EP0798366A2 - Schmiermittel - Google Patents

Schmiermittel Download PDF

Info

Publication number
EP0798366A2
EP0798366A2 EP97102997A EP97102997A EP0798366A2 EP 0798366 A2 EP0798366 A2 EP 0798366A2 EP 97102997 A EP97102997 A EP 97102997A EP 97102997 A EP97102997 A EP 97102997A EP 0798366 A2 EP0798366 A2 EP 0798366A2
Authority
EP
European Patent Office
Prior art keywords
lubricant
hexakis
compounds
substituents
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97102997A
Other languages
English (en)
French (fr)
Other versions
EP0798366A3 (de
Inventor
Rudolf Dr. Eidenschink
Holger Kretzschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nematel Dr Rudolf Eidenschink
Original Assignee
Nematel Dr Rudolf Eidenschink
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nematel Dr Rudolf Eidenschink filed Critical Nematel Dr Rudolf Eidenschink
Publication of EP0798366A2 publication Critical patent/EP0798366A2/de
Publication of EP0798366A3 publication Critical patent/EP0798366A3/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/72Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M147/00Lubricating compositions characterised by the additive being a macromolecular compound containing halogen
    • C10M147/02Monomer containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/042Carbon; Graphite; Carbon black halogenated, i.e. graphite fluoride
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2211/00Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2211/06Perfluorinated compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/02Organic macromolecular compounds containing halogen as ingredients in lubricant compositions obtained from monomers containing carbon, hydrogen and halogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/003Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/021Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/0406Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • C10M2219/0463Overbasedsulfonic acid salts used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/061Thio-acids; Thiocyanates; Derivatives thereof used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/081Thiols; Sulfides; Polysulfides; Mercaptals used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/084Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/085Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/101Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12

