EP0791062A1 - Die genexpression in coryneformen bakterien regulierende dna - Google Patents

Die genexpression in coryneformen bakterien regulierende dna

Info

Publication number
EP0791062A1
EP0791062A1 EP95936429A EP95936429A EP0791062A1 EP 0791062 A1 EP0791062 A1 EP 0791062A1 EP 95936429 A EP95936429 A EP 95936429A EP 95936429 A EP95936429 A EP 95936429A EP 0791062 A1 EP0791062 A1 EP 0791062A1
Authority
EP
European Patent Office
Prior art keywords
gene
protein
dna fragment
acetate
cgc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95936429A
Other languages
German (de)
English (en)
French (fr)
Inventor
Dieter Reinscheid
Bernhard Eikmanns
Hermann Sahm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0791062A1 publication Critical patent/EP0791062A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)

Definitions

  • the invention relates to a DNA regulating gene expression in coryneform bacteria.
  • Corynebacterium glutamicu and the species closely related to it are c. mela ⁇ ecolae, Brevibacterium flavum and B. lactofermentum counted among the coryneform bacteria. Furthermore, the mentioned species to the 'glutamic acid bacteria' because they are able to excrete large amounts of glutamate into the medium under certain growth conditions. The microorganisms mentioned are of great industrial interest since they can be used for the production of amino acids, purines and proteins. For C. glutamicum, C. mela ⁇ secolae, B. flavum and B.
  • lactofermentum growth on acetate or ethanol has already been demonstrated and it has been shown that they have a glyoxylate cycle, ie also the enzymes isocitrate lyase and malate synthase, (For an overview see: Kinoshita, Amino acids, in Biology of industrial organisms, 1985, pp. 115-142, Benjamin / cum ings Publishing).
  • coryneform bacteria can be genetically modified for specific purposes.
  • the genes to be cloned are cloned under the control of their own promoters onto vectors which are present in high copy numbers in coryneform bacteria. It was shown in several cases that a strong overexpression of individual genes had an adverse effect on the growth of coryneform bacteria and thus on the production of desired products. The reason for this was that the
  • a desired gene can be integrated into the chromosome of coryneform bacteria in a single copy number. Since there is only one copy of this gene in the organism, there are usually no toxic effects from the corresponding gene product. A weakness of this method lies in the labor-intensive methodology to achieve the desired goal. In addition, the simple copy number of the inserted gene rarely produces a sufficient amount of a desired substance.
  • An alternative to integrating a gene into the chromosome of coryneform bacteria is to clone a gene onto a low copy vector in coryneform bacteria. This has the advantage that the corresponding gene product is formed in a relatively small amount and is therefore usually not toxic to the cell. Allerdin ⁇ s is too in this case the relatively small amount of gene product for biotechnological applications is a disadvantage.
  • each of the three promoters needs to induce a gene are relatively uninteresting for industrial purposes.
  • the lac promoter requires the relatively expensive substance IPTG to induce a gene, which renders a large-scale application of this promoter unprofitable.
  • IPTG IPTG
  • Lambda P L is activated by heat. Heat not only damages the organism but could also have a harmful effect on the product formed, so that this promoter is of no industrial interest for coryneform bacteria 5 is.
  • the trp promoter is activated by tryptophan deficiency. Since coryneform bacteria usually do not suffer from tryptophan deficiency, the use of this promoter would require the production of coryneform tryptophan deficiency mutants. Since the generation of such mutants is relatively complex, the trp promoter has not yet found its way into the biotechnological use of coryneform bacteria.
  • the ideal case for a regulatable promoter was a coryneform promoter, which is regulated by an easily available, inexpensive substance.
  • the only coryneform promoter described so far is that of the gene for isocitrate lyase (EP-OS 0 530 765).
  • This promoter leads to the expression of genes as long as there is no sugar in the medium.
  • sugar since sugar is used as a carbon source in most fermentation media, it would make sense to obtain a regulable promoter which also leads to the expression of a gene in the presence of sugars with an inexpensive inducer.
  • the expression of the malate synthase gene in coryneform bacteria can be induced by the presence of inducers such as lactate, pyruvate and / or acetate.
