EP0871349B1 - Dispositif electronique de commande de lampe a decharge - Google Patents

Dispositif electronique de commande de lampe a decharge Download PDF

Info

Publication number
EP0871349B1
EP0871349B1 EP95940474A EP95940474A EP0871349B1 EP 0871349 B1 EP0871349 B1 EP 0871349B1 EP 95940474 A EP95940474 A EP 95940474A EP 95940474 A EP95940474 A EP 95940474A EP 0871349 B1 EP0871349 B1 EP 0871349B1
Authority
EP
European Patent Office
Prior art keywords
filament
capacitor
voltage
current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95940474A
Other languages
German (de)
English (en)
Other versions
EP0871349A4 (fr
EP0871349A1 (fr
Inventor
Jong Ki Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kabushuki Kaisha Koseijapan
Koseijapan KK
Original Assignee
Kabushuki Kaisha Koseijapan
Koseijapan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushuki Kaisha Koseijapan, Koseijapan KK filed Critical Kabushuki Kaisha Koseijapan
Publication of EP0871349A1 publication Critical patent/EP0871349A1/fr
Publication of EP0871349A4 publication Critical patent/EP0871349A4/fr
Application granted granted Critical
Publication of EP0871349B1 publication Critical patent/EP0871349B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2988Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp

Definitions

  • the present invention relates to an electronic device for operating a discharge lamp by converting a frequency of commercial electric power to a high frequency and turning on the lamp using the high frequency, wherein by dispersing a discharge path of a filament, the operating efficiency of the discharge lamp is maximized and the service life of the lamp is also prolonged, whereby a substantial energy saving can be realised.
  • JP-A-61-203597 discloses a discharge lamp operating electronic device having the features which are indicated in the preamble of claim 1.
  • JP-A-3-59998 discloses an electronic device for operating a discharge lamp having two filaments; for rapidly and securely starting the discharge lamp, high-frequency power is fed to both filaments from an inverter circuit through a resonance circuit, and simultaneously a DC voltage is applied to the filaments from the resonance circuit.
  • a conventional inverter comprises two switches S1 and S2, two power supplies E1 and E2 and a LC series circuit which consists of reactor L1 and capacitor C2 and is connected between a junction point of the two switches and a junction point of the two power supplies as is indicated in Fig. 2.
  • a switch S1 When the switch S1 is on and the switch S2 is off, current iL flows in the direction indicated by the arrow in the LC series circuit. On the contrary, when the switch S1 is off and the switch S2 is on, the current iL flows in the opposite direction in the LC series circuit.
  • Fig. 1 indicates a circuit of a discharge lamp operating device employing a self-excited inverter, to which the above principle is applied to re-construct the circuit in Fig. 2 in the manner of an electronic circuit.
  • the circuit in Fig. 1 is provided with semiconductor devices, that is transistors Q1 and Q2 for use in place of switches S1 and S2.
  • the circuit in Fig. 1 also has operating power supply E for supplying power from the outside, and capacitors C2 and C3 for storing power are connected to perform the same function as the power supplies E1 and E2 respectively.
  • the circuit in Fig. 1 is configured to be equivalent to the circuit in Fig. 2.
  • an oscillation transformer T1 is inserted between the junction point of the transistors Q1 and Q2 and the reactor L1, and the secondary side coils of the oscillation transformer T1 are connected between the base and the emitter of the transistors Q1 and Q2 respectively in such a way that directions of induction of voltages in the secondary side coils oppose each other.
  • the transistor Q2 When an actuating signal is supplied to the transistor Q2 in Fig. 1, the transistor Q2 is turned on and iL current starts flowing in a direction opposite to that indicated by the arrow. If a voltage induced to the secondary side of the oscillation transformer T1 turns off the transistor Q1 and sufficiently turns on the transistor Q2 and the oscillation transformer T1 becomes saturated at this time, the directions of induction of voltages in the secondary side coils of the transformer T1 are reversed. By turning on the transistor Q1 and turning off the transistor Q2, the iL current starts flowing in the direction indicated by the arrow in Fig. 1.
