EP0865510A1 - Bänder und tafeln aus legiertem zink - Google Patents

Bänder und tafeln aus legiertem zink

Info

Publication number
EP0865510A1
EP0865510A1 EP96942345A EP96942345A EP0865510A1 EP 0865510 A1 EP0865510 A1 EP 0865510A1 EP 96942345 A EP96942345 A EP 96942345A EP 96942345 A EP96942345 A EP 96942345A EP 0865510 A1 EP0865510 A1 EP 0865510A1
Authority
EP
European Patent Office
Prior art keywords
zinc
weight
strips
zinc alloy
sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96942345A
Other languages
English (en)
French (fr)
Inventor
Adolf Stradmann
Frank-Ulrich Dyllus
Volker Brücken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinzink GmbH and Co KG
Original Assignee
Rheinzink GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinzink GmbH and Co KG filed Critical Rheinzink GmbH and Co KG
Publication of EP0865510A1 publication Critical patent/EP0865510A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc

Definitions

  • the invention relates to strips and sheets made of alloyed zinc based on at least 99.99% zinc with additions of 0.05 to 0.2% by weight of titanium, copper and 0.005 to 0.05% by weight of aluminum, preferably for the building industry .
  • the production of the material is generally carried out using the casting-rolling process, in which strips in a continuous process (melting - casting - rolling - winding) are produced in predetermined thicknesses, which are then cut on scissor lines to narrow strips or sheets.
  • the material is stable in the atmosphere.
  • the surface initially reacts with the oxygen in the air to form zinc oxide.
  • the action of water then forms zinc hydroxide, which, when reacted with the carbon dioxide in the air, converts it into a dense, firmly adhering and water-insoluble cover layer made of basic zinc carbonate. This protective layer is responsible for the high corrosion resistance.
  • the underside of the zinc strips and tablets In contrast to the behavior of the surface of the zinc facing the free atmosphere, the following applies to the underside of the zinc strips and tablets, i.e. on the side facing away from the weather, other criteria.
  • the underside of the zinc strips and sheets if the underside of the zinc strips and sheets is exposed to moisture or condensed water for a long period due to inadequate ventilation, caused by structural or installation errors, it must be subjected to increased corrosion, e.g. due to water inclusions, water ingress, condensation, etc., which ultimately leads to point-by-point deep corrosion (pitting), which can spread out in areas.
  • the object of the present invention to reduce to a minimum the risk of punctiform deep corrosion as a result of physical defects and / or improper laying of strips and sheets consisting of the fine zinc alloy mentioned at the beginning.
  • the solution to this problem is that the copper content of the fine zinc alloy is 0.02 to 0.075% by weight, preferably 0.03 to 0.06% by weight, and in addition a manganese content of 0.075 to 0.75% by weight, preferably 0, 2 to 0.75% by weight of manganese is provided.
  • the samples of the examined zinc sheets consisted of a fine zinc alloy (I) with the composition belonging to the state of the art and of a fine zinc alloy (II) with the composition according to the invention (in% by weight):
  • the sheets made of the known fine zinc alloy (I) showed a surface and local corrosion attack.
  • the corrosion behavior of the fine zinc alloy (II) according to the invention could be influenced in such a way that the attack leading to localized deep corrosion was prevented.
  • the area-related covering number density Z which represents the number of punctiform digits per centimeter, decreases significantly when the manganese content is added and the copper content is limited. Even in the "pre-weathered", ie in the pickled state, no local points of attack on the zinc strips and panels could be determined visually. In addition to the visual impression and the area-related covering number density Z, the area-related mass change can be taken into account as a classification of the fine zinc alloys.
  • Electrolyte Zn (OH) ⁇ - saturated solution with NaCl adjusted to a conductivity of 500 ⁇ m / cm, ⁇ rinsing of the corrosion medium 30 min before
  • the anodic patential profiles of the fine zinc alloys indicate, due to their comparable gradients, that there is no inhibition of the metal dissolution.
  • the conversion of the necessary cathodic partial reaction which takes place in normal aqueous media after the reaction H 2 + V 2 0 2 + 2e " -> 2 (OH " ), can be seen from the curves as a cathodic potential curve depending on the alloy. This shows the positive influence of the addition of manganese already determined under condensation conditions.
  • the cathodic current density (I) show the values of the cathodic current density (I), which were determined at a potential which is 50 mV more negative than the resting potential.
  • the current densities indicate that the cathodic partial reaction of the fine zinc alloy (II) is reduced by approximately 60% compared to the fine zinc alloy (I).
  • the cathodic potential curve of the fine zinc alloy (II) according to the invention is flatter, which is due to an inhibition of the oxygen reduction. If less oxygen is converted, less and less metal will dissolve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Zur Verhinderung von Tiefenkorrosion enthält eine Feinzinklegierung mit 0,05 bis 0,2 Gew.-% Titan, Kupfer und 0,005 bis 0,05 Gew.-% Aluminium noch 0,075 bis 0,75 Gew.-% Mangan mit der Maßgabe, daß der Kupfergehalt 0,02 bis 0,075 Gew.-% beträgt.