Definitions

  • machine bearings and gearboxes are known to be provided with a lubricant that enables the solid bodies that are moved against each other to be separated as completely as possible during operation.
  • the lubricants can be divided into lubricating oils and greases.
  • Mineral oils and synthetic oils such as polyalkylene glycols, ester oils, phosphoric acid esters and silicones are used as lubricating oils (see overview in Ullmanns Enzykl. Der technical chemistry, 4th edition, vol. 20). Modern lubricating oils contain a number of additives that affect both the physical and chemical properties. These are, in particular, oxidation inhibitors, detergents, high-pressure additives, friction reducers, anti-foaming agents and corrosion inhibitors.
  • the energy losses and signs of wear occurring in a friction pairing depend in a complex manner on the material of the machine element itself, the properties of the lubricating oil, such as its viscosity and its interactions with the material, and on the pressure and speed conditions. Closed support films, such as occur in the hydrodynamic area of plain bearings or in the elastohydrodynamic area of rolling bearings, are favorable. High friction losses - and the signs of wear that correlate with them in general - occur particularly in plain bearings in the mixed friction area (cf. VDI reports 680, Das ⁇ l als Konstrutechnischsement, VDI-Verlag, Düsseldorf 1988).
  • Lubrication with greases is widespread. These consist of a lubricating oil and a solid which is dispersed in fine form, the so-called thickener, which has only a minor influence on the tribological properties, and in primarily has the function of a reservoir for the lubricating oil.
  • the known lubricants are in need of improvement because many friction pairings can only be operated with high friction losses.
  • DE 33 32 955 gives compounds of the formula I as components for liquid-crystalline phases for electro-optical displays.
  • DE 28 19 822 describes additions of less than 1% of tris and tetrakis [alkylthio] benzenes as antioxidants to conventional lubricants.
  • the object of the invention was to find a new, stable lubricant by means of which friction pairings in gears and bearings can be operated with particularly low friction losses.
  • the lubricant according to the invention may contain other compounds in addition to one or more compounds of the formula I. These can include antioxidants, such as derivatives of 2,6-di- tert -butylphenol, high-pressure additives, such as zinc dialkyl dithiophosphate, friction reducers, light stabilizers, emulsifiers or demulsifiers. However, organic compounds for varying the viscosity can also be used, such as compounds whose molecules contain benzene or naphthalene nuclei which are substituted several times by alkyl groups. If the lubricant according to the invention is a lubricating oil, these additives are present in the homogeneous liquid in a molecularly disperse form. The content of the molecularly dispersed additives in the compounds of the formula I in the lubricating oil according to the invention is at most 30%.
  • This lubricating oil can be converted in a generally known manner (cf. Ullmanns Enzykl.) By adding thickeners which are not present in the form of a molecule into a lubricating grease which is also included in the present invention.
  • Particularly suitable thickeners are lithium 12-hydroxystearate and powder made of polytetrafluoroethylene (eg microteflon powder 5 ⁇ , Dr. Tillwich GmbH, Horb).
  • polymers serving for the formation of gels such as so-called side chain polymers (H. Ringsdorf et al., Angew. Chem.
  • molybdenum disulfide is also described or graphite, one of the thickeners.
  • An inventive grease can contain up to 35% of such thickeners.
  • the distinction between molecularly disperse and non-molecularly disperse substances can be made by an ultracentrifugation (for example with the Beckman L8-M ultracentrifuge at a centrifugal acceleration between 7x10 5 and 6x10 5 m / s 2 at 25 ° C., 10 min) in a manner known per se.
  • the compounds of the formula I comprise the preferred sub-formulas Ia to Id (Y independently of one another means -SR, -SO 2 R or -SOR, Z independently of one another means -H, -Cl, -F, -R, -OH, -SH, -OR, -COOR or -OOCR):
  • sub-formulas Ia and Ib are particularly preferred.
  • the alkyl radicals -R in the substituents Y in one and the same compound can be the same or different. It can be unbranched or branched residues. Unbranched alkyl radicals are preferred. Of these, radicals having 6 to 18 carbon atoms are preferred, in particular hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, hexadecyl and octadecyl.
  • substituents Z in the partial formulas Ia to Id are preferred, with -H being particularly preferred.
  • the alkyl radicals -R in the substituents Z are each independent of one another and preferably unbranched. They mean in particular methyl, ethyl, propyl, butyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tetradecyl, hexadecyl and octadecyl.
  • the compounds of sub-formula Ic include 1,2,4,5-tetrakis [alkylthio] benzenes the 2,3,5,6-tetrakis [alkylthio] terephthalic acid alkyl esters and the 2,3,5,6-tetrakis [alkylthio] -1,2-dialkoxy-benzenes among which the terephthalic acid esters are preferred.
  • the compounds of the formula I are prepared by methods known per se, as described in the literature (for example in standard works such as Houben-Weyl, Methods of Organic Chemistry, Georg-Thieme-Verlag, Stuttgart), and under reaction conditions which are suitable for the mentioned implementations are known and suitable.
  • Compounds of the sub-formulas Ia and Ib are obtained by reacting hexachlorobenzene or pentachlorobenzene or hexafluorobenzene or pentafluorobenzene with a sodium alkylthiolate RSNa in an aprotic solvent, N, N-dimethylformamide, N-methyl-2-pyrrolidinone or preferably tetraethylene glycol dimethyl ether at 50 to 180 ° C.
  • the thiolate is first prepared in one of the solvents mentioned from the mercaptan RSH with sodium hydride or sodium amide.
  • mixtures of mercaptans can also be used, so that a mixture of compounds which are included in the sub-formulas is formed. It is assumed within the scope of the invention that the reactivity of the various thiolates towards the halogenobenzenes is the same, so that the compounds have a random substitution pattern for the various alkylthio groups. Mixtures of this type are distinguished by particularly low melting points, which results in a low pour point which is advantageous compared to known lubricants (definition see Ullmanns Enzykl.).
  • the lubricant according to the invention is excellently suitable for the lubrication of gears and machine bearings. It has also surprisingly been found that lower friction losses can be achieved in internal combustion engines when using the lubricating oil according to the invention as an engine oil than when using conventional mineral and synthetic oils. This is particularly noticeable by the lower fuel consumption of motors used in racing with a rotation frequency of> 8000 rpm.
  • percent means percent by mass.
  • the solvent is largely distilled off in vacuo (oil rotary pump) at a bath temperature of 130 ° C.
  • the residue is cooled and a total of 1 liter of 5% hydrochloric acid is added dropwise and then rapidly.
  • the resulting emulsion is first extracted with 600 ml and then twice with 200 ml of diethyl ether.
  • the combined organic phases are extracted three times with 75 ml of saturated NaCl solution and once with 100 ml of water and then dried with MgSO 4 .
  • the oily crude product of 426 g is mixed with 500 ml of acetone.
  • the isotropic melt can be subcooled to about -10 ° C (polarization microscopic observation in a heating table from Lincam).
  • a lubricant A consisting of 99% of this compound and 1.0% of the high pressure additive Irgalube 349 (Ciba-Geigy Ltd.) was compared on various devices with conventional lubricants: a) In a two-disk test stand for measuring the coefficient of friction ⁇ under elastohydrodynamic conditions (TU Kunststoff, see K. Michaelis et al., Proc. 10th Intern. Coll. Tribology - Solving Friction and Wear Problems, Vol. 2, p .
  • Example 2 In the manner shown in Example 1, 6.9 g of NaH (289 mmol) in 80 ml of tetraglyme, a solution of 11.0 g of hexyl mercaptan (96.3 mmol), 13.7 g of octyl mercaptan (96.3 mmol) and 16.3 g of decyl mercaptan (96.3 mmol) in 120 ml of tetraglyme and 12.4 g of hexachlorobenzene (43.6 mmol) produced a mixture of hexakis [alkylthio] benzenes.
  • the crude product is not crystallized, but is purified by column chromatography (200 g of silica gel 60 (Merck), petroleum ether-toluene mixture). The solvent is first spun off and the residue is freed from volatile impurities at 200 ° C. and in an oil pump vacuum at 0.2 mbar.
  • Example 1b The mixture is examined without the addition of additives in the test bench described in Example 1b. In the speed range from 0 to 1500 min -1, lower friction torques result than with the Tellus C 100 reference oil.
  • Pentakis [octylthio] benzene (melting point 12 ° C.) was prepared in the same manner and with the same molar ratios, starting from pentachlorobenzene and octyl mercaptan.
  • Example 1b In the test bench described in Example 1b, the compound showed lower coefficients of friction at 60 ° C. in the speed range from 0 to 1500 min ⁇ 1 than the comparative oil Tellus C 100 at the same temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die Verwendung der Verbindungen der allgemeinen Formel I <IMAGE> worin 4,5 oder 6 der Substituenten X1 bis X6 -SR, -SO2R oder -SOR und die übrigen Substituenten -H, -CI, -F, -OH, -SH, -R, -OR, -COOR oder -OOCR sein können, Schmiermittel führt zu geringen Reibungsverlusten als in Getrieben und Maschinenlagern.

