
  • the light pen has a minimum of three light sources in known positions relative to its contact point. The coordinates of the contact point can be determined by simultaneously taking the image of the light sources.
  • Imetric and GSI offer systems where the cameras are not pre-calibrated, but are calibrated for each individual measuring operation.
  • the cameras register the position of retroreflector targets. These are illuminated by flash lamps mounted on the cameras.
  • the companies have also developed touch tools similar to Metronor's light pen, where the active light sources are replaced by retroreflector targets.
  • the photogrammetry systems determine directions in space through imaging (projection). The accuracy depends on the quality of the camera, the nature of the points to be measured, and in particular on the geometrical factors. Geometrical factors which influence accuracy are position, density and distribution of measuring points, the number of cameras or images, and position and orientation of the cameras, and also whether the cameras' lens errors are pre-determined.
  • the chief disadvantage of photogrammetry systems is that a measuring point must be registrable by two cameras simultaneously or in sequence by locating a camera in at least two different positions.
  • Laser rangefinders based on interferometry are internationally known under the product name "Laser tracker".
  • a laser tracker consists of a laser, a mirror system for controlling the laser, a reflector unit, distance and direction sensors, and a computer.
  • the reflector unit also known as a "corner cube” or prism reflector, reflects light back parallel to the emitted beam.
  • the laser beam is steered so that it always strikes the reflector unit. This is accomplished in that the laser tracker contains a sensor which detects the striking point on the reflector unit.
  • a laser tracker registers both direction and distance, and hence three-dimensional coordinates of the measuring point.
  • the distance is determined by interferometry.
  • the direction is determined by registering the orientation of the mirrors. The distance measurement exhibits high accuracy, whereas the direction is often determined with less precision.
  • Leica and Chesapeake Lasers are among the companies producing laser trackers.
  • laser rangefinders are based on the modulation of emitted laser light, and the detection of the phase of the detected light. Fine resolution requires a high modulation frequency to be used. In order to avoid ambiguity when the reflecting point is moved more than one modulation period, several modulation frequencies are used, and the total phase gives the absolute distance. Thus, an absolute rangefinder is obtained.
  • Routine inspection of mechanical structures is often based on measuring a number of fixed control points. This applies, for example, to production fixtures in the aviation industry.
  • the control points may be made in the form of holes of a fixed diameter. Targets for photogrammetry, theodolite measuring or laser trackers are produced for these holes. Routine inspection of the structures involves the regular measurement of these points.
  • Figure 1 illustrates components which are included in a system based on a combination of camera and laser rangefinder.
  • Figure 2 illustrates a touch tool having five light sources and a reflecting point for the laser rangefinder.
  • Figure 3 illustrates a system based on one camera in combination with a laser rangefinder and touch tool.
  • Figure 4 illustrates a system based on two cameras in combination with a laser rangefinder and a touch tool.
  • Figure 5 illustrates a system based on one camera in combination with a laser rangefinder where the touch tool has reflecting points for registration of both camera and laser rangefinder.
  • Figure 6 illustrates an arrangement where one camera in combination with a laser rangefinder is used for measuring the position of a touch tool having reflecting points, and also isolated reflecting points. Both touch tool and isolated reflecting points are registered by both camera and laser rangefinder.
  • Figure 7 illustrates a principle for calibration of the geometric relation between position and orientation of camera and laser distance measurement.
  • Figure 8 illustrates an integrated camera and laser rangefinder system.
  • the term "reflecting point” is used with regard to units located to provide unambiguous registration by camera or laser rangefinder, in that the emitted light is reflected back to the sensor units.
  • This comprises so-called retroreflective targets or reflective tape produced for use with photogrammetry systems or theodolites, or so-called “corner cubes” used with laser rangefinders.
  • the term "light giving means” is used as a collective term comprising active light sources (emitters) such as light emitting diodes or laser diodes, and reflecting points.
  • laser rangefinder is used as a collective term for all types of systems based on a laser beam which is directed in towards a specific point in order to compute the distance to that point. This includes both laser interferometry techniques (laser trackers) and systems based on measuring the time difference from when a light pulse is emitted to when the reflected pulse is registered, or phase modulation/measurement or combinations of these techniques.
  • the function of the system will depend upon whether the laser rangefinder is absolute or relative. In a relative rangefinder (for example, based on interferometric principles) the laser beam must follow the reflecting point continuously without interruption. If the laser rangefinder also contains precise direction determination this will be used in the computation of position.
  • the complete system solution is shown in Figure 1 in the form of a block diagram.
  • the system contains a system console 1 containing a data processor 2, a laser rangefinder control unit 3, a camera control unit 4 and a light source control unit 5.
  • the system is operated from an operator terminal 6.
  • the system contains one or more cameras 7, 8. These may be equipped with flash lamps 9, 10.
  • the system contains a laser rangefinder unit 11 consisting of a laser and sensor unit 12 and mirror 13 for steering the laser beam 14 in the right direction.
  • the laser rangefinder will contain two mirrors mounted at right angles to one another, to enable the laser beam to be directed in towards any point in space. In the figure only one of these mirrors 13 is outlined.
  • the system may contain various tools for position determination: reference rod 15 for calibration, light sources 16 connected to a connection box 17 for marking reference points, touch tool 18, also known as a light pen, and reflecting point 19.
  • Figure 2 shows the touch tool 18 seen from in front (Fig. 2a) and seen from the side (Fig. 2b). It consists of a body 20 which is preferably produced in a temperature-resistant material in order to avoid temperature expansion, a plurality of light sources 21 - 25, activation switches 26, 27, reflecting point 28, tool adapter 29 and contact point 30. The minimum number of light sources is three. These are mounted in known coordinates relative to a local tool-fixed coordinate system.
  • the contact point 30 (reference point) can be in the form of a sphere or a tip. By virtue of the fact that the position of this point is also known relative to the local coordinate system, the position of the touch tool can be related to this point.
  • the contact point 30 lies on a straight line through both light sources.
  • the touch tool will primarily function as described in Swedish Patent No. 456 454, and will be capable of having replaceable tools as described in Norwegian Patent No. 169 799.
  • the design of the reflecting point will depend upon the type of laser rangefinder that is used. If the rangefinder requires the use of retrorflectors, e.g., corner cubes, this could be fixedly mounted, or could be a detachable unit which is fitted in an accompanying fixing mechanism on the touch tool.
  • Figure 3 shows the measuring principle when using one camera 7 in combination with a laser rangefinder 11.
  • the camera consists of a lens unit 33, and a two-dimensional array (matrix) 32 of photosensitive elements.
  • the lens unit is an objective having standard spherical optics, having a focal length substantially dictated by the required visual field.
  • the lens's optional anti-reflex coating or optical filter must be adapted to the spectral distribution in the light sources used.
  • the photosensitive elements are, for instance, of the CCD (Charge Coupled Device) or CID (Charge Injected Device) type.
  • CCD Charge Coupled Device
  • CID Charge Injected Device
