EP0846180A1 - Transgene pflanzenzellen und pflanzen mit gesteigerter glykolyserate - Google Patents

Transgene pflanzenzellen und pflanzen mit gesteigerter glykolyserate

Info

Publication number
EP0846180A1
EP0846180A1 EP96928432A EP96928432A EP0846180A1 EP 0846180 A1 EP0846180 A1 EP 0846180A1 EP 96928432 A EP96928432 A EP 96928432A EP 96928432 A EP96928432 A EP 96928432A EP 0846180 A1 EP0846180 A1 EP 0846180A1
Authority
EP
European Patent Office
Prior art keywords
hexokinase
invertase
transgenic plant
dna sequences
plant cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96928432A
Other languages
English (en)
French (fr)
Inventor
Jörg Riesmeier
Richard Trethewey
Lothar Willmitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Bioscience GmbH
Original Assignee
Riesmeier Jorg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riesmeier Jorg filed Critical Riesmeier Jorg
Publication of EP0846180A1 publication Critical patent/EP0846180A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention relates to uransgenic plant cells and plants with a higher rate of glycolysis compared to non-transformed plants.
  • the increase in the rate of glycolysis is achieved by introducing and expressing a DNA sequence encoding a cytosolic invertase, preferably a deregulated or unregulated invertase, and a DNA sequence encoding a cytosolic hexokinase, preferably a deregulated or unregulated hexokinase encoded, in plant cells.
  • the invention also relates to methods and recombinant DNA molecules for the production of transgenic plant cells and plants with an increased glycolysis rate, and to the use of DNA sequences which contain proteins with the enzymatic activity of an invertase or proteins with the enzymatic activity encode a hexokinase for the production of plants which have an increased rate of glycolysis.
  • WO 91/19896 further describes that the increase in starch biosynthesis by overexpression of a deregulated enzyme of ADP-glucose pyrophosphorylase leads to an increased allocation of sucrose in potato tubers, which are stored there in the form of starch. While many of these applications deal with the steps which either lead to the formation of photoassimilates in leaves (cf. also EP 466 995) or with the formation of polymers such as starch or fructans in storage organs of transgenic plants (for example WO 94 / 04692), there are no promising approaches to date which describe which modifications have to be introduced in the primary metabolic pathways in order to achieve an increase in the rate of glycolysis.
  • An increase in the rate of glycolysis is important, for example, for all those processes in the plant for which larger amounts of ATP are required. This applies, for example, to many transport processes across membranes that are driven by a membrane potential or a proton gradient that is generated by the activity of an H + -ATPase. Furthermore, an increase in the rate of glycolysis is important for growth in the meristem, the switch from vegetative to generative Growth, as well as for the synthesis of various storage materials, in particular oils.
  • the invention is therefore based on the object of making available plant cells and plants with an increased glycolysis rate as well as processes and DNA molecules for their production.
  • the present invention thus relates to transgenic plant cells with a glycolysis rate which is increased in comparison to non-transformed plant cells, in which it is due to the introduction and expression of DNA sequences which code for a cytosolic invertase, and of DNA sequences, encoding a cytosolic hexokinase leads to an increase in invertase and hexokinase activity.
  • the transgenic cells can each contain one or more DNA sequences which encode an invertase or a hexokinase.
  • An increased glycolysis rate means that the transgenic plant cells which have been transformed with DNA sequences which lead to the additional synthesis of an invertase and a hexokinase in the cytosol of the cells have an increased glycolysis rate, preferably a glycolysis rate, compared to non-transformed plant cells which is increased by at least 30%, in particular one which is increased by at least 50% to 100%, and in particular one which is increased by more than 100% to 200%, preferably by more than 300%.
  • the determination of the glycolysis rate by determining the corresponding metabolic intermediates is described in detail in the examples.
  • the increase in the glycolate can be determined, for example, by increasing the concentration of glucose-6-phosphate, fructose-6-phosphate, 3-phosphoglycerate, pyruvate or ATP.
  • the increase in the rate of glycolysis is preferably determined by determining the increase in pyruvate.
  • the increase in the rate of glycolysis is compared. . determined with non-transformed cells. This means that material from plants which were used as the starting material for the introduction of the above-mentioned DNA sequences is used to determine the glycolysis rate and the glycolysis rate determined in this is compared with that of plants corresponding type or line after the transformation with the DNA sequences described above.
  • the provision of larger amounts of ATP through an increased glycolysis rate enables, for example, the increase in various energy-dependent transport and growth processes.
  • the provision of higher pyruvate concentrations as a result of an increased glycolysis rate leads to increased amounts of AcetylCoA, which is used, for example, for the increased synthesis of oils, fats or isoprenoid derivatives can be. If DNA sequences which enable the synthesis of polyhydroxyalkanoic acids are simultaneously expressed in the cells, the acetylCoA can also be used to form such alkanoic acids.
  • the DNA sequences which encode an invertase or a hexokinase are DNA sequences which encode an invertase or hexokinase, in comparison to invertases or hexoki which normally occur in plant cells ⁇ noses are deregulated or unregulated.
  • Deregulated means that these enzymes are not regulated in the same way as the invertase and hexokinase enzymes normally formed in unmodified plant cells. In particular, these enzymes are subject to other regulatory mechanisms, ie they are not inhibited to the same extent by the inhibitors present in the plant cells or are allosterically regulated by metabolites.
  • Deregulated preferably means that the enzymes have a higher activity than endogenously expressed invertases or hexokinases expressed in plant cells. Unregulated means in the context of this invention that the enzymes in plant len Zel ⁇ no regulation subject.
  • the DNA sequences which encode a protein with the enzymatic activity of an invertase can be both DNA sequences which encode prokaryotic, in particular bacterial, invertases and those which eukaryotic, ie invertases from plants, algae, Coding mushrooms or animal organisms.
  • fungi also includes yeasts, in particular those of the genus Saccharomyces, such as, for example, Saccharomyces cerivisiae.
  • the enzymes encoded by the sequences can be either known enzymes occurring in nature which have different regulation by various substances, in particular by the plant invertase inhibitors, or enzymes which by mutagenesis of DNA sequences which encode known enzymes from bacteria, algae, fungi, animals or planters.
  • the DNA sequences encode proteins with the enzymatic activity of an invertase from fungi.
  • Such enzymes have the advantage that they are not regulated by plant invertase inhibitors in comparison to plant invertases.
  • DNA sequences encoding an invertase from Saccharomyces are preferably used. Such sequences are known and described (see. Taussig et al., Nucleic Acids Res. 11 (1983), 1943-1954; EP-A2 0 442 592).
  • alginolyticus L08094 Zymomonas mobilis, L33403 Zymomonas mobilis, U16123 Zea mays, U17695 Zea mays, X17604 S. occidentalis, Z22645 S. tuberosum, Z21486 S. tuberosum, M81081 tomato, Z35162 V. faba, Z35163 V. faba, D10265 V. radiata, Z12025 L. esculentum, Z12028 pimpinellifolium, Z12026 L. pimpinellifolium, X73601 A. sativa, S70040 acid invertase, V01311 yeast gene, U11033 Arabidopsis thaliana, X81795 B.
  • the DNA sequences which encode a procyne with the enzymatic activity of a hexokinase can be both those which encode prokaryotic, in particular bacterial, invertases and those which encode eukaryotic invertases, i.e. encode those from plants, algae, fungi or animal organisms.
  • Hexokinases (EC 2.7.1.1) are enzymes that catalyze the following reaction:
  • the hexokinases encoded by the DNA sequences can be known, naturally occurring enzymes, which have different regulation by different substances, as well as enzymes, which by mutage ⁇ nese from DNA sequences that encode known enzymes from bacteria, algae, fungi, animals or plants.
  • DNA sequences which encode enzymes with hexokinase activity have been described from a whole series of organisms, for example from Saccharomyces cerevisiae, humans, rats and various microorganisms (for the DNA sequences see: EMBL gene bank access numbers M92054, LO4480, M65140 , X61680, M14410, X66957, M75126, J05277, J03228, M68971, M86235, X63658).
  • these are DNA sequences which code for glucokinases, in particular glucokinases, which are subject to reduced allosteric regulation, for example by glucose-6-phosphate.
  • Glucokinases (EC 2.7.1.2) are hexokinases with a high affinity for glucose, which catalyze the following reaction: Glucose -r ATP ⁇ —> glucose-6-phosphate + ADP
  • the DNA sequences encode a giucokinase from Zymomonas mobilis (Barneil et al., J. Bacteriol. 172 (1990), 7227-7240; EMBL gene bank access number M60615). Further glucokinases from humans and rats have been described (for the DNA sequences see: EMBL gene bank accession numbers M69051, M90299, J04218 and M25807).
  • DNA sequences which encode an invertase or a hexokinase can be isolated from any organism with the aid of the already known DNA sequences mentioned above. Methods for the isolation and identification of such DNA sequences are known to the person skilled in the art, for example hybridization with known sequences or by polymerase chain reaction using primers which are derived from known sequences.
  • the enzymes encoded by the identified DNA sequences are then examined for their enzyme activity and regulation. Methods for determining the invertase or hexokinase activities are familiar to the person skilled in the art.
  • the regulatory properties of the proteins encoded by the DNA sequences can be changed further in order to obtain de-regulated or unregulated enzymes.
  • the DNA sequences which encode a cytosolic invertase or hexokinase can in principle be under the control of any promoter which is functional in plant cells.
  • the expression of said DNA sequences can generally take place in any tissue of a plant regenerated from a transformed plant cell according to the invention and at any time, but is preferably found in such tissues instead, in which an increased glycolysis rate is advantageous either for the growth of the plant, for the uptake and transport of ions and metabolites or for the formation of ingredients within the plant.
  • Promoters which ensure specific expression in a specific tissue, at a specific development time of the plant or in a specific organ of the plant therefore appear to be particularly suitable.
  • Promoters which are specifically active in the endosperm or in the cotyledons of seeds forming therefore appear to be particularly suitable for increasing the fatty acid biosynthesis as a result of an increased acetylCoA content in seeds of oil-forming plants such as oilseed rape, soybean, sunflower and oil palms.
  • Such promoters are, for example, the Phaseolin promoter from Phaseolus vulgaris, the USP promoter from Vicia faba or the HMG promoter from wheat.
  • promoters that ensure seed-specific expression.
  • starch-storing plants e.g. This increases the rate of glycolysis in the seeds of maize, wheat, barley or other cereals, and there is an increased formation of pyruvate and acetylCoA and an increased fatty acid biosynthesis. This means that a change in the flow of photoassimilates from starch towards pyruvate-dependent biosynthetic pathways, e.g. fatty acid biosynthesis.
  • promoters which are active in storage organs such as tubers or roots, e.g. in the root of the sugar beet or in the tuber of the potato.
  • the expression of the DNA sequences encoding an invertase or hexokinase leads to a redirection of biosynthetic pathways in the sense of the formation of less sugar or starch and an increased formation of pyruvate and acetyl-CoA due to the increased rate of glycolysis.
  • promoters which are specific at the time the flowering induction are activated or are active in tissues that are necessary for the flowering induction. Promoters can also be used which are controlled only by external influences. Be activated at the time, for example by light, temperature, chemical substances (see, for example, WO 93/07279).
  • promoters are of interest, for example, which have root hair or root epidermis-specific expression.
  • promoters are of interest, for example, which have a transmission cell-specific expression.
  • Such promoters are known (for example the promoter of the rolC gene from Agrobacterium rhizogenes).
  • DNA sequences which encode an invertase or hexokinase can, apart from a promoter, advantageously be linked to DNA sequences which ensure a further increase in transcription, for example so-called enhancer elements, or to DNA sequences, which are in the transcribed area and which ensure a more efficient translation of the synthesized RNA into the corresponding protein (so-called translation enhancer).
  • enhancer elements DNA sequences which are in the transcribed area and which ensure a more efficient translation of the synthesized RNA into the corresponding protein
  • translation enhancer a promoter
  • Such regions can be obtained from viral genes or suitable plant genes or can be produced synthetically. They can be homologous or heterologous to the promoter used.
  • the DNA sequences which code for an invertase or a hexokinase are linked to 3 1 - non-translated DNA sequences which ensure the termination of the transcription and the polyadenylation of the transcript.
  • Such sequences are known and described, for example that of the octopine synthase gene from Agrobacterium tumefaciens. These sequences are interchangeable.
  • the DNA sequences which encode an invertase or hexokinase are preferably stably integrated into the genome in the plant cells according to the invention.
  • the transgenic plant cells which, owing to the additional expression of a cytosolic invertase and a cytosolic hexokinase, have an increased rate of glycolysis, can in principle be cells of any plant species.
  • cells of monocotyledonous and dicotyledon plant species in particular cells of starch-storing, oil-storing or agricultural useful plants, such as, for example, rye, oats, barley, wheat, potato, corn, rice, rapeseed, peas, sugar beet, Soybean, tobacco, cotton, sunflower, oil palm, wine, tomato etc. or cells of ornamental plants.
  • starch-storing, oil-storing or agricultural useful plants such as, for example, rye, oats, barley, wheat, potato, corn, rice, rapeseed, peas, sugar beet, Soybean, tobacco, cotton, sunflower, oil palm, wine, tomato etc. or cells of ornamental plants.
