EP0791133B1 - Drosselvorrichtung für eine brennkraftmaschine - Google Patents

Drosselvorrichtung für eine brennkraftmaschine Download PDF

Info

Publication number
EP0791133B1
EP0791133B1 EP96904742A EP96904742A EP0791133B1 EP 0791133 B1 EP0791133 B1 EP 0791133B1 EP 96904742 A EP96904742 A EP 96904742A EP 96904742 A EP96904742 A EP 96904742A EP 0791133 B1 EP0791133 B1 EP 0791133B1
Authority
EP
European Patent Office
Prior art keywords
throttle
throttle device
control unit
housing
bypass conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96904742A
Other languages
English (en)
French (fr)
Other versions
EP0791133A1 (de
Inventor
Walter Schlagmüller
Gerhard Schellenberg
Thomas Wiesa
Rolf Litzinger
Harald Laue
Jürgen ROTTLER
Ralph Schimitzek
Peter Jauernig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0791133A1 publication Critical patent/EP0791133A1/de
Application granted granted Critical
Publication of EP0791133B1 publication Critical patent/EP0791133B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1065Mechanical control linkage between an actuator and the flap, e.g. including levers, gears, springs, clutches, limit stops of the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0294Throttle control device with provisions for actuating electric or electronic sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/18Packaging of the electronic circuit in a casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/107Manufacturing or mounting details

