EP0781445B1 - Schichtenabsorber zum absorbieren von akustischen schallwellen - Google Patents

Schichtenabsorber zum absorbieren von akustischen schallwellen Download PDF

Info

Publication number
EP0781445B1
EP0781445B1 EP95931221A EP95931221A EP0781445B1 EP 0781445 B1 EP0781445 B1 EP 0781445B1 EP 95931221 A EP95931221 A EP 95931221A EP 95931221 A EP95931221 A EP 95931221A EP 0781445 B1 EP0781445 B1 EP 0781445B1
Authority
EP
European Patent Office
Prior art keywords
layer
layers
absorber
accordance
spacers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95931221A
Other languages
English (en)
French (fr)
Other versions
EP0781445A1 (de
Inventor
Manfred Roller
Klaus Pfaffelhuber
Stefan Lahner
Gerhard Köck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faist Automotive GmbH and Co KG
Original Assignee
M Faist GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Faist GmbH and Co KG filed Critical M Faist GmbH and Co KG
Publication of EP0781445A1 publication Critical patent/EP0781445A1/de
Application granted granted Critical
Publication of EP0781445B1 publication Critical patent/EP0781445B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Definitions

  • the invention relates to a sound absorber for absorption of acoustic sound waves according to the generic term of claim 1.
  • DE 92 15 132 U1 is an airborne sound-absorbing molded part known for use in the engine compartment of motor vehicles, which consists of a film layer and a porous insulation layer.
  • the molded part consists of an open-pore PU foam that is sealed on all sides by a PU film.
  • sound absorbers are known (DE-U-92 15 132, DE-C-3 039 651, 4 011 705, 4 317 828 and 4 334 984), the sound absorbing Molded parts made of closed-cell PP foam, PE fleece bonded with binder, polymeric materials or the like; there are also uncovered ones Helmholtz resonators are used.
  • a sound absorber for absorbing sound from a relative large frequency spectrum is known for example also from US Pat. No. 3,439,774.
  • Two layers are used spaced by a honeycomb spacer is kept and it is ensured that the layers micropores exhibit.
  • the micropores are based on a special selection rule dimension: The porosity of the outer, a relatively high layer facing the sound Permeability, i.e. Permeability to sound waves, and the other, facing away from the sound, a comparative one have lower sound permeability.
  • Such Layers are made of stainless steel, for example, a pore size between 50 and 500 microns.
  • the invention has for its object a sound absorber to improve the genus mentioned in that the greatest possible sound absorption with as little material expenditure as possible he follows.
  • the invention is characterized in claim 1 and in subclaims preferred trainings are claimed. Also the following description relates to preferred forms of training.
  • the sound absorbing component from a sequence of layers of different densities and Stiffness, which may be laterally interrupted or can be separated by bars and spacers.
  • This Layers consist of foils, fleeces, foams, others membrane-like materials or fabrics or even from one Gas, which can expediently also be air.
  • Essential for the acoustic effectiveness of this component it is that the successive materials very clearly - almost abruptly - in their density and in their rigidity differentiate. This leads to the transition points Reflections of the sound waves moving back and forth in the absorber, which, with suitable dimensions, leads to good sound absorption leads in certain preselectable frequency ranges.
  • this layer system Limit webs or pressings and spacers laterally. This allows the individual materials to be fixed and there is a possibility of different in different places Material sequences and therefore different sound absorptions in the corresponding frequency ranges (absorption spectra) to realize.
  • One of the layers can expediently be used as a carrier layer, i.e. designed as a carrier body, in particular with a high mass be.
  • the carrier body can then be used as a shell or trough-like carrier shell be formed while the spacers - or Interlayers - what other thin layers in the distance hold from the carrier shell, designed and arranged in this way are that between the layers and the carrier shell Result in resonance chambers.
  • the sound absorbing Effect is mainly achieved by that the gas modules between the layers by the incident Sound waves are caused to vibrate.
  • the particular one gas modules consisting of air have an area-related Stiffness with the mass coatings of the layers and the coupled ambient air forms a mass-spring system, which in the Range of resonance frequencies to minima of acoustic impedance and therefore leads to sound absorption.
  • the absorber can be connected in series idealize masses and feathers.
  • Per mass-spring pair there is a minimum of acoustic impedance on the absorber surface, which in turn leads to a resonance in the absorption curve of the component in question.
  • the carrier layer is preferably selected from a material which is characterized by the following properties:
  • the carrier layer It is advisable to deep-draw the carrier layer, To manufacture injection presses or the like without cutting; also press forming, in particular fibrous structures is suitable for this. It is recommended that the resonance chambers surfaces of the carrier layer facing away from the contours adjust which of the visible side of the sound absorber, for example the passenger compartment of a motor vehicle, facing are.
  • the carrier layer can be the dashboard of the motor vehicle to create in the engine compartment Sound waves from entering the passenger compartment prevent.
  • the carrier layer can therefore also be a component that is necessary anyway, for example, a partition made of sheet metal, without the sound absorber needs an additional carrier shell, itself if the sound absorber prefers an integrated unit forms, which are prefabricated and integrated at the place of their application Unit is installed.
  • the layers should have a layer thickness in the range of 10 ⁇ m - 5 mm. Use is particularly recommended a polyurethane elastomer (PU), polypropylene (PP) and / or of polyester (PET) for the layers. It is advisable also, the layers of carbon, PAN- (polyacrylonitrile) or natural fibers and / or made of fiber-reinforced thermoplastic produce or from mixtures of these fibers. You can especially with the natural fiber materials flax, coconut, sisal, Jute, hemp or cellulose are used, which are either thermoplastic bound, more or less pressed or with natural binders, e.g. Lignin or starch, bound could be.
  • PU polyurethane elastomer
  • PP polypropylene
  • PET polyester
  • the layers of carbon, PAN- (polyacrylonitrile) or natural fibers and / or made of fiber-reinforced thermoplastic produce or from mixtures of these fibers. You can especially with the natural fiber materials flax
  • the spacers should be spaced between each other the carrier layer and the further layers can be arranged, that the resonance chambers each of the carrier shell on one End and one of the layers at the other end or between the Layers themselves are completed.