  • a hot-cathode discharge lamp is connected across the capacitor C1 so that a voltage generated across the capacitor C1 is transferred to the hot-cathode discharge lamp to operate the hot-cathode discharge lamp.
  • the configuration of the circuit in Fig. 1 is common to the conventional hot-cathode discharge lamp operating devices employing a self-excitatory inverter.
  • a filament heating voltage Vf is represented as Rf X iL provided that the filament's internal resistance is Rf.
  • the present invention provides a discharge lamp operating electronic device having the features according to claim 1. Preferred embodiments of the invention are indicated in the dependent claims.
  • the device according to the present invention supplies a low operating voltage to a self-excitatory inverter to preheat a filament of a discharge lamp at the initial stage of power supply by operation of a booster circuit for supplying operating power to the self-excitatory inverter, gradually increases the operating voltage of the self-excitatory inverter for a predetermined period of time to operate the discharge lamp at low voltage and supplies a constant voltage to the self-excitatory inverter after the predetermined period of time has passed, thereby stabilizing an operation of the self-excitatory inverter.
  • the actuating signal circuit of the present device operates at the initial stage of power supply to supply an actuating signal to the self-excitatory inverter and stops supplying the actuating signal after the self-excitatory inverter has accomplished a cycle of operation.
  • the self-excitatory inverter converts the operating voltage supplied from the booster circuit to high frequency and sends the high frequency to the lamp operating circuit.
  • the lamp operating circuit converts the high-frequency output from the self-excitatory inverter to sine waves to operate the discharge lamp. At this time, the filament of the discharge lamp emits thermal electrons alternately through four types of emission paths.
  • Fig. 1 is a circuit diagram describing a discharge lamp operating device employing a conventional self-excitatory inverter.
  • Fig. 2 is a circuit diagram describing a conventional inverter.
  • Fig. 3 is a circuit diagram indicating a discharge lamp operating device according to an embodiment of the present invention.
  • Fig. 4 is a diagram showing a lamp operating circuit of the embodiment.
  • Fig. 5 is a diagram describing a circuit that operates in an equivalent manner to the lamp operating circuit described in Fig. 4.
  • Fig. 6 is a diagram describing an example where two or more lamp operating circuits indicated in Fig. 4 are connected in parallel.
  • Fig. 7 is a circuit diagram for explaining an operation of the lamp operating circuit indicated in Fig. 4.
  • Fig. 8 is a block diagram of the integrated circuit IC1 in Fig. 3.
  • Fig. 9 is a schematic block diagram describing a discharge lamp operating electronic device according to another embodiment of the present invention.
  • Fig. 3 is a circuit diagram indicating a discharge lamp operating device.
  • AC denotes a commercial alternating-current power supply and SO denotes a switch.
  • a component indicated as LINEFILTER is a power supply noise removing filter; BD1 a rectifying bridge diode; C1 a waveform shaping capacitor.
  • the direct-current power supply 1 consists of the aforementioned elements, etc.
  • a component indicated as IC1 is an integrated circuit.
  • R9, R10, R11 and R12 denote an operating voltage detecting sensor resistor; C7 a charging time constant capacitor; R8 a signal amplifying resistor; C4 a high-frequency by-pass capacitor; TL1 a reactor; Q1 a field-effect transistor; R4 a gate resistor; R6 a current detecting resistor; R5 a signal attenuation resistor; C5 a high-frequency by-pass capacitor; R2 an initial power supply resistor; C3 a smoothing capacitor; R1 and R7 an operating reference voltage supply resistor; C2 a high-frequency signal by-pass capacitor; D1 a rectifying capacitor; R3 a signal supply resistor; D2 a high-frequency rectifying diode; C6 a smoothing capacitor.
  • the booster circuit 2 consists of the aforementioned elements, etc.
