EP0812389A1 - Brennstoffeinspritzventil - Google Patents

Brennstoffeinspritzventil

Info

Publication number
EP0812389A1
EP0812389A1 EP96924774A EP96924774A EP0812389A1 EP 0812389 A1 EP0812389 A1 EP 0812389A1 EP 96924774 A EP96924774 A EP 96924774A EP 96924774 A EP96924774 A EP 96924774A EP 0812389 A1 EP0812389 A1 EP 0812389A1
Authority
EP
European Patent Office
Prior art keywords
sleeve
valve
fuel injection
valve seat
seat body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96924774A
Other languages
English (en)
French (fr)
Other versions
EP0812389B1 (de
Inventor
Clemens Willke
Ferdinand Reiter
Willi Frank
Rudolf Kalb
Gerfried Hirt
Assadollah Awarzamani
Thomas Keil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0812389A1 publication Critical patent/EP0812389A1/de
Application granted granted Critical
Publication of EP0812389B1 publication Critical patent/EP0812389B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/188Spherical or partly spherical shaped valve member ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • F02M51/0678Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages all portions having fuel passages, e.g. flats, grooves, diameter reductions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S239/00Fluid sprinkling, spraying, and diffusing
    • Y10S239/90Electromagnetically actuated fuel injector having ball and seat type valve