  • the requirements with respect to high accuracy mean that matrices having maximum resolution will normally be used. If the speed of the system is of primary importance, matrices having fewer elements will be used. High accuracy can be ensured by using accurate calibration of the angle measuring device. This may for example be done as described in Norwegian Patent 165046.
  • the camera 7 registers a light source 21 in the form of the position of its image 35 on the sensor matrix 32.
  • the operator positions the touch tool 18 so that the contact point 30 touches the actual point to be registered.
  • the camera 7 registers the image of all light sources 21 - 25, and on the basis of the image the position and orientation of the touch tool is computed as described in Norwegian Patent No. 174 025.
  • the rangefinder 11 registers the distance to the reflecting point 28.
  • the laser beam 14 is directed in towards the reflecting point 28 by means of mirror 13 which is controlled by motor 31.
  • a single mirror 13 is indicated in the figure. In order to be able to direct the beam 14 in towards any point in space, there will be two mirrors. One of them controls the horizontal adjustment of the beam, and the other its vertical direction.
  • Laser and sensor unit 12 registers the distance to the reflecting point 28.
  • the registered image from the camera 7 is combined with the registered distance from the laser rangefinder 11 to the point 28, so that highest possible precision is obtained in the computed position of the contact point 30. If the laser rangefinder also registers the direction of the laser beam (as in commercially available laser trackers), the registered direction is also used in the computation. The computation is based on compensation of errors in the observations, so that all the observations are used and given importance on the basis of their accuracy. All computations are performed by the data processor 2.
  • the computation of the position and orientation of the touch tool 18 is based on the fact that the geometry, i.e., the relative position of the light sources 21 - 25, the reflecting point 28 and the contact point 30, is known.
  • the contact point 30 has a theoretical image point 36 on the sensor matrix 32.
  • the computed position is initially given relative to position and orientation of camera and rangefinder. By measuring a minimum of three points in known positions relative to a local coordinate system, all subsequent points can be given in this coordinate system.
  • An essential characteristic of the system is its ability to measure points which are not visible from the sensor system.
  • measuring systems based on cameras or laser distance measuring have a weakness in that points which are not visible cannot be measured.
  • a clear line of sight from the camera to the light sources 21 - 25 and from the laser rangefinder 11 to the reflecting point 28 is required.
  • a clear line of sight to the contact point 30 is not required.
  • the location of the contact point 30 relative to the other parts of the touch tool can be adapted to the geometry of the object which is to be measured.
  • the system solution can be optimised in various ways, for instance in order to increase its total measuring accuracy or to reduce the complexity of the system. In general, higher accuracy is achieved by increasing the number of cameras or number of laser rangefinders in the system.
  • the individual laser rangefinders can follow the same reflecting point 28, or the touch tool may be equipped with a plurality of reflecting points corresponding to the number of rangefinders in the system.
  • the camera and laser rangefinder units can work independent of one another with the exception of the final coordinate computation which takes into account the observations from both units.
  • Figure 4 illustrates a system based on two cameras 7, 8 in combination with one laser rangefinder 11 and touch tool 18. Greater precision of measurement is achieved with this system configuration, as the touch tool 18 is observed from two different directions.
  • the laser rangefinder 11 may be connected to one of the cameras 7, 8, or stand alone. Its position and orientation must be known relative to the cameras 7, 8, which can be done by the calibration procedure which is described below.
  • An alternative system solution may consist of one camera 7 and two laser rangefinders 11. If the touch tool has two reflecting points 28 mounted thereon, for example, at each end of the touch tool, the two laser rangefinders can each follow their respective reflecting point.
  • a considerable rationalisation gain is achieved if the active light sources are replaced with reflecting points. These can be illuminated by a flash lamp 9 which is mounted on the camera 7, thereby giving a sharp image on the camera's sensor matrix 32. One or more of these reflecting points can be used for registering distance.
  • one rangefinder can register distance to several reflecting points. This takes place in that the laser beam is directed sequentially in towards each individual point.
  • Figure 5 illustrates a system based on one camera in combination with a laser rangefinder, where the touch tool has reflecting points 28, 37 - 40 for registration by both camera and laser rangefinder.
  • a measurement consists of the camera's flash lamp 9 illuminating all reflecting points and the camera 7 registering their position.
  • the laser rangefinder 11 registers the distance to one reflecting point 28 or all reflecting points. Optionally several rangefinders can be used. Position and orientation of the touch tool is computed in the data processor 2.
  • Figure 6 shows how the system in addition to determining the position of the touch tool 18 can also determine spatial position of isolated reflecting points 19. This allows a rapid measurement to be made of fixed control points in the structure, whilst other points can be measured with the aid of the touch tool 18.
  • the procedure consists of the camera's flash lamp 9 illuminating all reflecting targets 19, and the camera thus registering the direction to these. On the basis of the registered directions the mirrors 13 in the laser rangefinder 11 are guided so that the distance to the reflecting points 19 is determined. Registration of the position of the touch tool 18 takes place in the same way as described above in relation to Figures 3 and 5.
  • Figure 7 illustrates a principle for calibration of the geometric relation between position and orientation of camera 7 and laser rangefinder 11, this means to say to determine position and orientation of the laser rangefinder 11 relative to the camera 7.
  • the calibration method consists of the simultaneous determination of position and orientation of the touch tool 18 by the camera 7 and the distance from the laser rangefinder 11 to the reflecting point 28, and that this is done for a number of randomly selected points. If the system consists of only one camera 7 arid one rangefinder 11, additional information in the form of known mutual coordinates or known distance between some of the measured points is necessary. If camera 7 and laser rangefinder 11 are permanently integrated, calibration can be a one-off procedure which is performed when the unit is produced.
  • the precision in position determination depends upon how accurately the camera and laser rangefinder can determine respectively direction and distance.
  • the accuracy of the camera depends upon whether it is calibrated so as to be able to correct for lens and sensor error.
  • Such calibration is well-known within photogrammetry technique.
  • the cameras may be factory-calibrated, as described for example in Norwegian Patent No. 165 046, or calibrated in a measuring operation.
  • Such calibration requires either the measuring of a plurality of points from different camera positions, or the photographing of a greater number of points in known mutual position from a minimum of one camera position.
  • the system and the methods described above are not dependent upon the calibration of the camera, if any.
  • the present invention provides the possibility of determining spatial coordinates for selected points with great precision and using simple measuring technique.
  • the weaknesses which encumber today's laser rangefinders are avoided , in particular:
  • the measuring technique will be particularly well-suited for use in the automotive and aviation industries.
  • the checking of production equipment for welding together car bodies is one example. High measurement accuracy and measurement rate are required, whilst the production lines are complex and obstruct the clear line-of-sight between measuring equipment and measuring point.

