EP0747154B1 - Verfahren und Vorrichtung zur Herstellung von Sinterteilen - Google Patents

Verfahren und Vorrichtung zur Herstellung von Sinterteilen Download PDF

Info

Publication number
EP0747154B1
EP0747154B1 EP96250118A EP96250118A EP0747154B1 EP 0747154 B1 EP0747154 B1 EP 0747154B1 EP 96250118 A EP96250118 A EP 96250118A EP 96250118 A EP96250118 A EP 96250118A EP 0747154 B1 EP0747154 B1 EP 0747154B1
Authority
EP
European Patent Office
Prior art keywords
zone
temperature
sintering
sintered parts
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96250118A
Other languages
English (en)
French (fr)
Other versions
EP0747154A1 (de
Inventor
Karl-Heinz Lindner
Rudolf Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinterwerke Herne GmbH
QMP Metal Powders GmbH
Original Assignee
BT Magnet Technologie GmbH
QMP Metal Powders GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7764535&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0747154(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BT Magnet Technologie GmbH, QMP Metal Powders GmbH filed Critical BT Magnet Technologie GmbH
Publication of EP0747154A1 publication Critical patent/EP0747154A1/de
Application granted granted Critical
Publication of EP0747154B1 publication Critical patent/EP0747154B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Definitions

  • the invention relates to a method for producing sintered parts with high Wear resistance and at the same time good dynamic strength properties pressed moldings according to the preamble of claim 1 and a Device for performing this method.
  • EP-A-0 354 389 discloses a method in which a Sintered steel powder is pressed and sintered.
  • the sintered parts are austenitized by heating in a salt bath, rapidly cooled to a temperature of 280 to 450 ° C and in kept within this temperature range a bainitic microstructure of the structure to reach.
  • the object of the invention is to provide a method of the generic type modify that while ensuring good dynamic strength properties and good wear properties and significantly improved dimensional accuracy (tighter manufacturing tolerances) is achieved, with the procedural and the plant engineering effort should remain as low as possible.
  • a Apparatus for performing this method can be specified.
  • the invention is based on the fact that for the production of the sintered parts a known tempered steel powder is used, which is made of a pre-alloyed steel is produced, that is (with the exception of the C content) an even distribution of Has alloy components. The latter does not have to be done accordingly long-term diffusion processes during the sintering are aimed for.
  • the Previously required separate heat treatment of the sintered parts after sintering Setting the good dynamic strength properties with high at the same time Wear resistance is eliminated.
  • the setting of these properties is rather in Carried out directly during the sintering treatment.
  • the steel powder used consists of an air-hardening material. This can help the use of an oil bath which is undesirable anyway for environmental reasons To achieve a deterrent effect.
  • the carbon content of the sintered parts is usually separated in the form of Graphite added to allow the steel powder to ensure adequate Pressability remains soft enough. The diffuses during the sintering process Graphite into the powder particles that bind together.
  • Fig. 1 shows schematically, immediately after sintering (section a) to cool the sintered parts from the sintering temperature to a first holding temperature, which is in a temperature range from Ar 3 to a maximum of 150 ° C above Ar 3 .
  • the cooling (section b) from the sintering temperature to the first holding temperature is expediently carried out at a cooling rate of 0.5-1.5 ° C./s.
  • the sintered parts are held at the first holding temperature for about 5 to 25 minutes (first holding time, section c). This results in a smaller austenite grain size.
  • the first holding temperature in a range of at most 50-100 ° C. above Ar 3 .
  • a useful duration of the first stopping time is 10-20 minutes.
  • the device according to the invention which is electronically controlled Continuous sintering furnace is designed schematically in its simplest form shown.
  • An arrow on the left indicates that the sintered parts in a first zone will be introduced, which acts as a heating zone and in which the in the Lubricants contained in green compacts (e.g. waxes) can be evaporated.