  • Q3 and Q4 denote a high-frequency output transistor; C16 and C17 a power storing capacitor; D7 and D10 a transistor protection diode; R18 and R19 a base resistor; D6 and D9 a speed up diode; TL2-F a primary side coil (winding) of a resonance current detecting transformer; TL2-S1 and TL2-S2 a secondary side coil of the resonance current detecting transformer; TL3 a resonance reactor.
  • the aforementioned elements, etc. constitute the self-excitatory inverter INV indicated by the numeral 3.
  • C13 and C15 denote a filament heating voltage control capacitor; C14 a resonance capacitor; D13, D14, D15, D16 a filament thermionic emission path dispersing diode; LA a hot-cathode discharge lamp.
  • the aforementioned elements and others constitute the lamp lighting circuit EL indicated by the numeral 4.
  • Q2 denotes an actuating signal transistor; R14 a base resistor; R13 and R17 a charging time constant resistor; C10 a charging time constant capacitor; D4 a re-charging prevention diode; D12 a reverse voltage prevention diode.
  • the actuating signal circuit TRG indicated by the numeral 5 is comprised of the aforementioned elements.
  • TL2-S3 denotes a secondary side coil of the resonance current detection transformer TL2-F; D3 and D11 a high-frequency rectifying diode; SCR1 a thyristor; R16 a gate resistor; C9 a gate capacitor; DIAC1 a diode AC switch; R20 and R15 a voltage detecting sensor resistor; C8 a time constant capacitor; TL3-S a secondary side coil of the reactor TL3; D21 an operation power supply breaking (blocking) diode.
  • the aforementioned elements and others constitute the overload protective circuit PRO indicated by the numeral 6.
  • the direct-current power supply 1 when the switch SO is turned on, a commercial alternating-current power AC passes through the line filter to be supplied to the input side of the bridge diode BD1, while an output from the direct-current power supply 1, ES is obtained across the output side of the bridge diode BD.
  • the direct-current power ES is supplied to the booster circuit 2.
  • the current passes through the reactor TL1 to supply voltage across the drain and source of the field effect transistor Q1.
  • operating reference voltage V1 (M1) is supplied from the resistors R1 and R7 to the third pin (PIN) of the integrated circuit IC1, whereas charging of the capacitor C3 starts at a time constant determined by the resistor R2 and capacitor C3 connected to the eighth pin of the integrated circuit IC1.
  • a preset voltage represented by the following expression 4 passes through the resistor R9 to be supplied as a preset voltage V1 signal to the first pin of the integrated circuit IC1 by the resistors R10, R11, R12 and C7.
  • the capacitor C7 is charged at a time constant determined by the capacitor C7 and resistor R11.
  • the integrated circuit IC1 is a PFC (power factor correction) IC, the inside of which is described in the block diagram of Fig. 8. (Expression 4) V1 ⁇ (R11 X R12) ⁇ VS/(R10 + R11 + R12)
  • the capacitor C3 connected to the eighth pin of the integrated circuit IC1 is charged.
  • the capacitor C3 is charged up to VCC, an operating voltage of the integrated circuit IC1, the internal circuit of the integrated circuit IC1 starts operating, whereby a pulse output signal is outputted to the seventh pin of VOUT.
  • the pulse output signal passes through the resistor R4 and is supplied to the gate of the field effect transistor Q1.
  • the field-effect transistor Q1 is turned on.
  • the transistor Q1 is turned off.
  • the field-effect transistor Q1 enters the off state, the energy stored in the reactor TL1 passes through the diode D2 to be rectified.
  • the energy is further smoothed by the capacitor C6 and a direct-current voltage VS is supplied to the self-excitatory inverter 3.
  • the energy is stored in the reactor TL2 and a voltage is induced across the secondary side coils of the reactor TL2.
  • the induced voltage is rectified by the diode D1 and smoothed by the capacitor C3 to be supplied to the operating voltage VCC of the integrated circuit IC1. It is further supplied as IDET signal to the fifth pin of the integrated circuit IC1 via the resistor R3.
  • the internal circuit of the integrated circuit IC1 starts operating to sense a change in the direct-current power ES and adjust the ratio between on and off of the field-effect transistor Q1 so that the DC voltage VS becomes a constant voltage.
  • the direct-current power ES is obtained by full-wave rectifying the alternating-current input voltage and the direct-current voltage VS is an operating voltage supplied to the self-excitatory inverter.