Claims (7)

  1. Système de mesure point-à-point de coordonnées spatiales, comportant
    - au moins une caméra optoélectronique (7, 8) disposée pour mesurer la direction spatiale dans laquelle se trouvent des sources lumineuses ponctuelles, et
    - un outil tactile (18) comportant un minimum de trois moyens lumineux (21-25) ponctuels qui possèdent des coordonnées locales connues par rapport à un système de coordonnées local fixé à l'outil, et un point de contact (30) qui se trouve dans une position connue par rapport audit système de coordonnées local,
    caractérisé en ce que :
    - un télémètre laser (11) est fourni pour mesurer la distance et, de façon optionnelle, la direction dans laquelle se trouvent des cibles réfléchissant la lumière (19, 28), ledit télémètre ayant en fonctionnement une relation de position spécifique à ladite caméra,
    - un ou plusieurs points cibles réfléchissant la lumière (28) pour ledit télémètre laser (11) est localisé sur l'outil tactile, et
    - un processeur de données (2) est conçu pour calculer la position et l'orientation spatiales dudit outil tactile (18) par rapport à ladite au moins une caméra (7, 8) et par rapport audit télémètre (11) sur la base de la connaissance de la position desdits moyens lumineux (21-25) par rapport au point de contact (30) de l'outil, des directions mesurées entre les caméras (7, 8) et les moyens lumineux (21-25) individuels et de la distance mesurée entre le télémètre laser (11) et le point/cible réfléchissant la lumière (28), de sorte que la position de l'outil (18) soit déterminée par rapport audit point de contact (30).
  2. Système selon la revendication 1, caractérisé en ce que
    - le processeur de données (2) est conçu, sur la base dudit calcul, pour modifier la direction du faisceau laser de manière à ce qu'il tombe sur ledit point/cible réfléchissant (28) pour déterminer la distance à laquelle il se trouve.
  3. Système selon la revendication 1 ou 2, caractérisé en ce que
    - les moyens lumineux de l'outil tactile (18) comprennent des cibles réfléchissant la lumière (28, 37-40) au nombre minimal de trois, et
    - au moins l'une des caméras (7, 8) comporte une lampe flash (9, 10) montée sur celle-ci pour éclairer les cibles réfléchissant la lumière (28, 37-40), et en ce que.
  4. Système selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend une seule caméra (7) qui est mécaniquement connectée avec ledit télémètre laser.
  5. Système de mesure point-à-point selon la revendication 1 ou 2, caractérisé en ce que :
    - il contient des moyens (5) pour ajuster le temps d'éclairage et l'intensité de chacun des moyens lumineux (21-25) de l'outil tactile sur la base du niveau de signal qui, à un instant donné quelconque, est détecté par les caméras (7, 8), de sorte qu'une relation signal/bruit optimale soit obtenue à tout instant.
  6. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que
    - la caméra (7, 8) et le télémètre laser (11) sont disposés pour déterminer la direction dans laquelle se trouvent des cibles réfléchissant la lumière (19) isolées, ainsi que leur distance, et
    - le processeur de données (2) est conçu pour orienter le faisceau laser (14) du télémètre (11) sur la base des directions dans lesquelles se trouvent les cibles (19, 28) telles qu'observées par les caméras (7, 8).
  7. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la caméra (7) et le télémètre laser (11) sont assemblés en une seule unité, ladite unité comprenant un miroir rotatif et des moyens pour diriger un trajet optique, de sorte que le trajet optique de vision de ladite caméra et le trajet optique du faisceau laser du télémètre laser sont le long d'un premier axe commun entre les moyens pour diriger un trajet optique et le miroir et le long d'un second axe commun entre le miroir et lesdites cibles.
EP96935602A 1995-10-12 1996-10-10 Systeme de mesure point par point de coordonnees spatiales Expired - Lifetime EP0880674B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO954056A NO301999B1 (no) 1995-10-12 1995-10-12 Kombinasjon av laser tracker og kamerabasert koordinatmåling
NO954056 1995-10-12
PCT/NO1996/000237 WO1997014015A1 (fr) 1995-10-12 1996-10-10 Systeme de mesure point par point de coordonnees spatiales

Publications (2)

Publication Number Publication Date
EP0880674A1 EP0880674A1 (fr) 1998-12-02
EP0880674B1 true EP0880674B1 (fr) 2002-02-27

Family

ID=19898655

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96935602A Expired - Lifetime EP0880674B1 (fr) 1995-10-12 1996-10-10 Systeme de mesure point par point de coordonnees spatiales

Country Status (7)

Country Link
US (2) US5973788A (fr)
EP (1) EP0880674B1 (fr)
JP (1) JPH11513495A (fr)
AU (1) AU7344796A (fr)
DE (2) DE69619558T2 (fr)
NO (1) NO301999B1 (fr)
WO (1) WO1997014015A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053837A1 (fr) * 2004-11-19 2006-05-26 Leica Geosystems Ag Procede pour determiner l'orientation d'un indicateur d'orientation
WO2006069748A1 (fr) * 2004-12-23 2006-07-06 Ife Industrielle Forschung Und Entwicklung Gmbh Dispositif de mesure d'un objet et procede pour utiliser un dispositif de ce type
DE102006003569A1 (de) * 2006-01-25 2007-07-26 Axios 3D Services Gmbh Positionsbestimmungssystem
DE102011107451B3 (de) * 2011-07-08 2012-08-23 Albert-Ludwigs-Universität Freiburg Verfahren und Vorrichtung zur Bestimmung der Position und Orientierung eines Körpers
EP2586396A1 (fr) 2011-10-26 2013-05-01 Metronor AS Système pour assurer la précision dans un traitement médical
WO2013068558A2 (fr) 2011-11-11 2013-05-16 Sgl Carbon Se Procédé de mesure de profils de surface lors de la finition de cellules d'électrolyse en aluminium
DE102018217219B4 (de) 2018-10-09 2022-01-13 Audi Ag Verfahren zum Ermitteln einer dreidimensionalen Position eines Objekts
EP4230837A1 (fr) 2022-02-18 2023-08-23 Sandvik Mining and Construction Lyon SAS Appareil de détection de position, véhicule minier et procédé

