EP0804529A1 - Amorphes alkalisilikat-compound - Google Patents

Amorphes alkalisilikat-compound

Info

Publication number
EP0804529A1
EP0804529A1 EP96900573A EP96900573A EP0804529A1 EP 0804529 A1 EP0804529 A1 EP 0804529A1 EP 96900573 A EP96900573 A EP 96900573A EP 96900573 A EP96900573 A EP 96900573A EP 0804529 A1 EP0804529 A1 EP 0804529A1
Authority
EP
European Patent Office
Prior art keywords
alkali silicate
weight
silicate compound
washing
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96900573A
Other languages
English (en)
French (fr)
Other versions
EP0804529B1 (de
Inventor
Kathrin Schnepp
Rene-Andres Artiga Gonzalez
Katrin Erbs
Hubert Freese
Manfred Greger
Bernd Larson
Volker Bauer
Peter Sandkühler
Wilfried Rähse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0804529A1 publication Critical patent/EP0804529A1/de
Application granted granted Critical
Publication of EP0804529B1 publication Critical patent/EP0804529B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/02Preparation in the form of powder by spray drying

Definitions

  • the invention relates to an amorphous alkali silicate compound with secondary washability, which can be used as a water-soluble builder in detergents or cleaners, and to the use of such alkali silicate compounds in detergents or cleaners, extruded detergents or cleaners and a process for their manufacture.
  • Modern, compacted detergents or cleaning agents generally have the disadvantage that, owing to their compact structure, they show poorer dissolving behavior in aqueous liquors than, for example, lighter spray-dried detergents or cleaning agents of the prior art. Washing or cleaning agents generally tend to have a poorer rate of dissolution in water, the higher their degree of compaction. Zeolites, which are usually contained in washing or cleaning agents as powder substances, can additionally contribute to the deterioration in dissolution behavior due to their insolubility in water.
  • a water-soluble alternative for the zeolite are amorphous alkali silicates with secondary washing power.
  • hydrated water-soluble silicates can be obtained in powder form by spray or roller drying of water glass solutions, which still contain about 20% by weight of water (cf. Ullmann's Encyclopedia of Industrial Chemistry, 4th edition 1982, volume 21, page 412). Such products are commercially available for various purposes. Such powders have a very loose structure due to spray drying; their bulk weights are generally well below 700 g / 1.
  • Alkali silicates in granular form with higher bulk densities can be obtained according to the teaching of the European patent application EP-A-0526978, wherein an alkali silicate solution with a solids content of between 30 and 53% by weight is introduced into a heated drum, in the longitudinal axis of which a shaft rotates with a plurality of arms reaching close to the inner surface of the drum, the drum wall having a temperature between 150 and 200 ° C and the drying process is supported by a gas fed into the drum with a temperature between 175 and about 250 ° C. This process gives a product whose average particle size is in the range between 0.2 and 2 mm.
  • a preferred drying gas is heated air.
  • European patent application EP-A-0 542 131 describes a process in which a product which is completely soluble in water at room temperature and has a bulk density between 500 and 1200 g / l is obtained. Drying is preferably carried out using heated air.
  • a cylindrical dryer with a heated wall 160 to 200 ° C.
  • a rotor with scoop-shaped blades rotates at such a speed that the silicate solution has a solids content of between 40 and 60% by weight pseudoplastic mass with a free water content between 5 and 12 wt .-% arises. Drying is supported by a hot air stream (220 to 260 ° C).
  • the older, unpublished application P 44 19745.4 also describes a water-soluble, amorphous and granular alkali silicate, which is prepared in a similar manner to that described in EP-A-0 526 978, but contains silica.
  • amorphous means "X-ray amorphous”. This means that the alkali silicates do not provide sharp reflections in X-ray diffraction recordings, but at most one or more broad maxima, the width of which is several degree units of the diffraction angle. However, this does not rule out the possibility that areas are found in electron diffraction experiments which give sharp electron diffraction reflections. This is to be interpreted in such a way that the substance has microcrystalline areas in a range of up to approx. 20 n (ax. 50 nm).
  • Granular amorphous sodium silicates which by spray drying aqueous water glass solutions, subsequent grinding and subsequent compression and Rounding off with additional removal of water from the millbase are contained in the US Pat. Nos. 3,912,649, 3,956,467, 3,838,193 and 3,879,527.
  • the water content of the products obtained is approximately 18 to 20% by weight with bulk weights significantly above 500 g / l.
  • alkali silicates with secondary washing ability are known from European patent applications EP-A-0 561 656 and EP-A-0 488 868. These are compounds of alkali silicates with certain Q distributions and alkali carbonates.
  • the products are produced by granulating powdered anhydrous sodium carbonate using a sodium silicate solution (water glass solution) and drying the products in such a way that they have a certain residual water content bound to the silicate.
  • German patent application DE-A-44 06 592 discloses absorbent alkali silicate compounds which are present as a multicomponent mixture and have been prepared by spray drying an aqueous preparation of the multicomponent mixture with superheated steam. Such compounds can serve as carriers for liquid preparations of surfactants in particular.
  • Spray-dried surfactant-rich granules are known from European patent application EP-A-0219 314, which (a) 30 to 60% by weight of a mixture of alkylbenzenesulfonate and Ci2-Ci6-alkyl sulfate in a weight ratio of 4: 1 to 1: 4 and (b) Contain alkali metal silicates in the weight ratio (a) to (b) of 1.5: 1 to 6: 1.
  • EP-A-0 651 050 describes a process for producing agglomerates, a salt, for example silicate or carbonate, with an aqueous "binder" containing at least 20% by weight of silicate and at least 30% by weight of anionic surfactant contains, is processed.
  • a process for the production of extrudates with high density is known, whereby a solid and free-flowing premix is extruded under pressure.
  • the solid and free-flowing premix contains a plasticizer and / or lubricant, which has the effect that the premix plastically softens under the pressure or the entry of specific work and thus becomes extrudable.
  • the premix to be extruded must contain both constituents which have a structurally viscous behavior and constituents which have dilatant properties. If only components with a structure-viscous action were present in the premix, it would soften, in fact become almost liquid, owing to the strong shear gradient, so that the strand would no longer be able to be cut after leaving the hole shape.
  • zeolite can be partially or even completely replaced by water-soluble inorganic builder substances, such as amorphous alkali silicates, if these are used in a specific form. It has been shown, however, that some alkali silicate compounds with a secondary washing ability lose some of this when processed under the action of water, high shear forces and / or (slightly) elevated temperatures.
  • An object of the invention was to provide water-soluble builder substances for the partial or complete replacement of zeolite in detergents or cleaning agents, as a result of which the dissolving behavior, in particular of heavy detergents or cleaning agents, should be improved.
  • water-soluble builder substances should also have an absorption capacity for ingredients of detergents or cleaning agents which are liquid to waxy at the processing temperature.
  • builder substances should be provided that do not lose the secondary washing ability during processing.
  • Another object of the invention was to provide extruded detergents or cleaning agents and a process for their preparation which contain the water-soluble builder substances to the extent that zeolite can be dispensed with partially or entirely not only from an application point of view but also from a process point of view .
  • Sodium and / or potassium silicate are particularly suitable here.
  • the sodium silicates are preferred for economic reasons. If, however, value is attached to a particularly high dissolving rate in water for reasons of application technology, it is advisable to at least partially replace sodium with potassium.
  • the composition of the alkali silicate can be chosen so that the silicate has a potassium content, calculated as K2O, of up to 5% by weight.
  • Preferred alkali silicates are a compound with alkali carbonate, preferably sodium and / or Potassium carbonate, before.
  • the water content of these preferred amorphous alkali silicate compounds is advantageously between 10 and 22% by weight, in particular between 12 and 20% by weight. Water contents of 14 to 19% by weight can be particularly preferred.
  • the compounds according to the invention are obtained by spray drying an aqueous slurry containing alkali silicates and anionic surfactants, alkali silicate compounds in particular having water contents of 14 to 19% by weight being formed.
  • aqueous slurries are sprayed which additionally have alkali carbonates, advantageously sodium carbonate and / or potassium carbonate.
  • Anionic surfactants used in the alkali silicate compounds are, above all, surfactants of the sulfonate and / or sulfate type.
  • Preferred surfactants of the sulfonate type are Cg-Ci3-alkylbenzenesulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates as well as disulfonates, such as those obtained from Ci2-Cl8 ⁇ mono "olefins with terminal or internal double bonds by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation products, alkane sulfonates obtained from C 1 -C 8 -alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization, are also suitable
  • the sulfate-type are the sulfuric acid monoesters from primary alcohols of
  • alk (en) yl sulfates the alkali and, in particular, the sodium salts of the sulfuric acid half-esters of the Ci2-Ci8 fatty alcohols, for example from coconut fatty alcohol, tallow fatty alcohol, lauryl alcohol, Myristyl, cetyl or stearyl alcohol or the C ⁇ o-C2 ⁇ " 0xoa ⁇ ono ⁇ e and those half-esters of secondary alcohols of this chain length preferred.
  • alk (en) yl sulfates of the chain length mentioned which contain a synthetic, straight-chain alkyl radical produced on a petrochemical basis and which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
  • Ci6-Ci8 ⁇ alk (en) yl sulfates are of particular interest in washing technology. prefers.
  • Ci6-Ci8-alk (en) yl sulfates in combination with lower-melting anionic surfactants and in particular with those anionic surfactants which have a lower Krafft point and at relatively low washing temperatures of for example, room temperature to 40 ⁇ C show a low tendency to crystallize.
  • the compounds therefore contain mixtures of short-chain and long-chain fatty alkyl sulfates, preferably mixtures of Ci2Ci4-fatty alkyl sulfates or Ci2-Ci8-fatty alkyl sulfates with Ciö-Ci ⁇ -fatty alkyl sulfates and in particular C12-C16-fatty alkyl sulfates with Cjs-Ci ⁇ -fatty alkyl sulfates .
  • not only saturated alkyl sulfates but also unsaturated alkenyl sulfates with an alkenyl chain length of preferably C15 to C22 are used.
  • 2,3-Alkyl sulfates which are produced, for example, according to US Pat. Nos. 3,234,258 or 5,075,041 and can be obtained as commercial products from the Shell Oil Company under the name DAN ( R ), are also suitable anionic surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched C7-C2i alcohols ethoxylated with 1 to 6 mol of ethylene oxide such as 2-methyl-branched Cg-C ⁇ alcohols with an average of 3.5 mol of ethylene oxide (E0) or Ci2- C j 8 fatty alcohols with 1 to 4 E0 are suitable. Because of their high foaming behavior, they are used in detergents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • the compounds contain 15 to 80% by weight of alkali silicates, 1 to 25% by weight of anionic surfactants, preferably up to 20% by weight of anionic surfactants and 10 to 22% by weight, preferably 12 to 19 % By weight and in particular 14 to 19% by weight of water. It has been shown that amounts above 25% by weight of anionic surfactants, sometimes even above 20% by weight of anionic surfactants in the compounds, can again lead to a deterioration in the secondary washing ability of the entire detergent.
  • the compounds according to the invention contain 15 to 50% by weight, preferably 20 to 40% by weight of alkali silicates, 30 to 70% by weight, preferably 40 to 65% by weight of alkali metal carbonates, 1.5 up to 15% by weight and in particular 2 to 12% by weight of anionic surfactants, advantageously alkylbenzenesulfonates and / or alk (en) yl sulfates, and 12 to 19% by weight of water.
  • the alkali silicate compounds can additionally contain further ingredients of washing or cleaning agents, preferably in amounts of up to 10% by weight and in particular in amounts not exceeding 5% by weight.
  • these include, for example, neutral salts such as sodium or potassium sulfates, but also graying inhibitors or nonionic surfactants such as alkyl polyglycosides.
  • the alkali silicate compounds according to the invention have a significant absorption capacity for ingredients of washing or cleaning agents which are liquid to wax-like at the usual processing temperatures.
  • Alkali silicate compounds can also absorb certain amounts of liquid components without the addition of anionic surfactants; However, it has been shown that the addition capacity of anionic surfactants increases the absorption capacity of the alkali silicate compounds and improves the flow behavior.
  • the alkali silicate compounds containing anionic surfactants according to the invention have an absorption capacity for liquid components which is at least 20% higher than that of the same amount of alkali silicate compounds without anionic surfactants.
  • compounds are preferred whose absorption capacity for liquid components has been increased by at least 30% and advantageously even by at least 50%, in each case based on the absorption capacity of the corresponding quantitative alkali silicate compounds without anionic surfactants.
  • spray-dried alkali silicate compounds are therefore claimed, which have been aftertreated with liquid components, which include liquid to waxy ingredients of detergents or cleaning agents in the context of this invention at the processing temperature.
  • suitable liquid components which can be absorbed by the alkali silicate compounds according to the invention are, for example, nonionic surfactants, cationic surfactants and / or foam inhibitors such as silicone oils and paraffin oils.
  • nonionic surfactants for example alkoxylated, preferably ethoxylated and / or ethoxylated and propoxylated, aliphatic C8-C22 alcohols.
  • Alcohols with preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be methyl-branched linearly or preferably in the 2-position or linear and methyl-branched radicals in the Can contain mixture, as they are usually present in oxo alcohol residues.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues from alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow fat or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are also preferred.
  • the preferred ethoxylated alcohols include, for example, Ci2-Ci4 alcohols with 3 EO or 4 EO, Cg-Cu alcohol with 7 EO, Ci3-Ci5 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, Ci2-Ci8 ⁇ Alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C ⁇ 2 ⁇ Cj4 alcohol with 3 EO and Ci2-Ci8 alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product. Loading Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with the other nonionic surfactants mentioned, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular Fatty acid methyl esters as described, for example, in Japanese patent application JP 58/217598 or which are preferably prepared by the process described in international patent application WO-A-90/13533.
  • the primary spray-dried compounds according to the invention have a stabilized secondary washing power when processed into detergents in comparison with alkali silicate compounds free of anionic surfactants.
  • such compounds according to the invention have a stable secondary washing power, the surface of which has subsequently been rendered hydrophobic, advantageously with nonionic surfactants.
  • the alkali silicate compounds according to the invention are produced by spray drying.
  • a method is preferred in which the alkali silicate compounds are produced by spray drying an aqueous slurry which contains all the constituents (with the exception of the liquid components with which the compounds can be aftertreated) of the alkali silicate compounds.
  • the compounds according to the invention are produced by spray drying an aqueous preparation of the multicomponent mixture in accordance with the process engineering teaching of German patent application DE-A-44 06 592 with superheated steam. 11
  • the alkali silicate compounds produced in this way can subsequently be treated with ingredients of washing or cleaning agents. This can be carried out in a conventional manner, for example by mixing or by spraying on in a mixer / granulator, optionally with subsequent heat treatment.
  • the amorphous alkali silicate compounds with secondary washing ability can be used as an admixture component for powdery to granular washing or cleaning agents or as a component in the production of the granular washing or cleaning agents, preferably in the granulation and / or compacting.
  • the bulk densities of the alkali silicate compounds can vary between 50 and, for example, 850 g / l.
  • the washing or cleaning agents according to the invention can have a bulk density between 300 and 1200 g / 1, preferably from 500 to IOC g / 1, and preferably contain the alkali silicate compounds according to the invention in amounts of 5 to 50% by weight ⁇ others in amounts of 10 to 40 wt .-%.
  • the further anionic surfactants in the form of a spray-dried, granulated or extruded compound, either as an additive component in the process or as an additive to other granules.
  • Suitable surface modifiers are known from the prior art.
  • Particularly preferred embodiments of the invention are extruded washing or cleaning agents with a bulk density above 600 g / l, which contain anionic and optionally nonionic surfactants and an amorphous alkali silicate compound of the type specified in the extrudate.
  • extruded washing or cleaning agents reference is made to the known methods for extrusion, in particular to the European patent EP-B-0486592.
  • a solid and free-flowing premix is extruded at pressures of up to 200 bar, the extrudate is cut to the predetermined granulate dimension after exiting the hole shape by means of a cutting device, and the plastic and, if necessary, still moist crude extrudate is fed to a further shaping processing step and then dried, the alkali silicate compounds according to the invention being used in the premix.