  • the direct-current voltage VS which is an operating voltage of the self-excitatory inverter is controlled to become a constant voltage.
  • the voltage varies in inverse proportion to a preset voltage V1 of the integrated circuit IC1 due to the resistors R10, R11 and R12.
  • the preset voltage V1 of the integrated circuit IC1 gradually decreases during charging at a time constant determined by the capacitor C7 and resistor R11, while the direct-current voltage VS is gradually increased.
  • a constant voltage proportion to the preset voltage V1 R12/(R10 + R11 + R12) is supplied as the direct-current voltage VS to the self-excitatory inverter 3.
  • the direct-current power VS is supplied to the actuating signal circuit TRG 5 via the reactor TL1 and rectifying diode D2 and charging of the capacitor C10 begins at a time constant determined by the resistors R13 and R17 and capacitor C10.
  • the integrated circuit IC1 in the booster circuit 2 operates and an output signal therefrom passes through the base resistor R14 to be supplied to the actuating signal transistor Q2.
  • the transistor Q2 is turned on and at the same time, the voltage fed to C10 is supplied to the base of the high-frequency output transistor Q4 in the self-excitatory inverter 3 via the collector of the actuating signal transistor Q2 and diode D12, whereby the transistor Q4 is turned on.
  • the direct current power ES is supplied and at the same time, the power storing capacitors C16 and C17 are charged.
  • a closed circuit is formed, in which iL1 current flows from the capacitor C17 to the collector of the transistor Q4 via filament thermionic emission path dispersing diode D16, resonance capacitor C14, filament thermionic emission path dispersing diode D14 and filament F1 of the hot-cathode discharge lamp LA in the lamp operating circuit 4 and resonance reactor TL3 and primary side coil TL2-F of the resonance current detection transformer TL2.
  • the resonance reactor TL3 becomes saturated and the iL2 current starts gradually decreasing.
  • the voltages induced to the secondary side coils TL2-S1 and TL2-S2 of the resonance current detection transformer TL2 are reversed again.
  • the transistor Q4 is turned on and the transistor Q3 is turned off.
  • the self-excitatory inverter 3 repeats the aforementioned operation in a self-excitatory manner.
  • the current iL1 needs to flow from the capacitor C17 to the filament F2 and further to the capacitor C14 via the diode D15.
  • the diode D15 is connected for the direction opposite to the flow of the current iL1, the current cannot flow through the diode D15. Therefore, as there is no current flowing through the filament F2, the voltage across the filament F2, VFCD becomes practically zero.
  • thermionic emission from the filament of the hot-cathode discharge lamp LA occurs through an emission path having the highest potential difference.
  • Voltages applied between the respective filament pole points are represented by the following expressions 5. (Expression 5) 1 VAB ⁇ iL1 x F1 2 VAC ⁇ VC 3 VAD ⁇ VC 4 VBC ⁇ VC + iL1 x F1 5 VBD ⁇ VC + iL1 x F1 6 VCD ⁇ 0
  • maximum potentials are VBC and VBD when iC x VC is greater than zero.
  • a potential difference between the ends of VCD is "0" and thermionic emission is conducted by dispersing thermal electrons from the pole point B toward the whole of the filament F2.
  • maximum potentials are VAC and VAD and thermal electrons are dispersed from the pole A to the filament F2.
  • phase difference 90° between VC and iC of the capacitor C14.
  • iC x VC is greater than zero, maximum potentials are VAD and VBD.
  • iC x VC is smaller than zero, maximum potentials are VAC and VBC.
  • the hot-cathode discharge lamp LA has four types of discharge paths, that is a path for dispersing thermoelectrons from the pole point B to F2, a path from the pole point A to F2, a path from the pole point D to F1 and a path from the pole point C to F1.
  • the hot-cathode discharge lamp has four types of emission paths, it is possible to prevent heat from being generated intensively from one pole point of the filament, whereby an operation efficiency of the filament is improved and the lifetime thereof is also prolonged.
  • a voltage of about 3V is generated across the secondary side coils of the transformer TL2, that is TL2-S1 and TL2-S2 and is supplied to the bases of the transistors Q3 and Q4.