Definitions

  • the invention relates to a fuel injector according to the preamble of the main claim.
  • an electromagnetically actuated fuel injection valve is already known, which, among other things, has a non-magnetic sleeve as a connecting part between a core and a valve seat body. With its two axial ends, the sleeve is firmly connected to the core and to the valve seat body. The sleeve runs over its entire axial length with a constant outside diameter and a constant inside diameter and accordingly has equally large inlet openings at both ends.
  • the core and the valve seat body are designed with an outer diameter such that they extend into the sleeve at both ends, so that the sleeve completely surrounds the two components core and valve seat body in these protruding areas.
  • a valve needle with an armature moves in the axial direction, which is guided through the sleeve.
  • the fixed connections of the sleeve to the core and the valve seat body are, for. B. achieved by welding, ⁇ o as it is also known from DE-OS 43 10 819.
  • a thin-walled, non-magnetic sleeve is used as the connecting part between the core and the valve seat body of a fuel injector. In terms of its design, this sleeve largely corresponds to the sleeve known from US Pat. No. 4,946,107.
  • the volume and weight of the fuel injection valves can be reduced with the help of the tubular sleeves.
  • the sleeve has at its one axial end a bottom section running perpendicular to the axial extension of the sleeve, through which an optimal and secure fastening of the valve seat body is ensured and the stability of the sleeve is increased. To reduce the volume and weight, it also contributes above all that the sleeve extends over more than half the axial length of the fuel injector and can thus even take on the function of a fuel inlet connector.
  • valve seat body having a valve seat surface into the sleeve, a contact surface being provided through the bottom section of the sleeve, through which the valve seat body cannot slip. It is particularly advantageous to manufacture the sleeve by means of sheet metal deep drawing, since this method is simple and inexpensive and the required accuracy is nevertheless achieved.
  • a particular advantage is that the bottom section of the sleeve can be designed in such a way that spray openings for measuring fuel are provided in it. This is particularly cost-effective since there is no need for a component (perforated washer) and a connection point associated therewith.
  • Fuel injector is enough.
  • the sleeve thus also takes on the function of a fuel inlet connector.
  • the core can be pressed into the sleeve very easily, which means that the stroke of the valve needle can also be adjusted in a simple manner.
  • this long sleeve arrangement eliminates the problem of tightness towards the valve interior.
  • An upper sealing ring seals directly on the sleeve.
  • valve needles or anchors of the same shape can be used for completely different valve types due to the arrangement of the sleeve.
  • FIG. 1 shows a first exemplary embodiment of a fuel injection valve
  • FIG. 2 shows an exemplary embodiment of a sleeve according to the invention
  • FIG. 3 shows a first exemplary embodiment of a downstream end of the sleeve with a valve seat body installed
  • FIG. 4 shows a first exemplary embodiment of a valve needle that can be installed in an injection valve
  • FIG. 5 shows a second
  • FIG. 6 Exemplary embodiment of a fuel injector
  • FIG. 6 em second exemplary embodiment of a downstream end of the sleeve with a built-in valve seat body
  • FIG. 7 em third exemplary embodiment of a fuel injector
  • FIG. 8 em fourth exemplary embodiment of a fuel injector in the form of a side feed injector
  • FIG. 9 em second exemplary embodiment of an m Injector valve valve insert.
  • Exemplary embodiment shown electromagnetically actuated valve in the form of an injection valve for fuel injection systems of mixture-compressing, externally ignited internal combustion engines has a tubular core 2 which is surrounded by a magnet coil 1 and serves as a fuel inlet connector Core 2 having an outer diameter has a particularly compact and short structure of the injection valve in the area of the magnet coil 1.
  • the magnet coil 1 is embedded with its coil body 3, for example in a pot-shaped magnet housing 5, i. h it is completely surrounded by the magnet housing 5 m circumferentially and downwards.
  • Em m the extruded magnet housing 5 insertable cover member 6 ensures that the magnet coil 1 is covered upwards and thus for the complete encasing of the magnet coil 1 and serves to close the magnetic circuit. Due to this pot-shaped design, the magnet housing 5 with the magnet coil 1 is basically dry. An additional seal is not necessary.
  • a tubular and thin-walled sleeve 12 serving as a connecting part is connected to a lower core end 9 of the core 2, concentrically with a longitudinal valve axis 10, for example by welding, and surrounds the core end 9 partially axially with an upper sleeve section 14.
  • the coil former 3 overlaps the sleeve section 14 of the sleeve 12 at least partially axially.
  • the coil former 3 has a larger inner diameter than the diameter of the sleeve 12 in its upper sleeve section 14 over its entire axial extent.
  • the tubular sleeve 12 made of, for example, non-magnetic steel extends downstream with a lower sleeve section 18 to one end of the sleeve 12 that is downstream forming bottom section 20, which extends perpendicular to the axial extension of the sleeve 12.
  • the sleeve 12 is thus tubular over its entire axial length, in its entirety together with the
  • Bottom section 20 has a through opening 21 with a largely constant diameter, which runs concentrically to the valve longitudinal axis 10.
  • the sleeve 12 With its lower sleeve section 18, the sleeve 12 surrounds an armature 24 and further downstream a valve seat body 25.
  • a spray orifice disk 26, for example firmly connected to the valve seat body 25, is surrounded by the sleeve 12 in the circumferential direction by the sleeve section 18 and in the radial direction by the base section 20.
  • the sleeve 12 is thus not only a connecting part, but it also fulfills holding, support or receiving functions, in particular for the valve seat body 25, so that the sleeve 12 really valve seat support is also.
  • In the through opening 21 is a z. B.
  • tubular valve needle 28 arranged at its downstream, the spray hole 26 facing end 29 with a z.
  • the injection valve is actuated in a known manner, for. B. electromagnetic.
  • Valve needle 28 and thus for opening against the spring force of a return spring 33 or closing the injection valve, the electromagnetic circuit with the magnet coil 1, the core 2, the magnet housing 5 and the armature 24 is used.
  • the armature 24 is with the end facing away from the valve closing body 30 Valve needle 28 z. B. connected by a weld and aligned to the core 2.
  • a guide opening 34 of the valve seat body 25 serves to guide the valve closing body 30 during the axial movement of the valve needle 28 with the armature 24 along the valve longitudinal axis 10.
  • the armature 24 is guided in the sleeve 12 during the axial movement.
  • the cover element 6 is, for. B. a stamped part that after assembly of the magnet coil 1 in the magnet housing 5 by z. B. a Börde 1 connection 36 is held on the magnet housing 5.
  • the spherical valve closing body 30 interacts with a valve seat surface 35 of the valve seat body 25 which tapers in the shape of a truncated cone in the direction of flow and is formed in the axial direction downstream of the guide opening 34.
  • the valve seat body 25 On its end facing away from the valve closing body 30 is the valve seat body 25 with the spray-perforated disk, for example in the form of a shell 26 concentrically and firmly, for example connected by a weld, as shown in FIG. 3.
  • An adjusting sleeve 45 is inserted into a stepped flow bore 43 of the core 2, which runs concentrically to the longitudinal axis 10 of the valve and serves to supply the fuel in the direction of the valve seat, specifically the valve seat surface 35.
  • the adjusting sleeve 45 is used to adjust the spring preload of the return spring 33 abutting the adjusting sleeve 45, which in turn is supported on the valve needle 28 with its opposite side.
  • the insertion depth of the valve seat body 25 with the cup-shaped spray hole disk 26 is among others. decisive for the stroke of the valve needle 28. It is essentially predetermined by the spatial position of the bottom section 20 of the sleeve 12. The one end position of the valve needle 28 when the magnet coil 1 is not energized is determined by the contact of the valve closing body 30 on the valve seat surface 35 of the valve seat body 25, while the other end position of the valve needle 28 when the magnet coil 1 is energized results from the contact of the armature 24 at the core end 9 .
  • a stop disk 47 can be provided between the armature 24 and the core end 9, which, for. B. consists of non-magnetic, wear-resistant, hard-rolled material. A coating of the surfaces (e.g. chrome plating) of core 2 and armature 24 in their stop areas can then be avoided.
  • the stop areas on the core 2 and anchor 24 are by
  • the stroke is adjusted by axially displacing the core 2, which is pressed in with a slight oversize, in the upper sleeve section 14 of the sleeve 12.
  • the core 2 is then firmly connected to the sleeve 12 in the correspondingly desired position, laser welding on the circumference of the sleeve 12 making sense is.
  • the interference of the press fit can also be selected to be sufficiently large so that the forces which arise can be absorbed and complete tightness is guaranteed, as a result of which welding can be dispensed with.
  • a fuel filter 52 protrudes into the flow bore 43 of the core 2 at its inlet end and filters out those fuel components which, because of their size, could cause blockages or damage in the injection valve.
  • the injector is largely set with a
  • Plastic encapsulation 55 enclosed which extends from the core 2 in the axial direction over the magnetic coil 1 to the sleeve 12 and even downstream beyond the bottom portion 20 of the sleeve 12, with this
  • Kun ⁇ t ⁇ toffum ⁇ pritzung 55 a co-molded electrical connector 56 belongs. The electrical contacting of the magnetic coil 1 and thus its excitation takes place via the electrical connector 56.
  • FIG. 2 shows the sleeve 12 of the first exemplary embodiment shown in FIG. 1 as a single component on a different scale.
  • the thin-walled sleeve 12 is formed, for example, by deep drawing, the material being a non-magnetic material, e.g. B. a rust-resistant stainless steel is used.
  • the present sheet metal part 12 serves, due to its large extension, to accommodate the valve seat body 25, the spray hole disk 26, the valve needle 28 with the armature 24, the return spring 33 and at least partially the core 2 and consequently also the stop area of the armature 24 and core 2 to limit the stroke.
  • the sleeve has a central outlet opening 58 which is of such a large diameter that the fuel sprayed through the spray openings 39 of the spray plate 26 can leave the injection valve unhindered. If the sleeve 12 is to be used in a so-called side-feed injection valve, as shown in FIG. 8, inflow openings 59 can be provided very easily in the sleeve 12, which allow the fuel to enter the interior of the sleeve 12.
  • the top feed injector shown in FIG. 1 has a sleeve 12 which has no inflow openings 59, since the fuel enters the sleeve 12 axially along the longitudinal valve axis 10 via the flow bore 43.
  • the sleeve 12 At its axial end opposite the base section 20, the sleeve 12 has, for example, a slightly radially outwardly curved circumferential edge 60.
  • the circumferential edge 60 results from the separation of the material overflow during deep drawing.
  • the preassembled assembly of magnet coil 1, coil body 3, magnet housing 5 and cover element 6 is pushed axially onto the outer circumference of the sleeve 12, whereby a limitation can be given by the peripheral edge 60 and a clamping of the cover element 6 is possible in the assembled state.
  • the coil body 3, the magnet housing 5 and the cover element 6 all have central through openings through which the sleeve 12 then extends.
  • FIG. 3 shows the lower sleeve section 18 and the bottom section 20 together with an installed valve seat body 25 and one attached to it
  • Spray hole disk 26 shown in a modified scale.
  • the shell-shaped spray perforated disk 26 has a circumferential upstream holding edge 40.
  • the holding edge 40 is conical upstream bent outwards so that it bears against the inner wall of the sleeve 12 determined by the through opening 21, with a radial pressure being present.
  • the valve seat body 25 is cold pressed into the sleeve 12 and is not welded. The press-in process takes place, for example, in the through opening 21 of the sleeve 12 until the z. B.
  • the holding edge 40 of the spray hole disk 26 has a slightly larger diameter at one end than the diameter of the through-opening 21 of the sleeve 12, so that the holding edge 40 presses against the sleeve 12 at its end, as a result of which, in addition to the pressing in of the valve seat body 25, a further securing against The valve seat body 25 is slipped.
  • valve needle 28 is designed as an elongated solid component. It is therefore no longer possible to supply the fuel within the valve needle 28 in the direction of the valve seat surface 35. For this reason, outlet bores 62 ′ are already provided in the armature 24, through which the fuel coming from an inner opening 63 of the armature 24 can flow, in order to then reach further downstream outside the valve needle 28 in the through opening 21 of the sleeve 12.
  • the armature 24 is, for example, stepped, an upper one being upstream
  • Armature section 64 has a larger diameter than a lower downstream armature section 65.
  • the opening 63 running inside the armature 24 has a smaller cross section in the lower armature section 65 than in the upper armature section 64.
  • B. provided as radially extending cross holes in the wall of the lower anchor portion 65.
  • a firm one Connection of armature 24 and valve needle 28 is such. B. achieved in that the armature 24 is pressed onto the upstream end 66 of the valve needle 28, since there is an interference fit between the valve needle 28 at least at its end 66 to be pressed in and the opening 63.
  • a number of circumferential, for example rolled-in grooves 67 are provided, which serve to anchor the armature 24 after it has been pressed onto the valve needle 28.
  • valve needle 28 protrudes 66 so far into the opening 63 that the outlet bores 62 'remain completely free.
  • laser welding is also possible in a known manner (see FIG. 1).
  • the fixed connection of valve needle 28 and spherical valve closing body 30 is, for. B. achieved by means of laser welding, the valve needle 28 having an upset, dome-shaped fastening flange 68 at its end downstream of the armature 24.
  • the mounting flange 68 is designed according to the radius of the spherical valve closing body 30.
  • the magnet coil 1 is surrounded by at least one guide element 70 which is designed as a bracket and serves as a ferromagnetic element.
  • the guide element 70 surrounds the magnet coil 1 in
  • Circumferential direction at least partially and is at one end to the core 2 and the other end to the Sleeve 12 z. B. in the area of the upper sleeve section 14 and is z. B. connectable by welding, soldering or gluing.
  • Another distinguishing feature is in the design of the armature 24.
  • the outlet bores 62 ′ run radially
  • the outlet bores 62 ′′ are now designed to run axially, specifically in a transition region 72, which is a step between the upper anchor section 64 and the lower anchor section 65 represents.
  • the decisive difference relates to the design of the sleeve 12.
  • The, for example, stepped, thin-walled, non-magnetic sleeve 12 is designed in such a way that the upper sleeve section 14, which guides the armature 24, has a slightly larger diameter than the lower sleeve section 18, with the same extent the through hole 21 of the sleeve 12 is reduced in the downstream direction.
  • the bottom portion 20 of the sleeve 12 takes over the functions of an orifice plate, so that the orifice plate 26 can be omitted.
  • the bottom section 20 has at least one, for example four, spray openings 39 which, for. B. are introduced by punching or eroding.
  • valve seat body 25 and the sleeve 12 are again shown enlarged in the region of the base section 20, based on FIG. 3.
  • the bottom section 20 is designed like a conventional perforated spray disk and thus has no outlet opening 58, but only the spray openings 39 which meter the fuel.
  • the sleeve 12 now also performs a metering and spraying function.
  • the valve seat body 25 can either be tightly welded to the sleeve 12 in the area of the base section 20 and / or in the area of the lower sleeve section 18, or pressed tightly into the sleeve 12.
  • the advantage of this arrangement is that one component (spray disk 26) and at least one connection point can be dispensed with.
  • the sleeve 12 has a higher rigidity with this base section 20, which reduces the risk of damage when handling the valve components.
  • the injection valve shown in FIG. 7 has a sleeve 12 serving as a valve body, which itself specifies the length of the injection valve and thus also almost over the entire length The length of the injection valve runs.
  • the sleeve 12 passing through the injection valve has the advantage that none
  • Fuel injection valve is pressed in until the stroke of the valve needle 28 reaches the desired size. Then the set stroke is no longer negatively influenced by other assembly steps.
  • the bottom section 20 can also have the spray openings 39 directly (cf. FIGS. 5 and 6).
  • the assembly of the injection valve is very simple, for. B. so that first the magnet coil 1, the magnet housing 5 and the cover element 6 (or alternatively at least one guide element 70) are mounted on the sleeve 12, then the encapsulation with plastic 55 takes place, subsequently the valve seat body 25 is pressed into the sleeve 12 and the valve needle 28 are inserted with armature 24 and then the core 2 is pressed in until the nominal stroke is reached. All subsequent assembly steps are already well known.
  • the sleeve 12 is, for. B. stepped twice over its axial length, the cross section of the through hole 21 is reduced slightly in the downstream direction.
  • the z. B. provided in the stop area of anchor 24 and core 2 and above the core 2 steps facilitate assembly.
  • FIGS 8 and 9 are intended primarily to illustrate that a sleeve 12 according to the invention can also be used in completely different valve types, e.g. B. in so-called side feed
  • Injectors can be used. A detailed description of the injection valve is dispensed with, since it is already known from DE-OS 39 31 490 for such an injection valve, at least from the basic structure, and can be adopted.
  • the valve needle 28 shown in FIG. 9 with a spigot 76 protruding into a central valve seat body bore 75 of the valve seat body 25 can be formed in a simplified manner compared to known valve needles of comparable injection valves, in that only one guide section 77 is provided. Such valve needles usually have two guide sections 77.
  • the valve needle 28 is also guided by the armature 24 in the sleeve 12.
  • the sleeve 12 for use in side-feed injection valves can have at least one inflow opening 59, via which the fuel is supplied in the direction of the valve seat surface 35.