  • the alkali silicate compounds containing anionic surfactants surprisingly have advantages over the alkali silicate compound alternatives which are free from anionic surfactants, not only from the point of view of the application technology, but also from the point of view of process engineering. It has been shown that extrusion sion processes, in which in particular anionic surfactant-free alkali silicate carbonate compounds were used, could not be interrupted, since the extrusion mixture lost its plasticity and lubricity so quickly in the resting phase that restarting the system brought with it technical safety problems. This problem was solved by replacing the anionic surfactant-free alkali silicate compounds containing anionic surfactant, in particular alkali silicate compounds containing anionic surfactant and carbonate.
  • the finished washing or cleaning agents can additionally contain the following ingredients.
  • surfactants especially anionic surfactants and, where appropriate, nonionic surfactants, but also cationic, amphoteric or zwitterionic surfactants.
  • Suitable anionic surfactants of the sulfonate type are the alkylbenzenesulfonates, olefin sulfonates and alkanesulfonates already mentioned above.
  • the esters of oc-sulfofatty acids e.g. the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids.
  • Further suitable anionic surfactants are the ⁇ -sulfofatty acids obtainable by ester splitting of the ⁇ -sulfofatty acid alkyl esters or their di-salts.
  • the mono-salts of the oc-sulfofatty acid alkyl esters are obtained in their industrial production as an aqueous mixture with limited amounts of di-salts.
  • the disalt content of such surfactants is usually below 50% by weight of the anionic surfactant mixture, for example up to about 30% by weight.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters, which are mono-, di- and triesters as well as their mixtures, such as those produced by esterification by a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol be preserved.
  • Suitable surfactants of the sulfate type are the sulfuric acid monoesters mentioned from primary alcohols of natural and synthetic origin, 2,3-alkyl sulfates and optionally alkoxylated, preferably ethoxylated, derivatives of the sulfuric acid monoesters.
  • Preferred anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which represent monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain CQ to Ci8 ⁇ fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which are nonionic surfactants in themselves.
  • sulfosuccinates the fatty alcohol residues of which are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are particularly preferred. It is also possible to use alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • the agents can also contain soaps, preferably in amounts of 0.2 to 5% by weight.
  • Saturated fatty acid soaps such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular from natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants and soaps can be present in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanola in.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • washing or cleaning agents in particular extruded washing or cleaning agents, which contain 10 to 30% by weight of anionic surfactants are preferred.
  • anionic surfactants are preferred.
  • Advantageously are preferably at least 3% by weight and in particular at least 5% by weight of sulfate surfactants.
  • the compositions — based on the anionic surfactants as a whole — contain at least 15% by weight, in particular 20 to 100% by weight, of sulfate surfactants.
  • non-ionic surfactants used are preferably the above-described alkoxylated, advantageously ethoxylated alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol.
  • EO ethylene oxide
  • alkoxylated fatty acid alkyl esters mentioned above can also be used.
  • alkyl glycosides of the general formula R0 (G) x can also be used as further nonionic surfactants, in which R is a primary straight-chain or methyl branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 C atoms and G is the symbol which stands for a glycose unit with 5 or 6 C atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these non-ionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula (I),
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • Nonionic surfactants are contained in the agents according to the invention preferably in amounts of 0.5 to 15% by weight, in particular in amounts of 2 to 10% by weight.
  • the compositions can also contain further, additional builder substances and co-builders.
  • additional builder substances such as phosphates, zeolites and crystalline layered silicates can be included in the compositions.
  • the synthetic zeolite used is preferably finely crystalline and contains bound water. Suitable are, for example, zeolite A, but also zeolite X and zeolite P and mixtures of A, X and / or P.
  • the zeolite can be used as a spray-dried powder or as an undried stabilized suspension which is still moist from its production.
  • the zeolite in the event that the zeolite is used as a suspension, it can contain small additions of nonionic surfactants as stabilizers, for example 1 to 3% by weight, based on zeolite, of ethoxylated Ci2-Ci8 fatty alcohols with 2 to 5 ethylene oxide groups - Pen, Ci2-Ci4 fatty alcohols with 4 to 5 ethylene oxide groups or ethoxylated isotridecanols. It is also possible to use zeolite suspensions and zeolite powder. Suitable zeolite powders have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water. Zeolite can be contained in the washing or cleaning agents in amounts of up to about 40% by weight (based on anhydrous active substances).
  • washing or cleaning agents contain 10 to 16% by weight of zeolite (based on anhydrous active substance) and 10 to 30% by weight of an alkali silicate compound according to the invention.
  • the washing or cleaning agents contain 0 to 5% by weight of zeolite (based on anhydrous active substance) and 15 to 40% by weight of an alkali silicate compound according to the invention. It is possible for the zeolite not only to be coextruded, but for the zeolite to be introduced into the washing or cleaning agent partially or completely subsequently, that is to say after the extrusion step. Washing or cleaning agents which contain an extrudate which is free of zeolite in the interior of the extrudate grain are particularly preferred.
  • Crystalline phyllosilicates and / or conventional phosphates can also be used as substitutes for the zeolite.
  • the detergents or cleaning agents contain only small amounts, in particular up to 10% by weight, of phosphates.
  • Crystalline layered silicates are, in particular, crystalline, layered sodium silicates of the general formula aMSi x ⁇ 2 ⁇ + yH2 ⁇ , where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20, and preferred values for x 2, 3 or 4 are suitable.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x is 2 or 3.
  • both beta and ZT sodium disilicate Na2S ⁇ * 2 ⁇ 5'yH2 ⁇ are preferred.
  • These crystalline layered silicates are, however, preferably only in the extrudates according to the invention only in amounts of not more than 10% by weight, in particular those of less than 8% by weight, advantageously of at most 5% by weight.
  • polymeric polycarboxylates can be used as cobuilders.
  • Suitable polymeric polycarboxylates are, for example, the sodium salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 800 to 150,000 (based on acid).
  • Suitable copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally 5,000 to 200,000, preferably 10,000 to 120,000 and in particular 50,000 to 100,000.
  • Terpolymers are also particularly preferred, for example those which, according to DE-A-43 00772, are monomers, salts of acrylic acid and Maleic acid and vinyl alcohol or vinyl alcohol derivatives or according to DE-C-42 21 381 as monomers contain salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives.
  • Further preferred copolymers are those which are described in German patent applications DE-A-43 03 320 and P 44 17 734.8 and which preferably contain acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polycarboxylic acids preferably used in the form of their sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), provided that such use is not objectionable for ecological reasons. and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • Suitable builder systems are oxidation products of carboxyl-containing polyglucosans and / or their water-soluble ones Salts as described, for example, in international patent application WO-A-93/08251 or whose preparation is described, for example, in international patent application W0-A-93/16110.
  • polyaspartic acids or their salts and derivatives are also to be mentioned as further preferred buder substances.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups, for example as described in European patent application EP-A-0 280 223 .
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • cobuilders can be present in the finished washing or cleaning agents in amounts of, for example, 0.5 to 20% by weight, preferably 2 to 15% by weight.
  • the agents can also contain components which have a positive effect on the ability to wash off fat and fat from textiles. This effect is particularly evident when a textile is soiled that has already been washed several times beforehand with a detergent according to the invention which contains this oil and fat-dissolving component.
  • the preferred oil and fat-dissolving components include, for example, nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups of 15 to 30% by weight and hydroxypropoxyl groups of 1 to 15% by weight, in each case based on the nonionic cellulose ether and the polymers of phthalic acid and / or terephthalic acid or their derivatives known from the prior art, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives of these.
  • the agents can also contain constituents which further improve the solubility, in particular of the heavy granules.
  • the components preferably used include, in particular, fatty alcohols with 20 to 80 moles of ethylene oxide per mole of fatty alcohol, for example tallow fatty alcohol with 30 E0 and tallow alcohol with 40 E0, but also fatty alcohols with 14 E0 and polyethylene glycols with a relative molecular weight between 200 and 2000.
  • fatty alcohols with 20 to 80 moles of ethylene oxide per mole of fatty alcohol for example tallow fatty alcohol with 30 E0 and tallow alcohol with 40 E0, but also fatty alcohols with 14 E0 and polyethylene glycols with a relative molecular weight between 200 and 2000.
  • the bleaching agents The sodium perborate monohydrate serving in water H2O2 compounds is of particular importance.
  • bleaching agents that can be used are, for example, sodium perborate tetrahydrate, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H2O2-delivering persic acid salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid or diperdodecanedioic acid.
  • the bleaching agent content of the agents is preferably 5 to 25% by weight and in particular 10 to 20% by weight, with perborate monohydrate being advantageously used.
  • Percarbonate is also preferred as an ingredient. However, percarbonate is preferably not co-extruded, but optionally mixed in subsequently.
  • bleach activators can be incorporated into the preparations.
  • these are N-acyl or 0-acyl compounds which form organic peracids with H2O2, preferably N, N'-tetraacylated diamines, p- (alkanoyloxy) benzenesulfonates, furthermore carboxylic acid anhydrides and esters of polyols such as glucose pentaacetate.
  • Other known bleach activators are acetylated mixtures of sorbitol and mannitol, as described, for example, in European patent application EP-A-0 525239.
  • the bleach activator content of the bleach-containing agents is in the usual range, preferably between 1 and 10% by weight and in particular between 3 and 8% by weight.
  • Particularly preferred bleach activators are N, N, N ', N'-tetraacetylethylene diamine (TAED), l, 5-diacetyl-2,4-dioxo-hexahydro-l, 3,5-triazine (DADHT) and acetylated sorbitol mannitol Mixes (S0RMAN).
  • TAED N, N, N ', N'-tetraacetylethylene diamine
  • DADHT 5-diacetyl-2,4-dioxo-hexahydro-l
  • DADHT 3,5-triazine
  • S0RMAN acetylated sorbitol mannitol Mixes
  • foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of Ci8
  • Suitable non-surfactant-like foam inhibitors are, for example, organopolysiloxanes and their mixtures with microfine, optionally signed silica, and also paraffins, waxes, microcrystalline waxes and their mixtures with silanized silica or bistearylethylenediamide. Mixtures of various foam inhibitors are also used with advantages, for example those made of silicones, paraffins or waxes.
  • the foam inhibitors, in particular silicone and / or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance. Mixtures of paraffins and bistearylethylenediamides are particularly preferred.
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof. Enzymes obtained from bacterial strains or fungi, such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus and Humicola insolens, are particularly suitable. Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example of protease and amylase or protease and lipase or protease and cellulase or of cellulase and lipase or of protease, amylase and lipase or protease, lipase and cellulase, but especially protease- and / or lipase-containing mixtures of of special interest.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the salts of polyphosphonic acids in particular l-hydroxyethane-l, l-diphosphonic acid (HEDP), diethylenetriaminepentamethylenephosphonic acid (DETPMP) or, come as stabilizers, in particular for per compounds and enzymes Ethylenediaminetetramethylenephosphonic acid into consideration.
  • the agents can also contain further enzyme stabilizers.
  • enzyme stabilizers For example, 0.5 to 1% by weight sodium formate can be used. It is also possible to use proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates such as the salts of orthoboric acid (H3BO3), metaboric acid (HBO2) and pyroboric acid (tetraboric acid H2B4O7), is particularly advantageous.
  • Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing graying.
  • Water-soluble colloids of mostly organic nature are suitable for this, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose. Soluble starch preparations and starch products other than those mentioned above can also be used, e.g. degraded starch, aldehyde starches, etc.
  • Polyvinylpyrrolidone can also be used.
  • cellulose ethers such as carboxymethyl cellulose (sodium salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers, such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof, and polyvinylpyrrolidone, for example in amounts of 0.1 to 5% by weight, based on the detergent, are preferred used.
  • the agents can contain derivatives of diaminostilbenedisulfonic acid or its alkali metal salts. Suitable are, for example, salts of 4,4'-bis (2-anilino-4-morpholino-l, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of the same structure which contain an replace the morpholino group with a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted diphenylstyryl type may also be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) diphenyl. Mixtures of the aforementioned brighteners can also be used.
  • the agents can contain further inorganic salts, also further amorphous alkali silicates of the type described above and alkali carbonates of the type described above.
  • Other inorganic salts which can be considered as ingredients are neutral salts such as sulfates and possibly also chlorides in the form of their sodium and / or potassium salts.
  • dyes and fragrances usually contained in detergents or cleaners can also be present.
  • the alkali silicate compounds C1 to C4 according to the invention and the comparative compound VC were obtained by conventional spray drying of an aqueous slurry.
  • the composition of the compounds (in weight) was as follows:
  • EXAMPLE 2 Absorption Capacity of the Alkali Silicate Compounds (Trickle Test)
  • the absorption capacity of the alkali silicate compounds C1 to C4 according to the invention compared to the comparative compound VC used in the same amount was determined using a nonionic surfactant which consists of 80% by weight of Ci2 ⁇ Ci8- Fatty alcohol with 5 E0 and 20% by weight consisted of Ci2-Ci4 fatty alcohol with 3 E0.
  • the nonionic surfactant absorption was determined in accordance with DIN ISO 787, the above-mentioned nonionic surfactant being used instead of the linseed oil specified there. For this determination, a weighed amount of sample is placed on a plate.
  • nonionic surfactant Slowly add 4 or 5 drops of nonionic surfactant from a burette. After each addition, the nonionic surfactant is rubbed into the powder with a spatula. The addition of the nonionic surfactant continues accordingly until aggregations of nonionic surfactant and powder have formed. From this point on, a drop of nonionic surfactant is added and rubbed with the spatula. The nonionic surfactant addition is stopped when a soft paste has formed. This paste should just be able to spread without tearing or crumbling and just stick to the plate. The amount of nonionic surfactant added is read off the burette and converted to ml nonionic surfactant per 100 g sample. The following results were obtained:
  • extrudates E1 to E4 according to the invention and the comparative extrudate VE were produced.
  • the extrusion mixtures of agents E1 to E4 could be extruded without any process problems.
  • the comparable product VE could only be manufactured as long as the production process did not last longer than 60 minutes. was interrupted.
  • the compositions of the extrudates were as listed in Table 1.
  • the bulk density of the extrudates was between 750 and 780 g / 1.
  • Both the extrudates according to the invention and the comparative extrudate showed good dissolving behavior: only slight residues were obtained in the flushing-in behavior and in the solubility test.
  • compositions from E1 to E4 and EV (in% by weight).
  • Zeolite anhydrous active substance 1 199, 00 19.0 19.0 19.0 19.0 Acrylic acid-maleic acid copolymer 6.0 6.0 6.0 6.0 6.0 (sodium salt)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Dental Preparations (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Es sollten wasserlösliche Buildersubstanzen für den teilweisen oder vollständigen Ersatz von Zeolith in Wasch- oder Reinigungsmitteln bereitgestellt werden. Zusätzlich sollten diese wasserlöslichen Buildersubstanzen auch eine Aufnahmekapazität für bei der Verarbeitungstemperatur flüssige bis wachsartige Inhaltsstoffe von Wasch- oder Reinigungsmitteln besitzen. Ebenso sollten extrudierte Wasch- oder Reinigungsmittel sowie ein Verfahren zu ihrer Herstellung bereitgestellt werden, welche die wasserlöslichen Buildersubstanzen in dem Maße enthalten, daß auf Zeolith nicht nur aus anwendungstechnischer sondern auch aus verfahrenstechnischer Sicht teilweise oder ganz verzichtet werden kann. Diese Ziele wurden durch sprühgetrocknete amorphe Alkalisilikat-Compounds mit Sekundärwaschvermögen und einem Molverhältnis M2O : SiO2 (M = Alkalimetall) zwischen 1:1,5 und 1:3,3 erreicht, welche anionische Tenside in Mengen von 0,5 bis weniger als 30 Gew.-% enthalten.