  • inducers such as lactate, pyruvate and / or acetate.
  • This induction in particular through acetate, also occurs when there are other carbon sources in the medium. Even in the presence of sugars or in complex medium there is significant induction by acetate.
  • Inducer such as acetate and regardless of the composition of the fermentation medium to express genes regulated in coryneform bacteria.
  • the malate synthase gene of the present invention is a malate synthase gene of the malate synthase gene of the malate synthase gene of the malate synthase gene of the malate synthase gene of the malate synthase gene of the malate synthase gene of the malate synthase gene of the malate synthase gene of the malate synthase gene of the malate synthase gene of
  • Coryjie ⁇ acter UJD glutamicum upstream and isolated from this DNA fragment provided; i.e. the gene for malate synthase (aceB) was isolated and sequenced from C-glutamicum together with the structures required for expression and regulation.
  • the DNA sequence and the amino acid sequence derived from it are shown in Table 2.
  • the ribosome binding site of the aceB gene is underlined and marked with 'RBS'.
  • the potential terminator of aceB transcription is shown by antiparallel arrows.
  • the media used were 2xTY complete medium or CgC minimal medium (Eikmanns et al., Appl Microbiol Biotechnol 34 (1991) 617-622), each with 1% of glucose, acetate, pyruvate, lactate, citrate, succinate , Fumarate or glutamate used as a carbon source.
  • the cultures were incubated again at 30 ° C and the OD 60Q was followed.
  • the cells Upon reaching an OD of 60 o 8 ⁇ 10, the cells were harvested by centrifugation, washed once with buffer pH 7.6 (50 mM Tris / HCl), resuspended in 1 ml of the same buffer was added, and by sonication in a Branson Sonifier W250 (10 Minutes, pulsed with an interval of 20% and an output of 30 watts). To separate the cell debris, the homogenate was sigma at 13000 rpm for 30 minutes
  • the enzyme test contained in a final volume of 1.0 ml, 50 mM
  • the mixture was incubated at 30 ° C., the decrease in extinction at 232 nm was determined over a period of 2 minutes, which decrease results from the cleavage of the thioester bond of acetyl-CoA.
  • the extinction coefficient of acetyl-CoA at 232 nm is 4.5 mM -1 cm -1 (Stadtman, Methods in Enzy ology, Vol. 3, 1957, New York: Academic Press).
  • the protein content of the crude extracts was determined using the biuret method (Bradford, Anal Biochem 72 (1976) 248-254).
  • the specific malate synthase activities obtained are listed in Table 1.
  • Table 1 the activity of the MSY when growing on 2xTY complete medium and on CgC minimal medium with glucose, citrate, succinate, fumarate or glutamate as a carbon source is approximately 0.04 U / mg protein.
  • CgC minimal medium with lactate or pyruvate as carbon sources the MSY activity increases to values of 0.173 U / mg protein or 0.192 U / mg protein. The highest MSY activity is observed with 2.212 U / mg protein when growing on CgC minimal medium with acetate.
  • coli stam ED8654 (Murray et al. Mol Gen Genet 150 (1977) 53-61) was transfected therewith.
  • the recombinant cosmids were packaged in the protein envelope of the phage lambda by a method by Sternberg et al. (Gene 1 (1979) 255-280), the transfection of E. coli ED8654 according to a method by Sambrook et al. (Molecular Cloning, A Laboratory Handbook, 1989, Cold Spring Harbor Laboratory Press).
  • the corresponding cosmids were isolated from a total of 30 of the recombinant E.
  • mutant DV21A05 (anderwinkel and De Vlieghere Eur J Biochem 5 (1968) 81-90) according to a known method (Sambrook et al., Molecular Cloning, A Laboratory Handbook, 1989, Cold Spring Harbor Laboratory Press). Due to its MSY defect, mutant DV21A05 is no longer able to grow on acetate as the only carbon source. After transformation of the Cosmid gene bank into this mutant, a total of 1000 clones were obtained. Of these, three clones showed growth on M9 minimal medium (Sambrook et al., Molecular Cloning, A Laboratory Handbook, 1989, Cold Spring Harbor Laboratory Press) with acetate as the only carbon source. After isolating the corresponding cosmids (Sambrook et al.,
  • the plasmids generated in this way were used to generate deletion constructs according to the method of Henikoff (Gene 28 (1984) 351-359), which were subsequently used by the chain termination sequencing method (Sanger et al., Proc Natl Acad Sei USA, 74 (1977) 5463-5467) were sequenced.
  • the entire sequence of the 3 kb Bfrl-Pvul fragment obtained in this way is shown in Table 2.