Definitions

  • the invention relates to a throttle device for a Internal combustion engine according to the preamble of claim 1. It is already a throttle device for an internal combustion engine known (GB-A-2 245 932), which has a housing with at least one in a throttle body of the housing throttle body rotatably housed. Furthermore, is over the throttle organ is guided around a bypass duct, the Cross section of an idle actuator is changeable. The Throttle body and the idle actuator are in one shared housing. An electronic one Control device that provided electrical signals from Can evaluate sensors in order based on the evaluation e.g. B. appropriate control of the idle actuator to be able to make is not available.
  • EP-A-596 392 is also a Throttle device known, the one in a housing of Throttle body arranged electronic Control unit shows that in connection with a Throttle valve actuator and one Throttle valve angle encoder is. But it is not Bypass channel formed in the throttle body, and it is also no regeneration valve in or on the throttle valve connector provided, which in turn electrical connecting lines from the control unit to the regeneration valve.
  • a compact and in particular pre-testable unit that an electronic control unit, an idle actuator and therefore, there is no regeneration valve.
  • the Throttle device has a throttle body in the form of a Throttle valve that rotates in a throttle body is housed. Furthermore, the throttle device a bypass channel, the cross section of one Idle controller changeable for the purpose of idle control is. In addition, the throttle is upstream Temperature sensor provided, which the temperature of the Throttle valve connector measures flowing air.
  • the Throttle device is attached to an air distributor, that in the area of a cylinder head of the internal combustion engine is provided to the metered by the throttle valve Air through individual suction pipes to individual combustion chambers of the Distribute internal combustion engine. There is a in the air distributor Pressure sensor housed, the air pressure in the Air distributor measures.
  • Modern engine control systems require a variety of Information about important company sizes of the Internal combustion engine provided by sensors and for Evaluation of an electronic control unit in the form electrical signals are supplied.
  • the electronic Control unit calculates corresponding ones based on the sensor signals Control signals for the actuators of the engine control, such as for example for the ignition or for the Mixture preparation.
  • An important factor is the Air mass drawn in by the internal combustion engine. It is known, for example from the rotational position of the Throttle valve and the associated speed of the Determine internal combustion engine.
  • this method is relatively imprecise, so air mass meters are used, the upstream of the throttle valve by means of a heated temperature-dependent measuring element in the form of a hot wire or a hot film the air mass in the throttle valve assembly determine.
  • Such air mass meters are, however relatively expensive.
  • Another way to get around with relatively high accuracy the air mass sucked in by the internal combustion engine determine consists of this indirectly from the density of the Air in the throttle body and from the associated Stroke volume of the individual pistons of the internal combustion engine determine.
  • the density of the intake air can be determined from the Calculate the state variables of temperature and pressure of the air, what in the prior art mentioned at the beginning Temperature sensor and a pressure sensor is provided. in the However, there is an idle range of the internal combustion engine relatively low flow velocity in the Throttle body so that the intake air relatively long in the throttle valve neck and the for example subsequent air distributor.
  • An engine control system takes over the air mass that is sucked in also the control of a regeneration valve, part of a Fuel Evaporation Restraint System One Fuel tanks of the internal combustion engine is.
  • the engine control system requires other information about the current position of the Throttle valve, for which a rotary encoder for example in Shape of a precision potentiometer on one Throttle valve shaft of the throttle valve is provided.
  • the electronic control unit, the regeneration valve, the Idle actuator, the temperature sensor and the pressure sensor are relatively far apart in individual housings housed away.
  • the electronic control unit is usually located in the engine compartment or in the Passenger compartment of a motor vehicle.
  • the idler, that Regeneration valve, the temperature sensor and the pressure sensor are provided in the area of the throttle body, so that to connect especially with the electronic Control unit a variety of electrical connection lines and plug connections are required.
  • the attachment of the individual components and the connecting lines as well however, checking them is particularly important during assembly in Mass production expensive.
  • the throttle device according to the invention for a Internal combustion engine with the characteristic features of the Claim 1 has the advantage that a compact Component is created that is inexpensive to manufacture and especially as pre-fabricated and pre-tested Unit in a simple manner on the motor vehicle can be grown. This advantageously results from the Elimination of the otherwise usual individual housings and their electrical connecting cables and plug connections further cost savings and simplified assembly in the Mass production. In addition, due to the reduced number electrical connecting cables and plug connections Operational safety and reliability of the Throttle device increased. The placement of a Regeneration valve in one around the throttle valve bypass channel allows a special compact design of the invention Throttling device.
  • a temperature sensor and for example, a pressure sensor in the bypass channel has the Advantage that especially during the critical Idle phase of the internal combustion engine a precise determination of the air mass flowing in the throttle valve body possible is.
  • FIG. 1 shows a schematically simplified functional representation of a Throttle device according to the invention
  • Figure 2 a Exploded view of the invention Throttle device
  • Figure 3 is a side view of the Throttle device according to the invention
  • Figure 4 a Sectional view of the throttle device according to the invention along a line IV-IV in Figure 3
  • Figure 5 a Sectional view of the throttle device according to the invention along a line V-V in Figure 3.
  • FIG. 1 to 5 is one marked with 1 Throttle device shown as a functional unit Part of an engine control system no closer internal combustion engine shown.
  • the throttle device 1 essentially comprises a throttle body 2, a electronic control unit 3, a regeneration valve 4 and an idle actuator 5 and is particularly for mixture-compressing, spark-ignition internal combustion engines intended.
  • the regeneration valve 4 is not part of one shown fuel evaporation retention system one Fuel tanks of the internal combustion engine, its structure and Function is like that of the Bosch Technical Instruction, Motronic engine management, second edition, August 1993, on pages 48 and 49.
  • the throttle device 1 has a housing which for Example of plastic in plastic injection molding technology is made. As shown in Figure 2, the Throttle device 1 or the housing one tubular, elongated shape, essentially of a throttle body 9 is formed. Of the Throttle body 9 has one of the End region facing the internal combustion engine has a flange part 11, the one for attachment to a not closer air distributor shown serves.
  • the throttle body 2 is in the Throttle body 9 rotatably housed and has for example, the shape of a dashed line in Figure 2 shown throttle valve 2. Inside the Throttle body 9 flows a gaseous medium, in particular the air drawn in by the internal combustion engine, which, for example, via a not shown Air filter flows into the throttle valve connector 9.
  • Figure 1 flows the air in the throttle valve connector 9 from the left to the right and in Figures 2 and 3 from top to bottom. The direction of flow of air is by appropriate Arrows 12 marked in Figures 1, 2 and 3.
  • the engine power of the internal combustion engine is known to be by turning the throttle valve 2 in the throttle valve connector 9 controlled so that more or less air at the Throttle valve 2 flows past.
  • the throttled air flows from the throttle body 9, for example in the Air distributor that connects the air to the individual suction pipes individual combustion chambers of the internal combustion engine distributed.
  • a upstream of an intake valve of the internal combustion engine in Intake pipe provided fuel injector mixes the Air fuel to create an ignitable fuel-air mixture to get in the combustion chamber.
  • the Throttle valve 2 is, for example, not closer
  • Actuator shown provided for Example has the shape of a rope pulley. The pulley is rotatably on a throttle valve shaft 6 of the throttle valve 2 attached to by means of a led to an accelerator pedal Cable to be turned.
  • the Throttle device 1 has a bypass duct 21 which is in the Throttle valve connector 9 upstream of throttle valve 2 located discharge opening 22 with a downstream of the Throttle valve 2 connecting discharge opening 23 connects so that a part of the air flowing in the throttle valve connector 9 in Bypass channel 21 flows around the throttle valve 2.
  • the electronic control unit 3 of the engine control system needs a lot of information about important Operating variables of the internal combustion engine, which of sensors provided and the electronic control unit 3 for Evaluation are fed.
  • An important company size represents the air mass drawn in by the internal combustion engine
  • the air mass can be known from the density and the volume of air.
  • the volume of air is the stroke volume of the individual pistons Internal combustion engine specified.
  • the density of the air can be from the state variables of temperature and pressure of the air, for example using the general gas equation for ideal gases, calculate. With the stroke volume of the individual Pistons of the internal combustion engine and the density of the air are standing then all sizes for the electronic control unit 3 for Available to the mass of the throttle body 9 to calculate flowing air. Determining the density of the Air takes place by means of a temperature sensor 16 and one Pressure sensor 17.