  • the plant cells according to the invention can be distinguished from corresponding non-transformed plant cells in that they contain foreign DNA sequences which are stably integrated into the genome and which encode a cytosolic invertase or a cytosolic hexokinase.
  • the term “foreign DNA sequence” means the following: on the one hand, it can be DNA sequences that are heterologous with respect to the transformed plant cell, i.e. do not naturally occur in such a plant cell. If the DNA sequences are those which naturally occur in the transformed plant cells, "foreign” means that they are integrated in the genome of the transformed plant cells at a location where they do not occur naturally. ie they are in a new genomic environment. This can be verified, for example, by a Southern blot analysis. Furthermore, the DNA molecules introduced into the plant cells are generally recombinant DNA molecules, i.e. molecules that are composed of different segments that do not occur naturally in this combination.
  • the present invention furthermore relates to transgenic plants which contain transgenic plant cells according to the invention. hold. Such plants can be generated, for example, by regeneration from a plant cell according to the invention.
  • the loading of the sieve element-condenser cell complex with sucrose can be increased by the sucrose-proton co-transporter, which leads to an increase in the transport rate of photoassimilates.
  • the absorption of inorganic ions such as phosphate, sulfate, nitrate, etc. from the soil can be increased via the root.
  • An increase in the rate of glycolysis specifically in root cells, in particular in root hairs and epidermal cells can lead to an increased excretion of protons into the soil due to the increased H + -ATPase activity.
  • Such acidification of the soil leads to mobilization and thus easier absorption of various minerals, such as phosphate from the soil.
  • AcetylCoA is also important for many other processes that occur naturally in plants, such as isoprenoid biosynthesis, but also for the formation of polymers such as polyhydroxyalkanoic acids (see, for example, Poivier et al., Bio / Technology 13 ( 1995), 142-150).
  • the result is a reduction in the amount of starch in the corresponding tissue with a possible simultaneous increase in the fatty acid biosynthesis.
  • the present invention relates to a method for producing transgenic plant cells which have an increased glycolysis rate in comparison to non-transformed plant cells, in which DNA sequences which encode a cytosolic invertase are introduced into plant cells, and also DNA sequences , which encode a cytosolic hexokinase, and these sequences are expressed in the transformed plant cells.
  • Such a method preferably consists of the following steps:
  • step (i) a promoter which ensures transcription in plant cells;
  • the promoters, further flanking DNA sequences, and for the selection and modifications of the DNA sequences which encode an invertase or a hexokinase were carried out.
  • the DNA sequences which encode an invertase or a hexokinase can either be located on separate DNA molecules or together on a recombinant DNA molecule. If the sequences are on two different DNA molecules, the transfer of the DNA molecules can either take place simultaneously or in such a way that plant cells are first transformed with a DNA molecule and then selected plant cells or plants are subsequently transformed with the second DNA molecule become. Furthermore, plants which express both an additional cytosolic invertase and an additional cytosolic hexokinase can be produced by first generating two independent transgenic plant lines which code for an invertase or a hexokinase and then crossing them.
  • the transfer of the DNA molecules which contain DNA sequences which encode invertase or hexokinase is preferably carried out using plasmids, in particular those plasmids which ensure stable integration of the DNA molecule into the genome of transformed plant cells, with so binary binary plasmids or Ti plasmids of the Agrobacterium tumefaciens system.
  • plasmids in particular those plasmids which ensure stable integration of the DNA molecule into the genome of transformed plant cells, with so binary binary plasmids or Ti plasmids of the Agrobacterium tumefaciens system.
  • other systems for introducing DNA molecules into plant cells are also possible, such as the so-called biolistic method or the transformation of protoplasts (cf. Willmitzer L. (1993), Transgenic Plants, 3iotechnology 2; 627-659 for an overview). Basically, cells of all plant species are suitable for transformation.
  • Both monocot and dicotyledonous plants are of interest. Transformation techniques have already been described for various monocot and dicot plant species.
  • Cells of agricultural crops are preferably used in the processes, in particular of cereals, for example rye, oats, barley, wheat, potatoes, maize, rice, rapeseed, peas, sugar beet, soybeans, tobacco, cotton, sunflower, oil palm, wine , Tomato etc. or cells of ornamental plants.
  • the invention also relates to the transgenic plant cells obtainable from the process and plants obtainable therefrom by regeneration, which have an increase in the rate of glycolysis due to the additional expression of a cytosolic invertase and a cytosolic hexokinase.
  • the present invention relates to propagation material of plants according to the invention which contains cells according to the invention.
  • This can be any type of tissue or organ of the plants according to the invention which enables the propagation.
  • These include, for example, tissue cultures of cells according to the invention, seeds, fruits, rhizomes, cuttings, seedlings, tubers etc.
  • the present invention further relates to recombinant DNA molecules which contain a DNA sequence which codes a protein with the enzymatic activity of a hexokinase, preferably a glucokinase, in combination with DNA sequences which transcription and translation in ensure plant cells.
  • a hexokinase is preferably a deregulated or unregulated enzyme.
  • the present invention further relates to recombinant DNA molecules which comprise the following DNA sequences:
  • the present invention relates to the use of DNA sequences which encode an invertase, preferably a deregulated or unregulated, for the production of transgenic plant cells which have an increased glycolyzerate in comparison to non-transformed plant cells.
  • the invention also relates to the use of DNA sequences which encode a hexokinase, preferably a deregulated or unregulated, for the production of transgenic plant cells which have an increased glycolytic rate in comparison to non-transformed plant cells. Description of the picture
  • Figure 1 shows the 12.68 kb plasmid pB33Hyg-GK.
  • the plasmid contains the following fragments:
  • Fragment A contains the Dral-Dral fragment (position -1512 to position +14) of the promoter region of the patatin gene 333 (Rocha-Sosa et al., EMBO J. 8 (1989), 23-29).
  • fragment B contains a DNA fragment with the coding region of the Zymomonas mobilis glucokinase (GenEMBL accession number: M60615; nucleotides 5128 to 6153).
  • C fragment C ' .192 bp) contains the polyadenylation signal of gene 3 of the T-DNA of the Ti plasmid pTi-ACH5, nucleotides 11749-11939.
  • the vector pUC18 was used for cioning in E. coli.
  • the gene constructions were cloned into the binary vector pBinAR (Höfgen and Willmitzer, Plant Sei. 66 (1990), 221-233).
  • E. coli strain DH5 ⁇ (Bethesda Research Laboratories, Gaithersburgh, USA) was used for the pUC vectors and for the pBinAR constructs.
  • the DNA was transferred by direct transformation using the Höfgen and Willmitzer method (Nucleic Acids Res. 16 (1988), 9877).
  • the plasmid DNA of transformed Agrobacteria was isolated by the method of Birnboim and Doly (Nucleic Acids Res. 7 (1979), 1513-1523) and analyzed by gel electrophoresis after a suitable restriction cleavage.
  • the starch content and the dry substance of the potato tuber were determined by means of the determination of the specific weight (Scheele et al., Landw. Vers. Sta. 127 (1937), 67-96) according to the following formulas:
  • the phosphoryiated intermediates were determined on a two-wavelength photometer (Sigma ZWS 11) by means of coupled enzymatic reactions according to Stitt et al. (Methods in Enzymology 174, 518-552).
  • the reaction buffer contained: 50 mM Hepes-KOH pH 7.0;
  • the measurement is carried out at 25 ° C. with 50 to 100 ⁇ l extract.
  • the reaction buffer contained: 200 mM glycine pH 8.7;
  • G6P glucose-6-phosphate
  • F5P Fmctose-6-phosphate
  • G1P glucose-1-phosphate
  • the reaction buffer contained: 50 mM Hepes-KOH pH 7.0;
  • the reaction buffer contained: 50 mM Hepes-KOH pH 7.0;
  • the reaction buffer contained: 50 mM Hepes-KOH pH 7.0;
  • the reaction buffer contained: 100 mM Tris-HCl pH 8.1;
  • Glucokinase and fructokinase activity was determined according to Renz et al. (Planta 190 (1993), 156-165), the sucrose synthase and invertase activity according to Zrenner et al. (Plant J. 7 (1995), 97-107), the phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, pvruvate kinase activity according to Burell et al. (Planta 194 (1994), 95-101), and the phosphoglucomutase activity according to Pressey (Journal of Food Science 32 (1967), 381-385).
  • Tubers (approximately 30 g) were taken directly from plants from the greenhouse and placed in an infrared gas analyzer (Binos 100 Rosemound, Dusseldorf, FRG) within 30 minutes. The CO 2 production was determined over 20 minutes at 20 ° C. and evaluated with the software from Waltz (Effeltrich, FRG).
  • the coding region of the glucokinase gene from Zymononas mobilis was amplified using the polymerase chain reaction (PCR) starting from genomic Zymomonas mobilis DNA.
  • the sequence of the Zymomonas mobilis glucokinase is entered in the GenEMBL database with the Accessicn number M60615.
  • the amplified fragment corresponds to the region from nucleic acids 5128 to 6153 of this sequence.
  • An Asp718 interface was inserted at the 5 'end and a HindIII interface at the 3' end.
  • the 1025 bp PCR fragment was cloned into the vector pUCBM20 via the two additional interfaces.
  • the entire coding region of the glucokinase was subcloned into the vector pBluescriptSK after restriction digestion with EcoRI and HindIII.
  • extracts from ⁇ . coli cells containing the resulting plasmid pSK-GK were found to have a 100-fold increase in glucokinase activity compared to extracts from untransformed E. coli cells.
  • the cells of a 20 ml overnight culture were harvested and resuspended in 500 ⁇ l extraction buffer (30 mM KH 2 PO 4 ; 2 mM MgCl 2 ; 10 mM 2-mercaptoetha- nol; 0.1% (Vol. / Vol.) Nonid ⁇ t? 40).
  • the suspension was mixed vigorously four times for 30 seconds. After centrifugation, the glucokinase activity in the cell-free extract was carried out as in Scopes et al. (Biochem. J. 228 (1985), 627-634).
  • the insert was recloned into a binary vector derived from pBIN19 (Bevan, Nucl. Acids Res. 12 (1984), 8711-8720).
  • the following plasmid was created: the plasmid pB33Hyg-GK (cf. FIG. 1).
  • the construct contains the B33 promoter from Solanum tuberosum (Rocha-Sosa et al., ⁇ MBO J. 8 (1989), 23-29).
  • the construct pB33Hyg-GK was created as follows: Since the construct was to be used for the transformation of already transgenic potato plants which express the NPT-II gene, the plasmid pBIB, which codes for the HPT gene, was used which contains hygromycin B phosphotransferase (Becker, Nucl. Acids Res. 18 (1990), 203). The promoter of the B33 gene from Solanum tuberosum was inserted as a Dral fragment (position -1512 to +14 according to Rocha-Sosa et al., EMBO J. 8 (1989), 23-29) into the Sacl Cloned the plasmid pUC19.
  • the promoter region was cloned into the binary vector pBIN19, which contains the termination signal of the octopine synthase gene from Agrobacterium tumefaciens in the direct vicinity of a polylinker from M13mpl9. This resulted in pB33.
  • the promoter polylinker terminator fragment of plasmid pB33 was cloned as an EcoRI / HindIII fragment into the plasmid pBIB linearized with EcoRI and HindIII. This resulted in the plasmid pB33Hyg.
  • the coding region of the glucokinase was then isolated after Asp718 / Sall digestion of the plasmid pSK-GK and Asp718 / Sall was cloned into the plasmid pB33Hyg. This resulted in the plasmid pB33Hyg-GK, which is used for the transforma- tion of the transgenic potato line U-Inv-2 (line 30) was used.
  • the binary plasmid is introduced into the cells by direct transformation according to the method of Höfgen & Willmitzer (Nucl. Acids Res. 16 (1988), 9877).
  • the plasmid DNA of transformed agrobacteria was determined by the method of Birnboim et al. (Nucl. Acids Res. 7 (1979), 1513-1523) isolated and analyzed by gel electrophoresis after suitable restriction cleavage.
  • the enzyme activities shown here are the average of at least five measurements based on five independent plants.
  • GK-41, GK-29 and GK-38 were amplified and 15 plants in each case were transferred to a greenhouse.
  • the tubers were harvested 4 months later.
  • soluble sugars such as glucose, fructose and sucrose surprisingly showed that the seven-fold increase in the glucose concentration in the U-Inv-2 plants compared with the wild type is greatly reduced by the expression of the glucokinase, so that the amount of glucose only is still 30% of the amount of glucose in tubers of WT control plants.
  • the fructose concentration in the transgenic lines has not changed compared to the control plants.
  • the strong reduction in the amount of sucrose in the U-Inv-2 plants is partially offset by the expression of the glucokinase (cf. Table III).
  • the tubers of the GK-38 plants only contain 40% starch and 50% soluble sugar compared to tubers from untransformed control plants.
  • the metabolite amounts shown here are the average of at least five measurements based on five independent plants. The values are given in nmol g "1 fresh weight.
  • the enzyme activities shown here are the average of at least five measurements based on five independent plants. The values are given in nmol min " mg fresh weight.
  • the values shown here are the mean values of six measurements based on six independent plants. The values are given in mmol C0 2 g fresh weight.
  • the controls given in the experiments described above are each non-transformed plants of the plant species or subspecies used for the transformation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Es werden transgene Pflanzenzellen und Pflanzen mit einer gesteigerten Glykolyserate beschrieben. Die Steigerung der Glykolyserate wird erreicht durch die Einführung und Expression einer DNA-Sequenz, die eine Invertase, vorzugsweise eine deregulierte oder unregulierte Invertase, codiert, sowie einer DNA-Sequenz, die eine Hexokinase codiert, vorzugsweise eine deregulierte oder unregulierte Hexokinase, in pflanzlichen Zellen. Ferner werden Verfahren und rekombinante DNA-Molekule zur Herstellung von Pflanzenzellen und Pflanzen mit gesteigerter Glykolyserate beschrieben.