  • the protein sequence derived from the aceB gene for the MSY from C. glutamicum, the ribosome binding site located in front of the gene and the termination structure for the transcription behind the gene are shown in Table 2.
  • Electroporation (Liebl et al., FEMS Microbiol Lett 65 (1989) 299-304) was used to isolate the plasmids pEKBla and pEKBlb in C. introduced glutamicum and the resulting strains as WT (pEKBla) and WT (pEKBlb) called.
  • WT pEKBla
  • WT pEKBlb
  • the newly constructed C. glutamicum strains were grown on CgC minimal medium with glucose, glucose / acetate or acetate as carbon sources up to an OD 60 o of 8-10, crude extracts were prepared and the specific MSY activity was determined in them .
  • the measured MSY activities are shown in Table 3.
  • This result proves that on the 3 kb Bfrl-Pvul fragment the aceB gene from C. Functionally available glutamicum.
  • aceB gene required structures, ie the promoter and regulatory sequences, are located. These structures are in front of the aceB gene. Since the cloned fragment still bears 584 bp before the actual aceB structural gene (see Table 2), the structures for expression and regulation must be located in this DNA region. 5. Studies on the regulation and expression of the aceB gene from C glutamicum.
  • MSY accounts for approximately 20% of the total cell protein in this strain.
  • the result shows that the structures necessary for the expression and regulation of aceB induce the re-synthesis of large amounts of protein under induced conditions.
  • the result shows that the observed increase in MSY activity after growth on acetate is due to the new synthesis of the MSY protein.
  • the DNA region in front of the aceB gene was isolated according to known methods as a 574 bp Bfrl-DraJ fragment, the overhanging ends were filled in to blunt ends with Klenow polymerase and into the Sall interface of the vector pEKplCm (Eikmanns.) Filled in with Klenow polymerase et al., Gene 102 (1991) 93-98).
  • This plasmid carries the chloramphenicol acetyltransferase gene (cat) behind the insertion site, but without its own promoter, ie the cat gene in C. glutamicum cannot be read from the plasmid pEKplCm.
  • the strains to be investigated were cultivated according to a known method on the above-mentioned media up to an OD 60 o 8 to 10, crude extracts were prepared and in these the specific CAT activity according to the method of Shaw (Meth Enzymol 43 (1975) 737-755).
  • the test contained in a final volume of 1.0 ml 100 mM Tris / HCl pH 7.8, 1 mM acetyl-coenzyme A, 1 mM 5,5-dithiobis (2-nitrobenzoic acid) and crude extract and was treated with 2.5 mM chloramphenicol started. The mixture was incubated at 30 ° C. The increase in absorbance at 412 nm was determined over a period of 2 minutes.
  • the protein content of the crude extracts was determined using the biuret method (Bradford, Anal Biochem 72 (1976) 248-254).
  • the specific CAT activities obtained are listed in Table 4. While there was no CAT activity detected in the C. glutamicum WT under any of the conditions tested, the recombinant strain C. glutamicum WT (pIWI) showed CAT activity for all carbon sources. However, the CAT activity after growth on CgC glucose was about 20 times lower than after growth on CgC glucose / acetate and even 50 times lower than after growth on CgC acetate. This result confirms that the isolated 574 bp Bfrl-Dral fragment allows the regulated gene expression of foreign genes. The foreign gene is induced by acetate, even in the presence of sugar.
  • the supernatant was chromatographed on an FPLC system with an HR5 / 5 MonoQ anion exchange column (Pharmacia LKB, Freiburg Germany).
  • the MSY was eluted with a 0.1 M to 0.4 M NaCl gradient in 50 mM MES / NaOH pH 6.
  • the buffer of the partially purified MSY was changed from 50 mM MES / NaOH pH 6 to 50 mM Tris / HCl pH 8 by means of ultrafiltration.
  • MSY malate synthase
  • Table 4 Specific activity of chloramphenicol acetyltransferase (CAT) in crude extracts of the C. glutamicum wild type (WT) and the recombinant C. glutamicum strain WT (pIWI) after growth on CgC minimal medium with glucose, glucose / acetate or acetate as Carbon sources.
  • CAT chloramphenicol acetyltransferase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
EP95936429A 1994-11-11 1995-11-07 Die genexpression in coryneformen bakterien regulierende dna Withdrawn EP0791062A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4440118A DE4440118C1 (de) 1994-11-11 1994-11-11 Die Genexpression in coryneformen Bakterien regulierende DNA
DE4440118 1994-11-11
PCT/DE1995/001555 WO1996015246A1 (de) 1994-11-11 1995-11-07 Die genexpression in coryneformen bakterien regulierende dna