  • the pressure sensor 17 can also be used for pressure measurement Bypass channel 21 may be arranged to the pressure of the to measure flowing air. But it is also possible to use this anywhere, for example on the throttle valve connector 9 to arrange there to the pressure of the flowing air measure up.
  • the measurement of the temperature in the bypass channel 21 by means of the Temperature sensor 16 has the advantage that in particular at low air flow rates in the throttle valve connector 9 a improved measuring accuracy compared to a temperature measurement in the throttle valve connector 9.
  • this is due to the fact that from opening and closing the Inlet valves outgoing pulsations of the flow only in weakened form up to the measuring point of the temperature sensor 16 in the bypass channel 21 can penetrate to the measurement result to affect.
  • the is in the idle range Internal combustion engine due to the throttle effect Throttle valve 2 is a pressure difference at the throttle valve 2 present, leading to an increase in Flow velocity of the air in the bypass duct 21 leads. Due to the enlarged in the idle range Flow velocity of the air in the bypass duct 21 can Temperature changes in the intake air, for example due to heating of the throttle valve connector 9, quickly are detected, so that especially during the critical idle phase of the engine a high Setting accuracy.
  • FIG. 2 an exploded view and in the FIG. 3, a side view of the throttle device 1, is shown, the electronic control unit 3 in a first box-shaped housing part 30 of the Throttle device 1 housed.
  • the first housing part 30 is radially leading away from the throttle valve connector 9 and has a first housing edge 31.
  • Main component of the Electronic control unit 3 is one in FIG. 4, one Sectional view along a line IV-IV in Figure 3, substrate 32 shown on which a variety electrical components, for example in hybrid construction are upset.
  • substrate 32 is shown in FIG Plastic, so that a sealed, compact control unit module 35 results.
  • the control module 35 also has one also in the plastic embedded metal plate 36, which has several openings, around the metal plate 36 or the control unit module 35 for example by means of screws, not shown screw the first box-shaped housing part 30.
  • the control unit module 35 sits on the first Housing edge 31 and closes the first housing part 30.
  • the metal plate 36 is a when installed circular inner wall 26 of the throttle valve connector 9 facing and arranged close to this over the Metal plate 36 has good thermal contact to im Throttle valve connector 9 to produce flowing air the operation of the electronic control unit 3 heat generated by the throttle body 9 flowing air can be removed.
  • the electronic control unit 3 for contacting and power supply for example, two Power strips 37, the outer surface 44 of the Control module 35 protrude and on which connector can be plugged on. Furthermore, the Control unit module 35 protruding from a side surface 38 Contact tabs 39 that are at least partially in the plastic of the control unit module 35 are integrated. The Contact flags 39 are not shown electrical connections with the electrical components of the Substrate 32 electrically connected.
  • second box-shaped housing part 40 is transverse to the first box-shaped housing part 30 a second provided box-shaped housing part 40 so that for example, there is a right-angled corner.
  • second box-shaped housing part 40 at least partially the bypass channel 21.
  • the second Housing part 40 is also from the throttle valve connector 9 Continuously open radially and has a second housing edge 34.
  • the bypass channel 21 is one of the second box-shaped housing part 40 covering Unit module 41 is closed to the outside.
  • the Unit module 41 has a plate-like shape and is for Example made of plastic.
  • the unit module 41 has several recesses to the regeneration valve 4, the Idle actuator 5 and the pressure sensor 17 for example by means of snap connections and to hold.
  • the Unit module 41 also serves to hold one Angle of rotation encoder 7, for example in the form of a Precision potentiometer is formed.
  • the Angle of rotation encoder 7 is non-rotatable with that in the second Housing part 40 extending throttle valve shaft 6 of the Throttle valve 2 connected to according to the rotational position the throttle valve 2 a certain resistance value assume so that corresponding electrical signals to the electronic control unit 3 can be supplied.
  • rotary angle sensors 7 is known to the person skilled in the art and can be found, for example, in DE-OS 42 11 616.
  • the unit module 41 also has, for example, in FIGS Plastic of the unit module 41 integrated electrical Lines 47, 48, 49, 50, 51 to an electrical connection of the components 4, 5, 7, 16, 17 of the unit module 41 with the produce electronic control unit 3.
  • the regeneration valve 4 via the electrical lines 47, the idle actuator 5 on the electrical lines 48, the temperature sensor 16 via the electrical lines 49, the pressure sensor 17 via the electrical lines 50 and the rotary encoder 7 on the electrical lines 51 with contact lugs 45 am Unit module 41 electrically connected.
  • the contact tabs 45 protrude from a side surface 42 of the unit module 41 and have an angled shape. In the installed state of the Unit module 41 runs an end region of the contact lugs 45 of the unit module 41 in parallel and touching them Contact lugs 39 of the control unit module 5, for example to make electrical contact by means of laser soldering.
  • Closure cover 58 also has a protuberance 64, which in the attached state of the closure cover 58 likewise those coupled with the contact lugs 45 Contact lugs 39 of the control unit module 35 encloses and this seals.
  • the cover 58 is for example by means of a snap connection or the like on the second Housing part 40 held.
  • the regeneration valve 4 is in a known manner from controlled electronic control unit 3 clocked to at certain operating conditions, especially when idling Internal combustion engine, fuel vapor downstream of the Throttle valve 2 to initiate in the bypass duct 21, the then from the bypass duct 21 into the throttle valve connector 9 flows on.
  • the regeneration valve 4 is electromagnetic trained to be actuated and has a structure that for example, DE-OS 40 23 044 can be removed and therefore is not described in more detail below.
  • the idle actuator 5 is also electromagnetic can be operated, for example, as an electrical rotary actuator trained and by the electronic control unit 3 controllable.
  • the idle actuator 5 is essentially of a rotor 60 and a stator 61.
  • the rotor 60 for example a permanent magnet 63 fixedly connected to the rotor 60 mounted rotatably in the stator 61 on a fixed axis is.
  • the end portion of the rotor 60 has the shape of a tubular segment-shaped slide 62, in order to Rotary vane principle by changing the angular position of the Slider 62 an opening cross section 65 of the bypass channel 21 to enlarge or reduce, whereby the Air flow in the bypass duct 21 can be set.
  • the stator 61 consists essentially of a coil 66 which in energized state generates a magnetic field with which Effect on the permanent magnet 63 of the rotor 60 with the Slider 62 can be rotated.
  • the current is from electronic control unit 3, for example, with the help of electrical signals of the rotary encoder 7 made to almost independent of the load on the internal combustion engine a required idle speed of the internal combustion engine to keep constant.
  • the structure of idle actuators is that Known in the art and can for example DE-OS 42 26 548 be removed.
  • the placement of components 4, 5, 7, 16 and 17 of the Unit module 41 in the second box-shaped housing part 40 and the design of the bypass channel 21 is such that in the direction of flow 24 of those flowing in the bypass duct 21 Air first the idle actuator 5, then the regeneration valve 4, then the temperature sensor 16 and finally the pressure sensor 17 follows.
  • the flow direction 24 in the bypass channel 21 intended sequence of idle actuator 5, regeneration valve 4, temperature sensor 16 and pressure sensor 17 is also interchangeable. So it is also possible, for example, that Regeneration valve 4 downstream of the temperature sensor 16 and to provide the idle actuator 5.
  • the pressure sensor 17 can also at any point in the bypass duct 21 or on Throttle body 9 itself can be accommodated. As in 4, a sectional view along a line IV-IV in FIG. 3, the pressure sensor 17 for example on the same level as the Regeneration valve 4 downstream of it in the bypass channel 21 be accommodated.
  • the pressure sensor 17 shown does not directly measure the pressure in the bypass channel 21, but has, for example Hose connection 69 to the hose connection Pressure of the air flowing in the throttle valve connector 9 to measure downstream of the throttle valve 2.
  • the pressure sensor 17 has, for example, a membrane 70 that is deformed more or less when there is a pressure difference.
  • the Deformation of the membrane 70 can be caused by, for example, in Thick film technology applied to the membrane 70 Expansion resistances are detected, the deformation deliver appropriate electrical signals, which then from electronic control unit 3 are evaluated to the To determine pressure.
  • pressure sensors it is also possible to use pressure sensors other structure to use.
  • the construction of pressure sensors is known to the person skilled in the art and can, for example, DE-OS 41 11 149 are taken.
  • temperature sensor 16 is a temperature dependent Resistor provided, for example as an NTC or PTC resistor 71 is formed.
  • the resistor 71 has, for example a cylindrical shape. But it is also possible to get one temperature dependent resistance in the form of a wire, one Film or foil to use.
  • the one shown in Figure 2 Resistor 71 is on one of the throttle valve connector 9 facing end face 74 of the unit module 41 at a distance attached to this and for example by means of the End surface 74 of protruding brackets 72, for example by soldering its leads 75 to the brackets 72 held. But it is also possible to have different designs Use temperature sensors.
  • too Temperature sensors are used that can be plugged into the Unit module 41 can be introduced and with a temperature-dependent, partly in the bypass duct 21 protruding sensor part the temperature of the in the bypass channel Measure 21 flowing air.
  • Such temperature sensors are known to the person skilled in the art, for example, from DE-OS 30 44 419.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Means For Warming Up And Starting Carburetors (AREA)