  • the layers with the resonance chambers To provide openings; the carrier layer can also have openings exhibit.
  • Very simple spacers are formed by web or plate-shaped Columns formed between the layers pull out and arranged substantially at right angles to these are; the spacers can also be different Angles to these aggregates of the sound absorber run, if for spatial reasons, for example Accommodation of other components, such as electrical components, or is appropriate for resonance purposes.
  • the spacers are made of PU (polyurethane elastomer), PET (polyester), PP- (polypropylene), carbon, PAN- (polyacrylonitrile) or natural fibers and / or made of fiber-reinforced thermoplastic or from mixtures of these fibers, similar to the material composition of layers.
  • the spacers are made of fleece, foam or foil.
  • Spacers made of a foam made of polyurethane elastomer (PU) or from a PET (polyester) fleece; in this case wear the spacers themselves for sound absorption in the form of a Combination of the "layer absorber” and “insulation absorbers”. This combination allows certain frequency spectra “Tailor” the sound absorption to a certain extent.
  • the spacers made of deep-drawn material in particular made of the same material as either the layers or the carrier layer consists.
  • the chamber is also protected against pollution (see Fig. 3).
  • FIG. 1 shows a sequence of each as an exemplary embodiment thin layers 2 or membranes (foil, fleece, foam etc.) with the corresponding intermediate layers 3a.
  • This Intermediate layers 3a form simple resonance chambers 4, which can be filled with gas and especially air.
  • a layer of very high mass 1 like they are formed, for example, as a carrier shell of an engine capsule is.
  • FIG. 2 shows an alternative embodiment of FIG. 1, in which the spacers 3a, i.e. the intermediate layers porous absorber material such as Foam or non-woven material consist. Instead of the air layers, these increase here Materials damping the resulting resonances, leading to a broadening of the absorption curve in the area of the concerned Leads resonance maxima.
  • the spacers 3a i.e. the intermediate layers porous absorber material such as Foam or non-woven material consist.
  • these increase here Materials damping the resulting resonances, leading to a broadening of the absorption curve in the area of the concerned Leads resonance maxima.
  • Figure 3 shows a system of layers 2 (membranes) and Intermediate layers 3a (air), which is laterally used as supports, in particular support walls or webs formed spacers 3b is delimited. These spacers 3b, which advantageously integrally connected to the carrier layer 1 can be used to fix the individual layers 2. Furthermore, different layer sequences can be made Realize in different places, making different large resonance chambers 4 arise. This is another Ability to vary the absorption spectra.
  • Figure 4 shows an alternative embodiment of the system according to Figure 3, here the intermediate layers 3a made of nonwoven or foam and similar tasks as in Figure 2 fulfill.
  • Figure 5 shows a layer sequence made by thermoforming or (Warm) presses etc. shaped layers 2 (membrane), which applied to the corresponding spacers 3b (webs) are. Due to the different degree of deformation realize different layer spacings here. Thereby arise resonance chambers 4 of different sizes, which too Here, depending on the location and location, a great variety ensure for the absorption spectra.
  • Figure 6 shows analogous to the previous embodiments a system according to Figure 5, wherein the corresponding intermediate layers 3a from appropriate fleeces, foams or Foils exist that dampen the corresponding resonance maxima.
  • the absorber consists of a superimposition of absorber chambers 4, which are shared by a largely flat cover membrane 5 or cover film are covered. Thin layers 2 are arranged between the absorber chambers 4, with the cover membrane 5 and the support shell 1 certain places can be connected. This additional The top layer improves due to its additional acoustic effectiveness the absorption. Instead, it may be enough only a single layer of absorber chambers 4 on the Build carrier layer 1 and with a cover film as a thinner Cover layer 2.
  • FIG. 8 shows a layer system made up of layers 2, which pass through lateral pressing or welding onto the carrier layer 1 are fixed.
  • This embodiment is recommended especially with a sequence of foil, fleece, foil, fleece (e.g. PES film, PET fleece ... or PP film, PP fleece ...) or Foil, foam, foil, foam (e.g. PU foil, PU foam, PU foil, PU foam) or different with a sequence of nonwovens Compression.
  • Types of material are used.
  • the carrier shell 1 is trough-shaped; it exists e.g. from GMT and is prefabricated using the deep-drawing process. Pull from the inside 1b of the carrier shell 1 plate-shaped spacers 3b substantially perpendicular to Level of the carrier shell 1 to the point at which they to support the spanned as a thin layer 2 effective film. The film is on the edge with the edge la the carrier shell 1 glued. The film is stretched tight. Resonance chambers are formed between the carrier shell 1 and the film 4 formed.
  • the film is e.g. made of polypropylene, while the Spacers 3b made of the same material as the carrier shell 1 exist and with this also in one piece, for example in Injection molding process can be made.
  • FIG. 9a is the thin layer 2 to improve the Absorbance at high frequencies with a thin layer of foam or fleece layer 10 and a thin cover film 11 or covered with a thin cover fleece.
  • the carrier shell 1 is e.g. made from GMT and brought into the shell shape shown here in the pressing process. At a distance from each other are on the inside 1b of the carrier shell 1 spacer 3b in the form of foam strips made of polyurethane elastomer and / or polyester fleece introduced. Their breadth is much smaller than their distance so that the Resonance chambers 4 between the carrier shell 1 and the the spacers 3b and the edge la of the carrier shell 1 stretched Form film or thin cover layer 2.
  • the carrier shell 1 is a deep-drawn trough-shaped Component e.g. from GMT.
  • the Tips 6 of the spacers 3b are attached, which thereby are connected that they are a deep-drawn component form in particular polypropylene.
  • the resonance chambers 4 the side facing away from the carrier shell 1 not only by the Layer 2, but also by connecting the spacers 3b Bridges 7 covered.
  • the resonance chambers 4b Helmholtz resonators can be inserted into the connecting webs 7 produce.
  • the openings 4b are covered by the layer 2 and thus the resonance chambers 4 are protected against contamination.
  • the cover layer 2 and the spacers 3b are not made are made of the same material as polypropylene (PP), what favors disposal can be by choosing another Material or by varying the material thickness of the mass coating can be adapted even better to the desired resonance frequency.
  • the sound absorber according to the invention thus forms a layer resonance absorber, in which the layer sequence is preferably such built up by cascading and possibly side by side and is dimensioned so that a maximum per mass-spring pair arises in the absorption curve.