Description

"Amorphes Alkalisilikat-Compound"
Die Erfindung betrifft ein amorphes Alkalisilikat-Compound mit Sekundär¬ waschvermögen, das als wasserlösliche Buildersubstanz in Wasch- oder Rei¬ nigungsmitteln eingesetzt werden kann, sowie die Verwendung derartiger Alkalisilikat-Compounds in Wasch- oder Reinigungsmitteln, extrudierte Wasch- oder Reinigungsmittel sowie ein Verfahren zu ihrer Herstellung.
Moderne, verdichtete Wasch- oder Reinigungsmittel weisen allgemein den Nachteil auf, daß sie aufgrund ihrer kompakten Struktur ein schlechteres Löseverhalten in wäßriger Flotte zeigen als beispielsweise leichtere sprühgetrocknete Wasch- oder Reinigungsmittel des Standes der Technik. Dabei tendieren Wasch- oder Reinigungsmittel im allgemeinen zu einer um so schlechteren Lösegeschwindigkeit in Wasser, je höher ihr Verdichtungsgrad ist. Zeolithe, die in Wasch- oder Reinigungsmitteln als Bu ldersubstanzen üblicherweise enthalten sind, können aufgrund ihrer Wasserunlöslichkeit zusätzlich zu dem verschlechterten Löseverhalten beitragen.
Eine wasserlösliche Alternative für den Zeolith stellen amorphe Alkalisi¬ likate mit Sekundärwaschvermögen dar.
Durch Sprüh- oder Walzentrocknung von Wasserglaslösungen lassen sich be¬ kanntermaßen hydratisierte wasserlösliche Silikate in Pulverform erhalten, die noch etwa 20 Gew.-% Wasser enthalten (vgl. Ullmanns Enzyclopädie der technischen Chemie, 4. Auflage 1982, Band 21, Seite 412). Solche Produkte sind für verschiedene Zwecke im Handel. Derartige Pulver weisen aufgrund der Sprühtrocknung eine sehr lockere Struktur auf; ihre Schüttgewichte liegen im allgemeinen deutlich unter 700 g/1.
Alkalisilikate in granulärer Form mit höheren Schüttgewichten können gemäß der Lehre der europäischen Patentanmeldung EP-A-0526978 erhalten werden, wobei man eine Alkalisilikat-Lösung mit einem Feststoffgehalt zwischen 30 und 53 Gew.-% in eine beheizte Trommel einbringt, in deren Längsachse eine Welle mit einer Vielzahl von nahe an die Innenfläche der Trommel reichen¬ den Armen rotiert, wobei die Trommelwand eine Temperatur zwischen 150 und 200 °C aufweist und der Trockenvorgang durch ein in die Trommel einge¬ speistes Gas mit einer Temperatur zwischen 175 und etwa 250 °C unterstützt wird. Nach diesem Verfahren wird ein Produkt erhalten, dessen mittlere Teilchengröße im Bereich zwischen 0,2 und 2 mm liegt. Ein bevorzugtes Trocknungsgas ist beheizte Luft.
Die europäische Patentanmeldung EP-A-0 542 131 beschreibt ein Verfahren, bei dem man ein in Wasser bei Raumtemperatur vollständig lösliches Produkt mit einem Schüttgewicht zwischen 500 und 1200 g/1 erhält. Die Trocknung erfolgt vorzugsweise unter Verwendung von erhitzter Luft. Auch hierbei wird mit einem zylindrischen Trockner mit beheizter Wand (160 bis 200 °C) gearbeitet, in dessen Längsachse ein Rotor mit schaufeiförmigen Blättern sich mit einer derartigen Geschwindigkeit dreht, daß aus der Silikatlösung mit einem Feststoffgehalt zwischen 40 und 60 Gew.-% eine pseudoplastische Masse mit einem freien Wassergehalt zwischen 5 und 12 Gew.-% entsteht. Die Trocknung wird durch einen heißen Luftstrom (220 bis 260°C) unterstützt.
Die ältere, nicht vorveröffentlichte Anmeldung P 44 19745.4 beschreibt ebenfalls ein wasserlösliches, amorphes und granuläres Alkalisilikat, welches auf ähnliche Weise wie in der EP-A-0 526 978 beschrieben herge¬ stellt wird, jedoch kieselsäurehaltig ist. Mit dem Begriff "amorph" ist "röntgenamorph" gemeint. Dies bedeutet, daß die Alkalisilikate bei Rönt- genbeugungsaufnah en keine scharfen Reflexe liefern, sondern allenfalls eine oder mehrere breite Maxima, deren Breite mehrere Gradeinheiten des Beugungswinkels beträgt. Damit ist jedoch nicht ausgeschlossen, daß bei Elektronenbeugungsexperimenten Bereiche gefunden werden, die scharfe Elektronenbeugungsreflexe liefern. Dies ist so zu interpretieren, daß die Substanz mikrokristalline Bereiche in einer Größenordnung bis zu ca. 20 n ( ax. 50 nm) aufweist.
Granuläre amorphe Natriumsilikate, welche durch Sprühtrockung wäßriger Wasserglaslösungen, anschließendes Mahlen und nachfolgendes Verdichten und Abrunden unter zusätzlichem Wasserentzug des Mahlgutes erhalten werden, sind Inhalt der US-amerikanischen Patentschriften 3,912,649, 3,956,467, 3,838,193 und 3,879,527. Der Wassergehalt der erhaltenen Produkte liegt bei etwa 18 bis 20 Gew.-% bei Schüttgewichten deutlich oberhalb 500 g/1.
Weitere granuläre Alkalisilikate mit Sekundärwaschvermögen sind aus den europäische Patentanmeldungen EP-A-0 561 656 und EP-A-0 488 868 bekannt. Es handelt sich hierbei um Compounds von Alkalisilikaten mit bestimmten Q-Verteilungen und Alkalicarbonaten. Die Produkte werden dadurch herge¬ stellt, daß man pulverförmiges wasserfreies Natriumcarbonat unter Verwen¬ dung einer Natriumsilikatlösung (Wasserglaslösung) granuliert und die Produkte derart trocknet, daß sie einen bestimmten an das Silikat gebun¬ denen Restwassergehalt aufweisen.
Aus der deutschen Patentanmeldung DE-A-44 06 592 sind saugfähige Alkali¬ silikat-Compounds bekannt, welche als Mehrkomponentengemisch vorliegen und durch Sprühtrocknung einer wäßrigen Zubereitung des Mehrkomponentenge¬ misches mit überhitztem Wasserdampf hergestellt worden sind. Derartige Compounds können als Träger für flüssige Zubereitungen von insbesondere Tensiden dienen.
Aus der europäischen Patentanmeldung EP-A-0219 314 sind sprühgetrocknete tensidreiche Granulate bekannt, welche (a) 30 bis 60 Gew.-% einer Mischung aus Alkylbenzolsulfonat und Ci2-Ci6-Alkylsulfat im GewichtsVerhältnis 4:1 bis 1:4 sowie (b) Alkalimetallsilikate im Gewichtsverhältnis (a) zu (b) von 1,5:1 bis 6:1 enthalten.
Die EP-A-0 651 050 beschreibt ein Verfahren zur Herstellung von Agglo- meraten, wobei ein Salz, beispielsweise Silikat oder Carbonat, mit einem wäßrigen "Binder", der wenigstens 20 Gew.-% Silikat und wenigstens 30 Gew.-% Aniontensid enthält, verarbeitet wird. Aus dem europäischen Patent EP 486 592 ist ein Verfahren zur Herstellung von Extrudaten mit hoher Dichte bekannt, wobei ein festes und riesel¬ fähiges Vorgemisch unter Druck strangförmig verpreßt wird. Das feste und rieselfähige Vorgemisch enthält ein Plastifizier- und/oder Gleitmittel, welches bewirkt, daß das Vorgemisch unter dem Druck bzw. dem Eintrag spe¬ zifischer Arbeit plastisch erweicht und damit extrudierbar wird. Nach dem Austritt aus der Lochform wirken auf das System keine Scherkräfte mehr ein und die Viskosität des Systems steigt dadurch derart an, daß der extru¬ dierte Strang auf vorherbestimmbare Extrudatdimensionen geschnitten werden kann. Aus der internationalen Patentanmeldung WO-A-94/09111 ist nun be¬ kannt, daß in dem zu extrudierenden Vorgemisch sowohl Bestandteile, welche ein strukturviskoses Verhalten aufweisen, als auch Bestandteile, welche dilatante Eigenschaften besitzen, enthalten sein müssen. Lägen nur struk¬ turviskos wirkende Bestandteile in dem Vorgemisch vor, so würde es auf¬ grund des starken Schergefälles derart erweichen, ja nahezu flüssig wer¬ den, daß der Strang nach dem Austritt aus der Lochform nicht mehr schneidfähig wäre. Es werden daher auch d latent wirkende Bestandteile eingesetzt, welche bei steigendem Schergefälle eine steigende Plastizität aufweisen und dadurch die Schneidfähigkeit des extrudierten Stranges si¬ cherstellen. Die meisten Inhaltsstoffe von Wasch- oder Reinigungsmitteln zeigen ein strukturviskoses Verhalten. Ein dilatantes Verhalten stellt eher die Ausnahme dar. Ein üblicher Bestandteil von herkömmlichen Wasch¬ oder Reinigungsmittel besitzt jedoch dilatante Eigenschaften; es sind die als Buildersubstanz und Phosphatersatz eingesetzten wasserunlöslichen Alu osilikate wie Zeolith. Aus der internationalen Patentanmeldung W0- A-94/09111 sind zwar extrudierte Wasch- oder Reinigungsmittel bekannt, welche 19 Gew.-% Zeolith (bezogen auf wasserfreie Aktivsubstanz) sowie 12,5 Gew.-% Natriumcarbonat und 2,2 Gew.-% amorphes Natriumsilikat ent¬ halten; es war jedoch nicht bekannt, daß Zeolith aus verfahrenstechnischer Sicht teilweise oder sogar ganz durch wasserlösliche anorganische Buildersubstanzen wie amorphe Alkalisilikate ersetzt werden kann, wenn diese in bestimmter Form eingesetzt werden. Dabei hat es sich allerdings gezeigt, daß manche Alkalisilikat-Compounds mit Sekundärwaschvermögen dieses bei der Verarbeitung unter Einwirkung von Wasser, hohen Scherkräf¬ ten und/oder (leicht) erhöhten Temperaturen teilweise verlieren. Eine Aufgabe der Erfindung bestand darin, wasserlösliche Buildersubstanzen für den teilweisen oder vollständigen Ersatz von Zeolith in Wasch- oder Reinigungsmitteln bereitzustellen, wodurch das Löseverhalten insbesondere von schweren Wasch- oder Reinigungsmitteln verbessert werden sollte. Zu¬ sätzlich sollten diese wasserlöslichen Buildersubstanzen auch eine Auf¬ nahmekapazität für bei der Verarbeitungstemperatur flüssige bis wachsartige Inhaltsstoffe von Wasch- oder Reinigungsmitteln besitzen. Ebenso sollten Buildersubstanzen bereitgestellt werden, die auch bei der Verarbeitung das Sekundärwaschvermögen nicht verlieren. Eine weitere Auf¬ gabe der Erfindung bestand darin, extrudierte Wasch- oder Reinigungsmittel sowie ein Verfahren zu ihrer Herstellung bereitzustellen, welche die wasserlöslichen Buildersubstanzen in dem Maße enthalten, daß auf Zeolith nicht nur aus anwendungstechnischer sondern auch aus verfahrenstechnischer Sicht teilweise oder ganz verzichtet werden kann.
Gegenstand der Erfindung ist dementsprechend in einer ersten Ausführungs¬ form ein sprühgetrocknetes amorphes Alkalisilikat-Compound mit Sekundär¬ waschvermögen und einem MolVerhältnis M2O : Siθ2 (M = Alkalimetall) zwi¬ schen 1:1,5 und 1:3,3, welches anionische Tenside in Mengen von 0,5 bis weniger als 30 Gew.-% enthält.
Bevorzugte amorphe Alkalisilikate weisen ein Molverhältnis M2O : Siθ2 (M = Alkalimetall) zwischen 1:1,9 und 1:3, insbesondere bis 1:2,5 auf. Hierbei kommen insbesondere Natrium- und/oder Kaliumsilikat in Betracht. Aus öko¬ nomischen Gründen sind die Natriumsilikate bevorzugt. Legt man aus anwen¬ dungstechnischen Gründen jedoch auf eine besonders hohe Lösegeschwindig¬ keit in Wasser Wert, so empfiehlt es sich, Natrium mindestens anteilsweise durch Kalium zu ersetzen. Beispielsweise kann die Zusammensetzung des Al¬ kalisilikats so gewählt werden, daß das Silikat einen Kalium-Gehalt, be¬ rechnet als K2O, von bis zu 5 Gew.-% aufweist. Bevorzugte Alkalisilikate liegen als Compound mit Alkalicarbonat, vorzugsweise Natrium- und/oder Kaliumcarbonat, vor. Der Wassergehalt dieser bevorzugten amorphen Alkali¬ silikat-Compounds, liegt vorteilhafterweise zwischen 10 und 22 Gew.-%, insbesondere zwischen 12 und 20 Gew.-%. Dabei können Wassergehalte von 14 bis 19 Gew.-% besonders bevorzugt sein.