Publications (1)

Publication Number Publication Date
EP0791062A1 true EP0791062A1 (de) 1997-08-27

Family

ID=6532942

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95936429A Withdrawn EP0791062A1 (de) 1994-11-11 1995-11-07 Die genexpression in coryneformen bakterien regulierende dna

Country Status (8)

Country Link
US (1) US5965391A (zh)
EP (1) EP0791062A1 (zh)
JP (1) JPH10512742A (zh)
KR (1) KR970707269A (zh)
CN (1) CN1174574A (zh)
DE (1) DE4440118C1 (zh)
WO (1) WO1996015246A1 (zh)
ZA (1) ZA959598B (zh)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797509B1 (en) 1999-07-09 2004-09-28 Degussa-Huls Ag Nucleotide sequences which code for the tal gene
US20060014259A9 (en) * 1999-07-09 2006-01-19 Kevin Burke Process for the preparation of L-amino acids with amplification of the zwf gene
US6927046B1 (en) * 1999-12-30 2005-08-09 Archer-Daniels-Midland Company Increased lysine production by gene amplification using coryneform bacteria
US20050112733A1 (en) * 2000-03-20 2005-05-26 Degussa Ag Process for the preparation of L-amino acids with amplification of the zwf gene
US20030175911A1 (en) * 2000-03-20 2003-09-18 Stephen Hans Process for the preparation of L-amino acids with amplification of the zwf gene
DE10109690A1 (de) 2000-09-02 2002-03-14 Degussa Neue für das metY-Gen kodierende Nukleotidsequenzen
WO2002040679A2 (en) * 2000-11-15 2002-05-23 Archer-Daniels-Midland Company Corynebacterium glutamicum promoters
WO2003012395A2 (en) * 2001-08-02 2003-02-13 New York University Early detection of mycobacterial disease using peptides
DE10217058A1 (de) 2002-04-17 2003-11-27 Basf Ag Verfahren zur Herstellung von schwefelhaltigen Feinchemikalien
EP1362866A1 (en) * 2002-05-16 2003-11-19 Basf Aktiengesellschaft Use of the repressor glxR for the synthesis of lysine in Corynebacterium glutamicum
DE10222858A1 (de) 2002-05-23 2003-12-04 Basf Ag Verfahren zur fermentativen Herstellung schwefelhaltiger Feinchemikalien
DE10239073A1 (de) * 2002-08-26 2004-03-11 Basf Ag Verfahren zur fermentativen Herstellung schwefelhaltiger Feinchemikalien
DE10239082A1 (de) 2002-08-26 2004-03-04 Basf Ag Verfahren zur fermentativen Herstellung schwefelhaltiger Feinchemikalien
DE10239308A1 (de) * 2002-08-27 2004-03-11 Basf Ag Verfahren zur fermentativen Herstellung von schwefelhaltigen Feinchemikalien
WO2005007862A2 (en) 2003-07-08 2005-01-27 Novus Internation, Inc Methionine recovery processes
DE10359595A1 (de) 2003-12-18 2005-07-28 Basf Ag Pgro-Expressionseinheiten
US8728795B2 (en) 2003-12-18 2014-05-20 Basf Se Pgro expression units
DE10359660A1 (de) 2003-12-18 2005-07-28 Basf Ag Psod-Expressionseinheiten
DE10359594A1 (de) 2003-12-18 2005-07-28 Basf Ag PEF-TU-Expressionseinheiten
DE102004035065A1 (de) 2004-07-20 2006-02-16 Basf Ag P-ET-TS-Expressionseinheiten
DE102004055414A1 (de) 2004-11-17 2006-05-24 Degussa Ag Allele des metK-Gens aus coryneformen Bakterien
DE102004061846A1 (de) 2004-12-22 2006-07-13 Basf Ag Mehrfachpromotoren
US20070092951A1 (en) * 2005-03-24 2007-04-26 Degussa Ag Alleles of the zwf gene from coryneform bacteria
DE102005019967A1 (de) * 2005-04-29 2006-11-02 Forschungszentrum Jülich GmbH Verfahren zur fermentativen Herstellung von L-Aminosäuren