Abstract

Die Erfindung betrifft ein Brennstoffeinspritzventil für Brennstoffeinspritzanlagen von Brennkraftmaschinen, in dem eine langgestreckte, axial verlaufende, dünnwandige, nichtmagnetische Hülse (12) vorgesehen ist. Die Hülse (12) weist an ihrem stromabwärtigen Ende einen Bodenabschnitt (20) auf, der weitgehend senkrecht zu der ansonsten axialen Erstreckung der Hülse (12) entlang einer Ventillängsachse (10) verläuft. In einer Durchgangsöffnung (21) der Hülse (12) kann sich eine Ventilnadel (28), die mit einem Anker (24) und einem Ventilschließkörper (30) fest verbunden ist, axial bewegen. Der Ventilschließkörper (30) wirkt mit einer an einem Ventilsitzkörper (25) vorgesehenen Ventilsitzfläche (35) zusammen, wobei der Ventilsitzkörper (25) in der Hülse (12) eingepreßt ist und beispielsweise an dem Bodenabschnitt (20) der Hülse (12) ebenso anliegt. Die als Blechtiefziehteil vorliegende Hülse (12) erstreckt sich axial über mehr als die halbe axiale Länge des Brennstoffeinspritzventils. Das Brennstoffeinspritzventil eignet sich besonders für den Einsatz in Brennstoffeinspritzanlagen von gemischverdichtenden fremdgezündeten Brennkraftmaschinen.