Description

  • Zur Herabsetzung des Verschleißes und des Energieverlustes durch Reibung werden Maschinenlager und Getriebe bekanntlich mit einem Schmiermittel versehen, das während des Betriebes eine möglichst vollständige Trennung der gegeneinander bewegten Festkörper ermöglicht. Die Schmiermittel können in Schmieröle und Schmierfette unterteilt werden.
  • Als Schmieröle sind die aus Erdöl gewonnenen Mineralöle und synthetische Öle, wie Polyalkylenglykole, Esteröle, Phosporsäureester und Silikone in Gebrauch (vgl. Übersicht in Ullmanns Enzykl. der technischen Chemie, 4. Auflage, Bd. 20). Moderne Schmieröle enthalten eine Reihe von Additiven, die sowohl die physikalischen als auch die chemischen Eigenschaften beeinflussen. Dies sind insbesondere Oxidationsinhibitoren, Detergentien, Hochdruckzusätze, Reibminderer, Schaumverhütungsmittel und Korrosionsinhibitoren.
  • Die in einer Reibpaarung auftretenden Energieverluste und Verschleißerscheinungen hängen in komplexer Weise vom Werkstoff des Maschinenelementes selbst, den Eigenschaften des Schmieröls, wie seiner Viskosität und seinen Wechselwirkungen mit dem Werkstoff, sowie von den Druck- und Geschwindigkeitsverhältnissen ab. Günstig sind geschlossene Tragfilme, wie sie etwa im hydrodynamischen Bereich von Gleitlagern oder im elastohydrodynamischen Bereich von Wälzlagern auftreten. Hohe Reibungsverluste - und die im allgemeinen mit ihnen korrelierenden Verschleißerscheinungen - treten besonders in Gleitlagern im Mischreibungsgebiet auf (vgl. VDI Berichte 680, Das Öl als Konstruktionselement, VDI-Verlag, Düsseldorf 1988).
  • Weitverbreitet ist die Schmierung mit Schmierfetten. Diese bestehen aus einem Schmieröl und einem darin in feiner Form dispergierten Festkörper, dem sog. Eindicker, der auf die tribologischen Eigenschaften nur geringen Einfluß hat und in erster Linie die Funktion eines Speichers für das Schmieröl hat.
  • Die bekannten Schmiermittel sind verbesserungsbedürftig, weil sich viele Reibpaarungen mit ihnen nur mit hohen Reibungsverlusten betreiben lassen.
  • In DE 33 32 955 sind Verbindungen der Formel I als Komponenten für flüssigkristalline Phasen für elektrooptische Anzeigen genannt. DE 28 19 822 beschreibt Zusätze von weniger als 1% von Tris- und Tetrakis[alkylthio]benzolen als Antioxidatien zu herkömmlichen Schmiermitteln.
  • Aufgabe der Erfindung war es, ein neues stabiles Schmiermittel zu finden, durch dessen Verwendung Reibpaarungen in Getrieben und Lagern mit besonders niedrigen Reibungsverlusten betrieben werden können.
  • Die Aufgabe wurde gelöst durch die Verwendung einer oder mehrerer Verbindungen der allgemeinen Formel I
    Figure imgb0001
  • worin 4,
    5 oder 6 der Substituenten X1 bis X6 -SR, -SO2R oder -SOR
    und die übrigen Substituenten
    -H, -Cl, -F, -OH, -SH, -R, -OR, -COOR oder -OOCR
    sein können, worin R jeweils unabhängig voneinander einen unsubstituierten oder mehrfach durch Fluor substituierten Alkylrest mit 1 bis 18 C-Atomen bedeutet, wobei in diesem Rest eine oder mehrere CH2-Gruppen durch -O- oder -S- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind, als Schmiermittel.
  • Es wurde überraschenderweise gefunden, daß das erfindungsmäßige schwefelhaltige Schmiermittel gegenüber herkömmlichen Schmiermitteln in Getrieben und Lagern deutlich geringere Reibungsverluste zuläßt.
  • Das erfindungsmäßige Schmiermittel kann neben einer oder mehreren Verbindungen der Formel I noch andere Verbindungen enthalten. Dies können u.a. Antioxidantien, wie Derivate des 2,6-Di-tert.-butyl-phenols, Hochdruckzusätze, wie Zink-dialkyl-dithiophosphate, Reibminderer, Lichtschutzmittel, Emulgatoren oder Demulgatoren sein. Es können aber auch organische Verbindungen zur Variation der Viskosität, wie Verbindungen, deren Moleküle mehrfach durch Alkylgruppen substituierte Benzol- oder Naphthalinkerne enthalten, sein. Handelt es sich bei dem erfindungsmäßigen Schmiermittel um ein Schmieröl, so liegen diese Zusatzstoffe in molekulardisperser Form in der homogenen Flüssigkeit vor. Der Gehalt der molekulardispers in den Verbindungen der Formel I gelösten Zusatzstoffe im erfindungsmäßigen Schmieröls liegt bei höchstens 30%.