  • This the first zone is therefore also referred to as dewaxing zone 1.
  • the actual sintering zone 2 is arranged in the direction of transport, in which the sintered parts kept at sintering temperature (at least 1000 ° C) for a sufficiently long time become. Because the sintered parts at a constant speed through the sintering zone 2 has a corresponding length on.
  • a Maintain an oxygen-free atmosphere (protective gas atmosphere).
  • the sintering zone 2 is followed by an austenitizing zone 3 in which the sintered parts first cooled and kept at austenitizing temperature.
  • a rugged cooling zone 4 which is equipped with a corresponding (not shown) Gas shower is equipped to provide sufficiently intense convective gas cooling cause.
  • the sintered parts have reached the second holding temperature, they kick into the bainitis zone 7 and become sufficient over a second holding time held at this temperature for a long time, so that it is at least 50% Can form bainite in the structure.
  • the bainitis zone 7 has a corresponding length. After sufficient bainitis, if possible before If a 95% share is reached, the sintered parts enter a final one Normal cooling zone 5, where they from the bainitization temperature to the vicinity of Be cooled to room temperature.
  • FIG. 3 shows the diagram of a system modified compared to FIG. 2, which differs in that the green compacts used in the device can choose between two different paths.
  • the arrangement of the Dewaxing zone 1 to the rugged cooling zone 4 coincides with that shown in FIG completely match. Behind the rugged cooling zone 4, the material flow direction can be set optionally. Either the sintered parts produced come on immediately a separate normal cooling zone 5a and the system can be sintered as "normal", so leave as parts not manufactured in accordance with the invention; or you are for the sequence of procedures according to the invention after leaving the Rugged cooling zone 4 via an optionally connectable transverse transport device 6, such as this is indicated by the arrows, in a parallel to the first part bainitization zone 7 arranged throughout the device.
  • the direction of transport is expediently opposite to the first part the device.
  • This is followed by a normal cooling zone 5b, in which the parts treated according to the invention are cooled to room temperature.
  • This modified device thus has two normal cooling zones. So one offers such a system has a particular flexibility with regard to what is to be processed Product range.
  • it would be possible without further ado Arrangement of the normal cooling zone 5a and that of the bainitization zone 7 and The normal cooling zone 5b of the plant line formed is to be interchanged.
  • the illustrated embodiment however, has the advantage that it is a has a comparatively short overall length.
  • the dimensional accuracy corresponded to the tolerance class IT9.
  • Compressed bodies of the same type as in the previous example were produced from a fully alloyed steel powder of the composition Fe-4 Ni-0.5 Mo, to which 1% Cu and 0.6% graphite and conventional lubricants were added.
  • the sintering was carried out at a temperature of 1120 ° C. over a period of 30 min in an endogas atmosphere with controlled C potential.
  • a rugged cooling with a cooling rate of 3 ° C./s took place as well as the bainitization according to the invention and a subsequent normal cooling down to room temperature.
  • a bainitic structure emerged in the components with the following properties: tensile strenght 750 - 800 N / mm 2 Hardness level 350 - 450 HV1 Elongation at break A3 until 6 %
  • the dimensional accuracy of the parts produced according to the invention was also significantly better. It corresponded to the tolerance class IT8.
  • the method according to the invention allows components in the sintered state at the same time combine high toughness with high strength, which otherwise also with a separate heat treatment cannot be achieved, one clearly improved dimensional tolerance can be guaranteed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Sinterteilen mit hoher Verschleißfestigkeit und gleichzeitig guten dynamischen Festigkeitseigenschaften aus gepreßten Formkörpern gemäß dem Oberbegriff des Patentanspruchs 1 sowie eine Vorrichtung zur Durchführung dieses Verfahrens.