Die erfindungsgemäßen Compounds werden durch Sprühtrocknung einer wäßrigen Aufschlämmung, enthaltend Alkalisilikate und Aniontenside, erhalten, wobei insbesondere Alkalisilikat-Compounds mit Wassergehalten von 14 bis 19 Gew.-% entstehen. Insbesondere werden wäßrige Aufschlämmungen versprüht, die zusätzlich Alkalicarbonate, vorteilhafterweise Natriumcarbonat- und/oder Kaliumcarbonat, aufweisen.
Als Aniontenside, die in den Alkalisilikat-Compounds eingesetzt werden, kommen vor allem Tenside des Sulfonat- und/oder Sulfat-Typs in Betracht. Als Tenside vom Sulfonat-Typ kommen vorzugsweise Cg-Ci3-Alkylbenzolsul- fonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansul- fonaten sowie Disulfonaten, wie man sie beispielsweise aus Ci2-Cl8~Mono" olefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hy¬ drolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus Ci2-Ci8-Alkanen beispielsweise durch Sulfo- chlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutra¬ lisation gewonnen werden. Geeignete Tenside vom Sulfat-Typ sind die Schwefelsäuremonoester aus primären Alkoholen natürlichen und synthe¬ tischen Ursprungs. Als Alk(en)ylsulfate werden die Alkali- und insbeson¬ dere die Natriumsalze der Schwefelsäurehalbester der Ci2-Ci8-Fettalkohole beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der Cιo-C2θ"0xoa^ono^e und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin be¬ vorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Al- kylrest enthalten, die ein analoges Abbauverhalten besitzen wie die ad¬ äquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind Ci6-Ci8~Alk(en)ylsulfate insbesondere be- vorzugt. Dabei kann es auch von besonderem Vorteil und insbesondere für maschinelle Waschmittel von Vorteil sein, Ci6-Ci8-Alk(en)ylsulfate in Kombination mit niedriger schmelzenden Aniontensiden und insbesondere mit solchen Aniontensiden, die einen niedrigeren Krafft-Punkt aufweisen und bei relativ niedrigen Waschtemperaturen von beispielsweise Raumtemperatur bis 40 βC eine geringe Kristallisationsneigung zeigen, einzusetzen. In einer bevorzugten Ausführungsform der Erfindung enthalten die Compounds daher Mischungen aus kurzkettigen und langkettigen Fettalkylsulfaten, vorzugsweise Mischungen aus Ci2Ci4-Fettalkylsulfaten oder Ci2-Ci8-Fett- alkylsulfaten mit Ciö-Ciβ-Fettalkylsulfaten und insbesondere C12-C16- Fettalkylsulfaten mit Cjs-Ciβ-Fettalkylsulfaten. In einer weiteren bevor¬ zugten Ausführungsform der Erfindung werden jedoch nicht nur gesättigte Alkylsulfate, sondern auch ungesättigte Alkenylsulfate mit einer Alkenyl- kettenlänge von vorzugsweise C15 bis C22 eingesetzt. Dabei sind insbeson¬ dere Mischungen aus gesättigten, überwiegend aus C15 bestehenden sul- fierten Fettalkoholen und ungesättigten, überwiegend aus C Q bestehenden sulfierten Fettalkoholen bevorzugt, beispielsweise solche, die sich von festen oder flüssigen Fettalkoholmischungen des Typs HD-Ocenol (R) (Han¬ delsprodukt des Anmelders) ableiten. Dabei sind Gewichtsverhältnisse von Alkylsulfaten zu Alkenylsulfaten von 10:1 bis 1:2 und insbesondere von etwa 5:1 bis 1:1 bevorzugt.
Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN (R) erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxy- lierten geradkettigen oder verzweigten C7-C2i-Alkohole, wie 2-Methyl-ver- zweigte Cg-C^-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (E0) oder Ci2-Cj8-Fettalkohole mit 1 bis 4 E0, sind geeignet. Sie werden in Wasch¬ mitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt. In einer bevorzugten Ausführungsform der Erfindung enthalten die Compounds 15 bis 80 Gew.-% Alkalisilikate, 1 bis 25 Gew.-% Aniontenside, vorzugs¬ weise bis 20 Gew.-% Aniontenside und 10 bis 22 Gew.-%, vorzugsweise 12 bis 19 Gew-% und inbesondere 14 bis 19 Gew.-% Wasser. Es hat sich gezeigt, daß Mengen oberhalb von 25 Gew.-% an Aniontensiden, manchmal auch schon ober¬ halb von 20 Gew.-% an Aniontensiden in den Compounds wieder zu einer Ver¬ schlechterung des Sekundärwaschvermögens der gesamten Waschmittel führen können. Der Anmelder vermutet - ohne sich auf diese Theorie beschränken zu wollen - , daß die Compounds mit höheren Aniontensid engen so schnell löslich sind, daß es zu negativen Wechselwirkungen zwischen den Anionten¬ siden und den Härtebildnern des Wassers kommt, bevor letztere vom Silikat eliminiert werden können.
In einer weiteren bevorzugten Ausführungsform der Erfindung enthalten die erfindungsgemäßen Compounds 15 bis 50 Gew.-%, vorzugsweise 20 bis 40 Gew.-% Alkalisilikate, 30 bis 70 Gew.-%, vorzugsweise 40 bis 65 Gew.-% Alkalicarbonate, 1,5 bis 15 Gew.-% und insbesondere 2 bis 12 Gew.-% Aniontenside, vorteilhafterweise Alkylbenzolsulfonate und/oder Alk(en)ylsulfate, und 12 bis 19 Gew.-% Wasser.
Die Alkalisilikat-Compounds können zusätzlich noch weitere Inhaltsstoffe von Wasch- oder Reinigungsmitteln, vorzugsweise in Mengen bis 10 Gew.-% und insbesondere in Mengen nicht oberhalb 5 Gew.-% enthalten. Hierzu zäh¬ len beispielsweise Neutralsalze wie Natrium - oder Kaliumsulfate, aber auch Vergrauungsinhibitoren oder nichtionische Tenside wie Alkylpolyglykoside.
Die erfindungsgemäßen Alkalisilikat-Compounds besitzen ein signifikantes Aufnahmevermögen für bei den üblichen Verarbeitungstemperaturen flüssigen bis wachsartigen Inhaltsstoffen von Wasch- oder Reinigungsmitteln. Zwar können auch Alkalisilikat-Compounds ohne Aniontensid-Zusatz gewisse Mengen an Flüssigkomponenten aufnehmen; es hat sich jedoch gezeigt, daß durch den Zusatz von Aniontensiden die Aufnahmekapazität der Alkalisilikat-Compounds erhöht und das Rieselverhalten verbessert wird. In einer bevorzugten Aus- führungsform der Erfindung weisen die erfindungsgemäßen aniontensidhalti- gen Alkalisilikat-Compounds ein Aufnahmevermögen für Flüssigkomponenten auf, das um mindestens 20 % höher ist als das der mengengleichen Alkali¬ silikat-Compounds ohne Aniontenside. Insbesondere sind dabei Compounds bevorzugt, deren Aufnahmevermögen für Flüssigkomponenten sogar um minde¬ stens 30 % und vorteilhafterweise sogar um mindestens 50 %, jeweils bezogen auf das Aufnahmevermögen der mengengleichen entsprechenden Alkalisilikat-Compounds ohne Aniontenside, gesteigert wurde.
In einer weiteren Ausführungsform der Erfindung werden daher sprühge¬ trocknete Alkalisilikat-Compounds beansprucht, welche mit Flüssigkompo¬ nenten, zu denen im Rahmen dieser Erfindung bei der Verarbeitungstempera¬ tur flüssige bis wachsartige Inhaltsstoffe von Wasch- oder Reinigungsmit¬ teln gezählt werden, nachbehandelt wurden. Geeignete Flüssigkomponenten, die von den erfindungsgemäßen Alkalisilikat-Compounds aufgenommen werden können, sind beispielsweise nichtionische Tenside, Kationtenside und/oder Schauminhibitoren wie Silikonöle und Paraffinöle. Insbesondere bevorzugt sind jedoch nichtionische Tenside, beispielsweise alkoxylierte, vorzugs¬ weise ethoxylierte und/oder ethoxylierte und propoxylierte aliphatische C8-C22-Alkohole. Hierzu zählen insbesondere primäre Alkohole mit vorzugs¬ weise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol, in denen der Alkoholrest linear oder bevorzugt in 2- Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Ebenso sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Ci2-Ci4-Alkohole mit 3 EO oder 4 EO, Cg-Cu-Alkohol mit 7 EO, Ci3-Ci5-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, Ci2-Ci8~Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus Cχ2~ Cj4-Alkohol mit 3 EO und Ci2-Ci8-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Be- vorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Ten- siden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Bei¬ spiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit den genannten anderen nichtionischen Tensiden eingesetzt werden, sind alkoxy- lierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
Bereits die primären sprühgetrockneten erfindungsgemäßen Compounds weisen ein stabilisiertes Sekundärwaschvermögen bei ihrer Verarbeitung zu Wasch¬ mitteln im Vergleich mit aniontensidfreien Alkalisilikat-Compounds auf. Insbesondere zeigen jedoch solche erfindungsgemäßen Compounds ein stabiles Sekundärwaschvermögen auf, deren Oberfläche nachträglich hydrophobiert, vorteilhafterweise mit nichtionischen Tensiden beaufschlagt wurde.
Die erfindungsgemäßen Alkalisilikat-Compounds werden durch Sprühtrocknung hergestellt. Insbesondere ist dabei ein Verfahren bevorzugt, bei dem die Alkalisilikat-Compounds durch Sprühtrocknung einer wäßrigen Aufschlämmung, welche sämtliche Bestandteile (mit Ausnahme der Flüssigkomponenten, mit denen die Compounds nachbehandelt sein können) der Alkalisilikat-Compounds enthält, hergestellt werden.
In einer weiteren Ausführungsform der Erfindung werden die erfindungs¬ gemäßen Compounds durch Sprühtrocknung einer wäßrigen Zubereitung des Mehrkomponentengemisches gemäß der verfahrenstechnischen Lehre der deutschen Patentanmeldung DE-A-44 06 592 mit überhitztem Wasserdampf her¬ gestellt. 11
Nachträglich können die so hergestellten Alkalisilikat-Compounds mit In¬ haltsstoffen von Wasch- oder Reinigungsmitteln behandelt werden. Dies kann auf herkömmliche Weise durchgeführt werden, beispielsweise durch Mischen oder durch Aufsprühen in einem Mischer/Granulator gegebenenfalls mit an¬ schließender Wärmebehandlung.