  • Dieses Schmieröl kann in allgemein bekannter Weise (vgl. Ullmanns Enzykl.) durch Zusatz von nichtmoleküldispers vorliegenden Eindickern in ein ebenfalls von der vorliegenden Erfindung umfaßtes Schmierfett überführt werden. Besonders geeignete Eindicker sind Lithium-12-hydroxystearat und Pulver aus Polytetrafluorethylen (z.B. Mikroteflonpulver 5µ, Dr. Tillwich GmbH, Horb). Innerhalb der vorliegenden Erfindungen werden auch zur Bildung von Gelen dienende Polymere, wie etwa sog. Seitenkettenpolymere (H. Ringsdorf et al., Angew. Chem. 101, 934 (1989) und dort zitierte Literatur), als auch anorganische feste Zusätze, wie Molybdändisulfid oder Graphit, zu den Eindickern gezählt. Ein erfindungsmäßiges Schmierfett kann bis zu 35 % solcher Eindicker enthalten. Die Unterscheidung zwischen moleküldispersen und nichtmoleküldispersen Stoffen kann durch eine Ultrazentrifugation (z.B. mit der Ultrazentrifuge Beckman L8-M bei einer Zentrifugalbeschleunigung zwischen 7x105 und 6x105 m/s2 bei 25°C, 10 min) in an sich bekannter Weise erfolgen.
  • Die Verbindungen der Formel I umfassen die bevorzugten Teilformeln Ia bis Id (Y bedeutet unabhängig voneinander -SR, -SO2R oder -SOR, Z bedeutet unabhängig voneinander -H, -Cl, -F, -R, -OH, -SH, -OR, -COOR oder -OOCR):
    Figure imgb0002
  • Hierunter sind die Teilformeln Ia und Ib besonders bevorzugt.
  • Von den schwefelhaltigen Substituenten Y sind -SR und -SO2R bevorzugt, besonders bevorzugt ist -SR. Die Alkylreste -R in den Substituenten Y in ein und derselben Verbindung können gleich oder ungleich sein. Es kann sich um unverzweigte oder verzweigte Reste handeln. Bevorzugt sind unverzweigte Alkylreste. Von diesen sind Reste mit 6 bis 18 C-Atomen bevorzugt, insbesondere Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tetradecyl, Hexadecyl und Octadecyl. Von den Substituenten Z in den Teilformeln Ia bis Id sind -H, -OR und -COOR bevorzugt, wobei -H besonders bevorzugt ist. Die Alkylreste -R in den Substituenten Z sind jeweils unabhängig voneinander und bevorzugterweise unverzweigt. Sie bedeuten insbesondere Methyl, Ethyl, Propyl, Butyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tetradecyl, Hexadecyl und Octadecyl.
  • Von den Verbindungen der Teilformel Ia sind insbesondere die Verbindungen
    • Hexakis[hexylthio]benzol
    • Hexakis[heptylthio]benzol
    • Hexakis[octylthio]benzol
    • Hexakis[nonylthio]benzol
    • Hexakis[decylthio]benzol
    • Hexakis[dodecylthio]benzol
    • Hexakis[tetradecylthio]benzol
    • Hexakis[hexadecylthio]benzol
    • Hexakis[octadecylthio]benzol
    • Hexakis[2-perfluorhexyl-ethylthio]benzol
    geeignet.
  • Zu den bevorzugten Verbindungen der Teilformel Ib gehören die Pentakis[alkylthio]benzole
    Figure imgb0003
    und die Pentakis[alkylthio]alkoxybenzole
    Figure imgb0004
    wovon die Verbindungen
    • Pentakis[octylthio]benzol
    • Pentakis[decylthio]benzol
    • Pentakis[dodecylthio]benzol
    • Pentakis[octylthio]octyloxybenzol
    • Pentakis[octylthio]anisol
    besonders geeignet sind.
  • Zu den Verbindungen der Teilformel Ic gehören die 1,2,4,5-Tetrakis[alkylthio]benzole
    Figure imgb0005
    die 2,3,5,6-Tetrakis[alkylthio]terephthalsäurealkylester
    Figure imgb0006
    und die 2,3,5,6-Tetrakis[alkylthio]-1,2-dialkoxy-benzole
    Figure imgb0007
    worunter die Terephthalsäureester bevorzugt sind.
  • Von den Verbindungen der Teilformel Id sind die Phthalsaäureester
    Figure imgb0008
    bevorzugt.
  • Die Verbindungen der Formel I werden nach ansich bekannten Methoden dargestellt, wie sie in der Literatur (z.B. in Standardwerken wie Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind.