Description

Transgene Pflanzenzellen und Pflanzen mit gesteigerter
Glykolyserate
Die vorliegende Erfindung betrifft uransgene Pflanzenzellen und Pflanzen mit einer im Vergleich zu nicht-transformierten Pflanzen gesteigerten Glykolyserate. Die Steigerung der Gly¬ kolyserate wird erreicht durch die Einführung und Expression einer DNA-Sequenz, die eine cytosolische Invertase, vorzugs¬ weise eine deregulierte oder unregulierte Invertase codiert, sowie einer DNA-Sequenz, die eine cytosolische Hexokinase, vorzugsweise eine deregulierte oder unregulierte Hexokinase codiert, in pflanzlichen Zellen. Die Erfindung betrifft ebenfalls Verfahren und rekombinante DNA-Moleküle zur Her¬ stellung von transgenen Pflanzenzellen und Pflanzen, mit ge¬ steigerter Glykolyserate, sowie die Verwendung von DNA-Se¬ quenzen, die Proteine mit der enzymatischen Aktivität einer Invertase oder Proteine mit der enzymatischen Aktivität einer Hexokinase codieren, zur Herstellung von Pflanzen, die eine gesteigerte Glykolyserate aufweisen.
Bedingt durch den kontinuierlich steigenden Bedarf an Le¬ bensmitteln, der aus der ständig wachsenden Weltbevölkerung resultiert, ist eine der Aufgaben der biotechnologischen Forschung, sich um eine Steigerung des Ertrags von Nutz¬ pflanzen zu bemühen. Eine Möglichkeit, dies zu erreichen, besteht in der gezielten gentechnischen Veränderung des Me¬ tabolismus von Pflanzen. Ziele sind dabei beispielsweise die Primärprozesse der Photosynthese, die zur C02-Fixierung füh¬ ren, die Transportprozesse, die an der Verteilung der Pho- toassimilate innerhalb der Pflanze beteiligt sind, als auch Stoffwechselwege, die zur Synthese von Speicherstoffen, z.B. von Stärke, Proteinen oder Ölen führen. Beschrieben wurde beispielsweise die Expression einer prokaryontischen Aspara- gin-Synthetase in pflanzlichen Zellen, wodurch es bei den transgenen Pflanzen u.a. zu einer Steigerung der Biomasse¬ produktion kommt (ΞP-3 0 511 979) . Ebenfalls vorgeschlagen wurde die Expression einer prokaryontischen Polyphosphatki- nase im Cytosol transgener Pflanzen, wodurch es bei Kartof¬ felpflanzen zu einer Ertragssteigerung in bezug auf das Knollengewicht von bis zu 30 % komme. Weiterhin wird in der EP-A2 0 442 592 die Expression einer apoplastischen Inver¬ tase in Kartoffelpflanzen beschrieben, die ebenfalls zur Er¬ höhung des Ertrages derartig veränderter transgener Pflanzen führt. Weitere Versuche konzentrierten sich auf die Modifi¬ kation der Aktivitäten von Enzymen, die an der Synthese von Saccharose als dem wichtigsten Transportmetaboliten in den meisten Pflanzen beteilige sind (vgl. z.B. Sonnewald et al. , Plant Cell and Environment 17 (1995) , 649-658) . In der WO 91/19896 ist weiterhin beschrieben, daß die Erhö¬ hung der Stärkebiosynthese durch Überexpression eines dere¬ gulierten Enzyms der ADP-Glucosepyrophosphorylase zu einer verstärkten Allokation von Saccharose in Kartoffelknollen führt, die dort in Form von Stärke gespeichert werden. Während sich viele dieser Anwendungen mit den Schritten be¬ schäftigen, die entweder zur Bildung von Photoassimilaten in Blättern führen (vgl. auch EP 466 995) oder aber mit der Bildung von Polymeren wie Stärke oder Fructanen in Speicher¬ organen transgener Pflanzen (z.B. WO 94/04692), gibt es bis¬ her keine erfolgversprechenden Ansätze, die beschreiben, welche Modifikationen in den primären Stoffwechselwegen ein¬ zuführen sind, um eine Erhöhung der Glykolyserate zu errei¬ chen. Eine Erhöhung der Glykolyserate ist z.B. für alle jene Prozesse in der Pflanze von Bedeutung, für die größere Men¬ gen von ATP benötigt werden. Dies gilt z.B. für viele Trans¬ portprozesse über Membranen, die durch ein Membranpotential bzw. einen Protonengradienten getrieben werden, der durch die Aktivität einer H+-ATPase erzeugt wird. Ferner ist eine Erhöhung der Glykolyserate von Bedeutung für das Wachstum im Meristem, die Umsteuerung vom vegetativen zum generativen Wachstum, sowie für die Synthese verschiedener Speicher¬ stoffe, insbesondere von Ölen.
Somit liegt der Erfindung die Aufgabe zugrunde, Pflanzenzel¬ len und Pflanzen mit gesteigerter Glykolyserate sowie Ver¬ fahren und DNA-Moleküle zu deren Herstellung zur Verfügung zu stellen.
Die Lösung dieser Aufgabe erfolgt durch die Bereitstellung der in den Patentansprüchen bezeichneten Ausführungsformen.
Somit betrifft die vorliegende Erfindung transgene Pflanzen¬ zellen mit einer im Vergleich zu nicht-transformierten Pflanzenzellen gesteigerten Glykolyserate, bei denen es auf¬ grund der Einführung und Expression von DNA-Sequenzen, die eine cytosolische Invertase codieren, sowie von DNA-Sequen¬ zen, die eine cytosolische Hexokinase codieren, zu einer Er¬ höhung der Invertase- und Hexokinaseaktivität kommt. Die transgenen Zellen können dabei jeweils eine oder mehrere DNA-Sequenzen enthalten, die eine Invertase bzw. eine Hexo¬ kinase codieren.
Es wurde überraschend gefunden, daß durch die Einführung und Expression von DNA-Sequenzen, die ein Protein mit der enzy¬ matischen Aktivität einer Hexokinase codieren, bei gleich¬ zeitiger Einführung und Expression von DNA-Sequenzen, die ein Protein mit der enzymatischen Aktivität einer Invertase codieren, im Cytosol pflanzlicher Zellen, eine drastische Erhöhung der Glykolyserate in derart veränderten Pflanzen¬ zellen im Vergleich zu nicht veränderten Pflanzenzellen er¬ reicht werden kann. Die Expression einer Invertase pilzli¬ chen Ursprungs im Cytosol wurde bereits beschrieben (vgl. EP-A2 442 592) . Beschrieben wurde jedoch lediglich die Ex¬ pression der pilzlichen Invertase im Cytosol pflanzlicher Zellen allein. Nicht beschrieben wurde die Verwendung der cytosolischen Invertase zur Erhöhung der Glykolyserate, ins- besondere in Kombination mit der Expression einer Hexoki¬ nase.
Eine gesteigerte Glykolyserate bedeutet, daß die transgenen Pflanzenzellen, die mit DNA-Sequenzen transformiert wurden, die zur zusätzlichen Synthese einer Invertase und einer Hexokinase im Cytosol der Zellen führen, im Vergleich zu nicht-transformierten Pflanzenzellen eine erhöhte Glykoly¬ serate aufweisen, vorzugsweise eine Glykolyserate, die um mindestens 30 % erhöht ist, insbesondere eine, die um minde¬ stens 50 % bis 100 % erhöht ist, und besonders eine, die um mehr als 100 % bis 200 % erhöht ist, vorzugsweise um mehr als 300 %. Die Bestimmung der Glykolyserate durch Bestimmung der entsprechenden Stoffwechselintermediate ist ausführlich in den Beispielen beschrieben. Die Steigerung der Glykoly¬ serate kann beispielsweise bestimmt werden durch die Konzen¬ trationserhöhung an Glucose-6-Phosphat, Fructose-6-Phosphat, 3-Phosphoglycerat, Pyruvat oder ATP. Im Rahmen der vorlie¬ genden Erfindung erfolgt die Bestimmung der Steigerung der Glykolyserate vorzugsweise durch Bestimmung der Zunahme an Pyruvat.
Die Steigerung der Glykolyserate wird dabei im Vergleich..mit nicht-transformierten Zellen bestimmt. Das bedeutet, daß man Material von Pflanzen, die als Ausgangsmaterial für die Ein¬ führung der oben genannten DNA-Sequenzen verwendet wurden, zur Bestimmung der Glykolyserate heranzieht und die bei die¬ sem ermittelte Glykolyserate mit der vergleicht, die Mate¬ rial von Pflanzen der entsprechenden Art oder Linie nach der Transformation mit den oben beschriebenen DNA-Sequenzen auf¬ weist.
Die Bereitstellung größerer Mengen an ATP durch eine gestei¬ gerte Glykolyserate ermöglicht beispielsweise die Steigerung verschiedener energieabhängiger Transport- und Wachstumspro¬ zesse. Die Bereitstellung höherer Pyruvatkonzentrationen als Resultat einer erhöhten Glykolyserate führt zu erhöhten Men¬ gen an AcetylCoA, das beispielsweise für die verstärkte Syn¬ these von Ölen, Fetten oder Isoprenoid-Derivaten verwendet werden kann. Werden in den Zellen gleichzeitig DNA-Sequenzen exprimiert, die die Synthese von Polyhydroxyalkansäuren er¬ möglichen, kann das AcetylCoA ebenfalls zur Bildung derarti¬ ger Alkansäuren verwendet werden.
In einer bevorzugten Ausführungsform der Erfindung handelt es sich bei den DNA-Sequenzen, die eine Invertase bzw. eine Hexokinase codieren, um DNA-Sequenzen, die eine Invertase bzw. Hexokinase codieren, die im Vergleich zu normalerweise in pflanzlichen Zellen vorkommenden Invertasen bzw. Hexoki¬ nasen dereguliert oder unreguliert sind. Dereguliert bedeu¬ tet dabei, daß diese Enzyme nicht in der gleichen Weise re¬ guliert werden, wie die in nicht-modifizierten Pflanzenzel¬ len normalerweise gebildeten Invertase- und Hexokinaseen- zyme. Insbesondere unterliegen diese Enzyme anderen Regula- tionsmechanismen, d.h. sie werden nicht in demselben Ausmaß durch die in den Pflanzenzellen vorhandenen Inhibitoren in¬ hibiert bzw. durch Metaboliten allosterisch reguliert. Dere¬ guliert bedeutet dabei vorzugsweise, daß die Enzyme eine hö¬ here Aktivität als endogen in Pflanzenzellen exprimierte In¬ vertasen oder Hexokinasen aufweisen. Unreguliert bedeutet, im Rahmen dieser Erfindung, daß die Enzyme in pflanzlichen Zel¬ len keiner Regulation unterliegen.
Bei den DNA-Sequenzen, die ein Protein mit der enzymatischen Aktivität einer Invertase codieren, kann es sich sowohl um DNA-Sequenzen handeln, die prokaryontische, insbesondere bakterielle Invertasen codieren, als auch um solche, die eukaryontische, d.h. Invertasen aus Pflanzen, Algen, Pilzen oder tierischen Organismen codieren. Unter den Begriff Pilze fallen im Rahmen dieser Erfindung auch Hefen, insbesondere solche der Gattung Saccharomyces, wie z.B. Saccharomyces cerivisiae. Bei den durch die Sequenzen codierten Enzymen kann es sich sowohl um bekannte in der Natur vorkommende En¬ zyme handeln, die eine abweichende Regulation durch ver¬ schiedene Substanzen aufweisen, insbesondere durch die pflanzlichen Invertaseinhibitoren, als auch um Enzyme, die durch Mutagenese von DNA-Sequenzen, die bekannte Enzyme aus 3akterien, Algen, Pilzen, Tieren oder Pflanzer, codieren, hergestellt wurden.