Die amorphen Alkalisilikat-Compounds mit Sekundärwaschvermögen können als Zumischkomponente zu pulverförmigen bis granulären Wasch- oder Reinigungs¬ mitteln oder als Bestandteil bei der Herstellung der granulären Wasch¬ oder Reinigungsmittel, vorzugsweise bei der Granulierung und/oder Kompak- tierung, verwendet werden. Je nach der Art ihrer Herstellung können die Schüttgewichte der Alkalisilikat-Compounds zwischen 50 und beispielsweise 850 g/1 variieren. Die erfindungsgemäßen Wasch- oder Reinigungsmittel können hingegen ein Schüttgewicht zwischen 300 und 1200 g/1, vorzugsweise von 500 bis IOC g/1, aufweisen und enthalten die erfindungsgemäßen Alka¬ lisilikat-Compounds vorzugsweise in Mengen von 5 bis 50 Gew.-%, insbeson¬ dere in Mengen von 10 bis 40 Gew.-%. Ihre Herstellung kann nach jedem der bekannten Verfahren wie Mischen, Sprühtrocknen, Granulieren, Kompaktieren wie Walzenkompaktierung und Extrusion erfolgen. Geeignet sind insbesondere solche Verfahren, in denen mehrere Teilkomponenten, beispielsweise sprüh¬ getrocknete Komponenten und granulierte und/oder extrudierte Komponenten miteinander vermischt werden. Dabei ist es auch möglich, daß sprühgetrock¬ nete oder granulierte Komponenten nachträglich in der Aufbereitung bei¬ spielsweise mit nichtionischen Tensiden, insbesondere ethoxylierten Fett¬ alkoholen, nach den üblichen Verfahren beaufschlagt werden. Insbesondere in Granulations- und Extrusionsverfahren ist es bevorzugt, die gegebenen¬ falls vorhandenen weiteren Aniontenside in Form eines sprühgetrockneten, granulierten oder extrudierten Compounds entweder als Zumischkomponente in dem Verfahren oder als Additiv nachträglich zu anderen Granulaten einzu¬ setzen. Ebenso ist es möglich und kann in Abhängigkeit von der Rezeptur von Vorteil sein, wenn weitere einzelne Bestandteile des Mittels, bei¬ spielsweise Carbonate, Citrat bzw. Citronensäure oder andere Polycarboxy- late bzw. Polycarbonsäuren, polymere Polycarboxylate, Zeolith und/oder Schichtsilikate, beispielsweise schichtförmige kristalline DiSilikate, nachträglich zu sprühgetrockneten, granulierten und/oder extrudierten Komponenten, die gegebenenfalls mit nichtionischen Tensiden und/oder an¬ deren bei der Verarbeitungstemperatur flüssigen bis wachsartigen Inhalts¬ stoffen beaufschlagt sind, hinzugemischt werden. Bevorzugt ist dabei ein Verfahren, bei dem die Oberfläche von Teilkomponenten des Mittels oder des gesamten Mittels zur Reduzierung der Klebrigkeit der Granulate und/oder zu ihrer verbesserten Löslichkeit nachträglich behandelt wird. Geeignete Oberflächenmodifizierer sind dabei aus dem Stand der Technik bekannt. Ne¬ ben weiteren geeigneten sind dabei feinteilige Zeolithe, Kieselsäuren, amorphe Silikate, Fettsäuren oder Fettsäuresalze, beispielsweise Calcium- stearat, vor allem jedoch Mischungen aus Zeolith und Kieselsäure, ins¬ besondere im GewichtsVerhältnis Zeolith zu Kieselsäure von mindestens 1:1, oder Zeolith und Calciumstearat besonders bevorzugt.
Besonders bevorzugte Ausführungsformen der Erfindung sind extrudierte Wasch- oder Reinigungsmittel mit einem Schüttgewicht oberhalb 600 g/1, welche anionische sowie gegebenenfalls nichtionische Tenside sowie ein amorphes Alkalisilikat-Compound der angegebenen Art im Extrudat enthalten. Zur Herstellung dieser extrudierten Wasch- oder Reinigungsmittel wird auf die bekannten Verfahren zur Extrusion, insbesondere auf das europäische Patent EP-B-0486592 verwiesen. Dabei werden ein festes und rieselfähiges Vorgemisch bei Drucken bis 200 bar strangför ig verpreßt, der Strang nach dem Austritt aus der Lochform mittels einer Schneidevorrichtung auf die vorbestimmte Granulatdimension zugeschnitten sowie das plastische und ge¬ gebenenfalls noch feuchte Rohextrudat einem weiteren formgebenden Verar¬ beitungsschritt zugeführt und anschließend getrocknet, wobei die erfin¬ dungsgemäßen Alkalisilikat-Compounds in dem Vorgemisch eingesetzt werden.
Insbesondere bei der Herstellung von extrudierten Wasch- oder Reinigungs¬ mitteln weisen die aniontensidhaltigen Alkalisilikat-Compounds überra¬ schenderweise nicht nur aus anwendungstechnischer Sicht sondern auch aus verfahrenstechnischer Sicht Vorteile gegenüber den aniontensidfreien Al- kalisilikat-Compound-Alternativen auf. Es hat sich gezeigt, daß Extru- sionsprozesse, in denen insbesondere aniontensidfreie Alkalisilikat-Carbo- nat-Compounds eingesetzt wurden, nicht unterbrochen werden durften, da das Extrusionsgemisch in der Ruhephase seine Plastizität und Gleitfähigkeit derartig schnell verlor, daß ein erneutes Anfahren der Anlage sicherheits¬ technische Probleme mit sich brachte. Dieses Problem wurde durch den Er¬ satz der aniontensidfreien durch aniontensidhaltige AlkalisilikatCom- pounds, insbesondere durch aniontensid- und carbonathaltige Alkali¬ silikat-Compounds gelöst.
Die fertigen Wasch- oder Reinigungsmittel können zusätzlich die nun fol¬ genden Inhaltsstoffe enthalten.
Zu diesen zählen insbesondere Tenside, vor allem Aniontenside sowie gege¬ benenfalls nichtion sche Tenside, aber auch kationische, amphotere oder zwitterionische Tenside.
Als Aniontenside vom Sulfonat-Typ kommen einmal die bereits obengenannten Alkylbenzolsulfonate, Olefinsulfonate und Alkansulfonate in Betracht. Ge¬ eignet sind aber auch die Ester von oc-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren. Weitere geeignete Aniontenside sind die durch Esterspal¬ tung der α-Sulfofettsäurealkylester erhältlichen α-Sulfofettsäuren bzw. ihre Di-Salze. Die Mono-Salze der oc-Sulfofettsäurealkylester fallen schon bei ihrer großtechnischen Herstellung als wäßrige Mischung mit begrenzten Mengen an Di-Salzen an. Der Disalz-Gehalt solcher Tenside liegt üblicher¬ weise unter 50 Gew.-% des Aniontensidgemisches, beispielsweise bis etwa 30 Gew.-%.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Geeignete Tenside vom Sulfat-Typ sind die genannten Schwefelsäuremonoester aus primären Alkoholen natürlichen und synthetischen Ursprungs, 2,3- Alkylsulfate sowie gegebenenfalls alkoxylierte, vorzugsweise ethoxylierte Derivate der Schwefelsäuremonoester. Bevorzugte Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten CQ- bis Ci8~Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalko¬ holrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalko¬ holen mit eingeengter HomologenVerteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Zusätzlich zu den anionischen Tensiden können die Mittel auch Seifen, vorzugsweise in Mengen von 0,2 bis 5 Gew.-%, enthalten. Geeignet sind ge¬ sättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside und Seifen können in Form ihrer Natrium-, Kalium¬ oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanola in, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
In einer Ausführungsform der Erfindung werden Wasch- oder Reinigungsmit¬ tel, insbesondere extrudierte Wasch- oder Reinigungsmittel bevorzugt, welche 10 bis 30 Gew.-% anionische Tenside enthalten. Vorteilhafterweise sind davon vorzugsweise mindestens 3 Gew.-% und insbesondere mindestens 5 Gew.-% sulfatische Tenside. In einer vorteilhaften Ausführungsform sind in den Mitteln - bezogen auf die anionischen Tenside insgesamt - mindestens 15 Gew.-%, insbesondere 20 bis 100 Gew.-% sulfatische Tenside enthalten.
Als nichtionische Tenside werden vorzugsweise die bereits oben beschrie¬ benen alkoxylierten, vorteilhafterweise ethoxylierten Alkohole mit vor¬ zugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt.
Ebenso können auch die bereits oben genannten alkoxylierten Fettsäurealkylester eingesetzt werden.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel R0(G)x eingesetzt werden, in der R einen primären ge- radkettigen oder methyl erzweigten, insbesondere in 2-Stellung methylver¬ zweigten aliphatisehen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokos- alkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nicht¬ ionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylier¬ ten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
R3
I
R2_CO-N-[Z] (I) in der R2C0 für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffato- men, R3 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydro- xyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfol¬ gende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Nichtionische Tenside sind in den erfindungsgemäßen Mitteln vorzugsweise in Mengen von 0,5 bis 15 Gew.-%, insbesondere in Mengen von 2 bis 10 Gew.-% enthalten.
Neben den amorphen Alkalisilikat-Compounds mit Sekundärwaschvermögen kön¬ nen die Mittel auch noch weitere, zusätzliche Buildersubstanzen und Co- builder enthalten. Beispielsweise können übliche Buildersubstanzen wie Phosphate, Zeolithe und kristalline Schichtsilikate in den Mitteln ent¬ halten sein. Der eingesetzte, synthetische Zeolith ist vorzugsweise fein¬ kristallin und enthält gebundenes Wasser. Geeignet sind beispielsweise Zeolith A, jedoch auch Zeolith X und Zeolith P sowie Mischungen aus A, X und/oder P. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspen¬ sion zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeo¬ lith, an ethoxylierten Ci2-Ci8-Fettalkoholen mit 2 bis 5 Ethylenoxidgrup- pen, Ci2-Ci4-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Ebenso ist es auch möglich, Zeolith-Sus- pensionen und Zeolith-Pulver einzusetzen. Geeignete Zeolith-Pulver weisen eine mittlere Teilchengröße von weniger als 10 μm (VolumenVerteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser. Zeolith kann in den Wasch- oder Reinigungsmitteln in Mengen bis etwa 40 Gew.-% (bezogen auf wasserfreie Aktivsubstanzen) enthalten sein.
In einer besonders bevorzugten Ausführungsform der Erfindung enthalten Wasch- oder Reinigungsmittel jedoch 10 bis 16 Gew.-% Zeolith (bezogen auf wasserfreie Aktivsubstanz) und 10 bis 30 Gew.-% eines erfindungsgemäßen Alkalisilikat-Compounds.
In einer weiteren besonders bevorzugten Ausführungsform der Erfindung enthalten die Wasch- oder Reinigungsmittel jedoch 0 bis 5 Gew.-% Zeolith (bezogen auf wasserfreie Aktivsubstanz) und 15 bis 40 Gew.-% eines erfin¬ dungsgemäßen Alkalisilikat-Compounds. Dabei ist es möglich, daß der Zeo¬ lith nicht nur coextrudiert wird, sondern daß der Zeolith teilweise oder ganz nachträglich, also nach dem Extrusionsschritt in das Wasch- oder Reinigungsmittel eingebracht wird. Besonders bevorzugt sind hierbei Wasch¬ oder Reinigungsmittel, welche ein Extrudat enthalten, das im Inneren des Extrudatkorns frei von Zeolith ist.
Als Ersatzstoffe für den Zeolith können auch kristalline Schichtsilikate und/oder herkömmliche Phosphate eingesetzt werden. Dabei ist es jedoch bevorzugt, daß Phosphate nur in geringen Mengen, insbesondere bis maximal 10 Gew.-%, in den Wasch- oder Reinigungsmitteln enthalten sind.
Als kristalline Schichtsilikate sind insbesondere kristalline, schicht- förmige Natriumsilikate der allgemeinen Formel aMSixθ2χ+ yH2θ, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind, geeig¬ net. Derartige kristalline Schichtsil kate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kri¬ stalline Schichtsil kate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind so¬ wohl ß- als auch ZT-Natriumdisilikate Na2Sι*2θ5'yH2θ bevorzugt. Diese kri¬ stallinen Schichtsilikate sind jedoch in den erfindungsgemäßen Extrudaten vorzugsweise lediglich in Mengen von nicht mehr als 10 Gew.-%, insbeson- dere von weniger als 8 Gew.-%, vorteilhafterweise von maximal 5 Gew.-% enthalten.