Description

Brennstoffeinspritzventil
Stand der Technik
Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs. Aus der US-PS 4,946,107 ist bereits ein elektromagnetisch betätigbares Brennstoffeinspritzventil bekannt, das unter anderem eine unmagnetische Hülse als Verbindungsteil zwischen einem Kern und einem Ventilsitzkörper aufweist. Mit ihren beiden axialen Enden ist die Hülse fest mit dem Kern und mit dem Ventilsitzkörper verbunden. Die Hülse verläuft über ihre gesamte axiale Länge mit einem konstanten Außendurchmesser und einem konstanten Innendurchmesser und besitzt entsprechend an ihren beiden Enden gleich große Eintrittsδffnungen. Der Kern und der Ventilsitzkörper sind mit einem solchen Außendurchmesser ausgebildet, daß sie in die Hülse an den beiden Enden hineinreichen, so daß die Hülse die beiden Bauteile Kern und Ventilsitzkörper in diesen hineinragenden Bereichen vollständig umgibt. Im Inneren der Hülse bewegt sich in axialer Richtung eine Ventilnadel mit einem Anker, der durch die Hülse geführt wird. Die festen Verbindungen der Hülse mit dem Kern und dem Ventilsitzkörper werden z. B. mittels Schweißen erzielt, εo wie es auch aus der DE-OS 43 10 819 bekannt ist. Auch hier wird eine dünnwandige, unmagnetische Hülse als Verbindungsteil zwischen Kern und Ventilsitzkörper eines Brennstoffeinspritzventils verwendet. Von der konstruktiven Ausgestaltung her entspricht diese Hülse weitgehend der aus der US-PS 4,946,107 bekannten Hülse. Mit Hilfe der rohrförmigen Hülsen lassen sich das Volumen und das Gewicht der Brennstoffeinspritzventile reduzieren. Vorteile der Erfindung
Das erfindungsgemäße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat den
Vorteil, daß auf einfache und kostengünstige Art und Weise eine weitere Volumen- und Gewichtsreduzierung des Brennstoffeinspritzventils möglich ist und eine größere Anzahl von Funktionen mit nur einem hülsenförmigen Bauteil erfüllbar ist. Neben den geringen Herstellungskosten ergibt sich außerdem in vorteilhafter Weise eine Vereinfachung der Montage des Brennstoffeinspritzventils durch vergleichsweise wenige Fertigungsschritte. Erfindungsgemäß werden diese Vorteile dadurch erreicht, daß eine dünnwandige, nichtmagnetische Hülse als Verbindungsteil zwischen einem
Kern und einem Ventilsitzkörper im Brennstoffeinspritzventil verwendet ist, die außerdem Halte-, Träger- bzw. Aufnahmefunktionen erfüllt. Dabei weist die Hülse an ihrem einen axialen Ende einen senkrecht zur axialen Erstreckung der Hülse verlaufenden Bodenabschnitt auf, durch den eine optimale und sichere Befestigung des Ventilsitzkörpers gewährleistet und die Stabilität der Hülse erhöht ist. Zur Volumen- und Gewichtsreduzierung trägt vor allen Dingen auch bei, daß sich die Hülse über mehr als die halbe axiale Länge des Brennstoffeinspritzventils erstreckt und damit sogar die Funktion eines Brennstoffeinlaßstutzens übernehmen kann.
Durch die in den Unteranspruchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Brennstoffeinspritzventils möglich.
Von Vorteil ist es, den eine Ventilsitzfläche aufweisenden Ventilsitzkörper in die Hülse einzupressen, wobei durch den Bodenabschnitt der Hülse eine Anlagefläche vorhanden ist, durch die der Ventilsitzkörper nicht verrutschen kann. Besonders vorteilhaft ist es, die Hülse mittels Blechtiefziehen herzustellen, da dieses Verfahren einfach und preiswert ist und trotzdem die geforderte Genauigkeit erreicht wird.
Für sogenannte Side-Feed-Einspritzventile, die also teilweise quer durchströmt werden, ist es vorteilhaft, Bohrungen oder Öffnungen in der Hülsenwandung vorzusehen, um eine direkte Brennstoffversorgung der Abspritzöffnungen des Brennstoffeinspritzventils zu gewährleisten.
Ein besonderer Vorteil besteht darin, daß der Bodenabschnitt der Hülse so ausbildbar ist, daß den Brennstoff zumessende Abspritzöffnungen in ihm vorgesehen sind. Dies ist besonders kostengünstig, da auf ein Bauteil (Spritzlochscheibe) und eine damit zusammenhängende Verbindungsstelle verzichtet werden kann.
Von Vorteil ist es außerdem, die Hülse so lang auszubilden, daß sie über die gesamte axiale Erstreckungslänge des
Brennstoffeinspritzventils reicht. Damit übernimmt die Hülse auch die Funktion eines Brennstoffeinlaßstutzens. Des weiteren kann der Kern sehr einfach in die Hülse eingepreßt werden, womit auch auf einfache Art und Weise der Hub der Ventilnadel einstellbar iεt. Außerdem ist bei dieser langen Hülsenanordnung das Dichtheitsproblem zum Ventilinnenraum hin beseitigt . Ein oberer Dichtring dichtet unmittelbar auf der Hülse ab.
Ein großer Vorteil besteht darin, daß für völlig verschiedene Ventiltypen durch die Anordnung der Hülse Ventilnadeln bzw. Anker gleicher Gestalt einsetzbar sind.
Zeichnung
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung naher erläutert. Es zeigen Figur 1 em erstes Ausfuhrungsbeispiel eines Brennstoffeinspritzventils, Figur 2 ein Ausfuhrungsbeispiel einer erfindungsgemaßen Hülse, Figur 3 ein erstes Ausfuhrungsbeispiel eines stromabwärtigen Endes der Hülse mit eingebautem Ventilsitzkorper, Figur 4 ein erstes Ausfuhrungsbeispiel einer in em Einspritzventil einbaubaren Ventilnadel, Figur 5 ein zweites
Ausfuhrungsbeispiel eines Brennstoffeinspritzventils, Figur 6 em zweites Ausfuhrungsbeispiel eines stromabwärtigen Endes der Hülse mit eingebautem Ventilsitzkörper, Figur 7 em drittes Ausfuhrungsbeispiel eines Brennstoffeinspritzventils, Figur 8 em viertes Ausfuhrungsbeispiel eines Brennstoffeinspritzventils m Form eines Side-Feed-Emspritzventils und Figur 9 em zweites Ausfuhrungsbeispiel einer m ein Einspritzventil einbaubaren Ventilnadel .
Beschreibung der Ausführungsbeispiele
Das in der Figur 1 beispielsweise als erstes
Ausfuhrungsbeispiel dargestellte elektromagnetisch betätigbare Ventil in der Form eines Einspritzventils für Brennstoffemspπtzanlagen von gemischverdichtenden, fremdgezundeten Brennkraftmaschinen hat einen von einer Magnetspule 1 umgebenen, als Brennstoffeinlaßstutzen dienenden rohrförmigen Kern 2. Em Spulenkorper 3 nimmt eine Bewicklung der Magnetspule 1 auf und ermöglicht m Verbindung mit dem einen konstanten Außendurchmesser aufweisenden Kern 2 einen besonders kompakten und kurzen Aufbau des Einspritzventils im Bereich der Magnetspule 1. Die Magnetspule 1 ist mit ihrem Spulenkorper 3 beispielsweise m einem topfformigen Magnetgehause 5 eingebettet, d. h sie ist von dem Magnetgehause 5 m Umfangsrichtung und nach unten vollständig umgeben. Em m das fließgepreßte Magnetgehause 5 einsetzbares Deckelelement 6 sorgt für eine Abdeckung der Magnetspule 1 nach oben und somit für die vollständige Umhüllung der Magnetspule 1 und dient dem Schließen des magnetischen Kreises. Durch diese Bauweise in Topfform liegt das Magnetgehause 5 mit der Magnetspule 1 grundsätzlich trocken vor. Eine zusätzliche Abdichtung entfällt.
Mit einem unteren Kernende 9 des Kerns 2 ist konzentrisch zu einer Ventillängsachse 10 dicht eine als Verbindungsteil dienende rohrformige und dünnwandige Hülse 12, beispielsweise durch Schweißen, verbunden und umgibt dabei mit einem oberen Hulsenabschnitt 14 das Kernende 9 teilweise axial. Der Spulenkörper 3 übergreift den Hülsenabschnitt 14 der Hülse 12 zumindest teilweise axial. Der Spulenkörper 3 besitzt nämlich über seine gesamte axiale Erstreckung einen größeren Innendurchmesser als den Durchmesser der Hülse 12 in ihrem oberen Hulsenabschnitt 14. Die rohrformige Hülse 12 aus beispielsweise nichtmagnetischem Stahl erstreckt sich stromabwärts mit einem unteren Hülsenabschnitt 18 bis zu einem den stromabwärtigen Abschluß der Hülse 12 bildenden Bodenabschnitt 20, der sich senkrecht zur axialen Ausdehnung der Hülse 12 erstreckt.
Die Hülse 12 ist also über ihre gesamte axiale Länge rohrförmig ausgebildet, in ihrer Gesamtheit zusammen mit dem
Bodenabschnitt 20 aber becherförmig. Dabei bildet die Hülse 12 über ihre gesamte axiale Ausdehnung bis zum
Bodenabschnitt 20 eine Durchgangsöffnung 21 mit weitgehend konstantem Durchmesser, die konzentrisch zu der Ventillängsachse 10 verläuft. Mit ihrem unteren Hulsenabschnitt 18 umgibt die Hülse 12 einen Anker 24 und weiter stromabwärts einen Ventilsitzkörper 25. Eine mit dem Ventilsitzkörper 25 beispielsweise fest verbundene Spritzlochscheibe 26 wird von der Hülse 12 in Umfangsrichtung vom Hülsenabschnitt 18 und in radialer Richtung vom Bodenabschnitt 20 umschlossen. Die Hülse 12 ist somit nicht nur ein Verbindungsteil, sondern sie erfüllt auch Halte-, Träger- bzw. Aufnahmefunktionen, insbesondere für den Ventilsitzkörper 25, so daß die Hülse 12 wirklich auch Ventilsitzträger iεt. In der Durchgangsöffnung 21 iεt eine z. B. rohrformige Ventilnadel 28 angeordnet, die an ihrem stromabwärtigen, der Spritzlochscheibe 26 zugewandten Ende 29 mit einem z. B. kugelförmigen Ventilschließkörper 30, an dessen Umfang beispielsweise fünf Abflachungen 31 zum Vorbeiströmen des abzuspritzenden Brennstoffs vorgesehen sind, beispielsweise durch Schweißen verbunden ist.