Families Citing this family (198)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO303595B1 (no) * 1996-07-22 1998-08-03 Metronor Asa System og fremgangsmÕte for bestemmelse av romlige koordinater
BE1011121A3 (nl) * 1997-04-21 1999-05-04 Krypton Electronic Eng Nv Inrichting en werkwijze voor het bepalen van de positie van een punt.
GB2329349A (en) * 1997-09-09 1999-03-24 Geodetic Technology Internatio Control of mechanical manipulators
US6301549B1 (en) * 1998-06-26 2001-10-09 Lucent Technologies, Inc. Three dimensional object boundary and motion determination device and method of operation thereof
JP2000097703A (ja) * 1998-09-21 2000-04-07 Topcon Corp 3次元測定方法と、これを利用した測量機
US7800758B1 (en) 1999-07-23 2010-09-21 Faro Laser Trackers, Llc Laser-based coordinate measuring device and laser-based method for measuring coordinates
DE50010673D1 (de) * 1999-04-19 2005-08-11 Leica Geosystems Ag Indirekte positionsbestimmung mit hilfe eines trackers
GB9915882D0 (en) * 1999-07-08 1999-09-08 British Aerospace Method and apparatus for calibrating positions of a plurality of first light sources on a first part
AU5800000A (en) 1999-07-28 2001-02-19 Leica Geosystems Ag Method and device for determining spatial positions and orientations
US6509962B1 (en) 2000-05-05 2003-01-21 Hunter Engineering Company Integrated circuit image sensor for wheel alignment systems
EP1285224A1 (fr) * 2000-05-16 2003-02-26 Steinbichler Optotechnik Gmbh Procede et dispositif pour determiner la forme en trois dimensions d'un objet
AU6008001A (en) * 2000-05-17 2001-11-26 Unisense Aps Measurement system and method for measuring angles and distances
US6605095B2 (en) 2000-06-13 2003-08-12 Sdgi Holdings, Inc. Percutaneous needle alignment system and associated method
US6560883B2 (en) * 2000-06-28 2003-05-13 Snap-On Technologies, Inc. Method and system for conducting wheel alignment
ATE391895T1 (de) * 2000-09-11 2008-04-15 Leica Geosystems Ag Verfahren zum identifizieren von messpunkten in einem optischen mess-system
KR100379948B1 (ko) * 2000-11-15 2003-04-16 이희만 3차원 형상 측정방법
CA2327894A1 (fr) * 2000-12-07 2002-06-07 Clearview Geophysics Inc. Methode et systeme pour numerisation complete d'objets et de surfaces 3d
US6594007B2 (en) 2001-02-01 2003-07-15 Snap-On Technologies, Inc. Method and apparatus for mapping system calibration
WO2002063240A1 (fr) * 2001-02-02 2002-08-15 Snap-On Technologies Inc Procede et dispositif d'etalonnage de systemes de mappage
BE1014137A6 (nl) * 2001-04-24 2003-05-06 Krypton Electronic Eng Nv Werkwijze en inrichting voor de verificatie en identificatie van een meetinrichting.
EP1466136B1 (fr) * 2002-01-16 2011-08-03 Faro Technologies, Inc. Dispositif et procede de mesure de coordonnees par laser
US20050233770A1 (en) * 2002-02-06 2005-10-20 Ramsey Craig C Wireless substrate-like sensor
US7289230B2 (en) * 2002-02-06 2007-10-30 Cyberoptics Semiconductors, Inc. Wireless substrate-like sensor
US20050224899A1 (en) * 2002-02-06 2005-10-13 Ramsey Craig C Wireless substrate-like sensor
EP1340998A1 (fr) * 2002-02-28 2003-09-03 Alignment International Limited Procédé et dispositif pour détecter l'orientation d'un objet
EP1340999A1 (fr) * 2002-02-28 2003-09-03 Alignment International Limited Procédé et dispositif pour détecter l'orientation d'un objet
DE10245970B4 (de) * 2002-09-30 2008-08-21 Siemens Ag Verfahren bzw. Vorrichtung zur Erkennung einer Last eines Hebezeuges
JP3624353B2 (ja) * 2002-11-14 2005-03-02 有限会社テクノドリーム二十一 3次元形状計測方法およびその装置
ATE494561T1 (de) * 2002-11-15 2011-01-15 Leica Geosystems Ag Verfahren und vorrichtung zur kalibrierung eines messsystems
EP1447644A1 (fr) * 2003-02-14 2004-08-18 Metronor ASA Mesure des coordonnées spatiales
DE10321749B4 (de) 2003-05-09 2018-05-30 Trimble Jena Gmbh Verfahren und Anordnung zur Bestimmung der räumlichen Lage und Position eines Reflektorstabes in Bezug zu einem Aufhaltepunkt
ITFI20030138A1 (it) * 2003-05-15 2004-11-16 Fabio Boni Attrezzatura per rilevare le differenze di carreggiata
US7131074B2 (en) * 2003-07-08 2006-10-31 International Business Machines Corporation Nested voltage island architecture
ATE305130T1 (de) * 2003-07-17 2005-10-15 Axios 3D Services Gmbh Lokator und optisches messsystem
DE10350861A1 (de) * 2003-10-31 2005-06-02 Steinbichler Optotechnik Gmbh Verfahren zur Kalibrierung eines 3D-Meßgerätes
DE10359415A1 (de) 2003-12-16 2005-07-14 Trimble Jena Gmbh Verfahren zur Kalibrierung eines Vermessungsgeräts
EP1792282B1 (fr) * 2004-08-30 2010-07-21 Commonwealth Scientific And Industrial Research Organisation Procédé d'imagerie tridimensionnelle
US7360703B2 (en) * 2004-09-23 2008-04-22 Ut-Battelle, Llc Laser scanning system for object monitoring
US7307737B1 (en) * 2004-10-08 2007-12-11 Snap-On Incorporated Three-dimensional (3D) measuring with multiple reference frames
JP5022571B2 (ja) * 2005-03-25 2012-09-12 ニチアス株式会社 ガスケット及びワッシャーの製造方法
JP5016245B2 (ja) * 2005-03-29 2012-09-05 ライカ・ゲオジステームス・アクチェンゲゼルシャフト 物体の六つの自由度を求めるための測定システム
US7372581B2 (en) * 2005-04-11 2008-05-13 Faro Technologies, Inc. Three-dimensional coordinate measuring device
US7375801B1 (en) 2005-04-13 2008-05-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Video sensor with range measurement capability
US7285793B2 (en) * 2005-07-15 2007-10-23 Verisurf Software, Inc. Coordinate tracking system, apparatus and method of use
US7380722B2 (en) * 2005-07-28 2008-06-03 Avago Technologies Ecbu Ip Pte Ltd Stabilized laser pointer
WO2007025398A1 (fr) * 2005-08-31 2007-03-08 Baumer Electric Ag Dispositif et procede de demodulation de phase dans un detecteur de distance optique
US8625854B2 (en) * 2005-09-09 2014-01-07 Industrial Research Limited 3D scene scanner and a position and orientation system
KR100695018B1 (ko) 2005-10-05 2007-03-14 (주)희송지오텍 수렴다중촬영 시스템
US20070153297A1 (en) * 2006-01-04 2007-07-05 Lau Kam C Photogrammetric Targets
US7893697B2 (en) 2006-02-21 2011-02-22 Cyberoptics Semiconductor, Inc. Capacitive distance sensing in semiconductor processing tools
US7804306B2 (en) 2006-02-21 2010-09-28 CyterOptics Semiconductor, Inc. Capacitive distance sensing in semiconductor processing tools
US7557936B2 (en) * 2006-04-12 2009-07-07 Toyota Motor Engineering & Manufacturing North America, Inc. Digitizer adapter
DE602007011045D1 (de) * 2006-04-20 2011-01-20 Faro Tech Inc Kamerabasierte vorrichtung zur zielmessung und zielverfolgung mit sechs freiheitsgraden
CN101427155B (zh) * 2006-04-21 2011-09-28 法罗技术股份有限公司 具有能够旋转的反射镜的基于摄影机的六自由度标靶测量和标靶跟踪设备
US7587258B2 (en) * 2006-05-10 2009-09-08 The Boeing Company Merged laser and photogrammetry measurement using precise camera placement
US7783376B2 (en) 2006-05-10 2010-08-24 The Boeing Company Photogrammetric contrasting light for hole recognition
US7454265B2 (en) 2006-05-10 2008-11-18 The Boeing Company Laser and Photogrammetry merged process
EP1857070A1 (fr) * 2006-05-18 2007-11-21 BrainLAB AG Enregistrement médical sans contact avec mesure de distance
US20070269098A1 (en) * 2006-05-19 2007-11-22 Marsh Bobby J Combination laser and photogrammetry target