Als Cobuilder können beispielsweise polymere Polycarboxylate eingesetzt werden. Geeignete polymere Polycarboxylate sind beispielsweise die Natri¬ umsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure be¬ zogen). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000. Insbesondere bevorzugt sind auch Terpolymere, beispielsweise solche, die gemäß der DE-A-43 00772 als Monomere Salze Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vi- nylalkohol-Derivate oder gemäß der DE-C-42 21 381 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker - Derivate ent¬ halten. Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und P 44 17 734.8 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Weitere brauchbare organische Cobuilder sind die bevorzugt in Form ihrer Natriumsalze eingesetzten Polycarbonsäuren, wie Citronensäure, Adipin- säure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbon- säuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus die¬ sen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Ci¬ tronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zucker¬ säuren und Mischungen aus diesen.
Weitere geeignete Buildersysteme sind Oxidationsprodukte von carboxylgruppenhaltigen Polyglucosanen und/oder deren wasserlöslichen Salzen, wie sie beispielsweise in der internationalen Patentanmeldung WO-A-93/08251 beschrieben werden oder deren Herstellung beispielsweise in der internationalen Patentanmeldung W0-A-93/16110 beschrieben wird.
Ebenso sind als weitere bevorzugte Bu ldersubstanzen auch die bekannten Polyasparaginsäuren bzw. deren Salze und Derivate zu nennen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umset¬ zung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der euro¬ päischen Patentanmeldung EP-A-0 280 223 beschrieben erhalten werden kön¬ nen. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutar- aldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäu- ren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Diese Cobuilder können in Mengen von beispielsweise 0,5 bis 20 Gew.-%, vorzugsweise von 2 bis 15 Gew.-% in den fertigen Wasch- oder Reinigungs¬ mitteln enthalten sein.
Zusätzlich können die Mittel auch Komponenten enthalten, welche die 01- und Fettauswaschbarkeit aus Textilien positiv beeinflussen. Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wird. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Cellulose- ether wie Methylcellulose und Methylhydroxypropylcellulose mit einem An¬ teil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl- Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbe¬ sondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykol- terephthalaten oder anionisch und/oder nichtionische modifizierten Deri¬ vaten von diesen. Die Mittel können außerdem Bestandteile enthalten, welche die Lδslichkeit insbesondere der schweren Granulate noch weiter verbessern. Derartige Be¬ standteile und das Einbringen derartiger Bestandteile werden beispiels¬ weise in der internationalen Patentanmeldung W0-A-93/02176 und in der deutschen Patentanmeldung DE-A-4203031 beschrieben. Zu den bevorzugt eingesetzten Bestandteilen gehören insbesondere Fettalkohole mit 20 bis 80 Mol Ethylenoxid pro Mol Fettalkohol, beispielsweise Taigfettalkohol mit 30 E0 und Taigfettalkohol mit 40 E0, aber auch Fettalkohole mit 14 E0 sowie Polyethylenglykole mit einer relativen Molekülmasse zwischen 200 und 2000. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbin¬ dungen hat das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumperborattetrahydrat, Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 lie¬ fernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt vorzugsweise 5 bis 25 Gew.-% und insbesondere 10 bis 20 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat eingesetzt wird. Percarbonat ist als Bestandteil ebenfalls bevorzugt. Jedoch wird Per- carbonat vorzugsweise nicht coextrudiert, sondern gegebenenfalls nach¬ träglich zugemischt.
Um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Präparate eingearbeitet werden. Beispiele hierfür sind mit H2O2 organische Persäuren bildende N-Acyl- bzw. 0-Acyl-Verbindungen, vorzugsweise N,N'-tetra- acylierte Diamine, p-(Alkanoyloxy)benzolsulfonate, ferner Carbonsäureanhydride und Ester von Polyolen wie Glucosepentaacetat. Weitere bekannte Bleichaktivatoren sind acetylierte Mischungen aus Sorbi- tol und Mannitol, wie sie beispielsweise in der europäischen Patentanmel¬ dung EP-A-0 525239 beschrieben werden. Der Gehalt der bleichmittelhalti- gen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich, vorzugs¬ weise zwischen 1 und 10 Gew.-% und insbesondere zwischen 3 und 8 Gew.-%. Besonders bevorzugte Bleichaktivatoren sind N,N,N' ,N'-Tetraacetylethylen- diamin (TAED), l,5-Diacetyl-2,4-dioxo-hexahydro-l,3,5-triazin (DADHT) und acetylierte Sorbitol-Mannitol-Mischungen (S0RMAN). Es kann von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzuset¬ zen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an Ci8~C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispiels¬ weise Organopolysiloxane und deren Gemische mit mikrofeiner, ggf. sig¬ nierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Silikonen, Paraffinen oder Wachsen. Vorzugs¬ weise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraf- finhaltige Schauminhibitoren, an eine granuläre, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus lichenifor- mis, Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbe¬ sondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Protease- und/oder Lipase-haltige Mi¬ schungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trä¬ gerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmi¬ schungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Als Stabilisatoren insbesondere für Perverbindungen und Enzyme kommen die Salze von Polyphosphonsäuren, insbesondere l-Hydroxyethan-l,l-diphosphon- säure (HEDP), Diethylentriaminpentamethylenphosphonsäure (DETPMP) oder Ethylendiamintetramethylenphosphonsäure in Betracht.
Die Mittel können auch weitere Enzymstabilisatoren enthalten. Beispiels¬ weise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa l,2-Gew.-%, bezogen auf das En¬ zym, stabilisiert sind. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Meta- borsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Vergrauen zu ver¬ hindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur ge¬ eignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren SchwefelSäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Die Mittel können als optische Aufheller Derivate der Diaminostilbendi- sulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-l,3,5-triazinyl-6-amino)stil- ben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die an¬ stelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylamino- gruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle an¬ wesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2- sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
Zusätzlich zu den Alkalisilikat-Compounds, die in einer bevorzugten Aus¬ führungsform auch Alkalicarbonate enthalten, können die Mittel weitere anorganische Salze, auch weitere amorphe Alkalisilikate der oben beschrie¬ benen Art und Alkalicarbonate der oben beschriebenen Art enthalten. Wei¬ tere anorganische Salze, welche als Inhaltsstoffe in Betracht kommen, sind Neutralsalze wie Sulfate und ggf. auch Chloride in Form ihrer Natrium- und/oder Kaliumsalze.
Selbstverständlich können auch die üblicherweise in Wasch- oder Reini¬ gungsmitteln enthaltenen Färb- und Duftstoffe enthalten sein.
Beispiele
Beispiel 1: Herstellung von Alkalisilikat-Compounds
Die erfindungsgemäßen Alkalisilikat-Compounds Cl bis C4 sowie das Ver- gleichscompound VC wurden durch herkömmliche Sprühtrocknung einer wäßrigen Aufschlämmung erhalten. Die Zusammensetzung der Compounds (in Gew.- ) war wie folgt:
Cl C2 C3 C4 VC
amorphes Natriumdisilikat 28,1 28,1 27,3 24,65 29,0
Natriumcarbonat 53,4 53,4 51,7 46,75 55,0
Ci2-Ci8~Alkylsulfat (Natriumsalz) 3,0
Ci2~Alkylbenzolsulfonat (Natriumsalz) 3,0 6,0 15,0
Wasser 15,5 15,5 15,0 13,6 16,0
Beispiel 2: Aufnahmevermögen der Alkalisilikat-Compounds (Rieseltest) Es wurde das Aufnahmevermögen der erfindungsgemäßen Alkalisilikat-Com¬ pounds Cl bis C4 gegenüber dem mengengleich eingesetzten Vergleichscom- pound VC anhand eines nichtionischen Tensids, das zu 80 Gew.-% aus Ci2~Ci8-Fettalkohol mit 5 E0 und zu 20 Gew.-% aus Ci2-Ci4-Fettalkohol mit 3 E0 bestand, getestet. Das Niotensid-Aufnahmever ögen wurde entsprechend der DIN ISO 787 bestimmt, wobei anstelle des dort angegebenen Leinöls das vorstehend genannte Niotensid verwendet wurde. Für diese Bestimmung wird eine abgewogene Probenmenge auf eine Platte gegeben. Aus einer Bürette werden langsam 4 oder 5 Tropfen auf einmal an Niotensid zugegeben. Nach jeder Zugabe wird das Niotensid mit einem Spatel in das Pulver einge¬ rieben. Die Zugabe des Niotensids wird entsprechend fortgesetzt, bis sich Zusammenballungen von Niotensid und Pulver gebildet haben. Von diesem Punkt an wird jeweils ein Tropfen Niotensid zugegeben und mit dem Spatel verrieben. Die Niotensidzugabe wird beendet, wenn eine weiche Paste ent¬ standen ist. Diese Paste sollte sich gerade noch ohne zu reißen oder krümeln verteilen lassen und gerade noch auf der Platte haften. An der Bürette wird die zu¬ gegebene Menge Niotensid abgelesen und auf ml Niotensid pro 100 g Probe umgerechnet. Dabei wurden folgende Ergebnisse erhalten:
ml Niotensid pro 100 g Träger
Cl 97
C2 110
C3 128
C4 130
VC 57
Beispiel 3: Extrusionsfähiαkeit
Gemäß der Lehre der internationalen Patentanmeldung W0-A-94/02047 wurden die folgenden erfindungsgemäßen Extrudate El bis E4 sowie das Vergleichs- extrudat VE hergestellt. Die Extrusionsmischungen der Mittel El bis E4 ließen sich ohne verfahrenstechnische Probleme extrudieren. Das Ver¬ gleichsprodukt VE war nur herstellbar, solange der Produktionsprozeß nicht länger als 60 min. unterbrochen wurde. Die Zusammensetzungen der Extrudate waren wie in Tabelle 1 aufgeführt. Das Schüttgewicht der Extrudate lag zwischen 750 und 780 g/1. Sowohl die erfindungsgemäßen Extrudate als auch das Vergleichsextrudat zeigten ein gutes Löseverhalten: es wurden nur ge¬ ringe Rückstände beim Einspülverhalten und beim Löslichkeitstest erhalten.
Zusammensetzungen von El bis E4 sowie EV (in Gew.-%).
El E2 E3 E4 EV
Cg-Ci3-Alkylbenzolsulfonat 11,5 11,5 11,5 11,5 11,5 Ci2-Ci8-Alkylsulfat 10,5 10,5 10,5 10,5 10,5 Ci2-Cj8-Alkohol mit 7 EO 4,0 4,0 4,0 4,0 4,0 Ci2-Ci8~Fettsäureseife 1,0 1,0 1,0 1,0 1,0 Polyethylenglykol mit einer 1,5 1,5 1,5 1,5 1,5 relativen Molekülmasse von 400
Zeolith (wasserfreie Aktivsubstanz) 1 199,,00 19,0 19,0 19,0 19,0 Acrylsäure-Maleinsäure-Copolymer 6,0 6,0 6,0 6,0 6,0 (Natriumsalz)
Alkalisilikat-Compound Cl 14,0
Alkalisilikat-Compound C2 14,0
Alkalisilikat-Compound C3 14,0
Alkalisilikat-Compound C4 14,0
Alkalisilikat-Compound VC 14,0
Perboratmonohydrat 21,0 21,0 21,0 21,0 21,0
Phosphonat 0,7 0,7 0,7 0,7 0,7
Natriumsulfat 1,5 1,5 1,5 1,5 1,5
Wasser und Salze aus Lösungen Rest Rest Rest Rest Rest