Abstract

Elektronische Motorsteuerungssysteme besitzen mehrere Einzelkomponenten am Ansaugrohr, die teilweise relativ weit voneinander entfernt sind. Zur elektrischen Verbindung der Einzelkomponenten mit dem elektronischen Steuergerät sind daher relativ lange elektrische Verbindungsleitungen und relativ viele Steckverbindungen notwendig. Es wird eine vormontierbare Drosselvorrichtung (1) vorgeschlagen, die wenigstens ein in einem Drosselklappenstutzen (9) drehbar untergebrachtes Drosselorgan (2) und einen Leerlaufsteller (5) in einem Gehäuse (9, 30, 40) umfaßt, das einen um das Drosselorgan (2) herumgeführten, vom Leerlaufsteller (5) veränderbaren Bypasskanal (21) aufweist, in welchen ein Regenerierventil (4) Brennstoff abgeben kann, das von einem ebenfalls im Gehäuse (9, 30, 40) untergebrachten elektronischen Steuergerät (3) ansteuerbar ist. Die erfindungsgemäße Drosselvorrichtung ist insbesondere für gemischerdichtende, fremdgezündete Brennkraftmaschinen vorgesehen.

Description

Stand der Technik
Die Erfindung geht aus von einer Drosselvorrichtung für eine Brennkraftmaschine nach der Gattung des Anspruchs 1. Es ist bereits eine Drosselvorrichtung für eine Brennkraftmaschine bekannt (GB-A-2 245 932), die ein Gehäuse besitzt, mit wenigstens einem in einem Drosselklappenstutzen des Gehäuses drehbar untergebrachten Drosselorgan. Des weiteren ist um das Drosselorgan ein Bypasskanal herumgeführt, dessen Querschnitt von einem Leerlaufsteller veränderbar ist. Das Drosselorgan und der Leerlaufsteller sind dabei in einem gemeinsamen Gehäuse untergebracht. Ein elektronisches Steuergerät, das elektrische Signale von vorgesehenen Sensoren auswerten kann, um anhand der Auswertung damit z. B. eine entsprechende Steuerung des Leerlaufstellers vornehmen zu können, ist nicht vorhanden. Auch ein Regenerierventil, mit dem die Einleitung von Brennstoff aus einem Brennstoffverdunstungs-Rückhaltesystem eines Brennstofftanks einer Brennkraftmaschine durchgeführt werden kann, fehlt. Es sind somit eine Vielzahl elektrischer Verbindungsleitungen und gegebenenfalls Steckverbindungen erforderlich, um eine Verbindung des Leerlaufstellers mit dem elektronischen Steuergerät herstellen zu können.
Aus der EP-A-596 392 ist des weiteren eine Drosselvorrichtung bekannt, die ein in einem Gehäuse des Drosselklappenstutzens angeordnetes elektronisches Steuergerät zeigt, das in Verbindung mit einem Drosselklappenanstellmotor und einem Drosselklappendrehwinkelgeber steht. Es ist aber kein Bypasskanal im Drosselklappenstutzen ausgebildet, und es ist auch kein Regenerierventil im bzw. am Drosselklappenstutzen vorgesehen, was wiederum elektrische Verbindungsleitungen vom Steuergerät zum Regenerierventil erforderlich macht. Eine kompakte und insbesondere vorprüfbare Baueinheit, die ein elektronisches Steuergerät, einen Leerlaufsteller und ein Regenerierventil umfaßt, liegt somit nicht vor.
Ferner ist aus der MTZ, Motortechnische Zeitschrift 54 (1993), Heft 11, Seite 601, eine Drosselvorrichtung bekannt, die als vormontierbare Einheit ausgebildet ist. Die Drosselvorrichtung besitzt ein Drosselorgan in Form einer Drosselklappe, das in einem Drosselklappenstutzen drehbar untergebracht ist. Weiterhin weist die Drosselvorrichtung einen Bypasskanal auf, dessen Querschnitt von einem Leerlaufsteller zum Zwecke der Leerlaufregelung veränderbar ist. Außerdem ist stromaufwärts der Drosselklappe ein Temperatursensor vorgesehen, welcher die Temperatur der im Drosselklappenstutzen strömenden Luft mißt. Die Drosselvorrichtung ist an einem Luftverteiler angebracht, der im Bereich eines Zylinderkopfes der Brennkraftmaschine vorgesehen ist, um die von der Drosselklappe zugemessene Luft über einzelne Saugrohre zu einzelnen Brennräumen der Brennkraftmaschine zu verteilen. Im Luftverteiler ist ein Drucksensor untergebracht, der den Luftdruck im Luftverteiler mißt.
Moderne Motorsteuerungssysteme benötigen eine Vielzahl von Informationen über wichtige Betriebsgrößen der Brennkraftmaschine, die von Sensoren bereitgestellt und zur Auswertung einem elektronischen Steuergerät in Form elektrischer Signale zugeführt werden. Das elektronische Steuergerät berechnet anhand der Sensorsignale entsprechende Ansteuersignale für die Stellglieder der Motorsteuerung, wie zum Beispiel für die Zündung oder für die Gemischaufbereitung. Eine wichtige Größe stellt dabei die von der Brennkraftmaschine angesaugte Luftmasse dar. Es ist bekannt, diese zum Beispiel aus der Drehstellung der Drosselklappe und der zugehörigen Drehzahl der Brennkraftmaschine zu ermitteln. Diese Methode ist jedoch relativ ungenau, so daß Luftmassenmesser eingesetzt werden, die stromaufwärts der Drosselklappe mittels eines beheizten temperaturabhängigen Meßelements in Form eines Hitzdrahtes oder eines Heißfilms die Luftmasse im Drosselklappenstutzen bestimmen. Derartige Luftmassenmesser sind jedoch verhältnismäßig teuer.
Eine weitere Möglichkeit, um mit relativ hoher Genauigkeit die von der Brennkraftmaschine angesaugte Luftmasse zu bestimmen, besteht darin, diese indirekt aus der Dichte der Luft im Drosselklappenstutzen und aus dem zugehörigen Hubvolumen der einzelnen Kolben der Brennkraftmaschine zu ermitteln. Die Dichte der angesaugten Luft läßt sich aus den Zustandsgrößen Temperatur und Druck der Luft berechnen, wofür im eingangs genannten Stand der Technik ein Temperatursensor und ein Drucksensor vorgesehen ist. Im Leerlaufbereich der Brennkraftmaschine herrscht jedoch eine relativ geringe Strömungsgeschwindigkeit im Drosselklappenstutzen, so daß sich die angesaugte Luft verhältnismäßig lang im Drosselklappenstutzen und dem sich beispielsweise anschließenden Luftverteiler befindet. Dabei kann sich die Luft an den warmen Wänden des Drosselklappenstutzens und des Luftverteilers erwärmen, wodurch sich die Temperatur der Luft erhöht und sich die Luftmasse ändert, was jedoch vom Temperatursensor und vom Drucksensor nur mit zeitlicher Verzögerung erfaßt wird, so daß sich insbesondere in der kritischen Leerlaufphase der Brennkraftmaschine Meßungenauigkeiten ergeben können.
Neben der Erfassung der von der Brennkraftmaschine angesaugten Luftmasse übernimmt ein Motorsteuerungssystem auch die Steuerung eines Regenerierventils, das Teil eines Brennstoffverdunstungs-Rückhaltesystems eines Brennstofftanks der Brennkraftmaschine ist. Bei einem derartigen Brennstoffverdunstungs-Rückhaltesystem werden die Brennstoffdämpfe des Brennstofftanks zunächst in einem Adsorptionsfilter zwischengespeichert und anschließend bei bestimmten Betriebszuständen der Brennkraftmaschine mittels des Regenerierventils in den Drosselklappenstutzen eingeleitet. Hierzu benötigt das Motorsteuerungssystem unter anderem auch Informationen über die aktuelle Drehlage der Drosselklappe, wofür ein Drehwinkelgeber zum Beispiel in Form eines Präzisionspotentiometers an einer Drosselklappenwelle der Drosselklappe vorgesehen ist.
Das elektronische Steuergerät, das Regenerierventil, der Leerlaufsteller, der Temperatursensor und der Drucksensor sind bisher in einzelnen Gehäusen relativ weit voneinander entfernt untergebracht. Das elektronische Steuergerät befindet sich üblicherweise im Motorinnenraum oder im Fahrgastraum eines Kraftfahrzeugs. Der Leerlaufsteller, das Regenerierventil, der Temperatursensor und der Drucksensor sind im Bereich des Drosselklappenstutzens vorgesehen, so daß zur Verbindung insbesondere mit dem elektronischen Steuergerät eine Vielzahl elektrischer Verbindungsleitungen und Steckverbindungen erforderlich sind. Die Anbringung der einzelnen Komponenten und der Verbindungsleitungen sowie deren Überprüfung ist jedoch insbesondere bei der Montage in Massenherstellung aufwendig.
Vorteile der Erfindung
Die erfindungsgemäße Drosselvorrichtung für eine Brennkraftmaschine mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß ein kompaktes Bauteil geschaffen wird, das kostengünstig herstellbar und das insbesondere als vorgefertigte und vorgeprüfte Baueinheit in einfacher Art und Weise am Kraftfahrzeug anbaubar ist. Vorteilhafterweise ergibt sich durch den Wegfall der sonst üblichen Einzelgehäuse sowie deren elektrischen Verbindungsleitungen und Steckverbindungen eine weitere Kostenersparnis und eine vereinfachte Montage in der Massenherstellung. Außerdem ist durch die reduzierte Anzahl elektrischer Verbindungsleitungen und Steckverbindungen die Betriebssicherheit und Zuverlässigkeit der Drosselvorrichtung erhöht. Die Unterbringung eines Regenerierventils in einem um die Drosselklappe herumgeführten Bypasskanal ermöglicht eine besonders kompakte Ausbildung der erfindungsgemäßen Drosselvorrichtung.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Drosselvorrichtung möglich.