  • Verbindungen der Teilformeln Ia und Ib werden durch Umsetzung von Hexachlorbenzol bzw. Pentachlorbenzol oder Hexafluorbenzol bzw. Pentafluorbenzol mit einem Natriumalkylthiolat RSNa in einem aprotischen Lösungsmittel, N,N-Dimethylformamid, N-Methyl-2-pyrrolidinon oder vorzugsweise Tetraethylenglykoldimethylether bei 50 bis 180°C hergestellt. Hierzu wird zunächst in einem der genannten Lösungsmittel aus dem Mercaptan RSH mit Natriumhydrid oder Natriumamid das Thiolat hergestellt. Statt eines reinen Mercaptans RSH können auch Gemische von Mercaptanen eingesetzt werden, so daß ein Gemisch von Verbindungen, die von den Teilformeln umfaßt sind, entsteht. Es wird im Rahmen der Erfindung angenommen, daß die Reaktivität der verschiedenen Thiolate gegenüber den Halogenbenzolen gleich ist, so daß die Verbindungen ein zufälliges Substitutionsmuster der verschiedenen Alkylthiogruppen haben. Solche Gemische zeichnen sich durch besonders niedrige Schmelzpunkte aus, was einen gegenüber bekannten Schmiermitteln vorteilhaften niedrigen Stockpunkt (Definition s. Ullmanns Enzykl.) ergibt.
  • Es wurde überraschenderweise gefunden, daß sich das erfindungsmäßige Schmiermittel ausgezeichnet zur Schmierung von Getrieben und Maschinenlagern eignet. Auch zeigte sich überraschenderweise, daß sich bei Verwendung des erfindungsgemäßen Schmieröls als Motoröl geringere Reibungsverluste in Verbrennungsmotoren erzielen lassen, als bei Verwendung herkömmlicher Mineral- und Syntheseöle. Dies macht sich insbesondere durch einen geringeren Treibstoffverbrauch von im Rennsport benutzten Motoren mit einer Drehfrequenz von >8000 U/min bemerkbar.
  • Die günstigen Schmiereigenschaften, sowie die außergewöhnlich günstigen niedrigen Dampfdrucke bei relativ niedrigen Viskositätswerten ergeben für die Verbindungen der Formel I auch vorteilhafte Anwendungsmöglichkeiten als Schmieröle für Lager von Turbomolekularpumpen und Ölrotationsvakuumpumpen.
  • Die folgenden Beispiele sollen die Erfindung erläutern ohne sie zu begrenzen. Vor- und nachstehend bedeuten Prozent Masseprozent.
  • Beispiel 1
  • 69,1 g (2,89 mol) Natriumhydrid werden unter trockenem Stickstoff in 800 ml absolutem Tetraethylenglykoldimethylether (Tetraglyme) gegeben. Zu der Suspension wird unter Rühren eine Lösung von 421 g (2,89 mol) n-Octylmercaptan in 1200 ml Tetraglyme innerhalb von 2 Stdn. zugetropft. Hiernach wird noch 1/2 Stde. gerührt und 124,4 g (0,436 mol) Hexachlorbenzol zugefügt. Es wird auf 130-135°C erwärmt und bei Feuchtigkeitsausschluß bei dieser Temperatur 20 Std. gerührt. Nach dem Abkühlen wird der Reaktionskolben mit einem Destillationsaufsatz versehen. Das Lösungsmittel wird im Vakuum (Ölrotationspumpe) bei einer Badtemperatur von 130°C weitgehend abdestilliert. Der Rückstand wird abgekühlt und zunächst tropfenweise und dann zügig mit insgesamt 1 l 5%iger Salzsäure versetzt. Die entstehende Emulsion wird zunächst mit 600 ml und dann noch zweimal mit je 200 ml Diethylether ausgeschüttelt. Die vereinigten organischen Phasen werden dreimal mit je 75 ml gesättigter NaCl-Lösung und einmal mit 100 ml Wasser ausgeschüttelt und dann mit MgSO4 getrocknet. Nach dem Abdestillieren des Ethers wird das ölige Rohprodukt von 426 g mit 500 ml Aceton versetzt. Das trübe Gemisch wird nach kurzem Erwärmen am Rückfluß zu einer klaren Lösung, aus der über Nacht bei -25°C ein gelblich weißer kristalliner Bodensatz entsteht. Die überstehende braune Lösung wird abgegossen und die Kristalle in weiteren 500 ml Aceton gelöst. Nach insgesamt 3facher, auf die gleiche Weise durchgeführte Kristallisation werden die Kristalle aufgeschmolzen und das Öl in Vakuum (0,2 mbar) bei 200°C von flüchtigen Beimengungen befreit. Ausbeute: 378 g (92 % d.Th.) Hexakis[octylthio]benzol, Schmelzpunkt -6°C, Viskosität bei 20°C 120 mm2/s, bei 40°C 51 mm2/s, Dampfdruck bei 20°C <10-8 mbar.
  • Die isotrope Schmelze läßt sich bis auf etwa -10°C unterkühlen (polarisationsmikroskopische Beobachtung in einem Heiztisch der Fa. Lincam).
  • Ein Schmiermittel A, bestehend aus 99% dieser Verbindung und 1,0% des Hochdruckzusatzes Irgalube 349 (Ciba-Geigy Ltd.) wurde an verschiedenen Geräten mit herkömmlichen Schmiermitteln verglichen:
    a) In einem Zwei-Scheiben-Prüfstand zur Messung des Reibungskoeffizienten µ unter elastohydrodynamischen Bedingungen (TU München, vgl. K. Michaelis et al., Proc. 10th Intern. Coll. Tribology - Solving Friction and Wear Problems, Vol. 2, S. 1363-75, 1996) wurde bei einer Hertzschen Pressung von 1000 N/mm2, einer Schmiermitteltemperatur von 60°C, einer Summengeschwindigkeit der Scheiben von 16 m/s und einem Schlupf von 20 % eine Reibungszahl µ von 0,012 gemessen (Definition s. K. Michaelis). Im Vergleich dazu hat das kommerzielle Öl M100 (Mineralölbasis ISO VG 100) ein µ von 0,031. Aus diesem Ergebnis lassen sich nach bekannten Zusammenhängen besonders niedrige Reibungsverluste bei Zahnradgetrieben und Schneckengetrieben ableiten.
    b) In einem Prufstand für Kugelgewindetriebe (Universität Karlsruhe, vgl. D. Spath et al. Annals of the CIRP Gen. Assembly, Vol. 44/1, Enschede 1995) zur Ermittlung des Reibverhaltens im Mischreibungsgebiet und im hydrodynamischen Bereich wurde ein Kugelgewindeantrieb 40x20(Linearkugellager) der Fa. Deutsche Star (Einzelmuttern mit Vierpunktberührung, Kugeldurchmesser 6 mm, Vorspannkraft 3,5 kN (Def. s. Spath et al.) mit dem Schmiermittel A betrieben. Bei einer Temperatur des Kugelgewindetiebes von 20°C wurde das Reibmoment in Abhängigkeit von der Drehzahl (alle Definitionen s. Spath et al.) gemessen. Der Übergang von der Mischreibung zur hydrodynamischen Reibung erfolgt bei der Drehzahl nü, bei der nach allgemein bekannter Gesetzmäßigkeit gleichzeitig das kleinste erreichbare Reibmoment angezeigt wird. Der Anstieg des Reibmoments (in Nm) zwischen nü und der hohen Drehzahl von 1500 min-1 ist auf die innere Reibung im Schmiermittels zurückzuführen. Der Vergleich mit dem Standardöl Tellus C100 (Mineralöl, Shell) ergibt folgende Werte.
    Tellus C100 0,88 Nm (nü=40 min-1), 1,75 Nm (1500 min-1)
    Schmieröl A 0,25 (nü=40 min-1), 0,70 Nm (1500 min-1)
  • Beispiel 2
  • In der in Beispiel 1 gezeigte Weise werden aus 6,9 g NaH (289 mmol) in 80 ml Tetraglyme, einer Lösung von 11,0 g Hexylmercaptan (96,3 mmol), 13,7 g Octylmercaptan (96,3 mmol) und 16,3 g Decylmercaptan (96,3 mmol) in 120 ml Tetraglyme sowie 12,4 g Hexachlorbenzol (43,6 mmol) ein Gemisch aus Hexakis[alkylthio]benzolen erzeugt. Das Rohprodukt wird jedoch nicht kristallisiert, sondern durch Säulenchromatographie (200 g Kieselgel 60 (Merck), Petroleumbenzin-Toluol-Gemisch) gereinigt. Das Lösungsmittel wird zunächst abrotiert und der Rückstand bei 200°C und im Ölpumpenvakuum bei 0,2 mbar von flüchtigen Verunreinigungen befreit.
  • Das Gemisch wird ohne Zusatz von Additiven in dem in Beispiel 1b beschriebenen Prüfstand untersucht. Es ergeben sich im Drehzahlbereich von 0 bis 1500 min-1 geringere Reibmomente als mit dem Vergleichsöl Tellus C 100.
  • Beispiel 3
  • In der in Beispiel 1 gezeigten Weise werden aus 5,8 g NaH (241 mmol), 80 ml Tetraglyme, einer Lösung aus 46,7 g Dodecylmercaptan (241 mmol) in 120 ml Tetraglyme sowie 10,9 g (43,6 mmol) Pentachlorbenzol Pentakis[dodecylthio]benzol hergestellt. Ausbeute: 40 g (80 % d.Th.), Schmelzpunkt 36°C.
  • In der gleichen Weise und unter Einhaltung gleicher Molverhältnisse wurde ausgehend von Pentachlorbenzol und Octylmercaptan Pentakis[octylthio]benzol (Schmelzpunkt 12 °C) hergestellt.
  • Die Verbindung zeigte in dem in Beispiel 1b beschriebenen Prüfstand bei 60°C im Drehzahlbereich von 0 bis 1500 min-1 geringere Reibwerte als das Vergleichsöl Tellus C 100 bei derselben Temperatur.
  • Beispiel 4
  • Eine Mischung von 75% Hexakis[octylthio]benzol mit 25% der niederviskosen Verbindung 4-trans-(4-Propyl-cyclohexyl)ethyl-benzol ergab in dem in Beispiel 1b aufgeführten Prüfstand unter den dort genannten Bedingungen ebenfalls günstigere Reibmomente als mit dem Öl Tellus C 100.
  • Beispiel 5
  • 10,0 g des flüssigen Gemisches von Verbindungen der allgemeinen Formel I aus Beispiel 2 werden mit 0,2 g des Antioxidans 2,6-Di-tert.-butyl-4-methyl-phenol und 1,0 des Hochdruckzusatzes Zink-dibutyl-dithiophosphat versetzt. In das nach kurzem Rühren bei Raumtemperatur als homogene Flüssigkeit entstandene Schmieröl werden 3,0 g des Polytetrafluorethylen-Pulvers Hostafon TF 9202 (Hoechst AG) gerührt. Die Suspension wird bei Raumtemperatur in einem handelsüblichen Ultraschallbad (20 KHz, 200 W) 30 min lang behandelt. Das entstandene Schmierfett hat einen Gehalt an Eindicker von 21,1 %.