DE102005047596A1 (de) 2005-10-05 2007-04-12 Degussa Ag Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE102005048818A1 (de) 2005-10-10 2007-04-12 Degussa Ag Mikrobiologische Herstellung von 3-Hydroxypropionsäure
RU2009134796A (ru) 2007-02-19 2011-03-27 Эвоник Дегусса ГмБх (DE) Коринеформные бактерии, обладающие формиат-тгф-синтетазной активностью и/или активностью в отношении расщепления глицина
DE102007015583A1 (de) 2007-03-29 2008-10-02 Albert-Ludwigs-Universität Freiburg Ein Enzym zur Herstellung von Methylmalonyl-Coenzym A oder Ethylmalonyl-Coenzym A sowie dessen Verwendung
DE102007027006A1 (de) 2007-06-08 2008-12-11 Evonik Degussa Gmbh Mikrobiologische Herstellung von Aldehyden, insbesondere von 3-Hydroxypropionaldehyd
DE102007041862A1 (de) 2007-09-03 2009-03-19 Evonik Degussa Gmbh Mikrobiologische Herstellung von Isoprenoiden
DE102007059248A1 (de) 2007-12-07 2009-06-10 Albert-Ludwigs-Universität Freiburg Zelle, welche in der Lage ist, CO2 zu fixieren
DE102007060705A1 (de) 2007-12-17 2009-06-18 Evonik Degussa Gmbh ω-Aminocarbonsäuren oder ihre Lactame, herstellende, rekombinante Zellen
CN101981202B (zh) 2008-01-23 2013-09-11 巴斯夫欧洲公司 发酵生产1,5-二氨基戊烷的方法
KR100987281B1 (ko) 2008-01-31 2010-10-12 씨제이제일제당 (주) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
DE102008002715A1 (de) 2008-06-27 2009-12-31 Evonik Röhm Gmbh 2-Hydroxyisobuttersäure produzierende rekombinante Zelle
DE102008041299A1 (de) 2008-08-18 2010-02-25 Evonik Degussa Gmbh Neuartiges, universell einsetzbares addiction-System
DE102008054918A1 (de) 2008-12-18 2010-07-01 Evonik Degussa Gmbh Verfahren zur enzymatischen Umsetzung von Alkanen
KR20100117465A (ko) 2009-04-24 2010-11-03 삼성전자주식회사 호스트셀의 알코올 내성을 증대시키는 단리된 폴리뉴클레오티드, 이를 포함하는 벡터, 호스트셀 및 이를 이용한 알코올의 생산방법
DE102010014680A1 (de) 2009-11-18 2011-08-18 Evonik Degussa GmbH, 45128 Zellen, Nukleinsäuren, Enzyme und deren Verwendung sowie Verfahren zur Herstellung von Sophorolipiden
KR101174267B1 (ko) * 2010-01-06 2012-08-14 씨제이제일제당 (주) L-오르니틴 또는 l-아르기닌 생산 변이주 및 이의 제조방법
DE102010019059A1 (de) 2010-05-03 2011-11-03 Forschungszentrum Jülich GmbH Sensoren zur intrazellulären Metabolit-Detektion
DE102010029973A1 (de) 2010-06-11 2011-12-15 Evonik Degussa Gmbh Mikrobiologische Herstellung von C4-Körpern aus Saccharose und Kohlendioxid
DE102010032484A1 (de) 2010-07-28 2012-02-02 Evonik Goldschmidt Gmbh Zellen und Verfahren zur Herstellung von Rhamnolipiden
EP2479279A1 (de) 2011-01-20 2012-07-25 Evonik Degussa GmbH Verfahren zur fermentativen Herstellung schwefelhaltiger Aminosäuren
RU2011134436A (ru) 2011-08-18 2013-10-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") Способ получения l-аминокислоты с использованием бактерии семейства enterobacteriaceae, обладающей повышенной экспрессией генов каскада образования флагелл и клеточной подвижности
DE102012201360A1 (de) 2012-01-31 2013-08-01 Evonik Industries Ag Zellen und Verfahren zur Herstellung von Rhamnolipiden
RU2012112651A (ru) 2012-04-02 2013-10-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") САМОИНДУЦИРУЕМАЯ ЭКСПРЕССИОННАЯ СИСТЕМА И ЕЕ ПРИМЕНЕНИЕ ДЛЯ ПОЛУЧЕНИЯ ПОЛЕЗНЫХ МЕТАБОЛИТОВ С ПОМОЩЬЮ БАКТЕРИИ СЕМЕЙСТВА Enterobacteriaceae
DE102012007491A1 (de) 2012-04-11 2013-10-17 Evonik Industries Ag Neue Enzyme