Die Betätigung des Einspritzventils erfolgt in bekannter Weise z. B. elektromagnetisch. Zur axialen Bewegung der
Ventilnadel 28 und damit zum Öffnen entgegen der Federkraft einer Rückstellfeder 33 bzw. Schließen des Einspritzventils dient der elektromagnetische Kreis mit der Magnetspule 1, dem Kern 2, dem Magnetgehause 5 und dem Anker 24. Der Anker 24 ist mit dem dem Ventilschließkörper 30 abgewandten Ende der Ventilnadel 28 z. B. durch eine Schweißnaht verbunden und auf den Kern 2 ausgerichtet. Zur Führung des Ventilschließkörpers 30 während der Axialbewegung der Ventilnadel 28 mit dem Anker 24 entlang der Ventillängsachse 10 dient eine Führungsöffnung 34 des Ventilsitzkörpers 25. Außerdem wird der Anker 24 während der Axialbewegung in der Hülse 12 geführt. Aus Kostengründen ist es von Vorteil, wenn das Magnetgehause 5 und der Anker 24 aus einem Fließpreßteil in einer Aufspannung auf Drehautomaten hergestellt werden. Das Deckelelement 6 ist z. B. ein Stanzteil, das nach der Montage der Magnetspule 1 im Magnetgehause 5 durch z. B. eine Börde1Verbindung 36 am Magnetgehause 5 festgehalten wird.
Der kugelförmige Ventilschließkörper 30 wirkt mit einer sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitzfläche 35 des Ventilsitzkörpers 25 zusammen, die in axialer Richtung stromabwärts der Führungsöffnung 34 ausgebildet ist. An seiner dem Ventilschließkörper 30 abgewandten Stirnseite ist der Ventilsitzkörper 25 mit der beispielsweise schalenförmig ausgebildeten Spritzlochscheibe 26 konzentrisch und fest, beispielsweise durch eine Schweißnaht verbunden, wie es die Figur 3 zeigt.
In eine konzentrisch zu der Ventillängsachse 10 verlaufende abgestufte Strömungsbohrung 43 des Kerns 2, die der Zufuhr des Brennstoffs in Richtung des Ventilsitzes, speziell der Ventilsitzfläche 35 dient, ist eine Einstellhülse 45 eingeschoben. Die Einstellhülse 45 dient zur Einstellung der Federvorspannung der an der Einstellhülse 45 anliegenden Rückstellfeder 33, die sich wiederum mit ihrer gegenüberliegenden Seite an der Ventilnadel 28 abstützt.
Die Einschubtiefe des Ventilsitzkörpers 25 mit der schalenförmigen Spritzlochscheibe 26 iεt u.a. entscheidend für den Hub der Ventilnadel 28. Sie wird im wesentlichen durch die räumliche Lage des Bodenabschnittε 20 der Hülεe 12 bereitε vorgegeben. Dabei iεt die eine Endstellung der Ventilnadel 28 bei nicht erregter Magnetspule 1 durch die Anlage des Ventilschließkörperε 30 an der Ventilsitzfläche 35 des Ventilsitzkörpers 25 festgelegt, während sich die andere Endstellung der Ventilnadel 28 bei erregter Magnetspule 1 durch die Anlage des Ankers 24 am Kernende 9 ergibt. Um das magnetische Kleben zu verhindern, kann zwischen dem Anker 24 und dem Kernende 9 eine Anschlagscheibe 47 vorgesehen sein, die z. B. aus nichtmagnetischem, verschleißfestem, walzhartem Material besteht. Eine Beschichtung der Oberflächen (z. B. Verchromen) von Kern 2 und Anker 24 in ihren Anschlagbereichen kann dann vermieden werden. Die Anschlagbereiche am Kern 2 und Anker 24 werden durch
Rollglätten kaltverfestigt und verdichtet. Außerdem erfolgt die Hubeinstellung durch das axiale Verschieben des mit geringem Übermaß eingepreßten Kerns 2 in dem oberen Hülsenabschnitt 14 der Hülse 12. Der Kern 2 wird in der entsprechend gewünschten Position dann fest mit der Hülse 12 verbunden, wobei eine Laserschweißung am Umfang der Hülse 12 sinnvoll ist. Das Fügeübermaß der Preßpassung kann auch auεreichend groß gewählt werden, so daß die auftretenden Kräfte aufgenommen werden können und die vollständige Dichtheit garantiert ist, wodurch auf eine Schweißung verzichtet werden kann.
Ein Brennstoffilter 52 ragt in die Strömungsbohrung 43 des Kerns 2 an dessen Zulaufseitigem Ende und sorgt für die Herausfiltrierung solcher Brennstoffbestandteile, die aufgrund ihrer Größe im Einspritzventil Verstopfungen oder Beschädigungen verursachen könnten. Das fertig eingestellte Einspritzventil ist weitgehend mit einer
Kunststoffumspritzung 55 umschlossen, die sich vom Kern 2 ausgehend in axialer Richtung über die Magnetspule 1 biε zur Hülse 12 und sogar stromabwärts über den Bodenabschnitt 20 der Hülse 12 hinaus erstreckt, wobei zu dieser
Kunεtεtoffumεpritzung 55 ein mitangespritzter elektrischer Anschlußstecker 56 gehört. Über den elektrischen Anschlußstecker 56 erfolgt die elektrische Kontaktierung der Magnetspule 1 und damit deren Erregung.
Durch den Einsatz der relativ billigen Hülse 12 wird es möglich, auf in Einεpritzventilen übliche Drehteile, wie Ventilsitzträger oder Düsenhalter, die aufgrund ihres größeren Außendurchmessers voluminöser und bei der Herstellung teurer als die Hülse 12 sind, zu verzichten. In der Figur 2 ist die Hülse 12 des in der Figur 1 dargestellten ersten Ausführungsbeispiels als einzelnes Bauteil in einem anderen Maßstab dargestellt. Die dünnwandige Hülse 12 ist beispielsweiεe durch Tiefziehen ausgebildet worden, wobei als Werkstoff ein nichtmagnetischeε Material, z. B. ein rostbeständiger CrNi- Stahl verwendet ist. Die alε Blechziehteil vorliegende Hülεe 12 dient, wie bereits erwähnt, aufgrund ihrer großen Erstreckung zur Aufnahme des Ventilsitzkörpers 25, der Spritzlochscheibe 26, der Ventilnadel 28 mit dem Anker 24, der Rückstellfeder 33 sowie zumindest teilweise des Kerns 2 und folglich auch des Anschlagbereichε von Anker 24 und Kern 2 zur Begrenzung des Hubes. In ihrem Bodenabschnitt 20 weist die Hülse eine zentrale Austrittsöffnung 58 auf, die einen solch großen Durchmesser besitzt, daß der über die Abspritzöffnungen 39 der Spritzlochscheibe 26 abgespritzte Brennstoff ungehindert das Einspritzventil verlassen kann. Soll die Hülse 12 in einem sogenannten Side-Feed- Einεpritzventil eingeεetzt werden, wie eε die Figur 8 zeigt, so können εehr einfach in der Hülse 12 Einströmöffnungen 59 vorgesehen sein, die den Eintritt des Brennstoffs in das Innere der Hülse 12 erlauben. Das in der Figur 1 gezeigte Top-Feed-Einspritzventil besitzt eine Hülse 12, die keine Einströmöffnungen 59 aufweist, da der Brennstoff entlang der Ventillängsachεe 10 axial über die Strömungεbohrung 43 in die Hülεe 12 eintritt. Die Hülse 12 besitzt an ihrem dem Bodenabschnitt 20 gegenüberliegenden axialen Ende beispielsweise einen leicht radial nach außen gebogenen Umlaufrand 60. Der Umlaufrand 60 entsteht durch das Abtrennen des StoffÜberlaufes beim Tiefziehen. Die vormontierte Baugruppe aus Magnetspule 1, Spulenkörper 3, Magnetgehause 5 und Deckelelement 6 wird auf dem äußeren Umfang der Hülse 12 axial aufgeschoben, wobei durch den Umlaufrand 60 eine Begrenzung gegeben εein kann und im montierten Zuεtand eine Klemmung deε Deckelelements 6 möglich ist. Der Spulenkörper 3, das Magnetgehause 5 und das Deckelelement 6 weisen allesamt zentrale Durchgangsöffnungen auf, durch die sich dann die Hülse 12 erstreckt.
In der Figur 3 sind nochmals der untere Hülsenabεchnitt 18 und der Bodenabschnitt 20 zusammen mit einem eingebauten Ventilsitzkörper 25 sowie einer daran befestigten
Spritzlochscheibe 26 in geändertem Maßstab gezeigt. Die schalenförmige Spritzlochscheibe 26 besitzt neben einem Bodenteil 38, an dem der Ventilsitzkörper 25 befestigt ist und in dem wenigstens eine, beispielsweiεe vier durch Erodieren oder Stanzen ausgeformte Abspritzöffnungen 39 verlaufen, einen umlaufenden stromaufwärtε verlaufenden Halterand 40. Der Halterand 40 ist stromaufwärtε konisch nach außen gebogen, so daß dieser an der durch die Durchgangsöffnung 21 bestimmten inneren Wandung der Hülse 12 anliegt, wobei eine radiale Pressung vorliegt. Der Ventilsitzkörper 25 wird in die Hülse 12 kalteingepreßt und nicht verschweißt. Der Einpreßvorgang erfolgt beispielsweise in der Durchgangsöffnung 21 der Hülse 12 so lange, bis die z. B. durch Schweißen an dem Ventilsitzkörper 25 befestigte Spritzlochscheibe 26 mit ihrem Bodenteil 38 am Bodenabεchnitt 20 der Hülεe 12 anliegt. Der Halterand 40 der Spritzlochεcheibe 26 weiεt an εeinem Ende einen geringfügig größeren Durchmesser auf als den Durchmesser der Durchgangsöffnung 21 der Hülse 12, so daß der Halterand 40 an seinem Ende gegen die Hülse 12 drückt, wodurch neben dem Einpresεen deε Ventilεitzkörperε 25 eine weitere Sicherung gegen Verrutεchen des Ventilsitzkörperε 25 gegeben ist.