  • a voltage of about 20V is generated across the TL2-S3 and is supplied to the thyristor SCR1 via the diode D3.
  • the thyristor SCR1 maintains the electrically off state where resistance across the anode and cathode is high.
  • a trigger signal (TRIGGER) is applied to the gate (GATE)
  • the thyristor SCR1 enters the on state and the resistance across the anode and cathode drops as if the switch is turned on.
  • a voltage across the anode and cathode becomes almost zero and the on state is maintained until a voltage is blocked. Therefore, the thyristor SCR1 is a silicon controlled rectifier.
  • a voltage of the secondary side coil of the transformer TL2, that is TL2-S3 goes down to 1 ⁇ 2V, which is an internal voltage of the diode D3 and thyristor SCR1.
  • a voltage across TL2-S1 and TL2-S2 also declines to 0.1 ⁇ 0.3V at the same rate as that of TL2-S3.
  • the base voltage of the high-frequency output transistors Q3 and Q4 supplied by TL2-S1 and TL2-S2 becomes lower than the operating point, whereby the transistors Q3 and Q4 stop operating.
  • the capacitor C10 also discharges via the series circuit consisting of the diode D1 and thyristor SCR1, so that it is not re-charged and an operation of the actuating signal circuit 5 is also stopped.
  • the smoothing capacitor C3 in the booster circuit also discharges via the series circuit consisting of the diode D21 and thyristor SCR1.
  • Fig. 9 is a schematic block diagram describing a discharge lamp operating electronic device according to another embodiment of the present invention.
  • the numeral 11 denotes a noise filter; 2 a constant voltage and T.H.D. (Total Harmonic Distortion) control circuit; 13 a control circuit; 14 an inverter circuit; 15 an actuating signal supply circuit; 16 and 17 a lamp lighting circuit; 18 and 19 a lamp; 20 an overload protective circuit.
  • the noise filter 11 rectifies an alternating-current voltage from the AC power supply to supply a direct-current power to the constant voltage and T.H.D. control circuit 12 and control circuit 13. When the direct-current power is supplied to the constant voltage and T.H.D.
  • control circuit 12 from the noise filter 11, the control circuit 12 supplies a low operating voltage to the inverter circuit 14 at the beginning of supply of the direct-current power to heat the filament of the discharge lamp. Then, for a predetermined period of time, the operating voltage supplied to the self-excitatory inverter is gradually increased to operate the discharge lamp at a low voltage. After the predetermined period of time has passed, a constant voltage is supplied to stabilize an operation of the inverter circuit 14.
  • the actuating signal supply circuit 15 operates at the beginning of supply of the direct-current power and supplies an actuating signal to the inverter circuit 14. After a cycle of an operation of the inverter circuit 14, the actuating signal supply circuit 15 stops supplying the actuating signal.
  • the inverter circuit 14 converts the operating voltage supplied from the constant voltage and T.H.D. control circuit 12 to high frequency and sends it to the lamp lighting circuits 16 and 17.
  • the lamp lighting circuits 16 and 17 convert the high-frequency output from the inverter circuit 14 to sine waves to operate the lamps 18 and 19.
  • the overload protective circuit 20 outputs a signal to the actuating signal supply circuit 15 and stops an operation of the inverter circuit 14. In this case, the overload protective circuit 20 outputs a signal also to the control circuit 13 to thereby stop an operation of the constant voltage and T.H.D. control circuit 12.
  • a booster circuit for supplying operating power to a self-excitatory inverter supplies a low operating voltage to the self-excitatory inverter, thereby pre-heating a filament of a discharge lamp.
  • the discharge lamp is operated at a low voltage to thereby prolong the lifetime of the discharge lamp.
  • the booster circuit supplies the operating voltage as a constant voltage to the self-excitatory inverter to stabilize the operation of the self-excitatory inverter.
  • At least four emission path dispersing diodes are installed in a lamp operating circuit so that a filament of the discharge lamp emits thermal electrons alternately through four types of thermionic emission paths and thereby, the operating efficiency of the filament is improved.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Claims (4)