JP4432943B2 (ja) * 2006-08-18 2010-03-17 セイコーエプソン株式会社 ライン位置算出方法及び補正値取得方法
US20080065348A1 (en) * 2006-09-11 2008-03-13 Dowd Joseph F Duct geometry measurement tool
US20080071559A1 (en) * 2006-09-19 2008-03-20 Juha Arrasvuori Augmented reality assisted shopping
JP5236652B2 (ja) * 2006-09-29 2013-07-17 サイバーオプティクス セミコンダクタ インコーポレイテッド 基板と一体化された粒子センサ
US7756321B2 (en) * 2007-02-28 2010-07-13 The Boeing Company Method for fitting part assemblies
US7778793B2 (en) * 2007-03-12 2010-08-17 Cyberoptics Semiconductor, Inc. Wireless sensor for semiconductor processing systems
US8055466B2 (en) * 2007-03-30 2011-11-08 Mitutoyo Corporation Global calibration for stereo vision probe
US20080243416A1 (en) * 2007-03-30 2008-10-02 Mitutoyo Corporation Global calibration for stereo vision probe
TWI326353B (en) * 2007-05-29 2010-06-21 Ind Tech Res Inst Anomaly detection system and method
US8224121B2 (en) * 2007-06-15 2012-07-17 The Boeing Company System and method for assembling substantially distortion-free images
US8005563B2 (en) 2007-10-26 2011-08-23 The Boeing Company System for assembling aircraft
US8733707B2 (en) * 2008-04-17 2014-05-27 The Boeing Company Line transfer system for airplane
US7773201B1 (en) 2007-12-04 2010-08-10 Itt Manufacturing Enterprises, Inc. Alignment of optical system components using an ADM beam through a null assembly
DE102008027976A1 (de) 2008-06-12 2009-12-31 Steinbichler Optotechnik Gmbh Verfahren und Vorrichtung zur Ermittlung der Lage eines Sensors
EP2157401A1 (fr) * 2008-08-18 2010-02-24 Holding Prodim Systems B.V. Appareil et procédé de mesure des coordonnées spatiales
DE102008048776B4 (de) * 2008-09-24 2020-12-17 E. Zoller GmbH & Co. KG Einstell- und Messgeräte Mess- und/oder Einstellgerät mit einer Messvorrichtung und mit einer Steuer- und/oder Programmiervorrichtung zur Simulation eines Messablaufs
DE112009003495T5 (de) 2008-11-17 2013-01-10 Faro Technologies, Inc. Vorrichtung und Verfahren zum Messen von sechs Freiheitsgraden
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
DE102009015920B4 (de) 2009-03-25 2014-11-20 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
GB0907394D0 (en) * 2009-04-30 2009-06-10 Antonis Jan An optical probe
DE102009032262A1 (de) * 2009-07-08 2011-01-13 Steinbichler Optotechnik Gmbh Verfahren zur Bestimmung der 3D-Koordinaten eines Objekts
DE102009040863A1 (de) * 2009-09-10 2011-03-24 Carl Zeiss Ag Vorrichtung, Verfahren und Reflektoranordnung zur Positionsbestimmung
US8379224B1 (en) * 2009-09-18 2013-02-19 The Boeing Company Prismatic alignment artifact
DE102009042702A1 (de) * 2009-09-23 2011-03-31 Carl Zeiss Ag Verfahren und Vorrichtung zur Bestimmung von Orientierung und Position eines Punktes einer Mehrachskinematik
US8352212B2 (en) 2009-11-18 2013-01-08 Hexagon Metrology, Inc. Manipulable aid for dimensional metrology
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
DE102009057101A1 (de) 2009-11-20 2011-05-26 Faro Technologies, Inc., Lake Mary Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US8630314B2 (en) * 2010-01-11 2014-01-14 Faro Technologies, Inc. Method and apparatus for synchronizing measurements taken by multiple metrology devices
US9879976B2 (en) 2010-01-20 2018-01-30 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
JP5763680B2 (ja) * 2010-01-20 2015-08-12 ファロ テクノロジーズ インコーポレーテッド 可搬型の関節アーム座標測定機および統合された電子データ処理システム
US8677643B2 (en) 2010-01-20 2014-03-25 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US8832954B2 (en) 2010-01-20 2014-09-16 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8638446B2 (en) 2010-01-20 2014-01-28 Faro Technologies, Inc. Laser scanner or laser tracker having a projector
US8875409B2 (en) 2010-01-20 2014-11-04 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8615893B2 (en) 2010-01-20 2013-12-31 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine having integrated software controls
US8898919B2 (en) 2010-01-20 2014-12-02 Faro Technologies, Inc. Coordinate measurement machine with distance meter used to establish frame of reference
GB2489651B (en) * 2010-01-20 2015-01-28 Faro Tech Inc Coordinate measurement machines with removable accessories
CN102782442A (zh) * 2010-01-20 2012-11-14 法罗技术股份有限公司 具有被照亮的探针端的坐标测量机及操作方法
DE102010002816B4 (de) * 2010-03-12 2014-05-15 Siemens Aktiengesellschaft Werkzeugmaschine und Verfahren zur Ermittlung der Position eines in eine Werkstückeinspannvorrichtung eingespannten Werkstücks bei einer Werkzeugmaschine
US8619265B2 (en) 2011-03-14 2013-12-31 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US8724119B2 (en) 2010-04-21 2014-05-13 Faro Technologies, Inc. Method for using a handheld appliance to select, lock onto, and track a retroreflector with a laser tracker
US8422034B2 (en) 2010-04-21 2013-04-16 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US8537371B2 (en) 2010-04-21 2013-09-17 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker
ES2817800T3 (es) * 2010-04-22 2021-04-08 Metronor As Sistema de medición óptica
DE102010020925B4 (de) 2010-05-10 2014-02-27 Faro Technologies, Inc. Verfahren zum optischen Abtasten und Vermessen einer Umgebung
DE102010039948B4 (de) * 2010-08-30 2020-10-22 Carl Zeiss Ag Messeinheit, Messsystem und Verfahren zum Ermitteln einer Relativposition und Relativorientierung
WO2012053645A1 (fr) * 2010-10-22 2012-04-26 株式会社牧野フライス製作所 Procédé de mesure des dimensions d'un outil et dispositif de mesure
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
CN102168946B (zh) * 2010-12-31 2012-05-30 南京工业大学 顶端嵌入微距传感器的自动触发式测量笔
EP2676153A1 (fr) * 2011-02-18 2013-12-25 Nikon Metrology NV Système de mesure de la position et du mouvement d'un objet
GB2518769A (en) 2011-03-03 2015-04-01 Faro Tech Inc Target apparatus and method
US8860800B2 (en) * 2011-03-31 2014-10-14 Flir Systems, Inc. Boresight alignment station
US8687172B2 (en) * 2011-04-13 2014-04-01 Ivan Faul Optical digitizer with improved distance measurement capability
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
DE112012001708B4 (de) 2011-04-15 2018-05-09 Faro Technologies, Inc. Koordinatenmessgerät
US9164173B2 (en) 2011-04-15 2015-10-20 Faro Technologies, Inc. Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
US8711222B2 (en) * 2011-04-27 2014-04-29 Georgetown Rail Equipment Company Method and system for calibrating laser profiling systems
DE102011053922A1 (de) * 2011-05-11 2012-11-15 Scopis Gmbh Registriervorrichtung, Verfahren und Vorrichtung zum Registrieren einer Oberfläche eines Objekts
US9594156B2 (en) * 2011-07-26 2017-03-14 Hexagon Technology Center Gmbh Laser scanner having means for capturing a spatial direction to the point on a surface
EP2557391A1 (fr) * 2011-08-12 2013-02-13 Leica Geosystems AG Appareil de mesure destiné à la détermination de la position dans l'espace d'un instrument d'aide à la mesure
US9330448B2 (en) 2011-09-21 2016-05-03 Toyota Motor Engineering & Manufacturing North America, Inc. Adaptive feature recognition tool
DE102012100609A1 (de) 2012-01-25 2013-07-25 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
JP6099675B2 (ja) 2012-01-27 2017-03-22 ファロ テクノロジーズ インコーポレーテッド バーコード識別による検査方法