Description

Die Erfindung bezieht sich auf einen Schallabsorber zum Absorbieren von akustischen Schallwellen gemäß dem Oberbegriff des Anspruchs 1.
Damit die Umwelt nicht zu stark durch akustische Schallwellen beeinträchtigt wird, ist es bereits bekannt, Schallwellen möglichst sogleich am Ort ihres Entstehens an der Ausbreitung in die Umgebung zu hindern. Ebenso ist es zur Bildung ruhiger Räume bekannt, das Eindringen des Schalls von draußen in solche Räume soweit wie möglich abzuwehren. Zu diesem Zweck dienen Schallabsorber, die meistens schallabsorbierende Materialien - "Dämmstoffe" genannt - aufweisen. Der Materialverbrauch hierfür ist jedoch verhältnismäßig groß, was sich nicht nur bei den Herstellungskosten, sondern auch beim Entsorgen solcher Dämmstoffe auswirkt.
Aus der DE 92 15 132 U1 ist ein luftschallabsorbierendes Formteil zur Verwendung im Motorraum von Kraftfahrzeugen bekannt, das aus einer Folienschicht und einer porösen Dämmschicht besteht. Dabei besteht das Formteil aus einem offenporigen PU-Schaum, der allseitig durch eine PU-Folie abgedichtet ist.
Darüber hinaus sind Schallabsorber bekannt (DE-U-92 15 132, DE-C-3 039 651, 4 011 705, 4 317 828 und 4 334 984), die schallabsorbierende Formteile aus geschlossenzelligem PP-Schaum, mit Bindemittel verklebtem PE-Vlies, polymeren Materialien oder dergleichen aufweisen; dabei sind auch unabgedeckte Helmholtz-Resonatoren zur Anwendung gelangt.
Ein Schallabsorber zum Absorbieren von Schall aus einem verhältnismäßig großen Frequenzspektrum ist bekannt beispielsweise auch aus US-PS 3 439 774. Dabei werden zwei Schichten durch einen wabenförmig aufgebauten Abstandshalter in Abstand gehalten und wird dafür gesorgt, daß die Schichten Mikroporen aufweisen. Die Mikroporen sind nach einer besonderen Auswahlregel zu bemessen: Dabei soll die Porosität der äußeren, dem Schalleinfall zugewandten Schicht eine verhältnismäßig hohe Permeabilität, d.h. Durchlässigkeit gegenüber den Schallwellen, und die andere, dem Schalleinfall abgewandte Schicht eine vergleichsweise geringere Schallpermeabilität aufweisen. Derartige Schichten bestehen beispielsweise aus nichtrostendem Stahl, einer Porengröße zwischen 50 und 500 µm.
Ein anderes Problem, nämlich die Dämpfung von Körperschall, d.h. die Dämpfung von schallerzeugenden Körperteilen, wird beispielsweise nach US-PS 3 087 571 und 3 087 573 sowie FR-PS-2 671 899 durch das Aufbringen von dämpfenden Massen, darunter auch von durch Abstandhalter in Abstand gehaltenen dämpfenden Massen, auf den schwingenden und daher Schallwellen erzeugenden Körper gelöst.
Der Erfindung liegt die Aufgabe zugrunde, einen Schallabsorber der eingangs genannten Gattung dahingehend zu verbessern, daß mit möglichst wenig Materialaufwand eine möglichst große Schallabsorption erfolgt.
Die Erfindung ist im Anspruch 1 gekennzeichnet und in Unteransprüchen sind bevorzugte Ausbildungen beansprucht. Auch die folgende Beschreibung betrifft bevorzugte Ausbildungsformen.
Gemäß der Erfindung besteht das schallabsorbierende Bauteil aus einer Abfolge von Schichten unterschiedlicher Dichte und Steifigkeit, welche gegebenenfalls seitlich unterbrochen bzw. durch Stege und Abstandshalter getrennt sein können. Diese Schichten bestehen aus Folien, Vliesen, Schäumen, anderen membranartigen Werkstoffen oder Geweben oder auch aus einem Gas, welches zweckmäßigerweise auch Luft sein kann. Wesentlich für die akustische Wirksamkeit dieses Bauteils ist es, daß sich die aufeinanderfolgenden Materialien sehr deutlich - geradezu abrupt - in ihrer Dichte und in ihrer Steifigkeit unterscheiden. Hierdurch kommt es an den Übergangsstellen zu Reflexionen der im Absorber hin- und herlaufenden Schallwellen, was bei geeigneter Dimensionierung zu einer guten Schallabsorption in bestimmten vorwählbaren Frequenzbereichen führt.
Weiterhin ist es vorteilhaft, dieses Schichtensystem durch Stege bzw. Abpressungen und Abstandshalter seitlich zu begrenzen. Dadurch lassen sich die einzelnen Materialien fixieren und es besteht die Möglichkeit, an unterschiedlichen Orten unterschiedliche Materialfolgen und damit unterschiedliche Schallabsorptionen in den entsprechenden Frequenzbereichen (Absorptionsspektren) zu realisieren.
Zweckmäßigerweise kann eine der Schichten als Trägerschicht, d.h. als Trägerkörper, insbesondere mit einer hohen Masse ausgebildet sein.
Der Trägerkörper kann dann als schalen- bzw. wannenartige Trägerschale ausgebildet sein, während die Abstandhalter - oder Zwischenschichten -, welche andere dünne Schichten im Abstand von der Trägerschale halten, derart ausgebildet und angeordnet sind, daß sich zwischen den Schichten und der Trägerschale Resonanzkammern ergeben.
Im Unterschied zu den am häufigsten angewendeten Schallabsorbern, bei denen die Zwischenräume zwischen den Schichten durch Dämmstoffe ausgefüllt sind, bleiben hier erfindungsgemäß diese Zwischenräume weitgehend frei von Materialien. Die schallabsorbierende Wirkung wird nämlich vornehmlich dadurch erzielt, daß die Gasmoduln zwischen den Schichten durch die einfallenden Schallwellen zu Schwingungen veranlaßt werden. Die insbesondere aus Luft bestehenden Gasmoduln besitzen eine flächenbezogene Steifigkeit, die mit den Massenbelägen der Schichten und der angekoppelten Umgebungsluft ein Masse-Feder-System bildet, das im Bereich der Resonanzfrequenzen zu Minima der akustischen Impedanz und daher zur Schallabsorption führt.
Somit läßt sich der Absorber durch eine Hintereinanderschaltung von Massen und Federn idealisieren. Pro Masse-Feder-Paar entsteht ein Minimum der akustischen Impedanz an der Absorberoberfläche, welches wiederum zu einer Resonanz in der Absorptionskurve des betreffenden Bauteils führt. Durch Variation der Materialdicken und -dichten lassen sich diese Resonanzfrequenzen variieren und dadurch ein beliebiger Absorptionsverlauf realisieren.
Die Trägerschicht wird bevorzugt aus einem Material gewählt, das sich durch vor allem folgende Eigenschaften auszeichnet:
Dabei empfiehlt es sich, die Trägerschicht durch Tiefziehen, Spritzpressen oder dergleichen spanloses Formgeben herzustellen; auch ein Preßverformen insbesondere fasriger Strukturen ist hierfür geeignet. Es empfiehlt sich, die den Resonanzkammern abgewandten Oberflächen der Trägerschicht den Konturen anzupassen, welche der Sichtseite des Schallabsorbers, beispielsweise dem Fahrgastraum eines Kraftfahrzeugs, zugewandt sind. So kann die Trägerschicht beispielsweise das Armaturenbrett des Kraftwagens repräsentieren, um im Motorraum entstehende Schallwellen am Eindringen in den Fahrgastraum zu hindern.
Die Trägerschicht kann daher auch ein ohnehin notwendiges Bauteil, beispielsweise eine Trennwand aus Blech, sein, ohne daß der Schallabsorber einer zusätzliche Trägerschale bedarf, selbst wenn der Schallabsorber bevorzugt eine integrierte Baueinheit bildet, die vorfabriziert und am Ort ihrer Anwendung als integrierte Baueinheit eingebaut wird.
Die Schichten sollten eine Schichtdicke im Bereich von 10 µm - 5 mm aufweisen. Es empfiehlt sich insbesondere die Verwendung eines Polyurethan-Elastomers (PU), von Polypropylen (PP) und/ oder von Polyester (PET) für die Schichten. Es empfiehlt sich ebenfalls, die Schichten aus Carbon, PAN-(Polyacrylnitril) oder Naturfasern und/oder aus faserverstärktem Thermoplast herzustellen bzw. aus Mischungen dieser Fasern. Dabei können insbesondere bei den Naturfasermaterialien Flachs, Kokos, Sisal, Jute, Hanf oder Zellulose verwendet werden, die entweder thermoplastisch gebunden, mehr oder weniger stark verpreßt oder mit natürlichen Bindemitteln, wie z.B. Lignin oder Stärke, gebunden sein können.
Die Abstandhalter sollten so im Abstand voneinander zwischen der Trägerschicht und den weiteren Schichten angeordnet sein, daß die Resonanzkammern jeweils von der Trägerschale an einem Ende und eine der Schichten am anderen Ende bzw. zwischen den Schichten selbst abgeschlossen sind. Für besondere Fälle kann es zweckmäßig sein, die Schichten zu den Resonanzkammern hin mit Durchbrechungen zu versehen; auch die Trägerschicht kann Durchbrechungen aufweisen.
Sehr einfache Abstandhalter werden durch steg- oder plattenförmige Stützen gebildet, welche sich zwischen den Schichten hinziehen und im wesentlichen im rechten Winkel zu diesen angeordnet sind; die Abstandhalter können auch unter davon abweichenden Winkeln zu diesen Aggregaten des Schallabsorbers verlaufen, falls dies aus räumlichen Gründen beispielsweise zur Beherbergung von anderen Bauelementen, wie elektrischen Bauteilen, oder zu Resonanzzwecken zweckmäßig ist.
Die Abstandhalter bestehen aus PU-(Polyurethanelastomer), PET-(Polyester), PP-(Polypropylen), Carbon, PAN-(Polyacrylnitril) oder Naturfasern und/oder aus faserverstärktem Thermoplast bzw. aus Mischungen dieser Fasern, ähnlich der Materialzusammensetzung der Schichten. Ebenso wie die dünnen Schichten können auch die Abstandhalter aus Vlies, Schaumstoff oder Folie bestehen.
Nach einer bevorzugten Ausbildung der Erfindung bestehen die Abstandhalter aus einem Schaumstoff aus Polyurethan-Elastomer (PU) oder aus einem PET (Polyester)-Vlies; in diesem Fall tragen die Abstandhalter selbst zur Schallabsorption bei in Form einer Kombination des "Schichtenabsorbers" und von "Dämmstoffabsorbern". Durch diese Kombination lassen sich bestimmte Frequenzspektren der Schallabsorption gewissermaßen "maßschneidern".
Nach einer anderen bevorzugten Ausbildung der Erfindung bestehen die Abstandhalter aus tiefgezogenem Material, das insbesondere aus dem gleichen Werkstoff wie entweder die Schichten oder die Trägerschicht besteht. Ist das tiefgezogene Material selbst als Kammerresonator oder durch Einbringen von Öffnungen als Helmholtzresonator wirksam, ergibt sich eine Kombination des Schichtenabsorbers mit diesen Absorbertypen. Insbesondere beim Helmholtzresonator erfolgt zudem ein Schutz der Kammer vor Verschmutzung (vgl. Fig. 3). Werden durch den Tiefziehprozeß aus dem Material Kammern erzeugt, welche, wie bekannt, durch Variation der Kammerabmessungen ebenfalls als Resonanzabsorber wirksam sind, so entsteht eine Kombination aus Kammer und Schichtenabsorber. So empfiehlt es sich, den tiefgezogenen Abstandhalter mit den Schichten zu vereinen und diese Baugruppe in die Trägeschale einzusetzen, um mit dieser die integrierte Baueinheit des Schallabsorbers zu bilden. Es empfiehlt sich, den Rand der Schichten am Rand der Trägerschale zu befestigen, insbesondere festzukleben.
Ausführungsbeispiele der Erfindung werden nun anhand der Zeichnung näher beschrieben, dabei zeigen
Figur 1
eine Abfolge verschiedener Schichten im schematischen Schnittbild;
Figur 2
eine Abfolge verschiedener Schichten und Zwischenschichten bzw. Abstandhalter;
Figur 3
ein System aus Membran- und Luftschichten, die seitlich durch Stege abgegrenzt sind;
Figur 4
ein System aus Membran- und Luftschichten sowie Abstandhalter, die durch Stege abgegrenzt sind;
Figur 5
eine Schichtenfolge aus durch Thermoformen oder Warmpressen geformten Membranen als dünnen Schichten;
Figur 6
eine Schichtenfolge aus durch Thermoformen oder Warmpressen geformten Membrane mit entsprechenden Zwischenschichten bzw. Abstandhaltern;
Figur 7
System einer Übereinanderschichtung von Absorberkammern;
Figur 8
Schichtensystem mit seitlich abgepreßten oder an die Trägerschale angeschweißten Schichten;
Figur 9/9a
schematische Querschnitte durch Schallabsorber mit plattenförmigen Abstandhaltern;
Figur 10
einen entsprechenden schematischen Querschnitt durch den Schallabsorber mit Schaumstoff als Abstandhaltern;
Figur 11
eine schematische Ansicht einer alternativen Ausbildung der Erfindung, bei der die Absorberkammern aus tiefgezogenem Material durch eine dünne Schicht bzw. Membran überzogen sind.
Figur 1 zeigt als Ausführungsbeispiel eine Abfolge von jeweils dünnen Schichten 2 bzw. Membranen (Folie, Vlies, Schaumstoff etc.) mit den entsprechenden Zwischenschichten 3a. Diese Zwischenschichten 3a bilden hier einfache Resonanzkammern 4, die gas- und insbesondere luftgefüllt sein können. Abgeschlossen wird dieses System mit einer Schicht sehr hoher Masse 1, wie sie beispielsweise als Trägerschale einer Motorkapsel gebildet ist.
Figur 2 zeigt eine alternative Ausführungsform der Figur 1, bei der die Abstandhalter 3a, d.h. die Zwischenschichten aus porösem Absorbermaterial wie z.B. Schaum oder Vliesmaterial bestehen. Anstatt der Luftschichten erhöhen hier diese Materialien die Dämpfung der resultierenden Resonanzen, was zu einer Verbreiterung der Absorptionskurve im Bereich der betreffenden Resonanzmaxima führt.