  1. Dispositif électronique de commande de lampe à décharge comprenant :
    une alimentation électrique en courant continu (1) pour sortir la puissance en courant continu obtenue en redressant une tension d'entrée de courant alternatif;
    un circuit survolteur (2) pour convertir la puissance en courant continu fournie par l'alimentation électrique en courant continu (1) en une tension de commande prédéterminée;
    un onduleur auto-excitateur (3) pour convertir la tension de commande fournie par le circuit survolteur (2) en une haute fréquence prédéterminée;
    un circuit de commande de lampe (4) pour convertir la sortie haute fréquence en provenance de l'onduleur auto-excitateur (3) en ondes sinusoïdales pour allumer une lampe à décharge (LA) ayant des premier et second filaments (F1,F2) en regard l'un de l'autre; et
    un capaciteur résonnant (C14) connecté à la lampe à décharge à cathode chaude (LA) en parallèle;
       caractérisé par :
    des première et seconde diodes (D13,D14) de dispersion de voies d'émission thermionique à filaments, ladite première diode (D13) étant connectée entre une première électrode dudit capaciteur (C14) et un premier point polaire (B) dudit premier filament (F1), ladite seconde diode (D14) étant connectée entre la première électrode dudit capaciteur (C14) et un second point polaire (A) dudit premier filament (F1), lesdites première et seconde diodes étant connectées dans des directions opposées; et
    des troisième et quatrième diodes (D16,D15) de dispersion de voies d'émission thermionique à filaments, ladite troisième diode (D16) étant connectée entre la seconde électrode dudit capaciteur (C14) et un premier point polaire (D) dudit second filament (F2), ladite quatrième diode (D15) étant connectée entre la seconde électrode dudit capaciteur (C14) et un second point polaire (c) dudit second filament (F2), lesdites troisième et quatrième diodes étant connectées dans des directions opposées;
       pour permettre à un premier courant fourni par l'onduleur auto-excitateur (3) de s'écouler dans le premier filament (F1) via la troisième diode (D14), le capaciteur (C14) et la seconde diode (D14), et d'empêcher le premier courant de s'écouler dans le second filament (F2); et
       pour permettre à un second courant fourni par l'onduleur auto-excitateur (3) de s'écouler dans le second filament (F2) via la première diode (D13), le capaciteur (C14), et la quatrième diode (D15), et d'empêcher le, second courant de s'écouler dans le premier filament (F1).
  2. Dispositif électronique de commande de lampe à décharge tel que défini dans la revendication 1, caractérisé en ce que ledit circuit survolteur (2) comprend :
    des moyens de détection (IC1) pour détecter un changement dans ladite puissance de courant continu (ES) qui varie proportionnellement à un changement dans ladite tension d'entrée de courant alternatif; et
    des moyens d'ajustement (Q1) pour ajuster la tension de fonctionnement (VS) fournie à l'onduleur auto-excitateur (3) sur la base d'une sortie des moyens de détection (IC1) pour que la tension de fonctionnement (VS) soit une tension constante.
  3. Dispositif électronique de commande de lampe à décharge tel que défini dans la revendication 1, caractérisé en ce qu'il est prévu deux ou plus de deux circuits de commande de lampe qui peuvent être montés en parallèle, de telle sorte que lorsque les lampes à décharge à cathode chaude respectivement raccordées aux circuits de commande de lampe sont enlevées, chacun des circuits de commande de lampe assume une impédance infinie et par voie de conséquence, les circuits de fonctionnement de lampe à partir desquels les lampes à décharge à cathode chaude respectivement ont été enlevées sont pratiquement séparées du circuit et ainsi, même lorsqu'une ou plusieurs lampes à décharge à cathode chaude montées en parallèle sont enlevées, les lampes à décharge à cathode chaude restantes pourront être commandées fonctionner sans problème.
  4. Dispositif électronique de commande de lampe à décharge tel que défini dans la revendication 1, caractérisé en ce que par suite d'une différence de phase de 90° entre la tension sur ledit capaciteur (C14) et le courant passant dans le capaciteur (C14) et un fonctionnement des diodes de dispersion de voies d'émission thermionique (D13,D14,D15 et D16), quatre types de voies d'émission thermionique sont formés dans ladite lampe à décharge à cathode chaude (LA), en l'occurrence, une première voie d'émission pour disperser les thermoélectrons d'un point polaire (A) du premier élément (F1) vers la totalité du second filament (F2), une seconde voie d'émission pour disperser les thermoélectrons de l'autre point polaire (B) du premier filament (F1) vers la totalité du second filament (F2), une troisième voie d'émission pour disperser les thermoélectrons d'un point polaire (c) du second filament (F2) vers la totalité du second filament (F1), et une quatrième voie d'émission pour disperser les thermoélectrons de l'autre point polaire (D) du second filament (F2) vers la totalité du premier filament (F1), et des thermoélectrons sont émis en alternance par les quatre types précités de voies d'émission pendant un cycle de fonctionnement par ledit onduleur auto-excitateur pour fournir ledit premier courant audit circuit de fonctionnement de lampe et fournissant consécutivement ledit second courant audit circuit de fonctionnement de lampe.
EP95940474A 1995-12-19 1995-12-19 Dispositif electronique de commande de lampe a decharge Expired - Lifetime EP0871349B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/002608 WO1997023119A1 (fr) 1995-12-19 1995-12-19 Dispositif electronique de commande de lampe a decharge