Mechanisch hochbeanspruchte Bauteile aus Stahl wie etwa Getriebezahnräder müssen nicht nur eine hohe Maßgenauigkeit aufweisen, sondern müssen darüber hinaus insbesondere auch sehr gute dynamische Festigkeitseigenschaften und gleichzeitig eine hohe Verschleißfestigkeit zeigen. Die Herstellung derartiger Teile durch zerspanende Fertigungsverfahren mit anschließender Einsatzhärtung erschien lange Zeit als einzig gangbarer Weg. Zur Reduzierung des Formgebungsaufwandes ist es jedoch auch möglich, pulvermetallurgische Verfahren anzuwenden. In diesem Zusammenhang ist es bekannt, aus einem diffusionslegierten ölhärtenden Stahlpulver, dem Graphit in der dem gewünschten C-Gehalt entsprechenden Menge sowie übliche Schmiermittel zugesetzt wurden, entsprechende Preßkörper als Grünlinge zu formen, diese im Durchlaufverfahren in einem Ofen zu sintern und anschließend auf Raumtemperatur abzukühlen. Zur Verbesserung der Maßgenauigkeit erfolgt anschließend auf einer Kalibrierpresse ein erneuter Preßvorgang. Anschließend wird eine Einsatzhärtung mit Abschreckung in Öl vorgenommen, dem sich eine Anlaßbehandlung anschließt. Die so hergestellten Bauteile zeigen ein typisches Anlaßgefüge.
Ein solches Herstellverfahren liefert Bauteile mit guten statischen (Zugfestigkeit, Härte, Verschleißfestigkeit) und gleichzeitig auch guten dynamischen Festigkeitseigenschaften. Trotz des Aufwandes der durch einen zweiten Preßvorgang (Kalibrierung) getrieben wird, läßt dennoch die Maßgenauigkeit und deren Gleichmäßigkeit gelegentlich Wünsche offen: Die erreichbare Toleranzklasse beträgt etwa IT10.
Weiterhin ist es bekannt, Sinterteile aus Preßkörpern herzustellen, die aus fertiglegierten, lufthärtenden Stahlpulvern gepreßt wurden. Hierbei wird durch Abkühlung an Luft bis unter die Martensitstarttemperatur ein martensitisches Gefüge erzeugt. Derartige Sinterteile zeigen wegen ihrer hohen Härte zwar gute Verschleißeigenschaften, sind jedoch aufgrund der niedrigen Bruchdehnung für dynamische Beanspruchungsarten, wie sie bei Zahnrädern regelmäßig auftreten, ungeeignet. Auch im Hinblick auf die erreichbare Maßgenauigkeit (Toleranzklasse IT9) können derartig hergestellte Sinterteile vielfach nicht befriedigen.
Schließlich ist es aus der DE 40 01 899 C1 bekannt, daß zur Herstellung hochfester Sinterteile-Grünlinge aus fertiglegiertem Stahlpulver mit einem in Form von Graphitpulver zugesetztem Massenanteil von 0,3 bis 0,7% Kohlenstoff gepreßt, bei einer Temperatur im Bereich von 1120 bis 1280 °C gesintert, durch Abkühlung gehärtet und anschließend angelassen wird.
EP-A-0 354 389 offenbart ein Verfahren in dem ein Sinterstahlpulver formgepreßt und gesintert wird. Die Sinterteile werden durch eine Erwärmung in einem Salzbad austenitisiert, rasch auf eine Temperatur von 280 bis 450°C abgekühlt und in diesem Temperaturbereich gehalten, um eine bainitische Mikrostruktur des Gefüges zu erreichen.
Aufgabe der Erfindung ist es, ein Verfahren der gattungsgemäßen Art so zu modifizieren, daß bei Gewährleistung guter dynamischer Festigkeitseigenschaften und gleichzeitig guten Verschleißeigenschaften eine deutlich verbesserte Maßhaltigkeit (engere Fertigungstoleranzen) erreicht wird, wobei der verfahrensmäßige und der anlagentechnische Aufwand möglichst gering bleiben sollen. Außerdem soll eine Vorrichtung zur Durchführung dieses Verfahrens angegeben werden.
Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale des Patentanspruchs 1. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen 2 bis 8. Eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens weist die Merkmale des Patentanspruchs 9 auf und ist in vorteilhafter Weise durch die in den Unteransprüchen 10 bis 12 anaeaebenen Merkmale weiter ausaestaltbar.
Nachfolgend wird die Erfindung anhand der Figuren näher erläutert. Es zeigen:
Fig. 1
einen schematischen Ablauf des erfindungsgemäßen Verfahrens anhand eines ZTU-Schaubildes und
Fig. 2 und 3
schematische Darstellungen eines Sinterofens zur Durchführung des erfindungsgemäßen Verfahrens.
Die Erfindung geht davon aus, daß zur Herstellung der Sinterteile ein an sich bekanntes Vergütungsstahlpulver verwendet wird, das aus einem fertiglegierten Stahl hergestellt ist, also (mit Ausnahme des C-Gehalts) eine gleichmäßige Verteilung der Legierungsbestandteile aufweist. Letzteres muß also nicht erst durch entsprechend zeitlich ausgedehnte Diffusionsvorgänge während des Sinterns angestrebt werden. Die bisher erforderliche separate Wärmebehandlung der Sinterteile nach dem Sintern zur Einstellung der guten dynamischen Festigkeitseigenschaften bei gleichzeitig hoher Verschleißfestigkeit entfällt. Die Einstellung dieser Eigenschaften wird vielmehr im Zuge der Sinterbehandlung direkt durchgeführt. Hierfür ist es wesentlich, daß das eingesetzte Stahlpulver aus einem lufthärtenden Werkstoff besteht. Dadurch kann auf den Einsatz eines aus Umweltschutzgründen ohnehin unerwünschten Ölbades zur Erzielung eines Abschreckeffektes verzichtet werden.
Der Kohlenstoffgehalt der Sinterteile wird in üblicher Weise separat in Form von Graphit zugesetzt, damit das Stahlpulver zur Gewährleistung einer ausreichenden Verpreßbarkeit weich genug bleibt. Während des Sinterprozesses diffundiert der Graphit in die sich untereinander verbindenden Pulverpartikel hinein.
Die Erfindung sieht vor, wie Fig. 1 schematisch zeigt, im unmittelbaren Anschluß an das Sintern (Abschnitt a) die Sinterteile von der Sintertemperatur bis auf eine erste Haltetemperatur abzukühlen, die in einer Temperaturspanne von Ar3 bis maximal 150 °C oberhalb Ar3 liegt. Die Abkühlung (Abschnitt b) von der Sintertemperatur auf die erste Haltetemperatur erfolgt zweckmäßig mit einer Abkühlgeschwindigkeit von 0,5 - 1,5 °C/s. Die Sinterteile werden für etwa 5 - 25 min (erste Haltezeit, Abschnitt c) auf der ersten Haltetemperatur gehalten. Dadurch wird eine kleinere Austenitkorngröße erreicht.
In der Austenitisierungsphase (Abschnitt c) empfiehlt es sich, das C-Potential in der Schutzgasatmosphäre, die während des Sintervorgangs aufrechterhalten werden muß, ein erhöhtes, eine Aufkohlung bewirkendes C-Potential einzustellen. Hierdurch werden die Sinterteile in der äußeren Oberfläche mit Kohlenstoff angereichert, so daß im Oberflächenbereich eine besonders hohe Härte erreichbar ist. Dies ist für eine gute Verschleißfestigkeit von großer Bedeutung. Im Inneren der Sinterteile bleibt dagegen ein niedrigerer Kohlenstoffgehalt erhalten und führt zu besonders guten dynamischen Festigkeitseigenschaften (Härteprofil). Besonders vorteilhaft ist es, die erste Haltetemperatur in einem Bereich von maximal 50 - 100 °C oberhalb Ar3 zu wählen. Eine zweckmäßige Dauer der ersten Haltezeit beträgt 10 - 20 min.