Description

Bänder und Tafeln aus legiertem Zink
Beschreibung:
Die Erfindung betrifft Bänder und Tafeln aus legiertem Zink auf der Basis von wenigstens 99,99% Zink mit Zusätzen von 0,05 bis 0,2 Gew.% Titan, Kupfer und 0,005 bis 0,05 Gew.% Aluminium, vorzugsweise für das Bauwesen.
Dieser in der DE-C-1 758 498 beschriebene und nach DIN 17 770, Teil 1 genormte Werkstoff wird seit vielen Jahren, insbesondere im Bauwesen, wegen seiner vorzüglichen Werkstoffeigenschaften eingesetzt. Die aus diesem Werkstoff hergestellten Bänder und Tafeln sind unabhängig von der Walzrichtung anrißfrei um 180° faltbar, bleiben bruchfrei beim Wiederaufbiegen und zeichnen sich durch eine hohe Duktilität bei jeder Art Umformung, auch bei Kaltumformung, aus. Die Mindestanforderung an diese mechanisch-technologischen Eigenschaften der aus diesem Werkstoff hergestellten Bänder und Tafeln sind in DIN 17 770, Teil 1 aufgeführt. In DIN 17 770, Teil 2 sind die Maße für solche Bänder und Bleche angegeben.
Die Herstellung des Werkstoffs erfolgt im allgemeinen unter Anwendung des Gieß-Walz-Verfahrens, bei dem in einem ununterbrochenen Verfahrensgang (Schmelzen - Gießen - Walzen - Aufwickeln) Bänder in vorgegebenen Dicken hergestellt werden, die anschließend auf Scherenlinien zu Schmalbändern oder Tafeln geschnitten werden.
ORIGINAL UNTERLAGEN Der Werkstoff ist in der Atmosphäre gut beständig. Die Oberfläche reagiert zunächst unter Bildung von Zinkoxid mit dem Sauerstoff der Luft. Durch Einwirkung von Wasser bildet sich dann Zinkhydroxid, das durch Reaktion mit dem Kohlendioxid der Luft zu einer dichten, festhaftenden und wasserunlöslichen Deckschicht aus basischem Zinkkarbonat umgewandelt wird. Diese Schutzschicht ist verantwortlich für den hohen Korrosionswiderstand.
Im Gegensatz zum Verhalten der der freien Atmosphäre zugewandten Oberfläche des Zinks gelten an der Unterseite der Zinkbänder und -tafeln, d.h. auf der von den Witterungseinflüssen abgewandten Seite, andere Kriterien. Wird darüber hinaus die Unterseite der Zinkbänder und -tafeln durch Feuchtigkeit oder Kondenswasser infolge mangelhafter Be- und Entlüftung über einen längeren Zeitraum belastet, verursacht durch bauphysikalische oder verlegungstechnische Fehler, muß mit verstärkter Korrosion, z.B. durch Wassereinschlüsse, Wassereinbrüche, Tauwasser usw. gerechnet werden, die schließlich zu einer punktweisen Tiefenkorrosion (Lochfraß) führt, die sich flächenförmig ausbreiten kann.
Um diese Folgen zu vermeiden ist für eine ausreichende Be- und Entlüftung der Unterkonstruktion von Zinkband- oder -tafeldeckungen durch eine Ausführung in Übereinstimmung mit den allgemeinen Vorschriften und Bestimmungen, wie den technischen Vorschriften für Bauleistungen (VOB) , den DIN-Normen, den Fachregeln des Handwerks, den Verordnungen der Baubehörden sowie den Hinweisen des Baustofflieferanten, zu sorgen.
Es ist die Aufgabe der vorliegenden Erfindung, die Gefahr einer punktweisen Tiefenkorrosion als Folge bauphysikalischer Fehler und/oder nicht fachgerechter Verlegung von aus der eingangs angeführten Feinzinklegierung bestehenden Bändern und Tafeln auf ein Minimum zu senken. Die Lösung dieser Aufgabe besteht darin, daß der Kupfergehalt der Feinzinklegierung 0,02 bis 0,075 Gew.%, vorzugsweise 0,03 bis 0,06 Gew.% beträgt und zusätzlich ein Mangangehalt von 0,075 bis 0,75 Gew.%, vorzugsweise 0,2 bis 0,75 Gew.% Mangan vorgesehen ist.
Zu Vergleichszwecken wurden Korrosionsuntersuchungen an gewalzten 0, 8 mm dicken Zinkblechen unter Anwendungen des Kondenswassertests nach DIN 50 017 KK durchgeführt, bei dem Zinkbleche in einer Kondenswasser-Klimaprüfeinrichtung bei einer Lufttemperatur von 40 °C und einer relativen Luftfeuchte von 100% 7 Tage lang ausgelagert wurden. Nach dieser Explositionsdauer wurden die Massenänderungen und das optische Erscheinungsbild der Korrosion der Zinkbleche ermittelt.