In einer bevorzugten Ausführungsform der vorliegenden Erfin¬ dung codieren die DNA-Sequenzen Proteine mit der en¬ zymatischen Aktivität einer Invertase aus Pilzen. Derartige Enzyme weisen den Vorteil auf, daß sie im Vergleich zu pflanzlichen Invertasen nicht durch pflanzliche Invertase- inhibitoren reguliert werden. Bevorzugt werden DNA-Sequenzen verwendet, die eine Invertase aus Saccharomyces codieren. Derartige Sequenzen sind bekannt und beschrieben (vgl. Taussig et al., Nucleic Acids Res. 11 (1983) , 1943-1954; EP- A2 0 442 592) . Um die Lokalisation der Invertase im Cytosol der pflanzlichen Zellen sicherzustellen, müssen möglicher¬ weise vorhandene DNA-Sequenzen, die Signalpeptide codieren, deletiert werden, und die codierende Region gegebenenfalls mit einem neuen Startcodon versehen werden (vgl. EP-A2 0 442 592) . Bekannt sind neben der genannten DNA-Sequenz aus Saccharomyces cerevisiae auch weitere DNA-Sequenzen, die Proteine mit der enzymatischen Aktivität einer Invertase co¬ dieren (vgl. EMBL Accession number X67744 S. xylosus, M26511 V. alginolyticus, L08094 Zymomonas mobilis, L33403 Zymomonas mobilis, U16123 Zea mays, U17695 Zea mays, X17604 S. occidentalis, Z22645 S. tuberosum, Z21486 S. tuberosum, M81081 Tomate, Z35162 V. faba, Z35163 V. faba, D10265 V. radiata, Z12025 L. esculentum, Z12028 L. pimpinellifolium, Z12026 L. pimpinellifolium, X73601 A. sativa, S70040 acid invertase, V01311 yeast gene, U11033 Arabidopsis thaliana, X81795 B. vulgaris BIN35, X81796 B. vulgaris, X81797 B. vulgaris, X81792 C. rubrum, X81793 C. rubrum, X77264 L. esculentum, Z12027 L. esculentum, D10465 Z. mobilis, D17524 Zymomonas mobilis) und die aufgrund ihrer Eigenschaften ebenfalls zur Herstellung der erfindungsgemäßen Pflanzenzel¬ len verwendet werden können, wobei darauf geachtet werden muß, daß das Protein im Cytosol der pflanzlichen Zelle ge¬ bildet wird. Techniken zur Modifikation derartiger DNA-Se- quenzen, um die Lokalisierung der synthetisierter. Enzyme im Cytosol der pflanzlichen Zellen sicherzustellen, sind dem Fachmann bekannt. Für den Fall, daß die Invertasen Sequenzen enthalten, die zur Sekretion oder für eine bestimmte subzel¬ luläre Lokalisation notwendig sind, z.B. zur Lokalisierung im extrazellulären Raum oder der Vakuole, müssen die ent¬ sprechenden DNA-Sequenzen deletiert werden.
Bei den DNA-Sequenzen, die ein Procein mit der enzymatischen Aktivität einer Hexokinase codieren, kann es sich sowohl um solche handeln, die prokaryontische, insbesondere bakteri¬ elle Invertasen codieren, als auch um solche, die eukaryon- tische Invertasen, d.h. solche aus Pflanzen, Algen, Pilzen oder tierischen Organismen codieren.
Hexokinasen (EC 2.7.1.1) sind Enzyme, die folgende Reaktion katalysieren:
Hexose + ATP <—> Hexose-Phosphat + ADP Bei den durch die DNA-Sequenzen codierten Hexokinasen kann es sich sowohl um bekannte in der Natur vorkommende Enzyme handeln, die eine abweichende Regulation durch verschiedene Substanzen aufweisen, als auch um Enzyme, die durch Mutage¬ nese aus DNA-Sequenzen, die bekannte Enzyme aus Bakterien, Algen, Pilzen, Tieren oder Pflanzen codieren, hergestellt wurden. DNA-Sequenzen, die Enzyme mit Hexokinaseaktivität codieren sind aus einer ganzen Reihe von Organismen be¬ schrieben, beispielsweise aus Saccharomyces cerevisiae, Mensch, Ratte und diversen Mikroorganismen (für die DNA-Se¬ quenzen siehe: EMBL-Genbank Zugriffsnummern M92054, LO4480, M65140, X61680, M14410, X66957, M75126, J05277, J03228, M68971, M86235, X63658) .
In einer bevorzugten Ausführungsform handelt es sich um DNA- Sequenzen, die Glucokinasen codieren, insbesondere Glucoki- nasen, die einer verringerten allosterischen Regulation, durch z.B. Glucose-6-Phosphat, unterliegen. Glucokinasen (E C 2.7.1.2) sind Hexokinasen mit einer hohen Affinität für Glucose, die folgende Reaktion katalysieren: Glucose -r ATP <—> Glucose-6-Phosphat + ADP
In einer bevorzugten Ausführungsform codieren die DNA-Se¬ quenzen eine Giucokinase aus Zymomonas mobilis (Barneil et al., J. Bacteriol. 172 (1990), 7227-7240; EMBL-Genbank Zu¬ griffsnummer M60615) . Weitere Glucokinasen sind aus Mensch und Ratte beschrieben (für die DNA-Sequenzen siehe: EMBL- Genbank Zugriffsnummern M69051, M90299, J04218 und M25807) .
Weiterhin können DNA-Sequenzen, die eine Invertase oder eine Hexokinase codieren, unter Zuhilfenahme der bereits be¬ kannten oben genannten DNA-Sequenzen aus beliebigen Orga¬ nismen isoliert werden. Methoden für die Isolierung und Identifizierung derartiger DNA-Sequenzen sind dem Fachmann geläufig, beispielsweise die Hybridisierung mit bekannten Sequenzen oder durch Polymerase-Kettenreaktion unter Verwen¬ dung von Primern, die von bekannten Sequenzen abgeleitet sind.
Die von den identifizierten DNA-Sequenzen codierten Enzyme werden anschließend hinsichtlich ihrer Enzymaktivität und Regulation untersucht. Verfahren zur Bestimmung der Inver¬ tase- bzw. Hexokinase-Aktivitäten sind dem Fachmann geläu¬ fig.
Durch Einführung von Mutationen und Modifikationen nach dem Fachmann bekannten Techniken, können die durch die DNA-Se¬ quenzen codierten Proteine weiter in ihren regulatorischen Eigenschaften verändert werden, um de- oder unregulierte En¬ zyme zu erhalten.
Zur Expression in pflanzlichen Zellen, können die DNA-Se¬ quenzen, die eine cytosolische Invertase bzw. Hexokinase co¬ dieren, im Prinzip unter der Kontrolle eines beliebigen in pflanzlichen Zellen funktionalen Promotors stehen. Die Ex¬ pression der besagten DNA-Sequenzen kann generell in jedem Gewebe einer aus einer transformierten erfindungsgemäßen Pflanzenzelle regenerierten Pflanze und zu jedem Zeitpunkt stattfinden, bevorzugt jedoch findet sie in solchen Geweben statt, in denen eine erhöhte Glykolyserate von Vorteil ent¬ weder für das Wachstum der Pflanze, für die Aufnahme und den Transport von Ionen und Metaboliten oder aber für die Bil¬ dung von Inhaltsstoffen innerhalb der Pflanze ist . Geeignet erscheinen von daher vor allem Promotoren, die eine spezifi¬ sche Expression in einem bestimmten Gewebe, zu einem be¬ stimmten Entwicklungszeitpunkt der Pflanze oder aber in einem bestimmten Organ der Pflanze sicherstellen. Besonders geeignet für die Steigerung der Fettsäurebiosynthese infolge eines erhöhten AcetylCoA-Gehaltes in Samen von ölbildenden Pflanzen wie Raps, Sojabohne, Sonnenblume und Ölpalmen er¬ scheinen daher Promotoren, die spezifisch im Endosperm oder aber in den Cotyledonen von sich bildenden Samen aktiv sind. Solche Promotoren sind z.B. der Phaseolin-Promotor aus Phaseolus vulgaris, der USP-Promotor aus Vicia faba oder der HMG-Promotor aus Weizen.
Vorteilhaft ist ferner die Verwendung von Promotoren, die eine samenspezifische Expression gewährleisten. Im Fall von Stärke-speichernden Pflanzen, wie z.B. von Mais, Weizen, Gerste oder anderen Getreiden wird dadurch in den Samen die Glykolyserate erhöht, und es findet eine erhöhte Bildung von Pyruvat und AcetylCoA und eine verstärkte Fettsäurebiosyn- these statt. Dies bedeutet, daß eine Veränderung des Flusses der Photoassimilate von der Stärke in Richtung von Pyruvat- abhängigen Biosynthesewegen, wie z.B. der Fettsäurεbiosyn- these, erfolgt.
Bevorzugt ist auch die Verwendung von Promotoren, die in Speicherorganen wie Knollen oder Wurzeln aktiv sind, z.B. in der Speicherwurzel der Zuckerrübe oder aber in der Knolle der Kartoffel. In diesem Fall kommt es bei der Expression der DNA-Sequenzen, die eine Invertase bzw. Hexokinase codie¬ ren, zu einer Umlenkung von Biosynthesewegen im Sinne der Bildung von weniger Zucker bzw. Stärke und einer erhöhten Bildung von Pyruvat und Acetyl-CoA aufgrund der erhöhten Glykolyserate.
Ferner kann die Expression der DNA-Sequenzen unter der Kon¬ trolle von Promotoren erfolgen, die spezifisch zum Zeitpunkt der Blühinduktion aktiviert werden oder die aktiv sind in Geweben, die für die Blühinduktion notwendig sind. Ebenso können Promotoren verwendet werden, die zu einem nur durch äußere Einflüsse kontrollierten. Zeitpunkt aktiviert werden, z.B. durch Licht, Temperatur, chemische Substanzen (s. bei¬ spielsweise WO 93/07279) . Für die Erhöhung der Aufnahmerate von Ionen aus dem Boden infolge eines erhöhten ATP-Gehaltes sind z.B. Promotoren von Interesse, die eine Wurzelhaar¬ oder Wurzel-Epidermis-spezifische Expression aufweisen. Für die Erhöhung der Exportrate von Photoassimilaten aus dem Blatt sind z.B. Promotoren von Interesse, die eine Geleit- zellen-spezifische Expression aufweisen. Solche Promotoren sind bekannt (z.B. der Promotor des rolC-Gens aus Agrobacte- rium rhizogenes) .
Ferner können die DNA-Sequenzen, die eine Invertase bzw. Hexokinase codieren, außer mit einem Promotor, vorteilhaf¬ terweise mit DNA-Sequenzen verknüpft sein, die eine weitere Steigerung der Transkription gewährleisten, beispielsweise sogenannte Enhancer-Elemente, oder mit DNA-Sequenzen, die im transkribierten Bereich liegen und die eine effizientere Translation der synthetisierten RNA in das entsprechende Protein gewährleisten (sogenannte Translations-Enhancer) . Derartige Regionen können von viralen Genen oder geeigneten pflanzlichen Genen gewonnen oder synthetisch hergestellt werden. Sie können homolog oder heterolog zum verwendeten Promotor sein. Vorteilhafterweise werden die DNA-Sequenzen, die eine Invertase oder eine Hexokinase codieren, mit 31- nicht-translatierten DNA-Sequenzen verknüpft, die die Termi- nation der Transkription und die Polyadenylierung des Transkriptes gewährleisten. Derartige Sequenzen sind bekannt und beschrieben, beispielsweise die des Octopinsynthasegens aus Agrobacterium tumefaciens. Diese Sequenzen sind beliebig gegeneinander austauschbar.
Die DNA-Sequenzen, die eine Invertase bzw. Hexokinase codie¬ ren, liegen in den erfindungsgemäßen Pflanzenzellen vorzugs¬ weise stabil ins Genom integriert vor. 3ei den transgenen Pflanzenzellen, die aufgrund der zusätz¬ lichen Expression einer cytosolischen Invertase und einer cytosolischen Hexokinase eine gesteigerte Glykolyserate auf¬ weisen, kann es sich grundsätzlich um Zellen jeder beliebi¬ gen Pflanzenspezies handeln. Von Interesse sind sowohl Zel¬ len monocotyler als auch dicotylεr Pflanzenspezies, insbe¬ sondere Zellen stärkespeichernder, ölspeichernder oder land¬ wirtschaftlicher Nutzpflanzen, wie z.B. Roggen, Hafer, Ger¬ ste, Weizen, Kartoffel, Mais, Reis, Raps, Erbse, Zuckerrübe, Sojabohne, Tabak, Baumwolle, Sonnenblume, Ölpalme, Wein, To¬ mate usw. oder Zellen von Zierpflanzen.