RU2550269C2 (ru) 2012-08-17 2015-05-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") СПОСОБ ПОЛУЧЕНИЯ L-АРГИНИНА С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА Enterobacteriaceae, СОДЕРЖАЩЕЙ N-АЦЕТИЛОРНИТИНДЕАЦЕТИЛАЗУ С НАРУШЕННОЙ АКТИВНОСТЬЮ
EP2700715B1 (de) 2012-08-20 2018-07-25 Evonik Degussa GmbH Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von verbesserten Stämmen der Familie Enterobacteriaceae
DE102013202106A1 (de) 2013-02-08 2014-08-14 Evonik Industries Ag Autotrophe Kultivierung
RU2013118637A (ru) 2013-04-23 2014-10-27 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА ENTEROBACTERIACEAE, В КОТОРОЙ РАЗРЕГУЛИРОВАН ГЕН yjjK
EP2811028B1 (de) 2013-06-03 2017-02-01 Evonik Degussa GmbH Verfahren zur Herstellung von L-Valin unter Verwendung rekombinanter Corynebakterien enthaltend das durch Propionat induzierbare ilvBN-Operon
RU2013140115A (ru) 2013-08-30 2015-03-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА Enterobacteriaceae, В КОТОРОЙ НАРУШЕНА ЭКСПРЕССИЯ КЛАСТЕРА ГЕНОВ znuACB
RU2013144250A (ru) 2013-10-02 2015-04-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА Enterobacteriaceae, В КОТОРОЙ ОСЛАБЛЕНА ЭКСПРЕССИЯ ГЕНА, КОДИРУЮЩЕГО ФОСФАТНЫЙ ТРАНСПОРТЕР
EP2860256B1 (en) 2013-10-11 2017-03-08 CJ Cheiljedang Corporation Method of producing l-amino acids
RU2013147882A (ru) 2013-10-28 2015-05-10 Закрытое акционерное общество "Научно-исследовательский институт Аджиномото-Генетика" (ЗАО "АГРИ") СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИЙ СЕМЕЙСТВА Enterobacteriaceae, В КОТОРОЙ НАРУШЕН ПУТЬ ДЕГРАДАЦИИ ПУТРЕСЦИНА
DE102014201384A1 (de) 2014-01-27 2015-07-30 Evonik Industries Ag Verfahren umfassend eine Kultivierung unter niedriger Gelöstsauerstoffkonzentration
RU2014105547A (ru) 2014-02-14 2015-08-20 Адзиномото Ко., Инк. СПОСОБ ПОЛУЧЕНИЯ L-АМИНОКИСЛОТ С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ СЕМЕЙСТВА ENTEROBACTERIACEAE, ИМЕЮЩЕЙ СВЕРХЭКСПРЕССИРУЕМЫЙ ГЕН yajL
LU92409B1 (en) 2014-03-21 2015-09-22 Philipps Universit T Marburg Means and methods for itaconic acid production
CN106661541B (zh) 2014-04-17 2021-09-03 贝林格尔·英格海姆Rcv两合公司 被工程化为过表达辅助蛋白的重组宿主细胞
JP2017511147A (ja) 2014-04-17 2017-04-20 ベーリンガー インゲルハイム エルツェーファウ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 目的タンパク質を発現させるための組換え宿主細胞
EP2949214A1 (en) 2014-05-26 2015-12-02 Evonik Degussa GmbH Methods of producing rhamnolipids
EP2952584A1 (en) 2014-06-04 2015-12-09 Boehringer Ingelheim RCV GmbH & Co KG Improved protein production
CN107208123A (zh) 2015-02-19 2017-09-26 赢创德固赛有限公司 鼠李糖脂合成
ES2758096T3 (es) 2015-03-25 2020-05-04 Senseup Gmbh Sensores para la detección y cuantificación de secreción microbiológica de proteínas
RU2015114955A (ru) 2015-04-22 2016-11-10 Аджиномото Ко., Инк. Способ получения L-изолейцина с использованием бактерии семейства Enterobacteriaceae, в которой сверхэкспрессирован ген cycA
RU2015120052A (ru) 2015-05-28 2016-12-20 Аджиномото Ко., Инк. Способ получения L-аминокислоты с использованием бактерии семейства Enterobacteriaceae, в которой ослаблена экспрессия гена gshA
CA3007635A1 (en) 2015-12-07 2017-06-15 Zymergen Inc. Promoters from corynebacterium glutamicum