Die Proben der untersuchten Zinkbleche bestanden aus einer Feinzinklegierung (I) mit der zum Stand der Technik gehörenden Zusammensetzung und aus einer Feinzinklegierung (II) mit der erfindungsgemäßen Zusammensetzung (in Gew.%):
Mn Cu Ti AI Zn Feinzinklegierung (I) - 0,13 0,12 0,010 Rest (99,995%) Feinzinklegierung (II) 0,39 0,049 0,12 0,010 Rest (99,995%)
Bei den aus der bekannten Feinzinklegierung (I) bestehenden Blechen zeigte sich ein flächenmäßiger und örtlicher Korrosionsangriff. Durch die erfindungsgemäße Zurücknahme des Kupfers und Zugabe von Mangan konnte das Korrosionsverhalten der erfindungsgemäßen Feinzinklegierung (II) derart beeinflußt werden, daß der zur punktuellen Tiefenkorrosion führende Angriff verhindert wurde. Die flächenbezogene Belagszahldichte Z, die die Anzahl von punktuellen Stellen pro Zentimeter wiedergibt, nimmt deutlich bei Zusatz des Mangangehalts und Eingrenzung des Kupfergehalts ab. Selbst im "vorbewitterten" , d. h. im gebeizten Zustand konnten keine örtlichen Angriffsstellen an den Zinkbändern und -tafeln visuell ermittelt werden. Neben dem visuellen Eindruck und der flächenbezogenen Belagszahldichte Z kann die flächenbezogene Massenänderung als Klassifizierung der Feinzinklegierungen berücksichtigt werden. Dazu wurden aus der bekannten Feinzinklegierung (I) und der erfindungsgemäßen Feinzinklegierung (II) bestehende 0,8 mm dicke Bleche gebeizt und anschließend 14 Tage dem Kondenswassertest gemäß DIN 50 017 (Konstantklima) unterzogen. Wie das in Fig. 1 dargestellte Säulendiagramm zeigt, beträgt der flächenbezogene Massenverlust w in mg/cnr bei der Feinzinklegierung (I) 1,2 mg/cm2 und bei der Finzinklegierung (II) nach der Erfindung nur 0,31 mg/cm1.
Zur Simulierung von Kondenswasserbedingungen wurde alε Korrosionsmedium ein mit Zinkhydroxid gesättigtes, destilliertes Wasser verwendet, wobei Natriumchlorid als Leitsalz zugegeben wurde. Folgende Prüfbedinungen wurden bei allen Proben zugrunde gelegt:
Elektrolyt: Zn (OH)^-gesättigte Lösung mit NaCl auf eine Leitfähigkeit von 500 μm/cm eingestellt, ^-Spülung des Korrosionsmediums 30 min vor
Versuchsbeginn eingeschaltet, Elektrolyttemperatur 40°C.
Die Fig. 2 gibt die Summenstromdichte-Potential-Kurven der Feinzinklegierung (I) und der erfindungsgemäßen Feinzinklegierung (II) wieder.
Die anodischen Patentialverläufe der Feinzinklegierungen deuten aufgrund ihrer vergleichbaren Steigungen darauf hin, daß eine Hemmung der Metallauflösung in keinem Falle vorliegt. Der Umsatz der notwendigen kathodischen Teilreaktion, die in normalen wäßrigen Medien nach der Reaktion H2 + V2 02 + 2e" -> 2(OH") abläuft, kann als kathodischer Potentialverlauf legierungsabhängig aus den Kurven entnommen werden. Hierbei zeigt sich der schon unter Kondenswasserbedingungen ermittelte positive Einfluß des Manganzusatzes. Inwieweit die Reduktion des Sauerstoffes in Abhängigkeit von der LegierungsZusammensetzung verringert wird, zeigen die Werte der kathodischen Stromdichte (I), die bei einem Potential, welches um 50 mV negativer ist als das Ruhepotential, ermittelt wurden. Die Stromdichten lassen erkennen, daß die kathodische Teilreaktion der Feinzinklegierung (II) zu ca. 60 % gegenüber der Feinzinklegierung (I) reduziert ist. Im Vergleich zur Feinzinklegierung (I) verläuft die kathodische Potentialkurve der erfindungsgemäßen Feinzinklegierung (II) flacher, was auf einer Hemmung der Sauerstoffreduktion zurückzuführen ist. Wird weniger Sauerstoff umgesetzt, dann geht immer weniger Metall in Lösung.