Außer durch eine gesteigerte Glykolyserate lassen sich die erfindungsgemäßen Pflanzenzellen von entsprechenden nicht- transformierten Pflanzenzellen dadurch unterscheiden, daß sie stabil ins Genom integriert fremde DNA-Sequenzen enthal¬ ten, die eine cytosolische Invertase bzw. eine cytosolische Hexokinase codieren. Der Begriff "fremde DNA-Sequenz" bedeu¬ tet dabei in diesem Zusammenhang folgendes: Es kann sich da¬ bei zum einen um DNA-Sequenzen handeln, die in bezug auf die transformierte Pflanzenzelle heterolog sind, d.h. natürli¬ cherweise in einer solchen Pflanzenzelle nicht vorkommen. Handelt es sich bei den DNA-Sequenzen um solche, die natür¬ licherweise in den transformierten Pflanzenzellen vorkommen, so bedeutet "fremd", daß sie in dem Genom der transformier¬ ten Pflanzenzellen an einem Ort integriert sind, an dem sie natürlicherweise nicht vorkommen, d.h. sie liegen in einer neuen genomischen Umgebung. Verifizieren läßt sich dies bei¬ spielsweise durch eine Southern-Blot-Analyse. Ferner handelt es sich bei den in die Pflanzenzellen eingeführten DNA-Mole¬ külen in der Regel um rekombinante DNA-Moleküle, d.h. um Mo¬ leküle, die aus verschiedenen Segmenten zusammengesetzt sind, die in dieser Kombination nicht in der Natur vorkom¬ men.
Gegenstand der vorliegenden Erfindung sind ferner transgene Pflanzen, die erfindungsgemaße transgene Pflanzenzellen ent- halten. Derartige Pflanzen können beispielsweise durch Rege¬ neration aus einer erfindungsgemäßen Pflanzenzelle erzeugt werden.
Durch die Bereitstellung von Pflanzenzellen mit einer ge¬ steigerten Glykolyserate ist es nun möglich, transgene Pflanzen mit veränderten vorteilhaften Eigenschaften herzu¬ stellen. So kann beispielsweise durch die Steigerung der Glykolyserate spezifisch in Geleitzellen transgener Pflanzen die Beladung des Siebelement-Geleitzellen-Komplexes mit Saccharose durch den Saccharose-Protonen-Cotransporter ge¬ steigert werden, was zu einer Erhöhung der Transportrate von Photoassimilaten führt. In gleicher Weise kann die Aufnahme von anorganischen Ionen wie Phosphat, Sulfat, Nitrat u.a. aus dem Boden über die Wurzel gesteigert werden. Eine Steigerung der Glykolyserate spezifisch in Wurzelzel¬ len, insbesondere in Wurzelhaaren und Epidermiszellen, kann aufgrund der gesteigerten H+-ATPase-Aktivität zu einer ver¬ stärkten Ausscheidung von Protonen in den Boden führen. Eine derartige Ansäuerung des Bodens führt zur Mobilisierung und somit erleichterten Aufnahme verschiedener Mineralien, wie z.B. Phosphat aus dem Boden.
Von besonderer Bedeutung ist die Möglichkeit, durch Erhöhung der Glykolyserate in ölspeichernden Geweben einer Pflanze, wie z.B. dem Endosperm oder den Cotyledonen von Samen oder in anderen ölspeichernden Organen, den Fluß der in den Samen bzw. Organen abgelieferten Photoassimilate in Richtung der Bildung von Pyruvat und AcetylCoA zu lenken. Die Bereitstel¬ lung von erhöhten Mengen dieser Vorstufen für die Biosyn¬ these von Triglyceriden führt zu einer gesteigerten Synthese von Ölen und somit zu einem erhöhten Ertrag. Eine Bereit¬ stellung von erhöhten Mengen an AcetylCoA ist auch für viele andere natürlicherweise in Pflanzen ablaufende Prozesse wie die Isoprenoid-Biosynthese, aber auch für die Bildung von Polymeren wie Polyhydroxyalkansäuren von Bedeutung (vgl. z.B. Poivier et al. , Bio/Technology 13 (1995), 142-150). Durch eine Erhöhung der Glykolyserate in stärkespeichernden Geweben, beispielsweise in Samen verschiedenster Getreidear¬ ten oder in den Knollen der Kartoffel, kommt es zu einer Veränderung des Flusses der Photoassimilate von der Stärke¬ biosynthese in Richtung Pyruvat-abhängiger Biosynthesewege, beispielsweise der Fettsäurebiosynthese . Das Resultat ist eine Verringerung der Stärkemenge in dem entsprechenden Ge¬ webe bei eventueller gleichzeitiger Zunahme der Fettsäure¬ biosynthese.
Weiterhin ist von Bedeutung, daß die durch die Steigerung der Glykolyserate erzeugten hohen AcetylCoA-Konzentrationen auch zu einer erhöhten Isoprenoidsynthese oder, in Kombina¬ tion mit der Expression entsprechender Gene für die Synthese von Polyhydroxyalkansäuren, zu einer Polyhydroxyaikansäure- Synthese in den transgenen Pflanzenzellen führen kann.
Ferner betrifft die vorliegende Erfindung ein Verfahren zur Herstellung transgener Pflanzenzellen, die im Vergleich zu nicht-transformierten Pflanzenzellen eine gesteigerte Glyko¬ lyserate aufweisen, bei dem in pflanzliche Zellen DNA-Se¬ quenzen eingebracht werden, die eine cytosolische Invertase codieren, sowie DNA-Sequenzen, die eine cytosolische Hexoki¬ nase codieren, und diese Sequenzen in den transformierten Pflanzenzellen exprimiert werden.
Ein derartiges Verfahren besteht vorzugsweise aus den fol¬ genden Schritten:
(a) Herstellung eines rekombinanten doppelsträngigen DNA-Mo¬ leküls, das folgende DNA-Sequenzen umfaßt:
(i) einen Promotor, der die Transkription in pflanzli¬ chen Zellen gewährleistet;
(ii) eine DNA-Sequenz, die ein cytosolisches Protein mit der enzymatischen Aktivität einer Invertase codiert und in sense-Richtung mit dem Promotor verknüpft ist;
(b) die Herstellung eines rekombinanten doppelsträngigen DNA-Moleküls, das folgende DNA-Sequenzen umfaßt: 1 Δ.
(i) einen Promotor, der die Transkription in pflanzli¬ chen Zellen gewährleistet; (ii) eine DNA-Sequenz, die ein cytosolisches Protein mit der enzymatischen Aktivität einer Hexokinase co¬ diert und in sense-Richtung mit dem Promotor ver¬ knüpft ist; und (c) Transfer der gemäß Schritt (a) und (b) hergestellten DNA-Moleküle in pflanzliche Zellen.
Für die Wahl der Pflanzenspezies, der Promotoren, weiterer flankierender DNA-Sequenzen, sowie für die Wahl und Modifi¬ kationen der DNA-Sequenzen, die eine Invertase bzw. eine Hexokinase codieren, gilt dasselbe was bereits oben im Zu¬ sammenhang mit den erfindungsgemaßen Zellen ausgeführt wurde.
Die DNA-Sequenzen, die eine Invertase bzw. eine Hexokinase codieren, können entweder auf getrennten DNA-Molekülen loka¬ lisiert sein, oder gemeinsam auf einem rekombinanten DNA-Mo¬ lekül. Befinden sich die Sequenzen auf zwei verschiedenen DNA-Molekülen, kann der Transfer der DNA-Moleküle entweder gleichzeitig erfolgen, oder derart, daß Pflanzenzellen zunächst mit einem DNA-Molekül transformiert werden und se¬ lektierte Pflanzenzellen oder Pflanzen anschließend mit dem zweiten DNA-Molekül transformiert werden. Ferner können Pflanzen, die sowohl eine zusätzliche cytosolische Invertase als auch eine zusätzliche cytosolische Hexokinase exprimie¬ ren, hergestellt werden, indem zunächst zwei unabhängige transgene Pflanzenlinien erzeugt werden, die eine Invertase bzw. eine Hexokinase codieren, und diese anschließend ge¬ kreuzt werden.
Der Transfer der DNA-Moleküle, die DNA-Sequenzen enthalten, die Invertase bzw. Hexokinase codieren, erfolgt vorzugsweise unter Verwendung von Plasmiden, insbesondere solchen Plasmi¬ den, die eine stabile Integration des DNA-Moleküls in das Genom transformierter Pflanzenzellen gewährleisten, bei- soielsweise binären Plasmiden oder Ti-Plasmiden des Agrobacterium tumefaciens-Systems. Neben dem Agrobacterium- System kommen andere Systeme zur Einführung von DNA-Molekü¬ len in pflanzliche Zellen in Frage, wie z.B. das sogenannte biolistische Verfahren oder aber die Transformation von Pro- topiasten (vgl. Willmitzer L. (1993) , Transgenic Plants, 3iotechnology 2; 627-659 für eine Übersicht) . Zur Transfor¬ mation kommen grundsätzlich Zellen aller Pflanzenspezies in Frage. Von Interesse sind sowohl monokotyle als auch diko- tyle Pflanzen. Für verschiedene monokotyle und dikotyle Pflanzenspezies sind bereits Transformationstechniken be¬ schrieben worden. Bevorzugt werden in den Verfahren Zellen landwirtschaftlicher Nutzpflanzen verwendet, insbesondere von Getreidearten, z.B. Roggen, Hafer, Gerste, Weizen, Kar¬ toffel, Mais, Reis, Raps, Erbse, Zuckerrübe, Sojabohne, Ta¬ bak, Baumwolle, Sonnenblume, Olpalme, Wein, Tomate usw. oder Zellen von Zierpflanzen. Gegenstand der Erfindung sind eben¬ falls die aus dem Verfahren erhältlichen transgenen Pflan¬ zenzellen und aus diesen durch Regeneration erhältliche Pflanzen, die aufgrund der zusätzlichen Expression einer cy¬ tosolischen Invertase und einer cytosolischen Hexokinase eine Steigerung der Glykolyserate aufweisen.
Weiterhin betrifft die vorliegende Erfindung Vermehrungsma¬ terial erfindungsgemäßer Pflanzen, das erfindungsgemaße Zel¬ len enthält. Dabei kann es sich um jedwede Art von Geweben oder Organen der erfindungsgemäßen Pflanzen handeln, die die Vermehrung ermöglichen. Hierzu zählen beispielsweise Gewebe¬ kulturen erfindungsgemäßer Zellen, Samen, Früchte, Wurzel¬ stöcke, Stecklinge, Sämlinge, Knollen etc.
Die vorliegende Erfindung betrifft ferner rekombinante DNA- Moleküle, die eine DNA-Sequenz enthalten, die ein Protein mit der enzymatischen Aktivität einer Hexokinase, vorzugs¬ weise eine Glucokinase, codiert, in Kombination mit DNA-Se¬ quenzen, die die Transkription und Translation in pflanzli¬ chen Zellen gewährleisten. Bei der Hexokinase handelt es sich vorzugsweise um ein dereguliertes oder unreguliertes Enzym.
Weiterhin betrifft die vorliegende Erfindung rekombinante DNA-Moleküle, die folgende DNA-Sequenzen umfassen:
(i) eine DNA-Sequenz, die eine cytosolischen Invertase co¬ diert, in Kombination mit DNA-Sequenzen, die die Trans¬ kription und Translation in pflanzlichen Zellen gewähr¬ leisten; und
(ii) eine DNA-Sequenz, die eine cytosolische Hexokinase co¬ diert, in Kombination mit DNA-Sequenzen, die die Trans¬ kription und Translation in pflanzlichen Zellen gewähr¬ leisten.
Für die Wahl der DNA-Sequenzen, die die Transkription und Translation in pflanzlichen Zellen erlauben, gilt bei den rekombinanten DNA-Molekülen dasselbe, was oben bereits im Zusammenhang mit den erfindungsgemäßen Zellen und Verfahren ausgeführt wurde, ebenso wie für die Wahl der DNA-Sequenzen, die für eine Invertase bzw. Hexokinase codieren.