Figur 3 zeigt ein System aus Schichten 2 (Membranen) und Zwischenschichten 3a (Luft), welches seitlich durch als Stützen, insbesondere Stützwänden bzw. Stegen ausgebildeten Abstandshalter 3b abgegrenzt ist. Diese Abstandshalter 3b, die vorteilhafterweise einstückig mit der Trägerschicht 1 verbunden sein können, dienen zur Fixierung der einzelnen Schichten 2. Weiterhin lassen sich somit unterschiedliche Schichtfolgen an unterschiedlichen Orten realisieren, wodurch unterschiedlich große Resonanzkammern 4 entstehen. Dadurch ist eine weitere Variationsmöglichkeit der Absorptionsspektren gegeben.
Figur 4 zeigt eine alternative Ausführungsform des Systems nach Figur 3, wobei hier die Zwischenschichten 3a aus Vlies bzw. Schaum bestehen und ähnliche Aufgaben wie in Figur 2 erfüllen.
Figur 5 zeigt eine Schichtenfolge aus durch Thermoformen oder (Warm-)Pressen etc. geformte Schichten 2 (Membrane), welche auf die entsprechenden Abstandshalter 3b (Stege) aufgebracht sind. Durch den unterschiedlichen Verformungsgrad lassen sich hier unterschiedliche Schichtabstände realisieren. Dadurch entstehen unterschiedlich große Resonanzkammern 4, die auch hier je nach Ort und Lage eine große Variationsmöglichkeit für die Absorptionsspektren gewährleisten.
Figur 6 zeigt analog zu den vorherigen Ausführungsbeispielen ein System nach Figur 5, wobei die entsprechenden Zwischenschichten 3a aus entsprechenden Vliesen, Schaumstoffen oder Folien bestehen, die die entsprechenden Resonanzmaxima dämpfen.
Gemäß Figur 7 besteht der Absorber aus einer Übereinanderschichtung von Absorberkammern 4, die gemeinsam durch eine weitgehend plane Deckmembrane 5 bzw. Abdeckfolie abgedeckt sind. Zwischen den Absorberkammern 4 sind dünne Schichten 2 angeordnet, die mit der Deckmembrane 5 und der Trägeschale 1 an bestimmten Stellen verbunden sein können. Diese zusätzliche Deckschicht verbessert durch ihre zusätzliche akustische Wirksamkeit die Absorption. Statt dessen kann es auch genügen, lediglich eine einzige Schicht von Absorberkammern 4 auf der Trägerschicht 1 aufzubauen und mit einer Abdeckfolie als dünner Schicht 2 abzudecken.
Figur 8 zeigt ein Schichtensystem aus Schichten 2, die durch seitliches Abpressen oder Anschweißen an der Trägerschicht 1 fixiert sind. Dieses Ausführungsbeispiel empfiehlt sich vor allem bei einer Abfolge von Folie, Vlies, Folie, Vlies (z.B. PES-Folie, PET-Vlies ... oder PP-Folie, PP-Vlies ...) oder Folie, Schaum, Folie, Schaum (z.B. PU-Folie, PU-Schaum, PU-Folie, PU-Schaum) oder auch bei einer Abfolge von Vliesen unterschiedlicher Verdichtung. Aus Recyclinggründen und aufgrund von Umweltschutzmaßnahmen kann hierbei auch nur eine einzige Materialsorte zum Einsatz kommen.
Gemäß Figur 9 ist die Trägerschale 1 wannenförmig ausgebildet; sie besteht z.B. aus GMT und ist im Tiefziehverfahren vorfabriziert. Von der Innenseite 1b der Trägerschale 1 ziehen sich plattenförmige Abstandhalter 3b im wesentlichen senkrecht zur Ebene der Trägerschale 1 bis zu derjenigen Stelle hin, an der sie zur Abstützung der darübergespannten als dünnen Schicht 2 wirksamen Folie dienen. Die Folie ist am Rand mit dem Rand la der Trägerschale 1 verklebt. Dabei ist die Folie straff gespannt. Zwischen der Trägerschale 1 und der Folie werden Resonanzkammern 4 gebildet. Die Folie besteht z.B. aus Polypropylen, während die Abstandhalter 3b aus dem gleichen Material wie die Trägerschale 1 bestehen und mit dieser auch einstückig beispielsweise im Spritzpreßverfahren hergestellt sein können.
Gemäß Figur 9a ist die dünne Schicht 2 zur Verbesserung der Absorption bei hohen Frequenzen mit einer dünnen Schaumschicht oder Vliesschicht 10 und einer dünnen Abdeckfolie 11 oder einem dünnen Abdeckvlies überzogen.
Gemäß Figur 10 ist die Trägerschale 1 z.B. aus GMT hergestellt und im Preßverfahren in die hier gezeigte Schalenform gebracht. Im Abstand voneinander sind an der Innenseite 1b der Trägerschale 1 Abstandhalter 3b in Form von Schaumstoffstreifen aus Polyurethan-Elastomer und/oder Polyestervlies eingebracht. Deren Breite ist wesentlich kleiner als deren Abstand, damit sich die Resonanzkammern 4 zwischen der Trägerschale 1 und der über die Abstandhalter 3b und den Rand la der Trägerschale 1 gespannten Folie bzw. dünnen Abdeckschicht 2 bilden.
Gemäß Figur 11 ist die Trägerschale 1 ein tiefgezogenes wannenförmiges Bauteil z.B. aus GMT. An der Innenseite 1b sind die Spitzen 6 der Abstandhalter 3b angesetzt, welche dadurch miteinander verbunden sind, daß sie einen tiefgezogenen Bauteil aus insbesondere Polypropylen bilden.
An der den Spitzen 6 der Abstandhalter 3b abgewandten Seite ist die dünne Schicht 2, z.B. ein Vlies, entlanggezogen. Bei dieser Ausbildung der Erfindung werden die Resonanzkammern 4 an der der Trägerschale 1 abgewandten Seite nicht nur durch die Schicht 2, sondern auch durch die die Abstandhalter 3b verbindenden Stege 7 abgedeckt. Durch Einbringen von Öffnungen 4b in die verbindenden Stege 7 lassen sich Helmholtz-Resonatoren erzeugen. Die Öffnungen 4b werden von der Schicht 2 überdeckt und somit sind die Resonanzkammern 4 gegen Verschmutzung geschützt. Sofern die Abdeckschicht 2 und die Abstandhalter 3b nicht aus dem gleichen Material, wie Polypropylen (PP), hergestellt sind, was die Entsorgung begünstigt, kann duch Wahl eines anderen Materials bzw. durch Variation der Materialdicke der Massenbelag noch besser auf die gewünschte Resonanzfrequenz angepaßt werden. Bei Verwendung gleichen Materials kann die bessere Rosonanzfrequenzanpassung durch Variation der Materialdicke erzielt werden. Innerhalb der Abstandhalter 3b werden weitere Kammern 4a gebildet, die lediglich durch das Vlies oder eine Folie nach der einen Seite abgedeckt sind, und dadurch als Schichtenresonator wirken können.
Der erfindungsgemäße Schallabsorber bildet also einen Schichtenresonanzabsorber, bei dem die Schichtenfolge bevorzugt derart durch Hinter- und gegebenenfalls Nebeneinanderschalten aufgebaut und bemessen ist, daß pro Masse-Feder-Paar ein Maximum in der Absorptionskurve entsteht.