US11208649B2 (en) 2015-12-07 2021-12-28 Zymergen Inc. HTP genomic engineering platform
US9988624B2 (en) 2015-12-07 2018-06-05 Zymergen Inc. Microbial strain improvement by a HTP genomic engineering platform
BR112018017227A2 (pt) 2016-02-25 2019-02-05 Ajinomoto Kk método para produzir um l-aminoácido
DE102016007810B4 (de) 2016-06-25 2023-12-07 Forschungszentrum Jülich GmbH Verfahren zur Herstellung von D-Xylonat
US10544390B2 (en) 2016-06-30 2020-01-28 Zymergen Inc. Methods for generating a bacterial hemoglobin library and uses thereof
KR102345898B1 (ko) 2016-06-30 2022-01-03 지머젠 인코포레이티드 글루코오스 투과 효소 라이브러리를 생성하는 방법 및 이의 용도
US20190233856A1 (en) 2016-10-24 2019-08-01 Evonik Degussa Gmbh Cells and method for producing rhamnolipids using alternative glucose transporters
WO2018077700A1 (en) 2016-10-24 2018-05-03 Evonik Degussa Gmbh Rhamnolipid-producing cell having reduced glucose dehydrogenase activity
SG10202110774QA (en) 2017-03-29 2021-11-29 Boehringer Ingelheim Rcv Gmbh Recombinant host cell with altered membrane lipid composition
US20200239897A1 (en) 2017-06-07 2020-07-30 Zymergen Inc. Promoters from corynebacterium glutamicum and uses thereof in regulating ancillary gene expression
JP7226449B2 (ja) 2017-12-26 2023-02-21 味の素株式会社 発酵によるグリシンの製造方法
JP7411557B2 (ja) 2018-02-09 2024-01-11 エボニック オペレーションズ ゲーエムベーハー グルコリピドを含有する混合組成物
WO2019212052A1 (en) 2018-05-04 2019-11-07 Ajinomoto Co., Inc. METHOD FOR PRODUCING L-METHIONINE USING A BACTERIUM OF THE GENUS Pantoea
CN112955547A (zh) 2018-06-27 2021-06-11 贝林格尔·英格海姆Rcv两合公司 通过使用转录因子来增加蛋白质表达的手段和方法
DE112019003478A5 (de) 2018-07-11 2021-04-08 Forschungszentrum Jülich GmbH D-xylose-dehydrogenase aus coryneformen bakterien und verfahren zur herstellung von d-xylonat
DE102018117233A1 (de) 2018-07-17 2020-01-23 Technische Universität Dortmund Biotechnologische Herstellung von Cannabinoiden
EP3856918A1 (en) 2018-09-28 2021-08-04 Ajinomoto Co., Inc. Method for producing l-methionine using a bacterium
WO2020071538A1 (en) 2018-10-05 2020-04-09 Ajinomoto Co., Inc. Method for producing target substance by bacterial fermentation
JP7491312B2 (ja) 2018-12-27 2024-05-28 味の素株式会社 腸内細菌科の細菌の発酵による塩基性l-アミノ酸またはその塩の製造方法
WO2020171227A1 (en) 2019-02-22 2020-08-27 Ajinomoto Co., Inc. METHOD FOR PRODUCING L-AMINO ACIDS USING A BACTERIUM BELONGING TO THE FAMILY Enterobacteriaceae HAVING OVEREXPRESSED ydiJ GENE
BR112021017870A2 (pt) 2019-04-05 2021-12-07 Ajinomoto Kk Método para produzir um l-aminoácido
WO2021060438A1 (en) 2019-09-25 2021-04-01 Ajinomoto Co., Inc. Method for producing l-amino acids by bacterial fermentation
DE102021000394A1 (de) 2021-01-27 2022-07-28 Forschungszentrum Jülich GmbH Herstellung von 3,4-Dihydroxybenzoat aus D-Xylose mit coryneformen Bakterien
JP2024506650A (ja) 2021-02-12 2024-02-14 ベーリンガー インゲルハイム エルツェーファウ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 増加したタンパク質分泌のためのシグナルペプチド
DE102022004733A1 (de) 2022-12-15 2024-06-20 Forschungszentrum Jülich GmbH Genetisch modifizierter Mikroorganismus und dessen Verwendung zur Herstellung von D-Chiro-Inositol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3036912B2 (ja) * 1991-09-02 2000-04-24 協和醗酵工業株式会社 遺伝子発現調節dna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9615246A1 *