Claims

Patentansprüche
1. Bänder und Tafeln aus legiertem Zink auf der Basis von Feinzink von wenigsten 99,99% Zink mit Zusätzen von 0,05 bis 0,2 Gew.% Titan, Kupfer und 0,005 bis 0,05 Gew.% Aluminium vorzugsweise für das Bauwesen, dadurch gekennzeichnet, daß der Kupfergehalt 0,02 bis 0,075 Gew.% beträgt und ein Mangangehalt von 0,075 bis 0,75 Gew.% vorgesehen ist.
2. Bänder und Tafeln nach Anspruch 1 gekennzeichnet durch einen Kupfergehalt von 0,03 bis 0,06 Gew.%
3. Bänder und Tafeln nach einem der Ansprüche 1 und 2 gekennzeichnet durch einen Mangangehalt von 0,20 bis 0,75 Gew.%.
EP96942345A 1995-12-06 1996-12-04 Bänder und tafeln aus legiertem zink Withdrawn EP0865510A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19545487 1995-12-06
DE19545487A DE19545487A1 (de) 1995-12-06 1995-12-06 Bänder und Tafeln aus legiertem Zink
PCT/EP1996/005415 WO1997020959A1 (de) 1995-12-06 1996-12-04 Bänder und tafeln aus legiertem zink

Publications (1)

Publication Number Publication Date
EP0865510A1 true EP0865510A1 (de) 1998-09-23

Family

ID=7779333

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96942345A Withdrawn EP0865510A1 (de) 1995-12-06 1996-12-04 Bänder und tafeln aus legiertem zink

Country Status (5)