Claims (13)

  1. Schichtenabsorber zum Absorbieren von akustischen Luft-Schallwellen mit einer Anzahl von Schichten (1,2), darunter mindestens einer dünnen Schicht (2) mit einer Schichtdicke zwischen 0,01 und 5 mm, die im Abstand voneinander gehalten sind,
    dadurch gekennzeichnet,
    daß einerseits die Schichten (1,2) und andererseits die den Abstand zwischen diesen sicherstellenden Zwischenschichten (3a) bzw. Abstandhalter (3b) unterschiedliche Dichten und/oder Steifigkeiten aufweisen,
    und daß die Zwischenschichten (3a) bzw. Abstandhalter (3b) derart ausgebildet und angeordnet sind, daß in den Zwischenräumen zwischen den Schichten (1,2) mehrere Resonanzkammern (4) gebildet sind.
  2. Schichtenabsorber nach Anspruch 1,
    dadurch gekennzeichnet,
    daß eine der Schichten als Trägerschicht, Trägerkörper oder Trägerprofil (1) mit hoher Masse gebildet ist und daß mindestens ein Abstandshalter (3a, 3b) zwischen mindestens einer dünnen Schicht (2) und der Trägerschicht (1) mehrere gasgefüllte Resonanzkammern (4) bildet.
  3. Schichtenabsorber nach Anspruch 2,
    dadurch gekennzeichnet,
    daß die Trägerschicht (1) als schalen- bzw. wannenartiger Trägerkörper geformt ist.
  4. Schichtenabsorber nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß die Schichtenfolge des Absorbers durch ein Hintereinanderschalten von Massen und Federn derart bemessen und aufgebaut ist, daß pro Masse-Feder-Paar ein Maximum in der Absorptionskurve entsteht.
  5. Schichtenabsorber nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß Resonanzkammern (4) bzw. Masse-Feder-Paare auf unterschiedliche Resonanzfrequenzen abgestimmt sind.
  6. Schichtenabsorber nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß mindestens ein Abstandshalter als Zwischenschicht (3a) ausgebildet ist.
  7. Schichtenabsorber nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß die Schichten (1, 2) und/oder die Abstandhalter (3a, 3b) aus Vlies, Schaumstoff oder Folie bestehen.
  8. Schichtenabsorber nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß die dünnen Schichten (1, 2) und/oder die Abstandshalter (3a, 3b) aus PU-(Polyurethan-Elastomer), PET-(Polyester), PP-(Polypropylen), PE-(Polyethylen), ABS-(Acrylnitril/Butadien/ Styrol-Terpolymerisat), PAN-(Polyacrylnitril) und/oder faserverstärktem Thermoplast und/oder faserverstärktem Duroplast bestehen.
  9. Schichtenabsorber nach Anspruch 7 oder 8,
    dadurch gekennzeichnet,
    daß die dünnen Schichten (1, 2) Vliese aus Fasern folgender Stoffe aufweisen: PET, PP, Carbon, PAN, PI-(Polyimid) und/ oder Naturfasern.
  10. Schichtenabsorber nach einem der Ansprüche 7-9,
    dadurch gekennzeichnet,
    daß dünne Schichten (1, 2) und/oder Abstandshalter (3a, 3b) hart verpreßt sind.
  11. Schichtenabsorber nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß ein Abstandhalter (3a, 3b) mit einer Schicht (1, 2) einstückig ausgebildet ist.
  12. Schichtenabsorber nach Anspruch 11,
    dadurch gekennzeichnet,
    daß der Trägerkörper (1) mit Abstandshalter (3b) einstückig ausgebildet ist und/oder Ränder der Schichten (2, 3a) am Rand (1a) des Trägerkörpers (1) befestigt ist.
  13. Schichtenabsorber nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    daß über den gesamten Schallabsorber an der dem Schalleinfall zugewandten Seite eine gemeinsame insbesondere membranartige Deckfolie (5) und/oder Vlies - die Resonanzkammern (4) überspannend - angeordnet ist.
EP95931221A 1994-09-14 1995-08-29 Schichtenabsorber zum absorbieren von akustischen schallwellen Expired - Lifetime EP0781445B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE9414943U DE9414943U1 (de) 1994-09-14 1994-09-14 Folienresonanzabsorber
DE9414943U 1994-09-14
PCT/EP1995/003401 WO1996008812A1 (de) 1994-09-14 1995-08-29 Schichtenabsorber zum absorbieren von akustischen schallwellen