Publications (3)

Publication Number Publication Date
EP0871349A1 EP0871349A1 (fr) 1998-10-14
EP0871349A4 EP0871349A4 (fr) 1998-12-30
EP0871349B1 true EP0871349B1 (fr) 2002-05-29

Family

ID=14126556

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95940474A Expired - Lifetime EP0871349B1 (fr) 1995-12-19 1995-12-19 Dispositif electronique de commande de lampe a decharge

Country Status (4)

Country Link
US (1) US6100642A (fr)
EP (1) EP0871349B1 (fr)
DE (1) DE69526873T2 (fr)
WO (1) WO1997023119A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592753B2 (en) * 1999-06-21 2009-09-22 Access Business Group International Llc Inductively-powered gas discharge lamp circuit
DE10113903A1 (de) * 2001-03-21 2002-09-26 Wedeco Ag Vorschaltgerät für UV-Strahler sowie Verfahren und Vorrichtung zur Desinfektion von Wässern
US6724157B2 (en) * 2001-11-14 2004-04-20 Astral Communications Inc. Energy savings device and method for a resistive and/or an inductive load
US7061188B1 (en) * 2002-03-29 2006-06-13 Technical Consumer Products, Inc. Instant start electronic ballast with universal AC input voltage
JP2005108473A (ja) * 2003-09-29 2005-04-21 Hitachi Ltd 放電ランプ点灯装置
US6906477B2 (en) * 2003-10-14 2005-06-14 Astral Communications, Inc. Linear control device for controlling a resistive and/or an inductive and/or a capacitive load
JP4364651B2 (ja) * 2004-01-07 2009-11-18 三菱電機株式会社 昇圧装置及びモータ制御装置
US7821208B2 (en) * 2007-01-08 2010-10-26 Access Business Group International Llc Inductively-powered gas discharge lamp circuit