Die zusätzliche Anordnung eines Temperatursensors und beispielsweise eines Drucksensors im Bypasskanal hat den Vorteil, daß insbesondere während der kritischen Leerlaufphase der Brennkraftmaschine eine präzise Bestimmung der im Drosselklappenstutzen strömenden Luftmasse möglich ist.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine schematisch vereinfachte Funktionsdarstellung einer erfindungsgemäßen Drosselvorrichtung, Figur 2 eine Explosionsdarstellung der erfindungsgemäßen Drosselvorrichtung, Figur 3 eine Seitenansicht der erfindungsgemäßen Drosselvorrichtung, Figur 4 eine Schnittdarstellung der erfindungsgemäßen Drosselvorrichtung entlang einer Linie IV-IV in Figur 3, Figur 5 eine Schnittdarstellung der erfindungsgemäßen Drosselvorrichtung entlang einer Linie V-V in Figur 3.
Beschreibung des Ausführungsbeispiels
In den Figuren 1 bis 5 ist eine mit 1 gekennzeichnete Drosselvorrichtung dargestellt, die als funktionale Einheit Teil eines Motorsteuerungssystems einer nicht näher dargestellten Brennkraftmaschine ist. Die Drosselvorrichtung 1 umfaßt im wesentlichen ein Drosselorgan 2, ein elektronisches Steuergerät 3, ein Regenerierventil 4 und einen Leerlaufsteller 5 und ist insbesondere für gemischverdichtende, fremdgezündete Brennkraftmaschinen vorgesehen.
Das Regenerierventil 4 ist Teil eines nicht näher dargestellten Brennstoffverdunstungs-Rückhaltesystems eines Brennstofftanks der Brennkraftmaschine, dessen Aufbau und Funktion so ist, wie es zum Beispiel der Bosch Technischen Unterrichtung, Motormanagement Motronic, zweite Ausgabe, August 1993, auf Seite 48 und 49 entnehmbar ist.
Die Drosselvorrichtung 1 besitzt ein Gehäuse, das zum Beispiel aus Kunststoff in Kunststoffspritzgußtechnik hergestellt ist. Wie in der Figur 2 dargestellt ist, hat die Drosselvorrichtung 1 beziehungsweise das Gehäuse eine rohrförmige, längliche Gestalt, die im wesentlichen von einem Drosselklappenstutzen 9 gebildet wird. Der Drosselklappenstutzen 9 besitzt an einem der Brennkraftmaschine zugewandten Endbereich einen Flanschteil 11, der zur Befestigung zum Beispiel an einem nicht näher dargestellten Luftverteiler dient. Das Drosselorgan 2 ist im Drosselklappenstutzen 9 drehbar untergebracht und hat beispielsweise die Form einer in Figur 2 gestrichelt dargestellten Drosselklappe 2. Im Innern des Drosselklappenstutzens 9 strömt ein gasförmiges Medium, insbesondere die von der Brennkraftmaschine angesaugte Luft, welche zum Beispiel über einen nicht näher dargestellten Luftfilter in den Drosselklappenstutzen 9 einströmt. In Figur 1 strömt die Luft im Drosselklappenstutzen 9 von links nach rechts und in den Figuren 2 und 3 von oben nach unten. Die Strömungsrichtung der Luft ist durch entsprechende Pfeile 12 in den Figuren 1, 2 und 3 gekennzeichnet.
Die Motorleistung der Brennkraftmaschine wird bekanntermaßen durch Drehen der Drosselklappe 2 im Drosselklappenstutzen 9 gesteuert, so daß mehr oder weniger Luft an der Drosselklappe 2 vorbeiströmt. Die gedrosselte Luft strömt vom Drosselklappenstutzen 9 zum Beispiel in den Luftverteiler, der die Luft über einzelne Saugrohre zu den einzelnen Brennräumen der Brennkraftmaschine verteilt. Ein stromaufwärts eines Einlaßventils der Brennkraftmaschine im Saugrohr vorgesehenes Brennstoffeinspritzventil mischt der Luft Brennstoff zu, um ein zündfähiges Brennstoff-Luft-Gemisch im Brennraum zu erhalten. Zum Drehen der Drosselklappe 2 ist beispielsweise eine nicht näher dargestellte Betätigungsvorrichtung vorgesehen, die zum Beispiel die Form einer Seilscheibe hat. Die Seilscheibe ist drehfest an einer Drosselklappenwelle 6 der Drosselklappe 2 angebracht, um mittels eines zu einem Gaspedal geführten Seilzugs gedreht zu werden.
Wie in der Figur 1 gezeigt ist, besitzt die Drosselvorrichtung 1 einen Bypasskanal 21, der eine im Drosselklappenstutzen 9 stromaufwärts der Drosselklappe 2 gelegene Entnahmeöffnung 22 mit einer stromabwärts der Drosselklappe 2 gelegenen Abgabeöffnung 23 verbindet, so daß ein Teil der im Drosselklappenstutzen 9 strömenden Luft im Bypasskanal 21 um die Drosselklappe 2 herum strömt. Die Strömungsrichtung der im Bypasskanal 21 strömenden Luft ist in den Figuren 1, 4 und 5 durch entsprechende Pfeile 24 gekennzeichnet.
Das elektronische Steuergerät 3 des Motorsteuerungssystems benötigt eine Vielzahl von Informationen über wichtige Betriebsgrößen der Brennkraftmaschine, welche von Sensoren bereitgestellt und dem elektronischen Steuergerät 3 zur Auswertung zugeführt werden. Eine wichtige Betriebsgröße stellt die von der Brennkraftmaschine angesaugte Luftmasse dar. Die Luftmasse kann bekanntermaßen aus der Dichte und dem Volumen der Luft berechnet werden. Das Volumen der Luft ist durch das Hubvolumen der einzelnen Kolben der Brennkraftmaschine vorgegeben. Die Dichte der Luft läßt sich aus den Zustandsgrößen Temperatur und Druck der Luft, beispielsweise mit Hilfe der allgemeinen Gasgleichung für ideale Gase, berechnen. Mit dem Hubvolumen der einzelnen Kolben der Brennkraftmaschine und der Dichte der Luft stehen dann alle Größen für das elektronische Steuergerät 3 zur Verfügung, um die Masse der im Drosselklappenstutzen 9 strömenden Luft zu berechnen. Die Ermittlung der Dichte der Luft erfolgt mittels eines Temperatursensors 16 und eines Drucksensors 17. Wie in der Figur 1 dargestellt ist, ist der Temperatursensor 16 im Bypasskanal 21 angeordnet, um die Temperatur der im Bypasskanal 21 strömenden Luft zu messen. Der Drucksensor 17 kann zur Druckmessung ebenfalls im Bypasskanal 21 angeordnet sein, um dort den Druck der strömenden Luft zu messen. Es ist aber auch möglich, diesen an beliebiger Stelle, zum Beispiel am Drosselklappenstutzen 9 anzuordnen, um dort den Druck der strömenden Luft zu messen.
Die Messung der Temperatur im Bypasskanal 21 mittels des Temperatursensors 16 hat den Vorteil, daß sich insbesondere bei geringen Luftdurchsätzen im Drosselklappenstutzen 9 eine verbesserte Meßgenauigkeit gegenüber einer Temperaturmessung im Drosselklappenstutzen 9 einstellt. Diese ist zum einen darauf zurückzuführen, daß vom Öffnen und Schließen der Einlaßventile ausgehende Pulsationen der Strömung nur in abgeschwächter Form bis zur Meßstelle des Temperatursensors 16 im Bypasskanal 21 vordringen können, um das Meßergebnis zu beeinträchtigen. Zum anderen ist im Leerlaufbereich der Brennkraftmaschine aufgrund der Drosselwirkung der Drosselklappe 2 ein Druckunterschied an der Drosselklappe 2 vorhanden, der zu einer Erhöhung der Strömungsgeschwindigkeit der Luft im Bypasskanal 21 führt. Durch die im Leerlaufbereich vergrößerte Strömungsgeschwindigkeit der Luft im Bypasskanal 21 können Temperaturänderungen der angesaugten Luft, zum Beispiel aufgrund einer Erwärmung des Drosselklappenstutzens 9, rasch erfaßt werden, so daß sich insbesondere während der kritischen Leerlaufphase der Brennkraftmaschine eine hohe Meßgenauigkeit einstellt.
Wie in der Figur 2, einer Explosionsdarstellung und in der Figur 3, einer Seitenansicht der Drosselvorrichtung 1, dargestellt ist, ist das elektronische Steuergerät 3 in einem ersten kastenförmig ausgebildeten Gehäuseteil 30 der Drosselvorrichtung 1 untergebracht. Der erste Gehäuseteil 30 ist vom Drosselklappenstutzen 9 radial wegführend offen und hat einen ersten Gehäuserand 31. Hauptbestandteil des elektronischen Steuergeräts 3 ist ein in Figur 4, einer Schnittdarstellung entlang einer Linie IV-IV in Figur 3, dargestelltes Substrat 32, auf dem eine Vielzahl elektrischer Bauteile, beispielsweise in Hybridbauweise aufgebracht sind. Das Substrat 32 ist zum Beispiel in Kunststoff eingebunden, so daß sich ein abgedichtetes, kompaktes Steuergerätemodul 35 ergibt. Das Steuergerätemodul 35 verfügt weiterhin über eine ebenfalls in den Kunststoff eingebundene Metallplatte 36, die mehrere Öffnungen besitzt, um die Metallplatte 36 beziehungsweise das Steuergerätemodul 35 beispielsweise mittels nicht dargestellter Schrauben an den ersten kastenförmigen Gehäuseteil 30 anzuschrauben. Dabei sitzt das Steuergerätemodul 35 auf dem ersten Gehäuserand 31 und verschließt den ersten Gehäuseteil 30. Die Metallplatte 36 ist im eingebauten Zustand einer kreisförmigen Innenwandung 26 des Drosselklappenstutzens 9 zugewandt und nahe zu dieser angeordnet, um über die Metallplatte 36 einen guten Wärmekontakt zur im Drosselklappenstutzen 9 strömenden Luft herzustellen, damit die beim Betrieb des elektronischen Steuergeräts 3 entstehende Wärme von der im Drosselklappenstutzen 9 strömenden Luft abgeführt werden kann. Wie in der Figur 2 näher gezeigt ist, besitzt das elektronische Steuergerät 3 zur Kontaktierung und zur Stromversorgung zum Beispiel zwei Steckerleisten 37, die von einer Außenfläche 44 des Steuergerätemoduls 35 abstehen und auf welche Stecker aufgesteckt werden können. Weiterhin verfügt das Steuergerätemodul 35 aus einer Seitenfläche 38 herausragende Kontaktfahnen 39, die zumindest teilweise in den Kunststoff des Steuergerätemoduls 35 eingebunden sind. Die Kontaktfahnen 39 sind über nicht näher dargestellte elektrische Verbindungen mit den elektrischen Bauteilen des Substrats 32 elektrisch verbunden.