EP2639615A1 (fr) 2012-03-13 2013-09-18 Leica Geosystems AG Caméra dotée d'un objectif à zoom et d'un encodeur linéaire
DE102012008905A1 (de) * 2012-05-08 2013-11-14 Airbus Operations Gmbh Optische Messvorrichtung und Verschiebeeinrichtung und optisches Messverfahren
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US9993305B2 (en) 2012-08-08 2018-06-12 Ortoma Ab Method and system for computer assisted surgery
DE102012109481A1 (de) 2012-10-05 2014-04-10 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
DE102012223929A1 (de) * 2012-12-20 2014-06-26 Hilti Aktiengesellschaft Verfahren und Vorrichtung zum Bestimmen der zweidimensionalen Ortskoordinaten eines Zielobjektes
DE102012223928A1 (de) 2012-12-20 2014-06-26 Hilti Aktiengesellschaft Verfahren und Vorrichtung zum Bestimmen der Ortskoordinaten eines Zielobjektes
US9046360B2 (en) 2013-03-14 2015-06-02 Faro Technologies, Inc. System and method of acquiring three dimensional coordinates using multiple coordinate measurement devices
US9188430B2 (en) 2013-03-14 2015-11-17 Faro Technologies, Inc. Compensation of a structured light scanner that is tracked in six degrees-of-freedom
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9491448B2 (en) * 2013-04-01 2016-11-08 The Boeing Company Laser videogrammetry
US9234742B2 (en) 2013-05-01 2016-01-12 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker
EP2801839B1 (fr) 2013-05-10 2020-03-04 Leica Geosystems AG Outil d'aide à la mesure pouvant être tenu à la main destiné à être utilisé avec un appareil de suivi laser 6 DoF
EP2801841B1 (fr) * 2013-05-10 2018-07-04 Leica Geosystems AG Appareil de suivi laser comprenant une unité d'enregistrement d'une cible pour le pistage d'une cible et une détection d'orientation
DE102013211342A1 (de) * 2013-06-18 2014-12-18 Siemens Aktiengesellschaft Fotobasiertes 3D-Oberflächen-Inspektionssystem
US9476695B2 (en) * 2013-07-03 2016-10-25 Faro Technologies, Inc. Laser tracker that cooperates with a remote camera bar and coordinate measurement device
US9857160B1 (en) 2013-09-24 2018-01-02 TVS Holdings, LLC Multi-mode frequency sweeping interferometer and method of using same
JP2015152338A (ja) * 2014-02-12 2015-08-24 トヨタ自動車株式会社 距離情報取得方法、距離情報取得装置及びロボット
JP6325871B2 (ja) 2014-03-28 2018-05-16 株式会社キーエンス 光学式座標測定装置
JP6325896B2 (ja) 2014-03-28 2018-05-16 株式会社キーエンス 光学式座標測定装置
JP6325877B2 (ja) 2014-04-18 2018-05-16 株式会社キーエンス 光学式座標測定装置
JP6316663B2 (ja) 2014-05-30 2018-04-25 株式会社キーエンス 座標測定装置
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
EP2980526B1 (fr) 2014-07-30 2019-01-16 Leica Geosystems AG Appareil et méthode de mesure de coordonnées
CN104215186B (zh) * 2014-10-09 2016-09-21 中国科学院光电技术研究所 摆臂式轮廓仪测头系统空间位置坐标关系的测量装置和方法
EP3006895B1 (fr) 2014-10-10 2020-02-19 Leica Geosystems AG Appareil de suivi laser avec blindage de passage d'air chaud pour le rayon de mesure
EP3015839B1 (fr) 2014-10-31 2020-01-01 Agisco S.r.l. Système de pointage laser pour surveiller la stabilité de structures
WO2016073208A1 (fr) 2014-11-03 2016-05-12 Faro Technologies, Inc. Procédé et appareil pour un verrouillage sur un rétroréflecteur a l'aide d'un dispositif de poursuite laser
US9976947B1 (en) 2014-11-24 2018-05-22 TVS Holdings, LLC Position measurement device
EP3032277B1 (fr) 2014-12-12 2021-04-07 Leica Geosystems AG Appareil de suivi laser
US9964402B2 (en) 2015-04-24 2018-05-08 Faro Technologies, Inc. Two-camera triangulation scanner with detachable coupling mechanism
EP3151031A1 (fr) 2015-10-02 2017-04-05 Metronor A/S Suivi de capteur électro-optique militaire
CN105423912A (zh) * 2015-11-05 2016-03-23 天津大学 光笔跟踪系统
CN105509702A (zh) * 2015-11-28 2016-04-20 沈阳飞机工业(集团)有限公司 光电惯性校靶系统三维空间角度测量仪
JP6293110B2 (ja) * 2015-12-07 2018-03-14 株式会社Hielero 点群データ取得システム及びその方法
DE102015122844A1 (de) 2015-12-27 2017-06-29 Faro Technologies, Inc. 3D-Messvorrichtung mit Batteriepack
EP3397921A1 (fr) 2015-12-30 2018-11-07 Faro Technologies, Inc. Enregistrement de coordonnées tridimensionnelles mesurées sur des parties intérieure et extérieure d'un objet
WO2017151196A1 (fr) 2016-02-29 2017-09-08 Faro Technologies, Inc. Système suiveur laser
JP6670161B2 (ja) 2016-04-27 2020-03-18 株式会社キーエンス 光学式三次元座標測定器及びその計測方法
JP6722502B2 (ja) 2016-04-27 2020-07-15 株式会社キーエンス 三次元座標測定器
FR3052577A1 (fr) * 2016-06-13 2017-12-15 Airbus Operations Sas Procede de reglage du positionnement d’elements d’une structure d’un aeronef et dispositif pour sa mise en oeuvre
CN109790723B (zh) 2016-07-15 2021-12-31 快砖知识产权私人有限公司 结合在交通工具中的砖块/砌块铺设机器
US10865578B2 (en) 2016-07-15 2020-12-15 Fastbrick Ip Pty Ltd Boom for material transport
DE102016118616B4 (de) * 2016-09-30 2018-11-22 Carl Zeiss Industrielle Messtechnik Gmbh Messvorrichtung für ein optisches Messsystem
FR3055155A1 (fr) * 2017-01-10 2018-02-23 Celette France Systeme de mesure
ES2684134B2 (es) * 2017-03-24 2019-10-10 Univ Burgos Sistema y procedimiento para la monitorizacion de estructuras
AU2018295572B2 (en) 2017-07-05 2022-09-29 Fastbrick Ip Pty Ltd Real time position and orientation tracker
US10247542B2 (en) 2017-08-09 2019-04-02 Leica Geosystems Ag Handheld measuring aid with a 3-axis joint connection and a spherical encoder
CN111213098B (zh) 2017-08-17 2024-03-15 快砖知识产权私人有限公司 用于交互系统的通信系统
US11656357B2 (en) 2017-08-17 2023-05-23 Fastbrick Ip Pty Ltd Laser tracker with improved roll angle measurement
EP3694793B1 (fr) 2017-10-11 2023-11-08 Fastbrick IP Pty Ltd Machine destinée à transporter des objets
CN107944422B (zh) * 2017-12-08 2020-05-12 业成科技(成都)有限公司 三维摄像装置、三维摄像方法及人脸识别方法
US11298186B2 (en) * 2018-08-02 2022-04-12 Point Robotics Medtech Inc. Surgery assistive system and method for obtaining surface information thereof
CN109176305B (zh) * 2018-09-29 2024-04-16 照亮智能装备(江门)有限公司 一种机器人三维纠偏定位设备及方法
CN109555543B (zh) * 2019-02-01 2024-03-29 中国铁建重工集团股份有限公司 一种管片自动输送及识别系统
US10704887B1 (en) 2019-02-27 2020-07-07 X Development Llc Multi-beam laser coordinate measuring system
US10955236B2 (en) * 2019-04-05 2021-03-23 Faro Technologies, Inc. Three-dimensional measuring system
DE102019114531B4 (de) * 2019-05-29 2021-06-17 Soft2Tec Gmbh Vorrichtung zur Lage- und Positionserkennung von Markierungen im dreidimensionalen Raum
EP3783305B1 (fr) 2019-08-21 2022-03-23 Leica Geosystems AG Système d'entraînement dans un instrument de mesure géodésique
DE102019216195A1 (de) * 2019-10-21 2021-04-22 Carl Zeiss Industrielle Messtechnik Gmbh Vorrichtung und Verfahren zur Bestimmung einer räumlichen Position und Orientierung
EP3812701B1 (fr) 2019-10-23 2022-08-24 Hexagon Technology Center GmbH Étalonnage de nivellement en ligne d'un instrument géodésique
DE202020103679U1 (de) 2020-06-25 2020-07-06 Soft2Tec Gmbh Vorrichtung zur Lage- und Positionserkennung von Markierungen und Computerprogrammprodukt
EP4027103A1 (fr) * 2021-01-12 2022-07-13 Metronor AS Procédé pour déterminer une position et/ou orientation actuelle d'un radar laser par rapport à un objet à être mesuré
EP4354084A1 (fr) 2022-10-10 2024-04-17 Hexagon Technology Center GmbH Étalonnage de mise à niveau sur le terrain d'un instrument d'arpentage