Country Link
EP (1) EP0865510A1 (de)
DE (1) DE19545487A1 (de)
PE (1) PE32398A1 (de)
PL (1) PL327029A1 (de)
WO (1) WO1997020959A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10156475A1 (de) * 2001-11-16 2003-06-05 Rheinzink Gmbh Verfahren zur Herstellung von dunklen Schutzschichten auf Flacherzeugnissen aus Titanzink
MX2009006149A (es) * 2009-06-10 2010-12-13 Alberto Manuel Ontiveros Balcazar Aleación para fabricar electrodos de puesta a tierra y su metodo de union.
CN107385278B (zh) * 2017-08-02 2019-10-08 宁波博威合金材料股份有限公司 易于冷加工成型的变形锌合金材料及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB526619A (en) * 1938-07-26 1940-09-23 Edes Mfg Company Zinc base alloy
DE1138553B (de) * 1960-02-19 1962-10-25 Huettenbetr Zinkknetlegierung und Verfahren zu ihrer Herstellung
DE1274345B (de) * 1962-08-02 1968-08-01 Stolberger Zink Ag Zinkknetlegierung und Verfahren zu ihrer Herstellung und Verarbeitung
LU53446A1 (de) * 1967-04-18 1968-12-11
CA932158A (en) * 1970-07-27 1973-08-21 F. Redden Robert Method of producing zinc alloy
JPS5952947B2 (ja) * 1980-01-29 1984-12-22 三菱マテリアル株式会社 溶融メツキ用亜鉛合金
JPH06228686A (ja) * 1993-01-29 1994-08-16 Nisso Kinzoku Kagaku Kk 亜鉛基合金線及び亜鉛合金線の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9720959A1 *

Also Published As

Publication number Publication date
DE19545487A1 (de) 1997-06-12
WO1997020959A1 (de) 1997-06-12
PE32398A1 (es) 1998-08-08
PL327029A1 (en) 1998-11-09

Similar Documents

Publication Publication Date Title
EP1888798B1 (de) Aluminium-gleitlagerlegierung
EP1917374A1 (de) Magnesiumlegierung
DE19501747A1 (de) Beschichtetes Metallmaterial, insbesondere Baumaterial
DE3507402A1 (de) Aluminiumoffsetband und verfahren zu seiner herstellung
DE2917235A1 (de) Verfahren zum ausbilden von festhaftenden und gleichfoermigen isolationsschichten auf kornorientiertem siliciumstahlblech
DE1608171A1 (de) Nickel-Chrom-Molybdaen-Legierung
EP0865510A1 (de) Bänder und tafeln aus legiertem zink
DE1291905B (de) Verwendung einer Magnesiumknetlegierung
EP0723028B1 (de) Bänder und Tafeln aus legiertem Zink
EP0943695B1 (de) Draht auf Basis von Zink und Aluminium und seine Verwendung beim thermischen Spritzen als Korrosionsschutz
DE1764365B1 (de) Radioaktives praeparat
DE2150102A1 (de) Aluminiumlegierung fuer Anoden fuer galvanische Baeder
DE3011819A1 (de) Kathoden fuer elektrolyt-kondensatoren
EP1157140B1 (de) Verwendung von zinklegierungen
DE3237604C2 (de) Verwendung einer Eisen-Nickel-Chrom-Legierung als Werkstoff zur Herstellung von Dichtungsmaterial für Weichglas
EP0714993B1 (de) Tiefziehbare und schweissbare Aluminiumlegierung vom Typ ALMgSi
DE2813569A1 (de) Eisen-chrom-aluminium-yttrium-legierung
EP2924136B9 (de) Verfahren zur Herstellung eines Architekturblechs und Aluminiumblech hierfür
DE102009045076A1 (de) Korrosionsschutz auf Zink-Legierungsbasis
DE1558628C (de) Verfahren zur Herstellung einer oxi dationsbestandigen Kupferlegierung
DE102020127317A1 (de) Bleifreie Kupferlegierung sowie Verwendung der bleifreien Kupferlegierung
AT134253B (de) Zinklegierung, insbesondere für Spritzguß.
EP0239777B1 (de) Witterungsbeständige Kupferlegierung
EP4357472A1 (de) Schmelztauchveredeltes und dressiergewalztes stahlblech mit intakter oxidschicht auf dem metallischen überzug
DE1814656A1 (de) Legierung hoher Festigkeit auf Zinkbasis und Verfahren zur Verbesserung ihrer Eigenschaften

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR IT NL PT

AX Request for extension of the european patent

Free format text: SI PAYMENT 980706

17Q First examination report despatched

Effective date: 19981012

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19990728