Wie in Figur 3 dargestellt ist, ist quer zum ersten kastenförmig ausgebildeten Gehäuseteil 30 ein zweiter kastenförmig ausgebildeter Gehäuseteil 40 vorgesehen, so daß sich beispielsweise ein rechtwinkliges Eck ergibt. Der zweite kastenförmig ausgebildete Gehäuseteil 40 bildet zumindest teilweise den Bypasskanal 21. Der zweite Gehäuseteil 40 ist ebenfalls vom Drosselklappenstutzen 9 radial fortführend offen und hat einen zweiten Gehäuserand 34. Der Bypasskanal 21 wird von einem den zweiten kastenförmig ausgebildeten Gehäuseteil 40 überdeckenden Aggregatemodul 41 nach außen abgeschlossen. Das Aggregatmodul 41 hat eine plattenförmige Gestalt und ist zum Beispiel aus Kunststoff hergestellt. Das Aggregatmodul 41 besitzt mehrere Ausnehmungen, um das Regenerierventil 4, den Leerlaufsteller 5 und den Drucksensor 17 zum Beispiel mittels Schnappverbindungen aufzunehmen und zu halten. Das Aggregatmodul 41 dient weiterhin zur Halterung eines Drehwinkelgebers 7, der zum Beispiel in Form eines Präzisionspotentiometers ausgebildet ist. Der Drehwinkelgeber 7 ist drehfest mit der sich in den zweiten Gehäuseteil 40 erstreckenden Drosselklappenwelle 6 der Drosselklappe 2 verbunden, um entsprechend der Drehstellung der Drosselklappe 2 einen bestimmten Widerstandswert anzunehmen, so daß entsprechende elektrische Signale dem elektronischen Steuergerät 3 zugeführt werden können. Der Aufbau von Drehwinkelgebern 7 ist dem Fachmann bekannt und kann zum Beispiel der DE-OS 42 11 616 entnommen werden.
Das Aggregatmodul 41 besitzt weiterhin zum Beispiel in den Kunststoff des Aggregatmoduls 41 eingebundene elektrische Leitungen 47, 48, 49, 50, 51, um eine elektrische Verbindung der Bauteile 4, 5, 7, 16, 17 des Aggregatmoduls 41 mit dem elektronischen Steuergerät 3 herzustellen. Wie in der Figur 3 dargestellt ist, ist das Regenerierventil 4 über die elektrischen Leitungen 47, der Leerlaufsteller 5 über die elektrischen Leitungen 48, der Temperatursensor 16 über die elektrischen Leitungen 49, der Drucksensor 17 über die elektrischen Leitungen 50 und der Drehwinkelgeber 7 über die elektrischen Leitungen 51 mit Kontaktfahnen 45 am Aggregatmodul 41 elektrisch verbunden. Die Kontaktfahnen 45 stehen von einer Seitenfläche 42 des Aggregatmoduls 41 ab und haben eine abgewinkelte Form. Im eingebauten Zustand des Aggregatmoduls 41 verläuft ein Endbereich der Kontaktfahnen 45 des Aggregatmoduls 41 parallel und diese berührend zu den Kontaktfahnen 39 des Steuergerätemoduls 5, um zum Beispiel mittels Laserlöten einen elektrischen Kontakt herzustellen.
Zum Einbau des Aggregatmoduls 41 sind beispielsweise mehrere Schrauben 54 vorgesehen, die in im zweiten kastenförmigen Gehäuseteil 40 vorgesehene Gewindeaufnahmen 55 einschraubbar sind. Ein zwischen dem Aggregatmodul 41 und dem zweiten Gehäuserand 34 des zweiten Gehäuseteils 40 vorgesehenes erstes Abdichtrahmenteil 57 dichtet dabei das Aggregatmodul 41 gegenüber dem zweiten kastenförmigen Gehäuseteil 40 ab. Ein auf das Aggregatmodul 41 aufsetzbarer Verschlußdeckel 58 und ein zwischen dem Verschlußdeckel 58 und dem Aggregatmodul 41 vorgesehenes zweites Abdichtrahmenteil 59 dichtet das Aggregatmodul 41 nach außen ab, damit kein Wasser, Schmutzstoffe und dergleichen die Bauteile 4, 5, 7, 16, 17 am Aggregatmodul 41 beschädigen kann. Der Verschlußdeckel 58 verfügt noch über eine Ausstülpung 64, welche im aufgesetzten Zustand des Verschlußdeckels 58 ebenfalls die mit den Kontaktfahnen 45 gekoppelten Kontaktfahnen 39 des Steuergerätemoduls 35 umschließt und diese abdichtet. Der Verschlußdeckel 58 ist beispielsweise mittels einer Schnappverbindung oder dergleichen am zweiten Gehäuseteil 40 gehalten.
Das Regenerierventil 4 wird in bekannter Weise vom elektronischen Steuergerät 3 getaktet angesteuert, um bei bestimmten Betriebszuständen, insbesondere im Leerlauf der Brennkraftmaschine, Brennstoffdampf stromabwärts der Drosselklappe 2 in den Bypasskanal 21 einzuleiten, der danach vom Bypasskanal 21 in den Drosselklappenstutzen 9 weiterströmt. Das Regenerierventil 4 ist elektromagnetisch betätigbar ausgebildet und hat einen Aufbau, der beispielsweise der DE-OS 40 23 044 entnehmbar ist und daher im folgenden nicht näher beschrieben wird.
Der Leerlaufsteller 5 ist ebenfalls elektromagnetisch betätigbar zum Beispiel als elektrischer Drehsteller ausgebildet und vom elektronischen Steuergerät 3 ansteuerbar. Der Leerlaufsteller 5 wird im wesentlichen von einem Rotor 60 und einem Stator 61 gebildet. Wie der Figur 5 näher dargestellt ist, ist mit dem Rotor 60 beispielsweise ein Permanentmagnet 63 fest verbunden, der mit dem Rotor 60 auf einer feststehenden Achse drehbar im Stator 61 gelagert ist. Der Endbereich des Rotors 60 hat zum Beispiel die Form eines rohrsegmentförmigen Schiebers 62, um nach dem Drehschieber-Prinzip durch Ändern der Winkelposition des Schiebers 62 einen Öffnungsquerschnitt 65 des Bypasskanals 21 zu vergrößern oder zu verkleinern, wodurch sich der Luftdurchsatz im Bypasskanal 21 einstellen läßt. Der Stator 61 besteht im wesentlichen aus einer Spule 66, die im bestromten Zustand ein magnetisches Feld erzeugt, mit dessen Wirkung auf den Permanentmagneten 63 der Rotor 60 mit dem Schieber 62 gedreht werden kann. Die Bestromung wird vom elektronischen Steuergerät 3 beispielsweise mit Hilfe der elektrischen Signale des Drehwinkelgebers 7 vorgenommen, um nahezu unabhängig von der Belastung der Brennkraftmaschine eine geforderte Leerlaufdrehzahl der Brennkraftmaschine konstant zu halten. Der Aufbau von Leerlaufstellern ist dem Fachmann bekannt und kann zum Beispiel der DE-OS 42 26 548 entnommen werden.
Die Unterbringung der Bauteile 4, 5, 7, 16 und 17 des Aggregatmoduls 41 im zweiten kastenförmigen Gehäuseteil 40 und die Gestaltung des Bypasskanals 21 erfolgt derart, daß in Strömungsrichtung 24 der im Bypasskanal 21 strömenden Luft zuerst der Leerlaufsteller 5, dann das Regenerierventil 4, dann der Temperatursensor 16 und zuletzt der Drucksensor 17 folgt. Die in Strömungsrichtung 24 der im Bypasskanal 21 vorgesehene Abfolge von Leerlaufsteller 5, Regenerierventil 4, Temperatursensor 16 und Drucksensor 17 ist aber auch vertauschbar. So ist es beispielsweise auch möglich, das Regenerierventil 4 stromabwärts des Temperatursensors 16 und des Leerlaufstellers 5 vorzusehen. Der Drucksensor 17 kann auch an beliebiger Stelle im Bypasskanal 21 oder am Drosselklappenstutzen 9 selbst untergebracht werden. Wie in der Figur 4, einer Schnittdarstellung entlang einer Linie IV-IV in Figur 3, dargestellt ist, kann der Drucksensor 17 beispielsweise auch auf gleicher Ebene mit dem Regenerierventil 4 stromabwärts von diesem im Bypasskanal 21 untergebracht werden.
Der im Ausführungsbeispiel in Figur 4 im Schnitt dargestellte Drucksensor 17 mißt nicht unmittelbar den Druck im Bypasskanal 21, sondern verfügt beispielsweise über einen Schlauchanschluß 69, um über eine Schlauchverbindung den Druck der im Drosselklappenstutzen 9 strömenden Luft stromabwärts der Drosselklappe 2 zu messen. Der Drucksensor 17 besitzt hierzu beispielsweise eine Membran 70, die sich bei einem Druckunterschied mehr oder weniger verformt. Die Verformung der Membran 70 kann durch zum Beispiel in Dickschichttechnik auf die Membran 70 aufgebrachte Dehnwiderstände erfaßt werden, die der Verformung entsprechende elektrische Signale liefern, welche dann vom elektronischen Steuergerät 3 ausgewertet werden, um den Druck zu bestimmen. Es ist aber auch möglich, Drucksensoren anderen Aufbaus zu verwenden. Der Aufbau von Drucksensoren ist dem Fachmann bekannt und kann zum Beispiel der DE-OS 41 11 149 entnommen werden.
Als Temperatursensor 16 ist ein temperaturabhängiger Widerstand vorgesehen, der zum Beispiel als NTC- oder PTC-Widerstand 71 ausgebildet ist. Wie in der Figur 2 dargestellt ist, besitzt der Widerstand 71 beispielsweise eine zylindrische Form. Es ist aber auch möglich, einen temperaturabhängigen Widerstand in Form eines Drahtes, eines Films oder einer Folie zu verwenden. Der in Figur 2 gezeigte Widerstand 71 ist an einer dem Drosselklappenstutzen 9 zugewandten Stirnfläche 74 des Aggregatmoduls 41 mit Abstand zu dieser angebracht und zum Beispiel mittels von der Stirnfläche 74 abstehender Halterungen 72, beispielsweise durch Löten seiner Anschlußdrähte 75 an den Halterungen 72 gehalten. Es ist aber auch möglich, anders gestaltete Temperatursensoren zu verwenden. Zum Beispiel können auch Temperatursensoren eingesetzt werden, die steckbar in das Aggregatmodul 41 eingeführt werden können und mit einem temperaturabhängigen, teilweise in den Bypasskanal 21 hineinragenden Sensorteil die Temperatur der im Bypasskanal 21 strömenden Luft messen. Derartige Temperatursensoren sind dem Fachmann zum Beispiel aus der DE-OS 30 44 419 bekannt.