Claims

Patentansprüche
1. Sprühgetrocknetes, amorphes Alkalisilikat-Compound mit Sekundärwasch¬ vermögen und einem Molverhältnis M2O : Siθ2 (M = Alkalimetall) zwi¬ schen 1:1,5 und 1:3,3 dadurch gekennzeichnet, daß es anionische Tenside in Mengen von 0,5 bis weniger als 30 Gew.-% enthält.
2. Alkalisilikat-Compound nach Anspruch 1, dadurch gekennzeichnet, daß es 15 bis 80 Gew.-% Alkalisilikate, 1 bis 25 Gew.-% Aniontenside, vor¬ zugsweise bis 20 Gew.-% Aniontenside, und 10 bis 22 Gew.-% Wasser enthält.
3. Alkalisilikat-Compound nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es 15 bis 50 Gew.-%, vorzugsweise 20 bis 40 Gew.-% Alkalisilikate, 30 bis 70 Gew.-%, vorzugsweise 40 bis 65 Gew.-% Alkalicarbonate, 1,5 bis 15 Gew.-% und insbesondere 2 bis 12 Gew.-% Aniontenside, vorteil¬ hafterweise Alkylbenzolsulfonate und/oder Alk(en)ylsulfate, und 12 bis 19 Gew.-% Wasser enthält.
4. Alkalisilikat-Compound nach einem der Ansprüche 1 bis 3, dadurch ge¬ kennzeichnet, daß es ein Aufnahmevermögen für Flüssigkomponenten auf¬ weist, das um mindestens 20 %, vorzugsweise mindestens 30 % und ins¬ besondere um mindestens 50 % höher ist als das der mengengleichen Alkalisilikat-Compounds ohne Aniontenside.
5. Alkalisilikat-Compound nach einem der Ansprüche 1 bis 4, dadurch ge¬ kennzeichnet, daß es mit Flüssigkomponenten, die Inhaltsstoffe von Wasch- oder Reinigungsmitteln, insbesondere nichtionische Tenside, sind, nachbehandelt wurde.
6. Verfahren zur Herstellung eines amorphen Alkalisilikat-Compounds mit Sekundärwaschvermögen gemäß einem der Ansprüche 1 bis 5, dadurch ge¬ kennzeichnet, daß das Co pound durch Sprühtrocknung einer wäßrigen Aufschlämmung, welche sämtliche Bestandteile des Alkalisilikat-Com¬ pounds enthält, hergestellt werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß das Compound durch Sprühtrocknung einer wäßrigen Zubereitung des Mehrkomponenten¬ gemisches mit überhitztem Wasserdampf hergestellt wird.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß das sprühgetrocknete Alkalisilikat-Compound nachträglich mit flüssigen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, insbesondere mit nichtionischen Tensiden behandelt wird.
9. Verwendung eines Alkalisilikat-Compounds mit Sekundärwaschvermögen gemäß einem der Ansprüche 1 bis 5 in Wasch- oder Reinigungsmitteln, wobei letztere durch Sprühtrocknung, Granulierung, Kompaktierung wie Walzenkompaktierung oder Extrusion oder durch Mischverfahren herge¬ stellt werden.
10. Wasch- oder Reinigungsmittel, enthaltend 10 bis 16 Gew.-% Zeolith (bezogen auf wasserfreie Aktivsubstanz) und 10 bis 30 Gew.-% eines Alkalisilikat-Compounds gemäß einem der Ansprüche 1 bis 5.
11. Wasch- oder Reinigungsmittel, enthaltend 0 bis 5 Gew.- Zeolith (be¬ zogen auf wasserfreie Aktivsubstanz) und 15 bis 40 Gew.-% eines Alka¬ lisilikat-Compounds gemäß einem der Ansprüche 1 bis 5.
12. Extrudiertes Wasch- oder Reinigungsmittel mit einem Schüttgewicht oberhalb 600 g/1, enthaltend anionische und gegebenenfalls nichtio¬ nische Tenside sowie ein amorphes Alkalisilikat, dadurch gekennzeich¬ net, daß es ein amorphes Alkalisilikat-Compound mit Sekundärwaschver¬ mögen gemäß einem der Ansprüche 1 bis 5 enthält.
13. Verfahren zur Herstellung eines Wasch- oder Reinigungsmittels, wobei ein festes und rieselfähiges Vorgemisch bei Drucken bis 200 bar strangförmig verpreßt, der Strang nach Austritt aus der Lochform mit¬ tels einer Schneidevorrichtung auf die vorbestimmte Granulatdimension zugeschnitten sowie das plastische, gegebenenfalls feuchte Rohextrudat einem weiteren formgebenden Verarbeitungsschritt zugeführt und anschlie¬ ßend getrocknet wird, dadurch gekennzeichnet, daß in dem Vorgemisch ein amorphes Alkalisilikat-Compound gemäß einem der Ansprüche 1 bis 5 einge¬ setzt wird.
EP96900573A 1995-01-18 1996-01-09 Amorphes alkalisilikat-compound Expired - Lifetime EP0804529B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19501269 1995-01-18
DE19501269A DE19501269A1 (de) 1995-01-18 1995-01-18 Amorphes Alkalisilikat-Compound
PCT/EP1996/000063 WO1996022349A1 (de) 1995-01-18 1996-01-09 Amorphes alkalisilikat-compound

Publications (2)

Publication Number Publication Date
EP0804529A1 true EP0804529A1 (de) 1997-11-05
EP0804529B1 EP0804529B1 (de) 2000-03-15

Family

ID=7751688

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96900573A Expired - Lifetime EP0804529B1 (de) 1995-01-18 1996-01-09 Amorphes alkalisilikat-compound

Country Status (15)