Also Published As

Publication number Publication date
WO1996015246A1 (de) 1996-05-23
CN1174574A (zh) 1998-02-25
KR970707269A (ko) 1997-12-01
US5965391A (en) 1999-10-12
JPH10512742A (ja) 1998-12-08
ZA959598B (en) 1996-05-28
DE4440118C1 (de) 1995-11-09

Similar Documents

Publication Publication Date Title
DE4440118C1 (de) Die Genexpression in coryneformen Bakterien regulierende DNA
EP2181195B1 (de) Fermentative Gewinnung von Aceton aus erneuerbaren Rohstoffen mittels neuen Stoffwechselweges
DE69535674T2 (de) Verfahren zur herstellung von l-valin und l-leucin
DE69233459T2 (de) Herstellung von gamma-linolensäure durch eine delta-6 desaturase
JP7460179B2 (ja) バイオレチノールを生産する微生物及びそれを用いたバイオレチノールの生産方法
WO1998027201A2 (de) Gene codierend für aminosäure-deacetylasen mit spezifität für n-acetyl-l-phosphinothricin, ihre isolierung und verwendung
JPS6371183A (ja) ホスフィノトリシン耐性遺伝子及びその使用
DE112011101574T9 (de) Thioesterase und Verfahren zur Herstellung von Fettsäuren oder Lipiden unter Verwendung der Thioesterase
CN113667682B (zh) Yh66-rs11190基因突变体及其在制备l-缬氨酸中的应用
EP0667909B1 (de) Biotechnologisches verfahren zur herstellung von biotin
Hornberger et al. Cloning and sequencing of the hemA gene of Rhodobacter capsulatus and isolation of a δ-aminolevulinic acid-dependent mutant strain
EP0722500B1 (de) Gene für den butyrobetain/crotonobetain-l-carnitin-stoffwechsel und ihre verwendung zur mikrobiologischen herstellung von l-carnitin
RU2136753C1 (ru) Способ получения кобаламинов, плазмида (варианты), микроорганизм
EP0716699A1 (de) Glycerin-3-phosphat-dehydrogenase (gpdh)
DE10006462B4 (de) Produktion nicht-kariogener Zucker in transgenen Pflanzen
DE69736387T2 (de) Biosynthese-verfahren zur herstellung von o-phospho-l-threonine
EP0524604B1 (de) Gentechnologisches Verfahren zur Herstellung von S-(+)-2,2-Dimethylcyclopropancarboxamid mittels Mikroorganismen
CN113801870A (zh) SiLCYB调控番茄红素等谷子类胡萝卜素合成代谢的功能及应用
EP0285949B1 (de) Genetische Kontrolleinheit und Klonierungs- und Expressionssystem
EP0733704A2 (de) Steuerbares Expressionssystem
WO1998010074A2 (de) Adenylosuccinat synthetase
CN117616125A (zh) 无毒素芦荟及其制备方法
DE19632121C2 (de) Transgene Pflanzenzellen und Pflanzen mit veränderter Acetyl-CoA-Bildung
EP0462892A1 (fr) Souches de E.Coli productrices de vitamine B12 et procÀ©dé de préparation de la vitamine B12 par culture de ces souches
López-Lara et al. Nodulation Efficiency nfe Gene Homolog of Agrobacterium Ornithine Cyclodeaminase

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IE IT NL SE

17Q First examination report despatched

Effective date: 20010905

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM JUELICH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030821