Claims (10)

  1. Drosselvorrichtung (1) für eine Brennkraftmaschine, mit einem Gehäuse (9, 30, 40), wenigstens einem in einem Drosselklappenstutzen (9) des Gehäuses (9, 30, 40) drehbar untergebrachten Drosselorgan (2) und einen um das Drosselorgan (2) herumgeführten Bypasskanal (21), dessen Querschnitt von einem Leerlaufsteller (5) veränderbar ist, wobei das Drosselorgan (2) in dem Gehäuse (9, 30, 40) und der Leerlaufsteller (5) zumindest teilweise in dem Gehäuse (9, 30, 40) untergebracht sind, dadurch gekennzeichnet, daß weiterhin in oder an dem Gehäuse (9, 30, 40) ein elektronisches Steuergerät (3) und zumindest teilweise in dem Gehäuse (9, 30, 40) ein Regenerierventil (4) untergebracht sind, wobei das Regenerierventil (4) derart am Bypasskanal (21) angeordnet ist, daß es den Brennstoff in den Bypasskanal (21) einleitet.
  2. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß weiterhin ein am Bypasskanal (21) angeordneter Temperatursensor (16) zur Temperaturmessung im Bypasskanal (21) vorgesehen ist.
  3. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß weiterhin ein am Bypasskanal (21) angeordneter Drucksensor (17) zur Druckmessung im Bypasskanal (21) vorgesehen ist.
  4. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zur Ermittlung der Winkellage des Drosselorgans (2) ein Drehwinkelgeber (7) vorgesehen ist.
  5. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Regenerierventil (4) den Brennstoff stromabwärts des Leerlaufstellers (5) in den Bypasskanal (21) einleitet.
  6. Drosselvorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Temperatursensor (16) stromabwärts des Leerlaufstellers (5) im Bypasskanal (21) angeordnet ist.
  7. Drosselvorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Temperatursensor (16) stromabwärts des Regenerierventils (4) im Bypasskanal (21) angeordnet ist.
  8. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das elektronische Steuergerät (3) in einem ersten kastenförmig ausgebildeten Gehäuseteil (30) des Gehäuses (9) untergebracht ist.
  9. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Drosselvorrichtung (1) einen zweiten kastenförmig ausgebildeten Gehäuseteil (40) aufweist, der den Bypasskanal (21) der Drosselvorrichtung (1) zumindest teilweise bildet.
  10. Drosselvorrichtung nach Anspruch 8 und 9, dadurch gekennzeichnet, daß das elektronische Steuergerät (3) Kontaktleisten (39) besitzt, die mit korrespondierenden Kontaktleisten (45) eines im zweiten kastenförmig ausgebildeten Gehäuseteil (40) untergebrachten Aggregatemoduls (41) eine elektrische Verbindung herstellen.
EP96904742A 1995-05-05 1996-03-06 Drosselvorrichtung für eine brennkraftmaschine Expired - Lifetime EP0791133B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19516584 1995-05-05
DE19516584A DE19516584A1 (de) 1995-05-05 1995-05-05 Drosselvorrichtung für eine Brennkraftmaschine
PCT/DE1996/000394 WO1996035047A1 (de) 1995-05-05 1996-03-06 Drosselvorrichtung für eine brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP0791133A1 EP0791133A1 (de) 1997-08-27
EP0791133B1 true EP0791133B1 (de) 1998-12-23

Family

ID=7761203

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96904742A Expired - Lifetime EP0791133B1 (de) 1995-05-05 1996-03-06 Drosselvorrichtung für eine brennkraftmaschine

Country Status (9)