Claims (5)

  1. Verwendung von Verbindungen der allgemeinen Formel I
    Figure imgb0009
    worin 4,   5 oder 6 der Substituenten X1 bis X6
    -SR, -SO2R oder -SOR
    und die übrigen Substituenten
    -H, -Cl, -F, -OH, -SH, -R, -OR, -COOR oder -OOCR
    sein können, wobei R jeweils unabhängig voneinander einen unsubstituierten oder mehrfach durch Fluor substituierten Alkylrest mit 1 bis 18 C-Atomen bedeutet, wobei in diesem Rest eine oder mehrere CH2-Gruppen durch -O- oder -S- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind, als Schmiermittel.
  2. Verwendung von Verbindungen nach Anspruch 1, worin alle 6 Substituenten X1 bis X6 -SR sind, als Schmiermittel.
  3. Verwendung von Verbindungen nach Anspruch 1, worin 5 Substituenten X1 bis X6 -SR sind, als Schmiermittel.
  4. Verwendung von Verbindungen nach einem der vorangehenden Ansprüche, in denen R jeweils unabhängig voneinander einen unverzweigten Alkylrest mit 1 bis 18 C-Atomen bedeutet, als Schmiermittel.
  5. Verwendung von Verbindungen nach einem der vorangehenden Ansprüche als Motoröl in Verbrennungsmotoren, die eine Kolbenfrequenz von >8000 Z/min haben.
EP97102997A 1996-03-25 1997-02-25 Schmiermittel Withdrawn EP0798366A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19611466 1996-03-25
DE19611466A DE19611466A1 (de) 1996-03-25 1996-03-25 Schmiermittel

Publications (2)

Publication Number Publication Date
EP0798366A2 true EP0798366A2 (de) 1997-10-01
EP0798366A3 EP0798366A3 (de) 1998-09-02

Family

ID=7789162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97102997A Withdrawn EP0798366A3 (de) 1996-03-25 1997-02-25 Schmiermittel

Country Status (3)

Country Link
US (1) US5866522A (de)
EP (1) EP0798366A3 (de)
DE (1) DE19611466A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026184A1 (de) * 1998-11-03 2000-05-11 Nematel Dr. Rudolf Eidenschink Bisphenylthio-verbindungen
WO2019133408A1 (en) * 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Phase change materials for enhanced heat transfer fluid performance