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO164946C (no) * 1988-04-12 1990-11-28 Metronor As Opto-elektronisk system for punktvis oppmaaling av en flates geometri.
NO169799C (no) * 1990-04-25 1992-08-05 Metronor As Anordning for bestemmelse av en flates topografi
NO174025C (no) * 1991-10-11 1994-03-02 Metronor Sa System for punktvis maaling av romlige koordinater
US5305091A (en) * 1992-12-07 1994-04-19 Oreo Products Inc. Optical coordinate measuring system for large objects
NO302055B1 (no) * 1993-05-24 1998-01-12 Metronor As Fremgangsmåte og system for geometrimåling
US5729475A (en) * 1995-12-27 1998-03-17 Romanik, Jr.; Carl J. Optical system for accurate monitoring of the position and orientation of an object

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053837A1 (fr) * 2004-11-19 2006-05-26 Leica Geosystems Ag Procede pour determiner l'orientation d'un indicateur d'orientation
CN101061393B (zh) * 2004-11-19 2010-09-29 莱卡地球系统公开股份有限公司 用于确定方位指示器的方位的方法
WO2006069748A1 (fr) * 2004-12-23 2006-07-06 Ife Industrielle Forschung Und Entwicklung Gmbh Dispositif de mesure d'un objet et procede pour utiliser un dispositif de ce type
DE102006003569A1 (de) * 2006-01-25 2007-07-26 Axios 3D Services Gmbh Positionsbestimmungssystem
DE202006020719U1 (de) 2006-01-25 2009-08-27 Axios 3D Services Gmbh Positionsbestimmungssystem
WO2013007353A1 (fr) 2011-07-08 2013-01-17 Pi Micos Gmbh Procédé et dispositif de détermination de la position et de l'orientation d'un corps
DE102011107451B3 (de) * 2011-07-08 2012-08-23 Albert-Ludwigs-Universität Freiburg Verfahren und Vorrichtung zur Bestimmung der Position und Orientierung eines Körpers
EP2586396A1 (fr) 2011-10-26 2013-05-01 Metronor AS Système pour assurer la précision dans un traitement médical
WO2013068558A2 (fr) 2011-11-11 2013-05-16 Sgl Carbon Se Procédé de mesure de profils de surface lors de la finition de cellules d'électrolyse en aluminium
WO2013068558A3 (fr) * 2011-11-11 2013-08-22 Sgl Carbon Se Procédé de mesure de profils de surface lors de la finition de cellules d'électrolyse en aluminium
CN104093886A (zh) * 2011-11-11 2014-10-08 西格里碳素欧洲公司 测量在工作的铝电解槽中的表面轮廓的方法
CN104093886B (zh) * 2011-11-11 2016-10-12 西格里碳素欧洲公司 测量在工作的铝电解槽中的表面轮廓的方法
DE102018217219B4 (de) 2018-10-09 2022-01-13 Audi Ag Verfahren zum Ermitteln einer dreidimensionalen Position eines Objekts
EP4230837A1 (fr) 2022-02-18 2023-08-23 Sandvik Mining and Construction Lyon SAS Appareil de détection de position, véhicule minier et procédé
WO2023156213A1 (fr) 2022-02-18 2023-08-24 Sandvik Mining And Construction Lyon Sas Appareil de détection de position, véhicule minier et procédé