Country Link
US (1) US5711271A (de)
EP (1) EP0791133B1 (de)
JP (1) JPH10512032A (de)
KR (1) KR100415204B1 (de)
BR (1) BR9606355A (de)
CZ (1) CZ290642B6 (de)
DE (2) DE19516584A1 (de)
ES (1) ES2127626T3 (de)
WO (1) WO1996035047A1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19843771A1 (de) * 1998-09-24 2000-03-30 Mannesmann Vdo Ag Elektromotorisches Stellglied, insbesondere mit einer Drosselklappe
DE19854595A1 (de) * 1998-11-26 2000-06-08 Mannesmann Vdo Ag Drosseklappenstutzen
US6158417A (en) * 1999-03-01 2000-12-12 Visteon Global Technologies, Inc. Throttle body accomodation of either an idle air control valve or a motorized throttle control
EP1450022B1 (de) * 1999-03-29 2007-07-18 Hitachi, Ltd. Drosselklappe mit Motor
DE10007611A1 (de) * 2000-02-18 2001-08-23 Mannesmann Vdo Ag Drosselklappenstutzen
EP1811153B1 (de) * 2000-11-30 2014-04-16 Keihin Corporation Luftansaugsystem in einem Motor
DE10117542A1 (de) 2001-04-07 2002-10-10 Siemens Ag Drosselklappenstutzen und Elektronikmodul
WO2002097254A1 (fr) * 2001-04-27 2002-12-05 Keihin Corporation Dispositif d'admission de moteur
JP3986850B2 (ja) * 2001-04-27 2007-10-03 株式会社ケーヒン エンジンの吸気量制御装置
JP4464581B2 (ja) * 2001-05-24 2010-05-19 本田技研工業株式会社 エンジン用吸気量制御装置
DE10133294A1 (de) * 2001-07-12 2003-01-23 Siemens Ag Drosselklappenstutzen
DE10137454A1 (de) 2001-08-02 2003-02-20 Siemens Ag Drosselklappenstutzen
JP3975065B2 (ja) * 2001-08-31 2007-09-12 本田技研工業株式会社 小型車両におけるエンジンの吸気量制御装置
JP4065115B2 (ja) * 2001-08-31 2008-03-19 株式会社ケーヒン エンジンの吸気量制御装置
DE10205090A1 (de) * 2002-02-07 2003-09-04 Bosch Gmbh Robert Drosselgehäuse mit modularem Deckelelement
AU756938B1 (en) * 2002-04-04 2003-01-30 Hyundai Motor Company Engine idle speed control device
DE10227568A1 (de) 2002-06-20 2004-01-08 Siemens Ag Deckeleinheit für einen Stellantrieb
JP4000994B2 (ja) * 2002-11-25 2007-10-31 株式会社日立製作所 内燃機関用スロットルボディ及び吸気装置
EP1605149A4 (de) * 2003-02-20 2009-04-22 Mikuni Kogyo Kk Sensormoduleinheit und drosselvorrichtung damit
ITMI20040415A1 (it) * 2004-03-04 2004-06-04 Dellorto Spa Unita'integrata di alimentazione per motori a combustione interna
US7779809B2 (en) 2004-05-26 2010-08-24 Mikuni Corporation Throttle system and sensor unit
JP4235184B2 (ja) * 2005-02-04 2009-03-11 愛三工業株式会社 エンジンの吸気装置
JP2007239560A (ja) * 2006-03-07 2007-09-20 Mikuni Corp エンジン制御装置および二輪車
DE602007002055D1 (de) * 2006-05-10 2009-10-01 Toyota Motor Co Ltd Ejektorsystem für fahrzeug
US7571687B2 (en) * 2006-08-08 2009-08-11 Cornellier J Rene Apparatus for destruction of organic pollutants
EP1967719B1 (de) * 2007-03-09 2009-05-13 Magneti Marelli S.p.A. Ventil zur Steuerung des Luftdurchsatzes in einer Brennkraftmaschine
DE102008040501A1 (de) * 2008-07-17 2010-01-21 Robert Bosch Gmbh Verbesserte Wärmeabfuhr aus einem Steuergerät
JP5380337B2 (ja) * 2010-03-16 2014-01-08 本田技研工業株式会社 小型車両におけるスロットルボディへの配線構造
US20120240898A1 (en) * 2011-03-23 2012-09-27 Visteon Global Technologies, Inc. Integrated plastic throttle body, electronic control unit, and sensors for small engine
WO2017185017A1 (en) 2016-04-21 2017-10-26 Walbro Llc Low pressure fuel and air charge forming device for a combustion engine
CN105784009B (zh) * 2016-05-25 2018-01-02 芜湖力锐达汽车部件有限公司 一种摩托车位置进气温度压力传感器
DE102017217684A1 (de) 2017-10-05 2019-04-11 Bayerische Motoren Werke Aktiengesellschaft Ansaugtrakt für eine Verbrennungskraftmaschine eines Kraftfahrzeugs
KR102050914B1 (ko) * 2018-08-23 2019-12-02 주식회사 현대케피코 전자식 스로틀밸브 장치

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56101026A (en) * 1979-12-31 1981-08-13 Heinzmann Gmbh Co Kg Fritz Regulator for number of revolution of internal combustion engine
US4572128A (en) * 1983-09-13 1986-02-25 Toyota Jidosha Kabushiki Kaisha Fuel injection carburetor in internal combustion engine
JPH0742881B2 (ja) * 1984-10-26 1995-05-15 富士重工業株式会社 車輌用エンジンの吸入空気量制御方法
JPS61104133A (ja) * 1984-10-26 1986-05-22 Fuji Heavy Ind Ltd 吸入空気流量制御装置
JPS61169477U (de) * 1985-04-04 1986-10-21
JPH076423B2 (ja) * 1985-06-10 1995-01-30 日産自動車株式会社 内燃機関の電磁弁制御装置
DE8715061U1 (de) * 1987-11-12 1989-03-09 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zum Betätigen einer Drosselklappe
DE8715467U1 (de) * 1987-11-21 1989-03-16 Robert Bosch Gmbh, 70469 Stuttgart Vorrichtung zum Betätigen einer Drosselklappe
GB2248652A (en) * 1989-10-12 1992-04-15 Fuji Heavy Ind Ltd Twin bank i.c. engine intake arrangement
US5007396A (en) * 1989-11-13 1991-04-16 Robertshaw Controls Company Throttle valve adjustment construction, throttle valve adjustment unit therefor and methods of making the same
GB2245931A (en) * 1990-07-10 1992-01-15 Rover Group I.c. engine air intake throttle body
US5094213A (en) * 1991-02-12 1992-03-10 General Motors Corporation Method for predicting R-step ahead engine state measurements
DE4112981A1 (de) * 1991-04-20 1992-10-22 Bosch Gmbh Robert Vorrichtung zur messung der masse eines stroemenden, gasfoermigen mediums
IT1259443B (it) * 1992-10-29 1996-03-18 Weber Srl Dispositivo di alimentazione aria per un motore a combustione interna.
DE4315436A1 (de) * 1993-05-08 1994-11-10 Bosch Gmbh Robert Vorrichtung zur Regelung der Leerlaufdrehzahl einer Brennkraftmaschine

Also Published As

Publication number Publication date
DE59601043D1 (de) 1999-02-04
JPH10512032A (ja) 1998-11-17
CZ2297A3 (en) 1997-04-16
EP0791133A1 (de) 1997-08-27
BR9606355A (pt) 1998-07-14
KR100415204B1 (ko) 2004-05-14
ES2127626T3 (es) 1999-04-16
DE19516584A1 (de) 1996-11-07
CZ290642B6 (cs) 2002-09-11
WO1996035047A1 (de) 1996-11-07
US5711271A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
EP0791133B1 (de) Drosselvorrichtung für eine brennkraftmaschine
EP0767870B1 (de) Vorrichtung für eine brennkraftmaschine
DE60000081T2 (de) Steuerungsverfahren für einen Turbolader variabler Geometrie in einem Dieselmotor mit Abgasrückführung
DE3854449T2 (de) Luftmengenmesser vom Hitzdrahttyp.
DE112013002999B4 (de) Thermischer Durchflussmesser
EP0847493B1 (de) Luftführungsanlage
EP1281848B1 (de) Drosselklappenstutzen
DE102008040177A1 (de) Einlasssteuerungsgerät für eine Brennkraftmaschine
DE2246373A1 (de) Elektrisch gesteuerte kraftstoffeinspritzeinrichtung fuer brennkraftmaschinen mit einem temperaturkompensierten luftmengenmesser
DE102010061348A1 (de) Verfahren zum Herstellen eines hohlen Körpers, der hohle Körper, Verfahren zum Herstellen einer Strömungsmesseinrichtung, und die Strömungsmesseinrichtung
DE19732642A1 (de) Einrichtung zum Steuern einer Brennkraftmaschine
DE4026137A1 (de) Leerlauf-regelventil fuer einen motor
WO2014082775A1 (de) Motorsteuereinheit
DE68914705T2 (de) Heissdraht-Luftdurchflussmengenmesser für die Überwachung der Ansaugluftmenge von Verbrennungskraftmaschinen.
DE10148649C1 (de) Verfahren sowie Steuer und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
DE4009922C2 (de) Verfahren und Anordnung zur Ermittlung der tatsächlichen Luftdichte des Ansaug-Luftmassenstroms einer Brennkraftmaschine
DE4344027C2 (de) Steuergerät zur Steuerung von Motorbetriebsfunktionen
DE2811484A1 (de) Drosselgehaeuseanordnung fuer brennkraftmaschinen
EP1630383B1 (de) Verfahren zur Funktionsdiagnose mindestens einer Ladungsbewegungsklappe
DE19911338A1 (de) Brennkraftmaschine mit einer Abgasregelvorrichtung
EP1404958B1 (de) Drosselklappenstutzen
DE2151187C3 (de) Gemischaufbereitungsanlage für eine mehrzylindrige Einspritz-Brennkraftmaschine
DE112019004912T5 (de) Messvorrichtung für physikalische Größen
DE4018775C2 (de) Verfahren und Anordnung zur Ermittlung der Last von Brennkraftmaschinen
DE2057216A1 (de) Kraftstoffzufuhrsystem fuer Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19970812

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 59601043

Country of ref document: DE

Date of ref document: 19990204

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990303

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2127626

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030227

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030311

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030319

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040308

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050513

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061003