Als Alternative zu der in der Figur 1 dargestellten hülsenförmigen Ventilnadel 28 iεt im Einεpritzventil auch eine andere Ausführungsform einer Ventilnadel 28 denkbar, die in der Figur 4 gezeigt ist. Die Ventilnadel 28 ist bei diesem Ausführungsbeiεpiel alε längliches massives Bauteil ausgebildet. Damit ist eε nicht mehr möglich, den Brennεtoff innerhalb der Ventilnadel 28 in Richtung zur Ventilsitzfläche 35 zuzuführen. Deshalb sind bereits im Anker 24 Austrittsbohrungen 62' vorgesehen, durch die der aus einer inneren Öffnung 63 des Ankers 24 gelangende Brennstoff strömen kann, um dann außerhalb der Ventilnadel 28 in der Durchgangsöffnung 21 der Hülse 12 weiter stromabwärts zu gelangen. Der Anker 24 ist beispielεweise gestuft ausgeführt, wobei ein oberer stromaufwärtiger
Ankerabεchnitt 64 einen größeren Durchmesser aufweist als ein unterer stromabwärtiger Ankerabschnitt 65. Die im Inneren des Ankerε 24 verlaufende Öffnung 63 besitzt im unteren Ankerabschnitt 65 einen kleineren Querschnitt als im oberen Ankerabεchnitt 64. Die Auεtrittsbohrungen 62' εind z. B. als radial verlaufende Querbohrungen in der Wandung des unteren Ankerabschnitts 65 vorgesehen. Eine feste Verbindung von Anker 24 und Ventilnadel 28 wird z. B. dadurch erreicht, daß der Anker 24 auf das stromaufwärtige Ende 66 der Ventilnadel 28 aufgepreßt wird, da zwischen der Ventilnadel 28 zumindest an ihrem einzupressenden Ende 66 und der Öffnung 63 eine Preßpassung vorliegt. Am Ende 66 der Ventilnadel 28 sind beispielsweise einige umlaufende, beispielsweise eingerollte Rillen 67 vorgesehen, die für ein Verkerben des Ankers 24 nach dem Aufpressen auf der Ventilnadel 28 dienen.
Die Ventilnadel 28 ragt mit ihrem Ende 66 nach dem Einpressen nur so weit in die Öffnung 63 hinein, daß die Austrittεbohrungen 62' noch vollεtändig frei bleiben. Alternativ ist als Fügeverfahren jedoch auch daε Laεerschweißen in bekannter Weise möglich (siehe Figur 1) . Die feste Verbindung von Ventilnadel 28 und kugelförmigem Ventilschließkörper 30 wird z. B. mittels Laεerεchweißen erzielt, wobei die Ventilnadel 28 an ihrem εtromabwärtigen, dem Anker 24 abgewandten Ende einen angestauchten, kalottenförmigen Befestigungsflansch 68 aufweist. Der Befestigungsflansch 68 ist entsprechend dem Radius des kugelförmigen Ventilschließkörpers 30 ausgebildet.
Das in der Figur 5 dargestellte Brennstoffeinspritzventil entspricht im Grundaufbau dem in der Figur 1 gezeigten Einspritzventil. Im folgenden sollen deshalb nur die unterschiedlich ausgeführten Bauteile bzw. Baugruppen erläutert werden. Die gegenüber dem in Figur 1 dargestellten Ausführungsbeispiel gleichbleibenden bzw. gleichwirkenden Teile sind in allen weiteren Ausführungsbeiεpielen durch die gleichen Bezugszeichen gekennzeichnet. Anstelle des Magnetgehäuses 5 ist die Magnetspule 1 von wenigstens einem, beispielεweiεe alε Bügel ausgebildeten und alε ferromagnetisches Element dienenden Leitelement 70 umgeben. Das Leitelement 70 umgibt die Magnetspule 1 in
Umfangsrichtung wenigstens teilweise und liegt mit seinem einen Ende an dem Kern 2 und seinem anderen Ende an der Hülse 12 z. B. im Bereich des oberen Hülεenabschnitts 14 an und ist mit diesem z. B. durch Schweißen, Löten bzw. Kleben verbindbar. Ein weiteres Unterscheidungsmerkmal liegt bei der Ausgeεtaltung deε Ankers 24 vor. Im Unterschied zu dem in der Figur 4 dargestellten Anker 24, bei dem die Austrittsbohrungen 62 ' radial verlaufen, sind die Austrittsbohrungen 62 ' ' nun axial verlaufend ausgebildet, und zwar in einem Übergangsbereich 72, der eine Stufe zwischen oberem Ankerabschnitt 64 und unterem Ankerabschnitt 65 darstellt.
Der entscheidende Unterschied betrifft jedoch die Ausbildung der Hülse 12. Die beispielεweiεe geεtufte, dünnwandige, unmagnetiεche Hülse 12 ist so ausgebildet, daß der obere, den Anker 24 führende Hülsenabschnitt 14 einen geringfügig größeren Durchmesser hat als der untere Hülsenabschnitt 18, wobei sich in gleichem Maße die Durchgangsöffnung 21 der Hülse 12 in stromabwärtiger Richtung verringert. Außerdem übernimmt der Bodenabschnitt 20 der Hülse 12 die Funktionen einer Spritzlochscheibe, so daß die Spritzlochscheibe 26 entfallen kann. Der Bodenabschnitt 20 weist ähnlich den bekannten Spritzlochscheiben wenigεtenε eine, beispielsweise vier Abspritzöffnungen 39 auf, die z. B. durch Stanzen oder Erodieren eingebracht sind.
In der Figur 6 sind in Anlehnung an die Figur 3 nochmals der Ventilsitzkörper 25 und die Hülse 12 im Bereich des Bodenabschnitts 20 vergrößert dargestellt. Der Bodenabschnitt 20 ist wie eine übliche Spritzlochscheibe ausgebildet und besitzt also keine Auεtrittsöffnung 58, sondern nur die den Brennstoff zumesεenden Abspritzöffnungen 39. Neben den bereits beschriebenen Verbindungs-, Halte- und Trägerfunktionen erfüllt die Hülse 12 nun auch noch eine Zumeß- und Abspritzfunktion. Der Ventilsitzkörper 25 kann entweder mit der Hülse 12 im Bereich deε Bodenabschnitts 20 und/oder im Bereich des unteren Hülsenabεchnittε 18 dicht verεchweißt oder dicht in die Hülεe 12 eingepreßt εein. Von Vorteil ist bei dieser Anordnung, daß auf ein Bauteil (Spritzlochscheibe 26) sowie wenigεtenε eine Verbindungεstelle verzichtet werden kann. Außerdem erhält die Hülse 12 mit diesem Bodenabschnitt 20 eine höhere Steifigkeit, waε die Beschädigungsgefahr beim Handling der Ventilbauteile verringert.
Während sich die Hülse 12 bei den vorhergehenden Ausführungεbeiεpielen immer ungefähr über 2/3 der Länge deε Einεpritzventils erstreckte, besitzt das in der Figur 7 gezeigte Einspritzventil eine als Ventilgrundkörper dienende Hülse 12, die die Länge des Einspritzventils selbεt vorgibt und somit auch nahezu über die geεamte Länge des Einεpritzventilε verläuft. Die durch daε Einεpritzventil durchgehende Hülse 12 hat den Vorteil, daß keine die
Dichtheit beeinträchtigenden Verbindungsεtellen mehr nötig εind. Eine Laεerschweißung an der Hülεe 12 iεt auch deεhalb nicht nötig, weil ein oberer Dichtring 74 unmittelbar auf der Hülεe 12 abdichtet. Außerdem kann die Hubeinεtellung sehr einfach erfolgen. Der Kern 2 wird dazu so weit in die Hülse 12 vom zulaufseitigen Ende des
Brennstoffeinspritzventilε her eingepreßt, bis der Hub der Ventilnadel 28 die gewünschte Größe erreicht. Danach wird der eingestellte Hub durch andere Montageschritte nicht mehr negativ beeinflußt. Der Bodenabschnitt 20 kann alternativ zu der in der Figur 7 gezeigten Version die Abspritzöffnungen 39 auch direkt aufweisen (vgl. Figur 5 und 6) .
Die Montage des Einspritzventils erfolgt sehr einfach z. B. so, daß zuerst die Magnetspule 1, das Magnetgehause 5 und das Deckelelement 6 (oder alternativ wenigstenε ein Leitelement 70) auf der Hülεe 12 montiert werden, danach die Umεpritzung mit Kunststoff 55 erfolgt, nachfolgend der Ventilsitzkörper 25 in die Hülse 12 eingepreßt und die Ventilnadel 28 mit Anker 24 eingebracht werden und dann der Kern 2 so weit eingepreßt wird, bis der Nennhub erreicht iεt. Alle nachfolgenden Montageschritte sind bereits hinlänglich bekannt. Die Hülse 12 ist z. B. über ihre axiale Länge zweimal gestuft ausgeführt, wobei sich der Querschnitt der Durchgangsöffnung 21 in stromabwärtiger Richtung jeweils geringfügig verringert. Die z. B. im Anschlagbereich von Anker 24 und Kern 2 sowie oberhalb des Kerns 2 vorgesehenen Stufen erleichtern die Montage.
Die Figuren 8 und 9 sollen hauptsächlich verdeutlichen, daß eine erfindungsgemäße Hülse 12 auch in völlig anderen Ventiltypen, z. B. in sogenannten Side-Feed-
Einspritzventilen, einsetzbar ist. Auf eine nähere Beschreibung des Einspritzventils wird verzichtet, da diese für ein solches Einspritzventil zumindest vom Grundaufbau her bereits aus der DE-OS 39 31 490 bekannt ist und übernommen werden kann. Die in der Figur 9 gezeigte Ventilnadel 28 mit einem in eine zentrale Ventilsitzkörperbohrung 75 deε Ventilsitzkörpers 25 hineinragenden Spritzzapfen 76 kann vereinfacht gegenüber bekannten Ventilnadeln vergleichbarer Einspritzventile ausgebildet werden, indem nur ein Führungsabschnitt 77 vorgesehen ist. Üblicherweise beεitzen εolche Ventilnadeln zwei Führungεabεchnitte 77. Die Ventilnadel 28 wird durch den Anker 24 in der Hülεe 12 außerdem geführt. Wie bereitε in der Figur 2 gezeigt, kann die Hülse 12 für den Einsatz in Side-Feed-Einspritzventilen wenigstens eine Einεtrömöffnung 59 aufweisen, über die die Brennstoffzufuhr in Richtung der Ventilsitzfläche 35 erfolgt.