Schließlich betrifft die vorliegende Erfindung die Verwen¬ dung von DNA-Sequenzen, die eine Invertase codieren, vor¬ zugsweise eine deregulierte oder unregulierte, zur Herstel¬ lung transgener Pflanzenzellen, die im Vergleich zu nicht- transformierten Pflanzenzellen eine gesteigerte Glyjcoly- serate aufweisen. Ebenso ist Gegenstand der Erfindung die Verwendung von DNA-Sequenzen, die eine Hexokinase codieren, vorzugsweise eine deregulierte oder unregulierte, zur Her¬ stellung von transgenen Pflanzenzellen, die im Vergleich zu nicht transformierten Pflanzenzellen eine gesteigerte Glyko¬ lyserate aufweisen. Beschreibung der Abbildung
Fig. 1 zeigt das 12,68 kb große Plasmid pB33Hyg-GK. Das Plasmid enthält folgende Fragmente :
A = Fragment A (1498 bp) enthält das Dral - Dral Fragment (Position -1512 bis Position +14) der Promotorregion des Patatin Gens 333 (Rocha-Sosa et al . , EMBO J. 8 (1989) , 23-29) .
B = Fragment B (1025 bp) beinhaltet ein DNA-Fragment mit der Codierregion der Glucokinase aus Zymomonas mobilis (GenEMBL Accession Nummer: M60615; Nucleotide 5128 bis 6153) .
C = Fragment C '.192 bp) beinhaltet das Polyadenylierungs- signal des Gens 3 der T-DNA des Ti-Plasmides pTi-ACH5, Nucleotide 11749-11939.
Methoden
1. Clonierungsverfahren
Zur Cionierung in E. coli wurde der Vektor pUC18 verwen¬ det. Für die Pflanzentransformation wurden die Genkon- struktionen in den binären Vektor pBinAR (Höfgen und Willmitzer, Plant Sei. 66 (1990) , 221-233) cloniert.
2. Bakterienstamme
Für die pUC-Vektoren und für die pBinAR-Konstrukte wurde der E. coli-Stamm DH5α (Bethesda Research Laboratories, Gaithersburgh, USA) verwendet.
Die Transformation der Plasmide in die Kartoffelpflanzen wurde mit Hilfe des Agrobacterium tumefaciens-Stammes C58C1 pGV2260 durchgeführt (Deblaere et al., Nucl. Acids Res. 13 (1985) , 4777-4788) . 3. Transformation von Agrobacterium tumefaciens
Der Transfer der DNA erfolgte durch direkte Transforma¬ tion nach der Methode von Höfgen und Willmitzer (Nucleic Acids Res. 16 (1988) , 9877) . Die Plasmid-DNA transfor¬ mierter Agrobakterien wurde nach der Methode von Birnboim und Doly (Nucleic Acids Res. 7 (1979) , 1513- 1523) isoliert und nach geeigneter Restriktionsspaltung gelelektrophoretisch analysiert .
4. Transformation von Kartoffeln
Zehn kleine mit dem Skalpell verwundete Blätter einer Kartoffel-Sterilkultur (Solanum tuberosum L. cv. Desiree) wurden in 10 ml MS-Medium (Murashige und Skoog, Physiol. Plant 15 (1962), 473) mit 2 % Saccharose ge¬ legt, welches 50 μl einer unter Selektion gewachsenen Agrobacterium tumefaciens-Übernachtkultur enthielt. Nach 3-5-minütigem leichtem Schütteln erfolgte eine weitere Inkubation für 2 Tage im Dunkeln. Daraufhin wurden die Blätter zur Kallusinduktion auf MS-Medium mit 1,6 % Glu¬ cose, 5 mg/1 Naphthylessigsäure, 0,2 mg/1 3enzylaminopu- rin, 250 mg/1 Claforan, 50 mg/1 Kanamycin und 0,80 % Bacto Agar gelegt. Nach einwöchiger Inkubation bei 25°C und 3000 Lux wurden die Blätter zur Sproßinduktion auf MS-Medium mit 1,6 % Glucose, 1,4 mg/1 Zeatinribose, 20 mg/1 Naphthylessigsäure, 20 mg/1 Giberellinsäure, 250 mg/1 Claforan, 50 mg/1 Kanamycin und 0,80 % Bacto Agar gelegt.
5. Radioaktive Markierung von DNA-Fragmenten
Die radioaktive Markierung von DNA-Fragmenten wurde mit Hilfe eines DNA-Random Primer Labelling Kits der Firma Boehringer (Deutschland) nach den Angaben des Herstel¬ lers durchgeführt. 6. Pflanzenhaltung
Kartoffelpflanzen wurden im Gewächshaus unter folgenden Bedingungen gehalten:
- Lichtperiode 16 h bei 25000 Lux und 22°C
- Dunkelperiode 8 h bei 15°C
- Luftfeuchte 60 %.
7. Bestimmung des Stärkegehaltes und der Trockensubstanz von Kartoffelknollen
Die Bestimmung des Stärkegehaltes und der Trockensub¬ stanz der Kartoffelknolle erfolgte mittels der Bestim¬ mung des spezifischen Gewichtes (Scheele et al. , Landw. Vers. Sta. 127 (1937) , 67-96) nach den folgenden For¬ meln:
Trocken- = 24,182 + 211,04 x (spez. Gew. - 1.0988)
Substanz
Stärke = 17,546 + 199,07 x (spez. Gew. - 1.0988)
Bestimmung phosphorylierter Stoffwechselintermediate in Kartoffelknollen
Die Bestimmung phosphorylierter Stoffwechselintermediate in Kartoffelknollen erfolgte mit geringen Abänderungen nach Weiner und Stitt (Biochim. Biophys. Acta 893 (1987) , 13-21) .
Darstellung des Kartoffelknollenextraktes: Es wurden jeweils ca. 200 mg Knollenmaterial unter flüs¬ sigem Stickstoff in einem Mörser homogenisiert. Die phosphorylierten Intermediate wurden mit 16%iger Tri- chloressigsäurelösung in Diethylether extrahiert. Nach dreistündiger Inkubation auf Eis wurde durch dreimaliges Extrahieren mit Diethylether die Trichloressigsäure ent¬ fernt. Danach wurden die Extrakte mit 5 M KOH/l M Triethanolamin neutralisiert. Die Bestimmung von Phosphoenolpyruvat (PEP) und Pyruvat erfolgte sofort. Für die Bestimmung der anderen Intermediate kann der Ex¬ trakt bei -70°C mehrere Tage aufbewahrt werden.
Die Bestimmung der phosphoryiierten Intermediate er¬ folgte an einem Zweiwellenlängenphotometer (Sigma ZWS 11) mittels gekoppelter enzymatischer Reaktionen nach Stitt et al. (Methods in Enzymology 174, 518-552) .
a) Bestimmung von PEP und Pyruvate
Der Reaktionspuffer enthielt: 50 mM Hepes-KOH pH 7,0;
5 mM MgCl2;
0,025 mM NADH;
1 mM ATP Pyruvat-Bestimmung: 1 U/ml Lactatdehydrogenase PEP-Bestimmung: +2 U/ml Pyruvatkinase
Die Messung erfolgt bei 25°C mit 50 bis 100 μl Ex¬ trakt.
b) Bestimmung von UPD-Glucose (UDPG)
Der Reaktionspuffer enthielt: 200 mM Glycin pH 8,7;
5 mM MgCl2;
1 mM NAD; 0,025 U/ml UDP-Glucose Dehydrogenase Die Messung erfolgt bei 25°C mit 50 bis 100 μl Ex¬ trakt .
c) Bestimmung von Glucose-6-Phosphat (G6P) , Fmctose-6- Phosohat (F5P) und Glucose-1-Phosphat (G1P)
Der Reaktionspuffer enthielt: 50 mM Hepes-KOH pH 7,0;
5 mM MgCl2;
0,25 mM NADP G6P-Bestimmung: 2 U/ml Glucose-6-Phosphat Dehydrogenase FlP-Bestimmung: + 2 U/ml Phosphoglucoisomerase GlP-Bestimmung: + 2 U/ml Phosphoglucomutase Die Messung erfolgt bei 25°C mit 50 bis 100 μl Ex¬ trakt . d) Bestimmung von ATP
Der Reaktionspuffer enthielt: 50 mM Hepes-KOH pH 7,0;
5 mM MgCl2; 0,25 mM NADP; 1 mM Glucose; 2 U/ml Glucose-6-Phosphat Dehydrogenase; 2 U/ml Phosphoglucoisomerase; 1 U/ml Hexokinase Die Messung erfolgt bei 25°C mit 50 bis 100 μl Ex¬ trakt
e) Bestimmungt von ADP
Der Reaktionspuffer enthielt: 50 mM Hepes-KOH pH 7,0;
5 mM MgCl2; 0,05 mM NADH; 0,2 mM PEP; 0,2 U/ml Lactatdehydrogenase; 1 U/ml Pyruvatkinase Die Messung erfolgt bei 25°C mit 50 bis 100 μl Ex¬ trakt f) Bestimmung von 3-Phosphoglvcerat (3-PGA)
Der Reaktionspuffer enthielt: 100 mM Tris-HCl pH 8,1;
5 mM MgCl2; 0,05 mM NADH, 1,33 mM ATP; 0,1 U/ml Phosphoglyceratkinase; 2 U/ml Glyceraldehydphosphatdehydrogenase Die Messung erfolgt bei 25°C mit 50 bis 100 μl Ex¬ trakt
9. Bestimmung der Aktivität von Enzymen des Kohlehydrat¬ stoffwechsels in Kartoffelknollen
Zur Bestimmung von Enzymaktivitäten (z.B. der Glucoki- nase, Fructokinase, Saccharosesynthase, Invertase, Phosphoglucomutase, Phosphofructokinase, Glyceraldehyd- 3-Phosphatdehydrogenase, Phosphoglyceratkinase, Phospho- glyceratmutase oder Pvruvatkinase) in Kartoffelknollen wurden 200 mg Knoilenmaterial in 500 μl Extraktionspuf- fer (50 mM Hepes-KOH pH 7,5; 5 mM MgCl2; 1 mM EDTA; 1 mM EGTA; 1 mM DTT; 2 mM Benzamidin,- 2 mM e-Amino-n-Capron¬ säure; 0,5 mM PMSF; 10 % (Vol./Vol.) Glycerin; 0,1 % (Vol./Vol.) Triton X-100) homogenisiert. Nach Zentrifu¬ gation werden 10 bis 40 μl des zellfreien entsalzten Ex¬ traktes für die Enzymaktivitätsmessung eingesetzt. Die Enzymaktivitäten wurden mit Ausnahme der Saccharosesyn- thase- und Invertase-Aktivität mittels gekoppelter enzy¬ matischer Reaktionen an einem Spektralphotometer be¬ stimmt.
Die Glucokinase- und Fructokinase-Aktivität wurde nach Renz et al. (Planta 190 (1993), 156-165), die Saccharo- sesynthase- und Invertase-Aktivität nach Zrenner et al. (Plant J. 7 (1995), 97-107), die Phosphofructokinase-, Glyceraldehyd-3-Phosphatdehydrogenase-, Phosphoglycerat- kinase-, Phosphoglyceratmutase-, Pvruvatkinase-Aktivität nach Burell et al. (Planta 194 (1994), 95-101), und die Phosphoglucomutase-Aktivität nach Pressey (Journal of Food Science 32 (1967) , 381-385) bestimmt.
10. Bestimmung des Gasaustausches von Kartoffelknollen
Knollen (ungefähr 30 g) wurden direkt von Pflanzen aus dem Gewächshaus genommen und innerhalb von 30 Minuten in einen Infrarot Gasanalysator (Binos 100 Rosemound, Düs¬ seldorf, FRG) gelegt. Die Bestimmung der C02-Produktion erfolgte über 20 Minuten bei 20°C und die Auswertung mit der Software von Waltz (Effeltrich, FRG) .
Die Beispiele erläutern die Erfindung. Beispiel 1
Konstruktion des binären Plasmides p33-Cy-Inv
Die Herstellung des Plasmides p33-Cy-Inv und Einführung des Plasmides in das Genom der Kartoffel ist in EP-A2 0 442 592 beschrieben worden. Regenerierte Kartoffelpflanzen, die mit dem binären Konstrukt p33-Cy-Inv transformiert worden sind, wurden in Erde transferiert und bezüglich der Invertaseakti- vität selektiert. Dabei wurden mehrere Genotypen identifi¬ ziert, die eine bis zu hundertfach erhöhte Invertaseaktivi- tät, verglichen mit den Kontrollpflanzen, aufweisen.
Beispiel 2
Konstruktion des binären Plasmides pB33Hyg-GK
Für die Pflanzentransformation wurde die Codierregion des Glucokinasegens aus Zymononas mobilis mittels der Polyme- rasekettenreaktion (PCR) ausgehend von genomischer Zymomonas mobilis DNA amplifiziert. Die Sequenz der Glucokinase aus Zymomonas mobilis ist in der GenEMBL-Datenbank mit der Accessicn Nummer M60615 eingetragen. Das amplifizierte Frag¬ ment entspricht der Region von den Nucieotiden 5128 bis 6153 dieser Sequenz. Hierbei wurde am 5 ' -Ende eine Asp718- Schnittstelle und am 3 ' -Ende eine Hindlll-Schnittstelle ein¬ gefügt. Das 1025 bp lange PCR Fragment wurde über die beiden zusätzlichen Schnittstellen in den Vektor pUCBM20 cloniert. Ausgehend von diesem Plasmid wurde die gesamte Codierregion der Glucokinase nach Restriktionsverdau mit EcoRI und Hindlll in den Vektor pBluescriptSK subcloniert. In Extrak¬ ten von Ξ. coli-Zellen, die das resultierende Plasmid pSK-GK enthielten, wurde eine verglichen mit Extrakten von untrans- formierten E. coli-Zellen 100-fach erhöhte Glucokinaseakti- vität nachgewiesen. Hierzu wurden die Zellen einer 20 ml Übernachtkultur geerntet und in 500 μl Extraktionspuffer re¬ suspendiert (30 mM KH2P04; 2 mM MgCl2; 10 mM 2-Mercaptoetha- nol; 0,1 % (Vol. /Vol.) Nonidεt ?40) . Nach Zugabe des glei¬ chen Volumens Säure-gewaschener Glasperlen (0,1 mm Durchmes¬ ser) wurde die Suspension viermal für 30 Sekunden heftig durchmischt. Nach Zentrifugation wurde die Glucokinaseakti- vität im zellfreien Extrakt wie bei Scopes et al. (Biochem. J. 228 (1985) , 627-634) bestimmt.