Im unmittelbaren Anschluß an die erste Haltezeit erfolgt durch eine konvektive Gaskühlung eine beschleunigte Abkühlung (Abschnitt d) bis auf eine zweite Haltetemperatur. Hierfür empfiehlt sich eine Abkühlgeschwindigkeit im Bereich von 3 - 6°C/s. Diese zweite Haltetemperatur ist anhand des zum jeweiligen Werkstoff gehörigen ZTU-Schaubilds so ausgewählt, daß das Gebiet der Ferritbildung gemieden wird und sich ein bainitisches Gefüge auszubilden beginnt. Die Haltezeit auf dieser zweiten Haltetemperatur (Abschnitt e) wird mindestens so lange ausgedehnt, bis sich ein Gefügeanteil des Bainits von mindestens 50 % eingestellt hat. Eine vollständige Umwandlung des Gefüges in Bainit ist jedoch im allgemeinen nicht erwünscht. Bei maximal 95 % Bainit sollte das Halten auf der zweiten Haltetemperatur zweckmäßigerweise spätestens beendet werden. Als besonders vorteilhaft hat sich ein Anteil des Bainit in einer Größenordnung von 60 - 80 % erwiesen. Anschließend werden die Sinterteile in üblicher Weise bis auf Raumtemperatur abgekühlt (Normalkühlung, Abschnitt f).
Überraschenderweise hat sich gezeigt, daß durch die erfindungsgemäße Verfahrensweise eine besonders gute Teilequalität gewährleistet wird. Es ergibt sich nämlich nicht nur eine vergleichsweise hohe Maßgenauigkeit, sondern die auftretenden Toleranzen liegen bedeutend enger als bei der herkömmlichen Herstellungsweise. Anstelle der bisher bei Ölhärtung und Vergütung erreichbaren Güteklasse IT10 läßt sich nun die Güteklasse IT8 erreichen. Dies ist um so überraschender, als sogar auf die Durchführung eines separaten Kalibriervorgangs vollständig verzichtet werden kann. Dadurch wird ein kompletter aufwendiger Arbeitsschritt eingespart. Weiterhin erübrigt sich der Energie- und Handhabungsaufwand für ein separates Wärmebehandlungsverfahren.
In Figur 2 ist die erfindungsgemäße Vorrichtung, die als elektronisch gesteuerter Durchlauf-Sinterofen ausgebildet ist, in ihrer einfachsten Form schematisch dargestellt. Durch einen Pfeil an der linken Seite ist angedeutet, daß die Sinterteile in eine erste Zone eingeführt werden, die als Aufheizzone fungiert und in der die in den Grünlingen enthaltenen Schmierstoffe (z.B. Wachse) ausgedampft werden. Diese erste Zone wird daher auch als Entwachszone 1 bezeichnet. Unmittelbar anschließend in Transportrichtung ist die eigentliche Sinterzone 2 angeordnet, in der die Sinterteile auf Sintertemperatur (mindestens 1000 °C) über eine ausreichend lange Zeit gehalten werden. Da die Sinterteile mit einer gleichbleibenden Geschwindigkeit durch die gesamte Anlage bewegt werden, weist die Sinterzone 2 eine entsprechende Länge auf. Um eine Oxidation der Sinterteile zu vermeiden, wird in der gesamten Anlage eine sauerstofffreie Atmosphäre (Schutzgasatmosphäre) aufrechterhalten. Unmittelbar an die Sinterzone 2 schließt sich eine Austenitisierungszone 3 an, in der die Sinterteile zunächst abgekühlt und auf Austenitisierungstemperatur gehalten werden. Danach folgt eine Schroffkühlzone 4, die mit einer entsprechenden (nicht dargestellten) Gasdusche ausgestattet ist, um eine ausreichend intensive konvektive Gaskühlung zu bewirken. Sobald die Sinterteile die zweite Haltetemperatur erreicht haben, treten sie in die Bainitisierungszone 7 ein und werden über eine zweite Haltezeit ausreichend lange auf dieser Temperatur gehalten, damit sich ein mindestens 50 % betragender Bainit-Anteil im Gefüge ausbilden kann. Hierzu weist die Bainitisierungszone 7 eine entsprechende Länge auf. Nach ausreichender Bainitisierungszeit, möglichst vor Erreichen eines 95 %-Anteils, treten die Sinterteile in eine abschließende Normalkühlzone 5 ein, wo sie von der Bainitisierungstemperatur bis in die Nähe der Raumtemperatur abgekühlt werden.