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203597A (ja) * 1985-12-11 1986-09-09 富士電機株式会社 放電灯高周波点灯装置
JPS63175394A (ja) * 1987-01-14 1988-07-19 松下電工株式会社 放電灯点灯装置
JPH01143191A (ja) * 1987-11-27 1989-06-05 Tokyo Electric Co Ltd 放電灯点灯装置
JP2744009B2 (ja) * 1988-03-28 1998-04-28 松下電工株式会社 電力変換装置
JPH0359998A (ja) * 1989-07-26 1991-03-14 Matsushita Electric Works Ltd 放電灯点灯装置
JPH0473893A (ja) * 1990-07-13 1992-03-09 Hitachi Lighting Ltd 放電灯点灯装置
JP3056802B2 (ja) * 1991-03-15 2000-06-26 松下電工株式会社 インバータ装置
JP3003876B2 (ja) * 1991-03-26 2000-01-31 松下電工株式会社 放電灯点灯装置
US5144195B1 (en) * 1991-05-28 1995-01-03 Motorola Lighting Inc Circuit for driving at least one gas discharge lamp
JP3010789B2 (ja) * 1991-06-25 2000-02-21 松下電工株式会社 放電灯点灯装置
JP2607627Y2 (ja) * 1991-07-31 2002-03-04 松下電工株式会社 照明器具
JP3291019B2 (ja) * 1992-05-15 2002-06-10 松下電工株式会社 放電灯点灯装置
JPH0654535A (ja) * 1992-07-24 1994-02-25 Matsushita Electric Works Ltd 放電灯点灯装置
JPH0696887A (ja) * 1992-09-10 1994-04-08 Toshiba Lighting & Technol Corp 電源装置、放電灯点灯装置および照明装置
JP2935259B2 (ja) * 1994-06-13 1999-08-16 株式会社コーセイジャパン 電子式放電管点灯装置

Also Published As

Publication number Publication date
DE69526873T2 (de) 2002-11-07
EP0871349A4 (fr) 1998-12-30
US6100642A (en) 2000-08-08
WO1997023119A1 (fr) 1997-06-26
DE69526873D1 (de) 2002-07-04
EP0871349A1 (fr) 1998-10-14

Similar Documents

Publication Publication Date Title
EP0680246B1 (fr) Alimentation à facteur de puissance élevé et à taux de distorsion réduit
US4562383A (en) Converter
JPH1167471A (ja) 照明装置
JP2001357993A (ja) 放電灯点灯装置
EP0772956A1 (fr) Montage de circuit
JP2933077B1 (ja) 放電灯点灯装置
EP0871349B1 (fr) Dispositif electronique de commande de lampe a decharge
KR19990083245A (ko) 방전램프점등장치및조명장치
JPH11144860A (ja) 高周波加熱装置
JPH11307291A (ja) 放電灯点灯装置
JP2935259B2 (ja) 電子式放電管点灯装置
JPH11307290A (ja) 放電灯点灯装置
KR200308322Y1 (ko) 전자식 형광등용 안정기
JP3050256B2 (ja) 放電灯点灯装置
JPH11307289A (ja) 放電灯点灯装置
KR100493922B1 (ko) 전자식 형광등용 안정기
JPH01294399A (ja) 放電灯点灯装置
JP3654035B2 (ja) 電源装置
JPH10335075A (ja) 放電灯点灯装置
JPH10312890A (ja) 電子式放電管点灯装置
JP3518230B2 (ja) 点灯装置
KR19990051604A (ko) 조명등의 과전류 감지장치
JP2001068290A (ja) 放電灯点灯装置
KR960003949B1 (ko) 영전압 스위칭 방식의 공진형 컨버터
JP3034936B2 (ja) 放電灯点灯装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KIM, JONG, KI

A4 Supplementary search report drawn up and despatched

Effective date: 19981117

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE

17Q First examination report despatched

Effective date: 20000420

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 05B 41/24 A, 7H 05B 41/292 B

REF Corresponds to:

Ref document number: 69526873

Country of ref document: DE

Date of ref document: 20020704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031222

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050701