Country Link
US (2) US6191096B1 (de)
EP (1) EP0804529B1 (de)
JP (1) JPH10512321A (de)
KR (1) KR19980701494A (de)
CN (1) CN1168154A (de)
AT (1) ATE190645T1 (de)
CZ (1) CZ226797A3 (de)
DE (2) DE19501269A1 (de)
ES (1) ES2144721T3 (de)
HU (1) HUP9702001A3 (de)
PL (1) PL324033A1 (de)
PT (1) PT804529E (de)
RU (1) RU2168542C2 (de)
SK (1) SK96297A3 (de)
WO (1) WO1996022349A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19501269A1 (de) * 1995-01-18 1996-07-25 Henkel Kgaa Amorphes Alkalisilikat-Compound
DE19525378A1 (de) * 1995-07-12 1997-01-16 Henkel Kgaa Amorphes Alkalisilicat-Compound
DE19529908A1 (de) * 1995-08-15 1997-02-20 Henkel Kgaa Verfahren zur Herstellung eines amorphen Alkalisilikats mit Imprägnierung
DE19533790A1 (de) * 1995-09-13 1997-03-20 Henkel Kgaa Verfahren zur Herstellung eines amorphen Alkalisilikats mit Imprägnierung
DE19700775A1 (de) * 1997-01-13 1998-07-16 Henkel Kgaa Verfahren zur Herstellung aniontensidhaltiger wasch- und reinigungsaktiver Tensidgranulate
DE19953792A1 (de) * 1999-11-09 2001-05-17 Cognis Deutschland Gmbh Waschmitteltabletten
EP1489934B1 (de) * 2001-09-13 2010-05-26 Daniel James Plant Flexibles energie absorbierendes material und herstellungsverfahren
DE10161597B4 (de) 2001-12-14 2005-10-20 Celanese Chem Europe Gmbh Verfahren zur Reinigung alicyclischer Alkohole
US20030203832A1 (en) * 2002-04-26 2003-10-30 The Procter & Gamble Company Low organic spray drying process and composition formed thereby
GB0221430D0 (en) * 2002-09-16 2002-10-23 Ineos Silicas Ltd Powder coating compositions
PL1729734T3 (pl) * 2004-03-30 2008-09-30 Smithkline Beecham Corp Kompozycje farmaceutyczne suszone rozpyłowo
US20060019865A1 (en) * 2004-07-20 2006-01-26 Enrique Hernandez Methods and compositions of multifunctional detergent components
US20060178289A1 (en) * 2004-07-20 2006-08-10 Enrique Hernandez Multifunctional material compositions and methods
US20070161539A1 (en) * 2006-01-12 2007-07-12 Enrique Hernandez Method of regulating degree of polymerization of an alkali metal silicate in solution using pH
US20150182960A1 (en) * 2013-12-31 2015-07-02 Ecowater Systems Llc Zeolite regeneration

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234258A (en) 1963-06-20 1966-02-08 Procter & Gamble Sulfation of alpha olefins
CA966980A (en) 1971-03-13 1975-05-06 Kawasaki Jukogyo Kabushiki Kaisha Method of treating nitrogen oxide generating substances by combustion
US3838192A (en) 1971-10-28 1974-09-24 Huber Corp J M Production of alkali metal polysilicates
US3879527A (en) 1971-10-28 1975-04-22 Huber Corp J M Alkali metal polysilicates and their production
US4006110A (en) * 1971-11-30 1977-02-01 Colgate-Palmolive Company Manufacture of free-flowing particulate heavy duty synthetic detergent composition
US3956467A (en) 1974-06-07 1976-05-11 Bertorelli Orlando L Process for producing alkali metal polysilicates
JPS6018717B2 (ja) 1976-05-18 1985-05-11 ライオン株式会社 粒状洗剤組成物
JPS6059280B2 (ja) 1976-07-09 1985-12-24 ライオン株式会社 粒状洗剤組成物の製造方法
US4129526A (en) 1977-07-14 1978-12-12 The Lion Fat & Oil Co., Ltd. Granular detergent compositions and a process for producing same
DE3209631A1 (de) * 1982-03-17 1983-09-29 Degussa Ag, 6000 Frankfurt Waessrige stabile suspension wasserunloeslicher, zum binden von calciumionen befaehigter silikate und deren verwendung zur herstellung von wasch- und reinigungsmitteln
JPS58217598A (ja) 1982-06-10 1983-12-17 日本油脂株式会社 洗剤組成物
DE3413571A1 (de) 1984-04-11 1985-10-24 Hoechst Ag, 6230 Frankfurt Verwendung von kristallinen schichtfoermigen natriumsilikaten zur wasserenthaertung und verfahren zur wasserenthaertung
AU597909B2 (en) 1985-10-09 1990-06-14 Procter & Gamble Company, The Granular detergent compositions having improved solubility
DE3706036A1 (de) 1987-02-25 1988-09-08 Basf Ag Polyacetale, verfahren zu deren herstellung aus dialdehyden und polyolcarbonsaeuren und verwendung der polyacetale
DE3914131A1 (de) 1989-04-28 1990-10-31 Henkel Kgaa Verwendung von calcinierten hydrotalciten als katalysatoren fuer die ethoxylierung bzw. propoxylierung von fettsaeureestern
DE4010533A1 (de) 1990-04-02 1991-10-10 Henkel Kgaa Tablettierte wasch- und/oder reinigungsmittel fuer haushalt und gewerbe und verfahren zu ihrer herstellung
ATE107352T1 (de) 1989-08-09 1994-07-15 Henkel Kgaa Herstellung verdichteter granulate für waschmittel.
US5075041A (en) 1990-06-28 1991-12-24 Shell Oil Company Process for the preparation of secondary alcohol sulfate-containing surfactant compositions
DK0488868T3 (da) 1990-11-30 1996-03-18 Rhone Poulenc Chimie Builder-middel på basis af akalimetalsilicater til detergentsammensætninger
DE69207990T2 (de) 1991-07-02 1996-05-30 Crosfield Joseph & Sons Silicate
DE4124701A1 (de) 1991-07-25 1993-01-28 Henkel Kgaa Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit
ATE155165T1 (de) 1991-07-31 1997-07-15 Ausimont Spa Verfahren zur erhöhung der bleichwirksamkeit eines inorganischen persalzes
DE4134914A1 (de) 1991-10-23 1993-04-29 Henkel Kgaa Wasch- und reinigungsmittel mit ausgewaehlten builder-systemen
IT1252682B (it) 1991-11-13 1995-06-23 Vomm Impianti & Processi Srl Prodotto in granuli di elevato peso specifico, particolarmente quale additivo di detersivi in polvere e metodo per il suo ottenimento
DE4221381C1 (de) 1992-07-02 1994-02-10 Stockhausen Chem Fab Gmbh Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4203031A1 (de) 1992-02-04 1993-08-05 Henkel Kgaa Verfahren zur herstellung fester wasch- und reinigungsmittel mit hohem schuettgewicht und verbesserter loesegeschwindigkeit
DE4203923A1 (de) 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
FR2688798B1 (fr) 1992-03-20 1994-10-14 Rhobb Poulenc Chimie Agent "builder" a base de silicate et d'un produit mineral.
DE4216775A1 (de) 1992-05-21 1993-11-25 Henkel Kgaa Pulverförmige Tensidmischung
DE4235646A1 (de) 1992-10-22 1994-04-28 Henkel Kgaa Verfahren zur Herstellung wasch- und reinigungsaktiver Extrudate
DE4300772C2 (de) 1993-01-14 1997-03-27 Stockhausen Chem Fab Gmbh Wasserlösliche, biologisch abbaubare Copolymere auf Basis von ungesättigten Mono- und Dicarbonsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4303320C2 (de) 1993-02-05 1995-12-21 Degussa Waschmittelzusammensetzung mit verbessertem Schmutztragevermögen, Verfahren zu dessen Herstellung und Verwendung eines geeigneten Polycarboxylats hierfür
EP0651050A1 (de) 1993-11-03 1995-05-03 The Procter & Gamble Company Oberflächenaktive Agglomerate in Teilchenform
DE4400024A1 (de) * 1994-01-03 1995-07-06 Henkel Kgaa Silikatische Builder und ihre Verwendung in Wasch- und Reinigungsmitteln sowie Mehrstoffgemische für den Einsatz auf diesem Sachgebiet
DE4405511A1 (de) * 1994-02-22 1995-08-24 Henkel Kgaa Waschmittel mit amorphen silikatischen Buildersubstanzen
DE4406592A1 (de) * 1994-03-01 1995-09-07 Henkel Kgaa Verbesserte Mehrstoffgemische auf Basis wasserlöslicher Alkalisilikatverbindungen und ihre Verwendung, insbesondere zum Einsatz als Builder in Wasch- und Reinigungsmitteln
DE4415362A1 (de) * 1994-05-02 1995-11-09 Henkel Kgaa Verfahren zur Herstellung silikatischer Buildergranulate mit erhöhtem Schüttgewicht
DE4417734A1 (de) 1994-05-20 1995-11-23 Degussa Polycarboxylate
DE4419745A1 (de) 1994-06-06 1995-12-07 Henkel Kgaa Granuliertes wasserlösliches kieselsäurehaltiges Alkalisilicat
DE19501269A1 (de) * 1995-01-18 1996-07-25 Henkel Kgaa Amorphes Alkalisilikat-Compound
DE19525378A1 (de) * 1995-07-12 1997-01-16 Henkel Kgaa Amorphes Alkalisilicat-Compound

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9622349A1 *

Also Published As

Publication number Publication date
PT804529E (pt) 2000-09-29
CZ226797A3 (cs) 1998-03-18
US20020002130A1 (en) 2002-01-03
EP0804529B1 (de) 2000-03-15
HUP9702001A2 (hu) 1998-03-02
US6191096B1 (en) 2001-02-20
RU2168542C2 (ru) 2001-06-10
DE19501269A1 (de) 1996-07-25
US6458755B2 (en) 2002-10-01
WO1996022349A1 (de) 1996-07-25
KR19980701494A (ko) 1998-05-15
PL324033A1 (en) 1998-05-11
ATE190645T1 (de) 2000-04-15
JPH10512321A (ja) 1998-11-24
HUP9702001A3 (en) 1999-03-01
CN1168154A (zh) 1997-12-17
ES2144721T3 (es) 2000-06-16
SK96297A3 (en) 1998-01-14
DE59604687D1 (de) 2000-04-20

Similar Documents

Publication Publication Date Title
EP0859827B1 (de) Verfahren zur herstellung eines amorphen alkalisilikats mit imprägnierung
WO1995022592A1 (de) Waschmittel mit amorphen silikatischen buildersubstanzen
WO1996006156A1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteltabletten
EP0804529B1 (de) Amorphes alkalisilikat-compound
EP0839178B1 (de) Amorphes alkalisilicat-compound
EP0828818B1 (de) Granulares wasch- oder reinigungsmittel mit hoher schüttdichte
EP0840780B1 (de) Granulares wasch- oder reinigungsmittel mit hoher schüttdichte
EP0793708B1 (de) Verfahren zur herstellung extrudierter wasch- oder reinigungsmittel mit wasserlöslichen buildersubstanzen
EP0799302B1 (de) Amorphes alkalisilikat mit imprägnierung
EP0845028B1 (de) Verfahren zur herstellung eines amorphen alkalisilikats mit imprägnierung
EP0724620B1 (de) Verfahren zur herstellung wasch- oder reinigungsaktiver extrudate mit verbessertem redispergiervermögen
EP0874684B1 (de) Verfahren zur herstellung eines granularen additivs
EP0888428A1 (de) Verfahren zur herstellung von granularen silikaten mit hohem schüttgewicht
EP0705330A1 (de) Verfahren zur herstellung wasch- oder reinigungsaktiver extrudate
EP0711338A1 (de) Verfahren zur herstellung wasch- oder reinigungsaktiver extrudate
EP0936267A2 (de) Alkalimetallsilicat/Niotensid-Compound
EP0888444A1 (de) Verfahren zur herstellung rieselfähiger wasch- oder reinigungsmittelgranulate
WO1996029390A1 (de) Pulverförmige bis granulare wasch- oder reinigungsmittel
EP0919614A1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmitteln mit hoher Schüttdichte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

17Q First examination report despatched

Effective date: 19980508

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

REF Corresponds to:

Ref document number: 190645

Country of ref document: AT

Date of ref document: 20000415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59604687

Country of ref document: DE

Date of ref document: 20000420

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2144721

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000616

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20000615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20001219

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010105

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010131

Year of fee payment: 6

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20010314

Year of fee payment: 6

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 20020131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020801

EUG Se: european patent has lapsed

Ref document number: 96900573.5

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020801

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20020731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070111

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20131211

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131231

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140113

Year of fee payment: 19

Ref country code: FR

Payment date: 20140108

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140108

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59604687

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150109

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150109

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150110