Publications (2)

Publication Number Publication Date
EP0781445A1 EP0781445A1 (de) 1997-07-02
EP0781445B1 true EP0781445B1 (de) 1998-07-29

Family

ID=6913704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95931221A Expired - Lifetime EP0781445B1 (de) 1994-09-14 1995-08-29 Schichtenabsorber zum absorbieren von akustischen schallwellen

Country Status (9)

Country Link
US (1) US6186270B1 (de)
EP (1) EP0781445B1 (de)
JP (1) JP3307648B2 (de)
KR (1) KR100285319B1 (de)
CZ (1) CZ288450B6 (de)
DE (2) DE9414943U1 (de)
ES (1) ES2119468T3 (de)
PL (1) PL180618B1 (de)
WO (1) WO1996008812A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012101648U1 (de) * 2012-05-04 2013-08-06 Faist Chemtec Gmbh Schalldämpfende Folie
DE102019128209A1 (de) * 2019-10-18 2021-04-22 Daniel Mohr Schallabsorbierende Vorrichtung mit Noppenfolienverbund

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29605599U1 (de) * 1996-03-26 1997-07-31 Faist M Gmbh & Co Kg Mehrschichtiges, schallabsorbierendes Bauteil
DE29606817U1 (de) * 1996-04-15 1997-08-14 Faist M Gmbh & Co Kg Mehrschichtiges schallabsorbierendes Bauteil
FR2750527B1 (fr) 1996-06-28 1998-08-21 Bertin & Cie Structures d'absorption de bruit et parois constituees de ces structures
DE19634615A1 (de) * 1996-08-27 1998-03-05 Faist M Gmbh & Co Kg Schallabsorbierender Bauteil
US5939212A (en) * 1997-06-09 1999-08-17 Atd Corporation Flexible corrugated multilayer metal foil shields and method of making
US6029962A (en) * 1997-10-24 2000-02-29 Retama Technology Corporation Shock absorbing component and construction method
DE29803675U1 (de) * 1998-03-03 1999-07-15 Faist M Gmbh & Co Kg Schallschutzabschirmung
WO2000023268A1 (en) 1998-10-20 2000-04-27 Atd Corporation Corrugated multilayer metal foil insulation panels and methods of making
DE19856377A1 (de) * 1998-12-07 2000-06-08 Illbruck Industrieprodukte Gmb Mehrlagiges Isolationselement
GB0019913D0 (en) * 2000-08-15 2000-09-27 Ventures & Consultancy Bradfor Sound absorbing material
DE10154364A1 (de) * 2001-11-06 2003-05-15 Cognis Deutschland Gmbh Dämmstoff für Schallwellen
DE10228395C1 (de) * 2002-06-25 2003-12-04 Carcoustics Tech Ct Gmbh Schall-Absorber
JP2004062074A (ja) * 2002-07-31 2004-02-26 Toyota Motor Corp 吸音装置
DE10253832A1 (de) * 2002-11-18 2004-05-27 Carcoustics Tech Center Gmbh Schallisolierender Hitzeschutzschild
JP2004264374A (ja) * 2003-02-24 2004-09-24 Kobe Steel Ltd 薄膜を用いた吸音構造
JP4050632B2 (ja) 2003-02-24 2008-02-20 株式会社神戸製鋼所 吸音構造体
KR100787297B1 (ko) * 2003-09-05 2007-12-20 가부시키가이샤 고베 세이코쇼 흡음 구조체 및 그 제조 방법
JP2005134653A (ja) * 2003-10-30 2005-05-26 Kobe Steel Ltd 吸音構造体
DE112004002163T5 (de) * 2003-11-11 2006-09-28 Komatsu Ltd. Innenmaterial, Paneelkörper, und Herstellungsverfahren für Innenmaterial
DE20320100U1 (de) * 2003-12-23 2005-05-12 Carcoustics Tech Center Gmbh Luftschallabsorbierendes Bauteil
KR100692509B1 (ko) * 2004-10-20 2007-03-09 강춘원 목질 흡음성 개선방법 및 목질 흡음재
JP4754836B2 (ja) * 2005-01-27 2011-08-24 株式会社神戸製鋼所 二重壁構造体
FR2889616B1 (fr) * 2005-08-02 2008-05-30 Hutchinson Sa Panneau acoustique du type a lame d'air
FR2917046B1 (fr) * 2007-06-11 2009-12-18 Peugeot Citroen Automobiles Sa "element de structure a caracteristique anti-bruit d'un vehicule automobile"
JP5210099B2 (ja) * 2008-09-17 2013-06-12 株式会社イノアックコーポレーション 衝撃吸収吸音材
JP2011039355A (ja) * 2009-08-14 2011-02-24 Riken Technos Corp 吸音体および吸音構造
JP2011039357A (ja) * 2009-08-14 2011-02-24 Riken Technos Corp 吸音体および吸音構造
US8770344B2 (en) * 2010-07-13 2014-07-08 Bellmax Acoustic Pty Ltd. Acoustic panel
US8474572B2 (en) * 2011-08-25 2013-07-02 General Electric Company Apparatus and method to attenuate vibration and acoustic noise
US9027706B2 (en) * 2013-02-11 2015-05-12 Federal-Mogul Powertrain, Inc. Enhanced, lightweight acoustic scrim barrier
DE102014003725A1 (de) * 2013-12-11 2015-06-11 Burkhard Schmitz Wandelement
US9630575B2 (en) * 2015-09-30 2017-04-25 GM Global Technology Operations LLC Panel assembly with noise attenuation system
KR101887740B1 (ko) * 2016-03-31 2018-08-10 홍익대학교 산학협력단 공간 스케일링을 이용한 소리 차단 방법 및 장치
JP6996913B2 (ja) * 2017-09-06 2022-01-17 旭化成株式会社 構造体、並びに該構造体を含む遮音材、制振材、材料及び各種部材
CN111128108B (zh) * 2019-12-19 2023-05-23 中国航空工业集团公司西安飞机设计研究所 一种消音蜂窝结构
US20230326444A1 (en) * 2022-04-12 2023-10-12 GM Global Technology Operations LLC Cast cover with integrated noise mitigation method