Claims

Patentanεprüche
1. Brennεtoffeinεpritzventil für Brennεtoffeinspritzanlagen von Brennkraftmaschinen, mit einer Ventillängsachεe, mit einem Ventilschließkörper, der Teil einer axial entlang der Ventillängsachse bewegbaren Ventilnadel ist und der mit einem an einem Ventilsitzkörper vorgesehenen Ventilsitz zusammenwirkt, mit einer dünnwandigen, sich axial erstreckenden, nichtmagnetischen Hülse, in der sich die Ventilnadel axial bewegt, dadurch gekennzeichnet, daß die Hülse (12) an ihrem stromabwärtigen Ende einen Bodenabschnitt (20) aufweist, der weitgehend senkrecht zu der ansonsten axialen Erstreckung der Hülse (12) entlang der Ventillängεachse (10) verläuft, und der Ventilεitzkörper (25) εowohl axial als auch radial von der Hülse (12) umgeben ist.
2. Brennstoffeinεpritzventil nach Anεpruch 1, dadurch gekennzeichnet, daß die Hülse (12) eine axiale Ausdehnung hat, die mehr als der halben axialen Länge des Brennstoffeinεpritzventils selbεt entspricht.
3. Brennεtoffeinεpritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Hülse (12) ein Blechtiefziehteil darstellt.
4. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Ventilsitzkörper
(25) in die Hülse (12) eingepreßt iεt und εowohl am Bodenabschnitt (20) als auch an einem axial verlaufenden unteren Hülsenabschnitt (18) anliegt.
5. Brennstoffeinspritzventil nach einem der Ansprüche 1 biε 3, dadurch gekennzeichnet, daß in der axial verlaufenden Wandung der Hülse (12) wenigstens eine Einströmöffnung (59) vorgesehen ist.
6. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß im Bodenabεchnitt (20) der Hülεe (12) eine Austrittsoffnung (58) vorgesehen ist, durch die der bereits stromaufwärts des Bodenabschnitts (20) zugemesεene Brennstoff ungehindert austreten kann.
7. Brennstoffeinspritzventil nach Anspruch 1 und 6, dadurch gekennzeichnet, daß am stromabwärtigen Ende des Ventilsitzkörpers (25) eine Spritzlochscheibe (26) fest mit diesem Ventilsitzkörper (25) verbunden ist, und die
Spritzlochscheibe (26) zumindest teilweise am Bodenabschnitt (20) der Hülse (12) anliegt und die wenigstens eine Abspritzöffnung (39) der Spritzlochscheibe (26) in die Austrittsöffnung (58) des Bodenabschnitts (20) mündet.
8. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß im Bodenabschnitt (20) der Hülse (12) wenigstens eine Abspritzöffnung (39) vorgesehen ist, die eine den Brennstoff zumessende Wirkung hat.
9. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Hülse (12) über ihre axiale Länge gestuft ist, wobei mit jeder Stufe in stromabwärtiger Richtung eine Reduzierung des Durchmessers einer inneren Durchgangsöffnung (21) der Hülse (12) erzielt wird.
10. Brennstoffeinεpritzventil nach einem der vorhergehenden Anεprüche, dadurch gekennzeichnet, daß εich die Hülse (12) über die gesamte axiale Länge des Brennstoffeinspritzventils erstreckt.
EP96924774A 1995-12-19 1996-07-26 Brennstoffeinspritzventil Expired - Lifetime EP0812389B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19547406 1995-12-19
DE19547406A DE19547406B4 (de) 1995-12-19 1995-12-19 Brennstoffeinspritzventil
PCT/DE1996/001391 WO1997022798A1 (de) 1995-12-19 1996-07-26 Brennstoffeinspritzventil

Publications (2)

Publication Number Publication Date
EP0812389A1 true EP0812389A1 (de) 1997-12-17
EP0812389B1 EP0812389B1 (de) 2002-04-24

Family

ID=7780548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96924774A Expired - Lifetime EP0812389B1 (de) 1995-12-19 1996-07-26 Brennstoffeinspritzventil

Country Status (8)