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2368801A1 (en) * 1999-04-30 2000-11-09 Slil Biomedical Corporation Conjugates as therapies for cancer and prostate diseases
ES2384584T3 (es) * 2006-09-28 2012-07-09 Idemitsu Kosan Co., Ltd. Composición de aceite lubricante
DE102009005021B4 (de) 2009-01-17 2018-05-17 Christian Oliver Eidenschink Schmiermittel und seine Verwendung
DE102009013072A1 (de) 2009-03-13 2010-09-16 Nematel Gmbh & Co. Kg Schmieröl enthaltend Di-1,4-Cyclohexylen-Verbindungen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228989A (en) * 1962-06-27 1966-01-11 Dow Chemical Co Aryl alkyl thioethers
US4163006A (en) * 1977-05-09 1979-07-31 Ciba-Geigy Corporation Compositions stabilized with polyalkylthiobenzenes
US4578210A (en) * 1983-09-13 1986-03-25 Merck Patent Gesellschaft Mit Beschrankter Haftung Carbocyclic six-membered ring compounds

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0082812B2 (de) * 1981-12-03 1987-01-28 Ciba-Geigy Ag Phenole und ihre Verwendung als Stabilisatoren
US4533753A (en) * 1982-09-30 1985-08-06 Ethyl Corporation (Hydrocarbylthio)phenols and their preparation
US5641737A (en) * 1995-12-18 1997-06-24 The United States Of America As Represented By The Secretary Of The Air Force Powdered sulfones as high temperature lubricants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228989A (en) * 1962-06-27 1966-01-11 Dow Chemical Co Aryl alkyl thioethers
US4163006A (en) * 1977-05-09 1979-07-31 Ciba-Geigy Corporation Compositions stabilized with polyalkylthiobenzenes
US4578210A (en) * 1983-09-13 1986-03-25 Merck Patent Gesellschaft Mit Beschrankter Haftung Carbocyclic six-membered ring compounds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026184A1 (de) * 1998-11-03 2000-05-11 Nematel Dr. Rudolf Eidenschink Bisphenylthio-verbindungen
US6548462B1 (en) * 1998-11-03 2003-04-15 Nematel Dr. Rudolph Eidenschink Bisphenyl thiocompounds
WO2019133408A1 (en) * 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Phase change materials for enhanced heat transfer fluid performance
WO2019133409A1 (en) * 2017-12-28 2019-07-04 Exxonmobil Research And Engineering Company Friction and wear reduction using liquid crystal base stocks

Also Published As

Publication number Publication date
US5866522A (en) 1999-02-02
DE19611466A1 (de) 1997-10-02
EP0798366A3 (de) 1998-09-02

Similar Documents

Publication Publication Date Title
DE69115185T2 (de) Arbeitsmittelzusammensetzung für Kältemaschinen.
DE112009000197B4 (de) Verwendung einer fluorhaltigen Diamid-Verbindung
DE69221656T2 (de) Ölzusammensetzung für Kältemaschinen
EP0819754B1 (de) Beta-Dithiophosphorylierte Propionsäure in Schmierstoffen
EP2078714A2 (de) Imidazolinium-Salze mit niedrigem Schmelzpunkt, Verfahren zu deren Herstellung und deren Verwendung als Schmiermittel
EP0205995B1 (de) Schmiermittel und Anwendung desselben
DE60300494T2 (de) Phosphorothionate
DE832031C (de) Verfahren zur Herstellung von Schmiermitteln
DE1594515C3 (de) Verwendung von Phosphorsäureamiden als funktioneile Flüssigkeiten
CA2636814A1 (en) Lubricant oil and lubricating oil additive concentrate compositions
CN105623797A (zh) 一种低味、低腐蚀齿轮润滑油添加剂组合物及其制备方法
EP0798366A2 (de) Schmiermittel
DE102007055554B4 (de) Verwendung eines Schmiermittels zur Verminderung von Reibungsverlusten zwischen gegeneinander bewegten Festkörpern in Maschinenlagern oder zur Schmierung von Kolben hochtouriger Verbrennungsmotoren
EP0184043B1 (de) Schmiermittelzusatz
DE69002511T2 (de) Neue Thiophosphorverbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung als Schmiermittelzusatzstoffe.
EP1127048A1 (de) Bisphenylthio-verbindungen
JPH057438B2 (de)
DE909243C (de) Schmiermittel
DE19714027A1 (de) Schmiermittel
Murphy et al. Pinic Acid Diesters-Effect of Amide-Type Compounds
EP0328488A2 (de) Asymmetrische Disulfide in Schmierstoffzusammensetzungen
JP7476534B2 (ja) 潤滑油組成物及び機械装置
JPH11171892A (ja) 新規な亜リン酸エステル誘導体
DE2403490C3 (de) Verwendung von Äthylphenylestern der Orthophosphorsäure als Schmiermittel oder Kraftübertragungsmittel
JP2002501558A (ja) 作動潤滑油の濾過性向上のための低分子量界面活性剤の使用

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: C10M105/72

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19981223

17Q First examination report despatched

Effective date: 19991111

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040901