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE554083A (de) * 1956-02-18
US3087571A (en) 1959-05-05 1963-04-30 Bolt Beranek & Newman Apparatus for damping
US3087573A (en) * 1959-08-10 1963-04-30 Bolt Beranek & Newman Damping structure
US3439774A (en) * 1966-01-21 1969-04-22 Boeing Co Sound energy absorbing apparatus
FR2332586A2 (fr) * 1975-11-24 1977-06-17 Cuniac Alain Panneau isolant phonique
DE3039651C2 (de) * 1980-10-21 1985-07-25 Fa. Carl Freudenberg, 6940 Weinheim Luftschallschluckende, verformte Platte
US4479992A (en) * 1981-05-28 1984-10-30 Matec Holding Ag Sound absorbing structural element
DE3531886A1 (de) * 1985-09-06 1987-03-19 Stankiewicz Alois Dr Gmbh Hohlkammern
DE3615360A1 (de) * 1986-05-06 1987-11-12 Stankiewicz Alois Dr Gmbh Bauelement mit akustischen eigenschaften
DE3624427A1 (de) * 1986-07-18 1988-01-21 Stankiewicz Alois Dr Gmbh Adhaesives zerstoerungsfrei entfernbares isolationssystem
DE8700264U1 (de) * 1987-01-07 1988-05-11 Irbit Research + Consulting Ag, Freiburg/Fribourg, Ch
DE8715142U1 (de) * 1987-11-13 1988-06-01 Stankiewicz Alois Dr Gmbh
DE4011705A1 (de) * 1990-04-11 1991-10-17 Freudenberg Carl Fa Luftschall absorbierendes formteil
FR2671899A1 (fr) * 1991-01-21 1992-07-24 Composite Ind Revetement pour l'absorption acoustique passive large bande dans un liquide.
DE4237513A1 (de) * 1992-11-07 1994-05-11 Helmut Pelzer Luftschall absorbierendes Formteil
DE4317828C1 (de) * 1993-05-28 1994-06-09 Freudenberg Carl Fa Luftschall absorbierendes Formteil
DE4334984C1 (de) * 1993-10-14 1995-01-19 Freudenberg Carl Fa Schall absorbierendes Formteil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202012101648U1 (de) * 2012-05-04 2013-08-06 Faist Chemtec Gmbh Schalldämpfende Folie
DE102019128209A1 (de) * 2019-10-18 2021-04-22 Daniel Mohr Schallabsorbierende Vorrichtung mit Noppenfolienverbund
DE102019128209B4 (de) 2019-10-18 2023-02-02 Daniel Mohr Schallabsorbierende Vorrichtung mit Noppenfolienverbund und Verwendung

Also Published As

Publication number Publication date
PL180618B1 (pl) 2001-03-30
WO1996008812A1 (de) 1996-03-21
EP0781445A1 (de) 1997-07-02
JPH10506477A (ja) 1998-06-23
JP3307648B2 (ja) 2002-07-24
CZ288450B6 (en) 2001-06-13
CZ341796A3 (en) 1997-03-12
US6186270B1 (en) 2001-02-13
KR100285319B1 (ko) 2001-11-22
DE9414943U1 (de) 1996-01-18
ES2119468T3 (es) 1998-10-01
KR970703574A (ko) 1997-07-03
DE59503008D1 (de) 1998-09-03
PL316782A1 (en) 1997-02-17

Similar Documents

Publication Publication Date Title
EP0781445B1 (de) Schichtenabsorber zum absorbieren von akustischen schallwellen
EP1562743B1 (de) Schallisolierender hitzeschutzschild
EP0454949B1 (de) Luftschall absorbierendes Formteil
EP0931309B1 (de) Einrichtung zum absorbieren und/oder dämpfen von schallwellen
EP0531761B1 (de) Absorber
DE10347084B4 (de) Abstimmbare, den Schall absorbierende, und die Luft filternde Dämpfungseinrichtung und Herstellungsverfahren
DE3615360C2 (de)
EP0131616B1 (de) Schallabsorptionsplatte
EP1060073B1 (de) Schichtstoff
EP1644222B1 (de) Akustisch wirksame radhausauskleidung für fahrzeuge
DE3035449C2 (de)
WO2005066932A1 (de) Luftschallabsorbierendes bauteil
DE4131394A1 (de) Schalldaemmaterial
DE4304628C2 (de) Schalldämpfende Gehäuseauskleidung
DE10228395C1 (de) Schall-Absorber
DE2724172A1 (de) Schallschluckender schichtstoff
WO2018177573A1 (de) Akustisch wirksamer kunststoffhohlkörper sowie verfahren zu dessen herstellung
EP2214160B1 (de) Luftschallabsorptionsformteil und Verfahren zur Herstellung eines Luftschallabsorptionsformteils
EP0922277B1 (de) Schallabsorbierender bauteil mit akustischen resonatoren
DE3215244A1 (de) Schalldaemmende auskleidung, insbesondere fuer kraftfahrzeuge, sowie verfahren zu deren herstellung
DE102005003994B4 (de) Verfahren zur Herstellung eines akustischen Absorbers
DE2818252A1 (de) Mehrschichtiges schallschutzelement bestehend aus vorzugsweise 2 deckschichten und einer biegeweichen zwischenschicht
DE19500725A1 (de) Schallabsorbierender und wärmedämmender Formkörper
EP1024054A2 (de) Fahrzeug-Formhimmel
WO2001057301A1 (de) Akustisch wirksamer isolationsfaserwerkstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960927

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IE IT NL PT SE

17Q First examination report despatched

Effective date: 19970919

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: STUDIO FERRARIO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

TPAD Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOS TIPA

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IE IT NL PT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980729

REF Corresponds to:

Ref document number: 59503008

Country of ref document: DE

Date of ref document: 19980903

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2119468

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19980729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: FAIST AUTOMOTIVE GMBH & CO. KG

REG Reference to a national code

Ref country code: PT

Ref legal event code: PD4A

Free format text: FAIST AUTOMOTIVE GMBH & CO. KG DE

Effective date: 20000526

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20060818

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060821

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20060824

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060829

Year of fee payment: 12

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070830

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080828

Year of fee payment: 14

Ref country code: DE

Payment date: 20080722

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080818

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080822

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080826

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090829

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090830