Country Link
US (1) US6364220B2 (de)
EP (1) EP0812389B1 (de)
JP (2) JP3737123B2 (de)
KR (1) KR100442899B1 (de)
CN (1) CN1078667C (de)
DE (2) DE19547406B4 (de)
HK (1) HK1005666A1 (de)
WO (1) WO1997022798A1 (de)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19629589B4 (de) * 1996-07-23 2007-08-30 Robert Bosch Gmbh Brennstoffeinspritzventil
IT1295192B1 (it) * 1997-09-24 1999-05-04 Magneti Marelli Spa Iniettore elettromagnetico.
DE19900406A1 (de) * 1999-01-08 2000-07-13 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19900405A1 (de) * 1999-01-08 2000-07-13 Bosch Gmbh Robert Verfahren zur Montage einer Ventilbaugruppe eines Brennstoffeinspritzventils
DE19927898A1 (de) * 1999-06-18 2000-12-21 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19932761A1 (de) * 1999-07-14 2001-01-18 Bosch Gmbh Robert Brennstoffeinspritzventil
DE19932763A1 (de) * 1999-07-14 2001-01-18 Bosch Gmbh Robert Brennstoffeinspritzventil
CN1174166C (zh) * 1999-10-18 2004-11-03 轨道发动机公司(澳大利亚)有限公司 内燃机中燃料的直接喷射
US7021569B1 (en) 2000-01-26 2006-04-04 Hitachi, Ltd. Fuel injection valve
US6742727B1 (en) * 2000-05-10 2004-06-01 Siemens Automotive Corporation Injection valve with single disc turbulence generation
JP3732723B2 (ja) * 2000-07-06 2006-01-11 株式会社日立製作所 電磁式燃料噴射弁
US6631857B2 (en) * 2000-12-22 2003-10-14 Caterpillar Inc Partially plastic fuel injector component and method of making the same
US6814311B2 (en) 2001-05-30 2004-11-09 Unisia Jecs Corporation Fuel injection valve
DE10142974B4 (de) * 2001-09-01 2010-04-29 Robert Bosch Gmbh Brennstoffeinspritzventil
US6851622B2 (en) * 2002-01-08 2005-02-08 Siemens Vdo Automotive Corporation Fuel injector having a ferromagnetic coil bobbin
EP1469191B1 (de) * 2003-04-14 2009-09-16 Continental Automotive GmbH Ventilanordnung
DE10332348A1 (de) * 2003-07-16 2005-02-03 Robert Bosch Gmbh Brennstoffeinspritzventil
JP4038462B2 (ja) * 2003-09-11 2008-01-23 三菱電機株式会社 燃料噴射弁
JP4161217B2 (ja) * 2003-12-26 2008-10-08 株式会社デンソー 燃料噴射弁
EP1568881B1 (de) * 2004-02-27 2010-12-08 Continental Automotive Italy S.p.A. Flüssigkeitsinjektor
JP4058026B2 (ja) * 2004-06-16 2008-03-05 株式会社ケーヒン 電磁式燃料噴射弁
ITTO20040512A1 (it) * 2004-07-23 2004-10-23 Magneti Marelli Powertrain Spa Iniettore di carburante provvisto di spillo ad elevata flessibilita'
DE102004042592A1 (de) * 2004-07-26 2006-03-23 Robert Bosch Gmbh Brennstoffeinspritzventil
ITBO20040560A1 (it) * 2004-09-10 2004-12-10 Magneti Marelli Powertrain Spa Iniettore di carburante con valvola di iniezione provvista di alimentazione laterale
DE102004058677A1 (de) * 2004-12-06 2006-06-14 Robert Bosch Gmbh Einspritzventil
DE102005061408A1 (de) 2005-12-22 2007-06-28 Robert Bosch Gmbh Kunststoff-Metall-Verbindung und Brennstoffeinspritzventil mit einer Kraftstoff-Metall-Verbindung
JP4211814B2 (ja) * 2006-07-13 2009-01-21 株式会社日立製作所 電磁式燃料噴射弁
EP1975486B1 (de) * 2007-03-28 2014-12-03 Fillon Technologies (SAS Société par Actions Simplifiée) Dosierventil
DE102007049945A1 (de) * 2007-10-18 2009-04-23 Robert Bosch Gmbh Brennstoffeinspritzventil
JP5321473B2 (ja) * 2010-01-13 2013-10-23 株式会社デンソー 燃料噴射弁
US9115678B2 (en) * 2012-08-09 2015-08-25 Ford Global Technologies, Llc Magnetized fuel injector valve and valve seat
CN107842453B (zh) * 2016-09-20 2022-04-12 罗伯特·博世有限公司 用于进气口燃料喷射器的燃料喷射模块
DE102019104294A1 (de) * 2018-03-15 2019-09-19 Denso Corporation Korrosionsbeständige Vorrichtung
JP7194663B2 (ja) * 2019-10-10 2022-12-22 日立Astemo株式会社 電磁式燃料噴射弁

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865312A (en) * 1972-01-06 1975-02-11 Renault Electromagnetically operated ball-type injectors
US4474332A (en) * 1982-01-11 1984-10-02 Essex Group, Inc. Electromagnetic fuel injector having improved response rate
US4515129A (en) * 1983-06-10 1985-05-07 General Motors Corporation Edge discharge pulse fuel injector
DE3427526A1 (de) * 1984-07-26 1986-02-06 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetisch betaetigbares ventil
US4643359A (en) * 1985-03-19 1987-02-17 Allied Corporation Mini injector valve
DE3825134A1 (de) * 1988-07-23 1990-01-25 Bosch Gmbh Robert Elektromagnetisch betaetigbares ventil und verfahren zur herstellung
US5190223A (en) * 1988-10-10 1993-03-02 Siemens Automotive L.P. Electromagnetic fuel injector with cartridge embodiment
DE3834446A1 (de) * 1988-10-10 1990-04-12 Mesenich Gerhard Elektromagnetisches einspritzventil in patronenbauweise
US4946107A (en) * 1988-11-29 1990-08-07 Pacer Industries, Inc. Electromagnetic fuel injection valve
DE3931490A1 (de) * 1989-09-21 1991-04-04 Bosch Gmbh Robert Vorrichtung zur einspritzung eines kraftstoff-luft-gemisches fuer mehrzylindrige brennkraftmaschinen
GB2237325A (en) * 1989-10-28 1991-05-01 Lucas Ind Plc I.c. engine fuel injection nozzle
US5035360A (en) * 1990-07-02 1991-07-30 The University Of Toronto Innovations Foundation Electrically actuated gaseous fuel timing and metering device
JP2518031Y2 (ja) * 1990-12-19 1996-11-20 株式会社ユニシアジェックス 燃料噴射弁
EP0503757B1 (de) * 1991-03-08 1995-03-22 Ford Motor Company Limited Brennstoffeinspritzdüse mit Silikondüse
DE4310819A1 (de) * 1993-04-02 1994-10-06 Bosch Gmbh Robert Verfahren zur Einstellung eines Ventils
DE19631280A1 (de) * 1996-08-02 1998-02-05 Bosch Gmbh Robert Brennstoffeinspritzventil und Verfahren zur Herstellung
DE19632196B4 (de) * 1996-08-09 2004-11-04 Robert Bosch Gmbh Elektromagnetisch betätigbares Ventil
JPH11132127A (ja) * 1996-11-13 1999-05-18 Denso Corp 燃料噴射弁及びその組立方法
US5944262A (en) * 1997-02-14 1999-08-31 Denso Corporation Fuel injection valve and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9722798A1 *

Also Published As

Publication number Publication date
DE19547406A1 (de) 1997-06-26
DE59609125D1 (de) 2002-05-29
US20010002681A1 (en) 2001-06-07
DE19547406B4 (de) 2007-10-31
EP0812389B1 (de) 2002-04-24
JP2005282576A (ja) 2005-10-13
CN1173910A (zh) 1998-02-18
KR19980702290A (ko) 1998-07-15
CN1078667C (zh) 2002-01-30
WO1997022798A1 (de) 1997-06-26
US6364220B2 (en) 2002-04-02
JP3737123B2 (ja) 2006-01-18
KR100442899B1 (ko) 2004-11-16
HK1005666A1 (en) 1999-01-22
JPH11501100A (ja) 1999-01-26

Similar Documents

Publication Publication Date Title
EP0812389B1 (de) Brennstoffeinspritzventil
EP0865574B1 (de) Brennstoffeinspritzventil und verfahren zur herstellung
DE19712589C1 (de) Brennstoffeinspritzventil und Verfahren zur Herstellung einer Ventilnadel eines Brennstoffeinspritzventils
EP0934459B1 (de) Brennstoffeinspritzventil
DE19638201B4 (de) Brennstoffeinspritzventil
EP0935707B1 (de) Brennstoffeinspritzventil
EP1877660B1 (de) Brennstoffeinspritzventil und verfahren zu dessen montage
EP0720691A1 (de) Ventilnadel für ein elektromagnetisch betätigbares ventil und verfahren zur herstellung
EP1062421B1 (de) Brennstoffeinspritzventil
EP1966483B1 (de) Elektromagnetisch betätigbares ventil
DE19829380A1 (de) Brennstoffeinspritzventil und Verfahren zur Herstellung eines Brennstoffeinspritzventiles
WO1994023195A1 (de) Verfahren zur einstellung eines ventils
EP1200729B1 (de) Verfahren zur einstellung des ventilhubs eines einspritzventils
EP0925441B1 (de) Elektromagnetisch betätigbares ventil
WO2002068812A1 (de) Brennstoffeinspritzventil mit einer einstellhülse
EP0504147B1 (de) Elektromagnetisch betätigbares kraftstoffeinspritzventil
EP2205853A1 (de) Elektromagnetisch betätigbares ventil
EP0954696B1 (de) Brennstoffeinspritzventil und verfahren zur herstellung einer ventilnadel eines brennstoffeinspritzventils
WO2004101986A1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19971229

17Q First examination report despatched

Effective date: 20000207

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59609125

Country of ref document: DE

Date of ref document: 20020529

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020712

ET Fr: translation filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080726

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080723

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090720

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090918

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090726

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59609125

Country of ref document: DE

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802