Also Published As

Publication number Publication date
DE880674T1 (de) 1999-06-02
NO954056D0 (no) 1995-10-12
US5973788A (en) 1999-10-26
JPH11513495A (ja) 1999-11-16
DE69619558D1 (de) 2002-04-04
EP0880674A1 (fr) 1998-12-02
AU7344796A (en) 1997-04-30
WO1997014015A1 (fr) 1997-04-17
NO301999B1 (no) 1998-01-05
US6166809A (en) 2000-12-26
NO954056L (no) 1997-04-14
DE69619558T2 (de) 2002-10-31

Similar Documents

Publication Publication Date Title
EP0880674B1 (fr) Systeme de mesure point par point de coordonnees spatiales
KR101723112B1 (ko) 그래픽 타겟을 위한 기능을 갖는 레이저 트래커
US8467072B2 (en) Target apparatus and method of making a measurement with the target apparatus
US10054439B2 (en) Reflector arrangement with retroreflector and with a sensor arrangement for inclination determination and calibration
KR101659893B1 (ko) 타겟을 탐색하기 위한 위치-감지 검출기들을 갖는 레이저 트래커
US7312862B2 (en) Measurement system for determining six degrees of freedom of an object
JP4553573B2 (ja) 測定系の較正のための方法と装置
US6031606A (en) Process and device for rapid detection of the position of a target marking
US9482755B2 (en) Measurement system having air temperature compensation between a target and a laser tracker
US9766326B2 (en) Laser tracker with calibration unit for self-calibration
JPS6215479A (ja) オ−トトラツキング測距装置
JP3921004B2 (ja) 変位傾斜測定装置
US20200408914A1 (en) Static six degree-of-freedom probe
KR19990028980A (ko) 3중 프리즘을 사용하는 광선의 재귀반사용 장치
CN114322886B (zh) 具有多传感器的姿态探头
JPH03167404A (ja) 大型対象物の寸法計測方法
CN111580127A (zh) 具有旋转反射镜的测绘系统
JPS6145981A (ja) 船舶位置確認方法
JPH0396802A (ja) 位置検出方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI SE

EL Fr: translation of claims filed
DET De: translation of patent claims
GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010221

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69619558

Country of ref document: DE

Date of ref document: 20020404

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LEICA GEOSYSTEMS AG

Effective date: 20021122

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

R26 Opposition filed (corrected)

Opponent name: LEICA GEOSYSTEMS AG

Effective date: 20021122

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

APAN Information on closure of appeal procedure modified

Free format text: ORIGINAL CODE: EPIDOSCNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

27O Opposition rejected

Effective date: 20050705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HEXAGON AB

Free format text: METRONOR ASA#FEKJAN 13#1360 NESBRU (NO) -TRANSFER TO- HEXAGON AB#BOX 1112#131 26 NACKA STRAND (SE)

Ref country code: CH

Ref legal event code: PUE

Owner name: LEICA GEOSYSTEMS AG

Free format text: HEXAGON AB#BOX 1112#131 26 NACKA STRAND (SE) -TRANSFER TO- LEICA GEOSYSTEMS AG#HEINRICH-WILD-STRASSE#9435 HEERBRUGG (CH)

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUECHEL, KAMINSKI & PARTNER PATENTANWAELTE ESTABLI

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: LEICA GEOSYSTEMS AG

Free format text: LEICA GEOSYSTEMS AG#HEINRICH-WILD-STRASSE#9435 HEERBRUGG (CH) -TRANSFER TO- LEICA GEOSYSTEMS AG#HEINRICH-WILD-STRASSE#9435 HEERBRUGG (CH)

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20151021

Year of fee payment: 20

Ref country code: DE

Payment date: 20151022

Year of fee payment: 20

Ref country code: GB

Payment date: 20151021

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20151021

Year of fee payment: 20

Ref country code: FR

Payment date: 20151023

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69619558

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20161009

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20161009