Nachdem auf diese Weise die Funktionalität des PCR-Produktes nachgewiesen worden war, wurde die Insertion in einen binären Vektor, der sich von pBIN19 (Bevan, Nucl. Acids Res. 12 (1984) , 8711-8720) ableitet, umcloniert . Dabei wurde fol¬ gendes Plasmid erstellt: das Plasmid pB33Hyg-GK (vgl. Fig. 1) . Das Konstrukt enthält als Promotor für die Expression eines Transgens in Pflanzen den B33 Promotor von Solanum tuberosum (Rocha-Sosa et al., ΞMBO J. 8 (1989) , 23-29) . Das Konstrukt pB33Hyg-GK wurde wie folgt erstellt: Da das Konstrukt für die Transformation von bereits transge¬ nen Kartoffelpflanzen, die das NPT-II-Gen exprimieren, ein¬ gesetzt werden sollte, wurde das Plasmid pBIB, welches das HPT-Gen codierend für die Hygromycin B Phosphotransferase enthält, benutzt (Becker, Nucl. Acids Res. 18 (1990) , 203) . Der Promotor des B33 Gens von Solanum tuberosum wurde als Dral-Fragment (Position -1512 bis +14 nach Rocha-Sosa et al., EMBO J. 8 (1989) , 23-29) nach Abbau überstehender Enden mit Polymerase II in die Sacl-Schnittstelle des Plasmids pUC19 cloniert. Als EcoRI/Smal-Fragment wurde die Promotor¬ region in den binären Vektor pBIN19 cloniert, der das Termi- nationssignal des Octopinsynthase-Gens aus Agrobacterium tumefaciens in direkter Nachbarschaft zu einem Polylinker aus M13mpl9 enthält. Hierbei entstand pB33. Das Promotor-Po- lylinker-Terminator Fragment des Plasmids pB33 wurde als EcoRI/Hindlll-Fragment in das mit EcoRI und Hindlll lineari- sierte Plasmid pBIB cloniert . Hierbei entstand das Plasmid pB33Hyg.
Die Codierregion der Glucokinase wurde anschließend nach Asp718/Sall Verdau des Plasmids pSK-GK isoliert und Asp718/Sall in das Plasmid pB33Hyg cloniert. Hieraus resul¬ tierte das Plasmid pB33Hyg-GK, welches für die Transforma- tion der transgenen Kartoffellinie U-Inv-2 (Linie 30) einge¬ setzt wurde.
Zur Transformation von Agrobacterium tumefaciens wird das binäre Plasmid durch direkte Transformation nach der Methode von Höfgen & Willmitzer (Nucl. Acids Res. 16 (1988) , 9877) in die Zellen eingeführt. Die Plasmid-DNA transformierter Agrobakterien wurde nach der Methode von Birnboim et al. (Nucl. Acids Res. 7 (1979) , 1513-1523) isoliert und nach ge¬ eigneter Restriktionsspaltung gelelektrophoretisch analy¬ siert. Zur Transformation von Kartoffelpflanzen werden bei¬ spielsweise 10 kleine, mit einem Skalpell verwundete Blätter einer Sterilkultur in 10 ml MS-Medium mit 2 % (Gew. /Vol.) Saccharose gelegt, welches 30 bis 50 μl einer unter Selek¬ tion gewachsenen Agrobacterium tumefaciens-Übernachtkultur enthält. Nach 3 bis 5-minütigem, leichtem Schütteln werden die Petrischalen bei 25°C im Dunkeln inkubiert. Nach 2 Tagen werden die Blätter auf MS-Medium mit 1,6 % (Gew. /Vol.) Glu¬ cose, 2 mg/1 Zeatinribose, 0,02 mg/1 Naphthylessigsäure, 0,02 mg/1 Giberellinsäure, 500 mg/1 Claforan, 3 mg/1 Hygro- mycin und 0,8 % Bacto-Agar ausgelegt. Nach einwöchiger Inku¬ bation bei 25°C und 3000 Lux wird die Claforankonzentration im Medium um die Hälfte reduziert. Die weitere Kultivierung erfolgte wie von Rocha-Sosa et al. (EMBO J. 8 (1989) , 23-29) beschrieben.
Beispiel 3
Analyse von transgenen Kartoffelpflanzen die eine Invertase aus Hefe und eine Glucokinase aus Zymomonas mobilis in
Knollen exprimieren
Regenerierte Kartoffelpflanzen der Linie U-Inv-2 (30) , die mit dem binären Konstrukt pB33Hyg-GK transformiert worden sind, wurden in Erde transferiert und bezüglich der Glucoki- naseaktivität in Knollen selektiert. Dabei wurden mehrere Genotypen identifiziert, die eine bis zu fünffach erhöhte Glucokinaseaktivität, verglichen mit den Kontrollpflanzen, aufweisen (z.B. GK-41, GK-29, GK-38) . Des weiteren wurde nachgewiesen, daß diese Genotypen weiterhin das Invertasegen aus Hefe exprimieren (vgl. Tabelle I) .
Tabelle I
Pflanze Invertaseaktivität Glucokinaseaktivität
(nmol min" mg" Protein) (nmol min" mg" Protein)
Kontrolle 9 + 1 11 + 2
U-Inv-2 1027 ± 44 18 + 2
GK-41 n.d. 43 ± 5
GK-29 n.d. 45 ± 5
GK-33 1132 ± 232 55 ± 13
Die hier dargestellten Enzymaktivitäten sind der Mittelwert von mindestens fünf Messungen ausgehend von fünf unabhängi¬ gen Pflanzen.
Die oben genannten Genotypen GK-41, GK-29 und GK-38 wurden amplifiziert, und jeweils 15 Pflanzen wurden in ein Gewächs¬ haus transferiert. Die Ernte der Knollen erfolgte 4 Monate später.
Überraschenderweise wurde festgestellt, daß die Knollen der transgenen Pflanzen GK-41, GK-29 und GK-38 nur noch 40 bis 60 % der Stärkemenge von Kontrollpflanzen enthalten, wobei aber der stärkefreie Anteil an Trockensubstanz konstant bleibt (vgl. Tabelle II) . Dies zeigt, daß ausschließlich der Stärkeanteil in den Knollen der GK-Pflanzen durch die Ex¬ pression der Invertase in Kombination mit der Expression der Glucokinase reduziert ist . Es wurde des weiteren eine Er¬ tragsdepression um 25 % festgestellt. Dies korreliert wie¬ derum mit der Reduktion des Stärkeanteiles. Tabelle II
Pflanze Ertrag pro Spezifisches % Stärke % Trocken¬
Pflanze Gewicht substanz
Kontrolle 191 g 1,091 16,1 22,5
U-Inv-2 147 g 1,074 12,7 18,9
GK-41 139 g 1,064 10,7 16,8
GK-29 135 g 1,058 9,5 15,5
GK-41 137 g 1,046 7,1 13,4
Die Analyse von löslichen Zuckern wie Glucose, Fructose und Saccharose ergab erstaunlicherweise, daß der siebenfache An¬ stieg der Glucosekonzentration in den U-Inv-2 Pflanzen ver¬ glichen mit dem Wildtyp durch die Expression der Glucokinase stark reduziert wird, so daß die Glucosemenge nur noch 30 % der Glucosemenge in Knollen von WT-Kontrollpflanzen beträgt. Die Fructosekonzentration ist in den transgenen Linien ge¬ genüber den Kontrollpflanzen nicht verändert. Die starke Re¬ duktion der Saccharosemenge in den U-Inv-2 Pflanzen wird durch die Expression der Glucokinase zum Teil aufgehoben (vgl. Tabelle III) . Zusammenfassend wurde festgestellt, daß z.B. die Knollen der GK-38 Pflanzen nur noch 40 % Stärke und 50 % lösliche Zucker verglichen mit Knollen von untransfor- mierten Kontrollpflanzen enthalten.
Tabelle III
Pflanze Glucose Fructose Saccharose in μmol g"1 Frischgewicht
Kontrolle 3,5±2,2 0,9±0,2 12,0±1,0 U-Inv-2 25,7±3,1 0,6±0,3 0,7±0,4 GK-38 1,0±0,7 0,2±0,1 6,3+1,4
Da es keinerlei Hinweise gibt, daß die Menge an Photoassimi¬ laten, die über das Phloem aus den maturen Blättern in die Knollen transportiert wird, in den GK-Pflanzen reduziert ist, da aber andererseits reduzierte Gehalte an Stärke und löslichen Zuckern gemessen werden, ist davon auszugehen, daß die Expression einer Invertase im Cytosol von Pflanzenzellen in Kombination mit der Expression einer Glucokinase in Cyto¬ sol von Pflanzenzellen zu einer. Steigerung der Glykolyse und der Respiration führt.
Dieses überraschende Ergebnis wird durch veränderte Gehalte an Metaboliten und veränderte Enzymaktivitäten in Knollenex¬ trakten der GK-Pflanzen unterstrichen. Es wurde eine bis zu fünffache Erhöhung des Glucose-6-Phosphatgehaltes, eine bis zu fünffache Erhöhung des Fructose-6-Phosphatgehaltes, eine ca. 40%ige Steigerung des 3-Phosphoglyceratgehaltes, eine etwa sechsfache Zunahme des Pyruvatgehaltes und eine bis zu 50%ige Steigerung des ATP-Gehaltes nachgewiesen (vgl. Ta¬ belle IV) .
Tabelle IV
Metabolit Kontrolle U-Inv-2 GK-38
Glucose-6-Phosphat 107±15 343±19 513±56
Glucose-1-Phosphat 13±1 25±2 17±4
Fructose-6-Phosphat 29±5 100±6 153±19
UDP-Glucose 126±12 91+11 107±4
3-Phosphoglycerat 92±18 127±22 135±35
Phosphoenolpyruvat 33±4 34±8 37±11
Pyruvat 15±3 27±5 84±23
ATP 32±2 27±7 45±7
ADP 24±2 25±4 28±2
Die hier dargestellten Metabolitmengen sind der Mittelwert von mindestens fünf Messungen ausgehend von fünf unabhängi¬ gen Pflanzen. Die Werte sind in nmol g"1 Frischgewicht ange¬ geben.
Des weiteren wurde gezeigt, daß die Aktivität von Enzymen, welche Reaktionen der Glykolyse katalysieren, in Knollenex¬ trakten der GK-Pflanzen erhöht ist (vgl. Tabelle V) . Es sind z.B. die spezifischen Aktivitäten der Fructokinase, der Phosphofructokinase, der Glyceraldehyd-3-Phosphat-Dehy¬ drogenase (GAP-DH) und der Pvruvatkinase erhöht. Die Expression einer Invertase .im Cytosol von Pflanzenzellen in Kombination mit der Expression eine Glucokinase im Cyto¬ sol von Pflanzenzellen stellt also ein Verfahren dar, wel¬ ches zu einer Steigerung von Glykolyse und Respiration führt.
Tabelle V
Enzym Kontrolle U-Inv-2 GK-38
Saccharosesynthase 41+5 15+4 236±85
Fructokinase 52+2 90+7 88±5
Phosphoglucomutase 1635±150 1354±79 1408+24
54+4 89+7 98+4
GAP-DH 942±56 1791±190 1926+145
Phosphoglycεratkir.ase 883+83 962±78 901+22
Phosphoglyceratir.utase 539+68 553±19 615±21
Pyruvatkinase 532±42 551±29 688±33
Die hier dargestellten Enzymaktivitäten sind der Mittelwert von mindestens fünf Messungen ausgehend von fünf unabhängi¬ gen Pflanzen. Die Werte sind in nmol min" mg Frischge- wicht angegeben.
Beispiel 4
Bestimmung des Gasaustausches von Knollen
Die C02-Produktion wurde bei noch wachsenden Knollen (Ta¬ belle VI) bestimmt. Tabelle VI
Kontrolle U-Inv-2 GK-38
C02 18±2,0 58±7,0 84±6,0
Die hier dargestellten Werte sind die Mittelwerte von sechs Messungen ausgehend von sechs unabhängigen Pflanzen. Die Werte sind in mmol C02 g Frischgewicht angegeben.
Die in Tabelle VI angegebenen Daten zeigen, daß die Produk¬ tion des Kohlendioxids in den U-Inv-2-Pflanzen um den Faktor 3 und in den GK-Pflanzen um den Faktor 5 erhöht ist. Dieses überraschende Ergebnis bedeutet, daß die Expression einer Invertase im Cytosol in Kombination mit der Expression einer Glucokinase ein Verfahren darstellt, welches zu einer Steigerung der Glykolyse und der Respiration in pflanzlichen Zellen führt.
Die in den oben beschriebenen Experimenten angegebenen Kontrollen sind jeweils nicht-transformierte Pflanzen der Pflanzenart bzw. Unterart, die für die Transformation ver¬ wendet wurde.

Claims

P a t e n t a n s p r ü c h e
1. Transgene Pflanzenzelle mit einer im Vergleich zu nicht- transformierten Pflanzenze.llen gesteigerten Glykoly¬ serate, bei der es aufgrund der Einführung und Expres¬ sion von DNA-Sequenzen, die eine cytosolische Invertase codieren, sowie von DNA-Sequenzen, die eine cytosoli¬ schen Hexokinase codieren, zu einer Erhöhung der Inver¬ tase- und Hexokinaseaktivität kommt.
2. Transgene Pflanzenzelle nach Anspruch 1, wobei die In¬ vertase ein dereguliertes Enzym ist .
3. Transgene Pflanzenzelle nach Anspruch 1, wobei die In¬ vertase ein unreguliertes Enzym ist .
4. Transgene Pflanzenzelle nach einem der Ansprüche 1 bis 3, wobei die Hexokinase ein dereguliertes Enzym ist.
5. Transgene Pflanzenzelle nach einem der Ansprüche 1 bis 3, wobei die Hexokinase ein unreguliertes Enzym ist.
6. Transgene Pflanzen nach einem der Ansprüche 1 bis 5, wo¬ bei die Hexokinase eine Glucokinase ist.
7. Transgene Pflanzenzelle nach einem der Ansprüche 1 bis 6, wobei die die Invertase codierende DNA-Sequenz eine Invertase eines Pilzes codiert.
8. Transgene Pflanzenzelle nach Anspruch 7, wobei die Invertase eine Invertase aus Saccharomyces cerevisiae ist.
9. Transgene Pflanzenzelle nach Anspruch 8, wobei die DNA- Sequenz, die die Invertase codiert, das Suc2-Gen aus Saccharomyces cerevisiae ist.
10. Transgene Pflanzenzelle nach einem der Ansprüche 1 bis 9, wobei die Hexokinase eine Hexokinase aus einem proka¬ ryontischen Organismus ist.
11. Transgene Pflanzenzelle nach Anspruch 10, wobei die Hexokinase eine Glucokinase aus Zymomonas mobilis ist.
12. .Transgene Pflanzenzellε nach einem der Ansprüche 1 bis
11, wobei die DNA-Sequenz, die die Invertase codiert, unter der Kontrolle eines gewebespezifischen Promotors, eines Promotors, der zu einem bestimmten Entwicklungs¬ zeitpunkt der Pflanze aktiv ist, oder eines Promotors, der durch äußere Faktoren induzierbar ist, steht.
13. Transgene Pflanzenzelle nach einem der Ansprüche 1 bis
12, wobei die DNA-Sequenz, die die Hexokinase codiert, unter der Kontrolle eines gewebespezifischen Promotors, eines Promotors, der zu einem bestimmten Entwicklungs- zeitpunkt der Pflanze aktiv ist, oder eines Promotors, der durch äußere Faktoren induzierbar ist, steht.
14. Transgene Pflanzεnzelle nach einem der Ansprüche 1 bis
13, die eine Zelle einer Nutzpflanze ist.
15. Transgene Pflanzenzelle nach Anspruch 14, die eine Zelle einer ölspeichernden Pflanze ist.
16. Transgene Pflanzenzelle nach Anspruch 15, die eine Zelle einer Raps-, Sojabohnen-, Sonnenblumen- oder Ölpalmen- pflanze ist.
17. Transgene Pflanzenzelle nach Anspruch 14, die eine Zelle einεr stärkespeichεrnden Pflanze ist.
18. Transgene Pflanzenzellε nach Anspruch 17, die eine Zelle einer Mais-, Reis-, Weizen-, Gersten-, Roggen-, Hafer¬ oder Kartoffelpflanze ist.
19. Transgene Pflanzε erhältlich durch Regeneration einer Pflanzenzεlle nach einem der Ansprüche 1 bis 18.
20. Transgene Pflanze enthaltεnd Pflanzenzellen nach einem der Ansprüche 1 bis 18.
21. Transgεnε Pflanze nach Anspruch 19 oder 20, bei der auf¬ grund dεr Steigerung der Glykolyserate in Geleitzellen die Transportrate von Photoassimilaten erhöht ist.
22. Transgene Pflanze nach einem der Ansprüche 19 bis 21, bei der aufgrund der Steigerung der Glykolyserate in Zellεn der Wurzelepidermis oder der Wurzεlhaarε die Auf¬ nahme von Mineralien aus dem Boden erhöht ist.
23. Transgene Pflanze nach einem der Ansprüche 19 bis 22, bei der aufgrund der gesteigerten Glykolyserate im Endo¬ sperm und/oder in den Cotyledonen von Samen die Fettsäu- rebioSynthese erhöht ist.
24. Transgene Pflanze nach einem der Ansprüche 19 bis 23, bei der aufgrund der gesteigerten Glykolyseratε in einem Organ der Fettsäuregehalt erhöht ist bei gleichzeitiger Verringerung des Stärkegehaltεs.
25. Vermehrungsmaterial einer Pflanze nach einem der Ansprü¬ che 19 bis 24, enthaltend transgene Pflanzenzellen nach einem der Ansprüche 1 bis 18.
26. Verfahren zur Herstellung transgener Pflanzenzεllen mit gesteigerter Glykolyserate, bei dεm in pflanzliche Zel¬ len DNA-Sequenzen eingebracht werden, die eine cytosoli¬ sche Invertase codieren, sowie DNA-Sequεnzεn, die eine cytosolische Hexokinase codieren, und diese DNA-Sequen¬ zen in den transformierten Pflanzenzellεn exprimiert werden.
27. Verfahren nach Anspruch 26, wobei die Invertase ein de¬ reguliertes oder unreguliertes Enzym ist.
28. Verfahren nach Anspruch 26 oder 27, wobei diε Hexokinase ein dereguliεrtes odεr unrεguliεrtεs Enzym ist.
29. Vεrfahrεn nach εinem der Ansprüche 26 bis 28, wobei die Hexokinase eine Glucokinase ist.
30. Rekombinantes DNA-Molekül enthaltend folgende DNA-Se¬ quenzen:
(i) einε DNA-Sεquenz, die eine cytosolische Invertasε codiert, in Kombination mit DNA-Sequenzεn, die die Transkription und Translation in pflanzlichen Zel¬ len gewährleisten; und
(ii) eine DNA-Sequenz, die eine cytosolische Hexokinase codiert, in Kombination mit DNA-Sequenzen, die die Transkription und Translation in pflanzlichen Zel¬ len gewährleisten.
31. Rekombinantes DNA-Molekül enthaltend eine DNA-Sequenz, die ein Protein mit der enzymatischen Aktivität einer Hexokinase codiert, in Kombination mit DNA-Sequenzen, die die Transkription und Translation in pflanzlichen Zellen gewährleisten.
32. Rekombinantes DNA-Molekül nach Anspruch 30 oder 31, wo¬ bei die Hexokinase eine Glucokinase ist.
33. Verwendung von DNA-Sequεnzεn, die eine Invertase codie¬ ren, zur Herstellung von transgenen Pflanzεnzellεn, die im Vergleich zu nicht-transformierten Pflanzenzellen eine gesteigerte Glycolyserate aufweisen.
34. Verwendung von DNA-Sequenzen, die εine Hexokinase co¬ dieren, zur Herstellung von transgenεn Pflanzenzellen, die im Vergleich zu nicht-transformierten Pflanzenzεllen eine gesteigεrtε Glykolysεrate aufwεisen.
35. Verwendung nach Anspruch 3.3, wobei die Hexokinase eine Glucokinase ist.
EP96928432A 1995-08-11 1996-08-08 Transgene pflanzenzellen und pflanzen mit gesteigerter glykolyserate Withdrawn EP0846180A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19529696 1995-08-11
DE19529696A DE19529696A1 (de) 1995-08-11 1995-08-11 Transgene Pflanzenzellen und Pflanzen mit gesteigerter Glykolyserate
PCT/EP1996/003514 WO1997007221A1 (de) 1995-08-11 1996-08-08 Transgene pflanzenzellen und pflanzen mit gesteigerter glykolyserate

Publications (1)

Publication Number Publication Date
EP0846180A1 true EP0846180A1 (de) 1998-06-10

Family

ID=7769338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96928432A Withdrawn EP0846180A1 (de) 1995-08-11 1996-08-08 Transgene pflanzenzellen und pflanzen mit gesteigerter glykolyserate

Country Status (8)

Country Link
EP (1) EP0846180A1 (de)
JP (1) JP2001506123A (de)
CN (1) CN1196090A (de)
AU (1) AU719452B2 (de)
BR (1) BR9610227A (de)
CA (1) CA2229061A1 (de)
DE (1) DE19529696A1 (de)
WO (1) WO1997007221A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632602B1 (en) * 1996-03-25 2003-10-14 The General Hospital Corporation Plant sugar sensors and uses thereof
EP1036184B1 (de) * 1997-12-11 2007-03-21 Syngenta Limited Genetisches verfahren
US7514598B2 (en) 1998-08-12 2009-04-07 Thomas Rausch Transgenic plants and plant cells with reduced expression of invertase inhibitors
DE19836405C1 (de) * 1998-08-12 2000-03-02 Thomas Rausch Transgene Pflanzen und Pflanzenzellen mit verminderter Expression von Invertaseinhibitoren
DE19857654A1 (de) * 1998-12-14 2000-06-15 Max Planck Gesellschaft Beeinflussung des Blühverhaltens von Pflanzen durch Expression Saccharose-spaltender Proteine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU644619B2 (en) * 1989-12-21 1993-12-16 Advanced Technologies (Cambridge) Limited Modification of plant metabolism
DE4004800C2 (de) * 1990-02-13 2000-12-21 Aventis Cropscience Gmbh Im Habitus und Ertrag veränderte transgene Pflanzen
CN1127016A (zh) * 1993-05-28 1996-07-17 孟山都公司 提高贮存马铃薯质量的方法
WO1995005457A1 (fr) * 1993-08-19 1995-02-23 Japan Tobacco Inc. Adn codant pour la fructose-6-phosphate 1-phosphotransferase dependante de l'atp et derivee de vegetaux, vecteur de recombinaison la contenant, et procede pour modifier la teneur en sucre d'une cellule vegetale a l'aide de ce vecteur a basse temperature
DE4444460A1 (de) * 1994-11-29 1996-05-30 Inst Genbiologische Forschung Verfahren zur Steigerung des Ertrags sowie zur Veränderung des Blühverhaltens bei Pflanzen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9707221A1 *

Also Published As

Publication number Publication date
JP2001506123A (ja) 2001-05-15
AU6820496A (en) 1997-03-12
AU719452B2 (en) 2000-05-11
BR9610227A (pt) 1999-12-21
DE19529696A1 (de) 1997-02-13
CN1196090A (zh) 1998-10-14
WO1997007221A1 (de) 1997-02-27
CA2229061A1 (en) 1997-02-27

Similar Documents

Publication Publication Date Title
DE4420782C1 (de) DNA-Sequenz, kodierend einen 2-Oxoglutarat/Malat-Translokator, Plasmide, Bakterien, Hefen und Pflanzen enthaltend diesen Transporter
DE69433941T2 (de) Gen für die fettsäure-desaturase, besagtes gen enthaltender vektor, eine pflanze, in die besagtes gen eingebracht ist, und ein verfahren zur schaffung besagter pflanze
EP1578977B1 (de) Verfahren zur veränderung des gehalts von speicherstoffen in pflanzen
DE69233380T2 (de) Transgene pflanzen mit geändertem polyolgehalt
WO2001014569A2 (de) Erhöhung des polysaccharidgehaltes in pflanzen
DE69132758T2 (de) Plasmide zur Herstellung von transgenen Pflanzen welche in Habitus und Ertrag verändert sind
DE4207358A1 (de) Expressionskassette und plasmide zur schliesszellenspezifischen expression und ihre verwendung zur herstellung transgener pflanzenzellen und pflanzen
DE4220759A1 (de) DNA-Sequenzen für Oligosaccharid-Transporter, Plasmide, Bakterien und Pflanzen enthaltend einen Transporter sowie Verfahren zur Herstellung und Transformation von Hefestämmen zur Identifikation des Transporteers
DE4220758A1 (de) DNA-Sequenz und Plasmide zur Herstellung von Pflanzen mit veränderter Saccharose-Konzentration
WO2007118751A2 (de) Verfahren zur veränderung des atp-adp-verhältnisses in zellen
DE19502053A1 (de) Verfahren und DNA-Moleküle zur Steigerung der Photosyntheserate in Pflanzen, sowie Pflanzenzellen und Pflanzen mit gesteigerter Photosyntheserate
DE4444460A1 (de) Verfahren zur Steigerung des Ertrags sowie zur Veränderung des Blühverhaltens bei Pflanzen
DE69432988T2 (de) Für ammonium-transporter kodierende dna-sequenzen und dieser enthaltende, plasmide, bakterien, hefen und pflanzenzellen
EP0906438A2 (de) Kartoffelpflanzen mit einer verringerten aktivität der cytosolischen stärkephosphorylase und einem veränderten keimungsverhalten
EP0846180A1 (de) Transgene pflanzenzellen und pflanzen mit gesteigerter glykolyserate
WO1998006831A1 (de) TRANSGENE PFLANZENZELLEN UND PFLANZEN MIT VERÄNDERTER ACETYL-CoA-BILDUNG
DE19853778C1 (de) DNA-Sequenzen kodierend einen Glutamat/Malat-Translokator, Plasmide Bakterien, Hefen und Pflanzen enthaltend diesen Transporter
EP0789773A1 (de) Verfahren zur veränderung des blühverhaltens bei pflanzen
EP1322772A1 (de) Isomalt produzierende transgene pflanze
DE19632121C2 (de) Transgene Pflanzenzellen und Pflanzen mit veränderter Acetyl-CoA-Bildung
DE19857654A1 (de) Beeinflussung des Blühverhaltens von Pflanzen durch Expression Saccharose-spaltender Proteine
DE19732926C2 (de) DNA-Sequenzen, kodierend einen Glukose-6-phosphat-Phosphat-Translokator, sowie Plasmide, Bakterien, Hefen und Pflanzen, enthaltend diesen Transporter
DE19826444C1 (de) DNA-Sequenzen kodierend einen Glukose-Translokator, Plasmide, Bakterien, Hefen und Pflanzen enthaltend diesen Transporter
EP1070120A1 (de) Amp-deaminase
DE19914792A1 (de) Metabolische Selektionsmarker für Pflanzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLANTTEC BIOTECHNOLOGIE GMBH

17Q First examination report despatched

Effective date: 20031030

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PLANTTEC BIOTECHNOLOGIE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER BIOSCIENCE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041127