In Figur 3 ist das Schema einer gegenüber Figur 2 abgewandelten Anlage dargestellt, die sich dadurch unterscheidet, daß die in die Vorrichtung eingesetzten Grünlinge wahlweise zwei unterschiedliche Wege durchlaufen können. Die Anordnung von der Entwachszone 1 bis zur Schroffkühlzone 4 stimmt mit der in Figur 1 dargestellten vollständig überein. Hinter der Schroffkühlzone 4 kann die Materialflußrichtung wahlweise eingestellt werden. Entweder treten die erzeugten Sinterteile unmittelbar in eine separate Normalkühlzone 5a ein und können die Anlage als "normal" gesinterte, also als in nicht erfindungsgemäßer Weise hergestellte Teile verlassen; oder sie werden für die erfindungsgemäße Verfahrensfolge nach Verlassen der Schroffkühlzone 4 über eine wahlweise zuschaltbare Quertransporteinrichtung 6, wie dies durch die eingezeichneten Pfeile angedeutet ist, in eine parallel zum ersten Teil der gesamten Vorrichtung angeordnete Bainitisierungszone 7 eingeführt. Zweckmäßigerweise ist die Transportrichtung hier entgegengesetzt zum ersten Teil der Vorrichtung. Anschließend folgt wiederum eine Normalkühlzone 5b, in der die erfindungsgemäß behandelten Teile auf Raumtemperatur abgekühlt werden. Diese abgewandelte Vorrichtung weist also zwei Normalkühlzonen auf. Damit bietet eine solche Anlage eine besondere Flexibilität im Hinblick auf das zu verarbeitende Produktspektrum. Selbstverständlich wäre es möglich, die Bainitisierungszone 7 und die zweite Normalkühlzone 5b um 180° verdreht anzuordnen, also die ursprüngliche Materialflußrichtung beizubehalten. Ebenso wäre es ohne weiteres möglich, die Anordnung der Normalkühlzone 5a und des aus der Bainitisierungszone 7 und der Normalkühlzone 5b gebildeten Anlagenstrangs miteinander zu vertauschen. Die dargestellte Ausführungsform weist jedoch den Vorteil auf, daß sie eine vergleichsweise kurze Baulänge hat.
Die Wirksamkeit der Erfindung wird anhand der nachfolgenden beiden Beispiele näher erläutert.
Vergleichsbeispiel
Aus einem fertiglegierten Stahlpulver mit der Zusammensetzung Fe -4 Ni - 0,5 Mo, dem elementar 1 % Cu, 0,6 % Graphit und übliche Schmiermittel zugesetzt wurden, wurden Preßkörper mit einer Dichte von 6,80-6,90 g/cm3 hergestellt. Die Teile wurden bei einer Temperatur von 1150 °C während einer Dauer von 30 min gesintert. Dabei wurde eine aus Endogas bestehende Schutzgasatmosphäre mit kontrolliertem C-Potential aufrechterhalten. Nach konvektiver Gaskühlung der Teile (Abkühlgeschwindigkeit 3 - 6 °C/s) unter die Martensitstarttemperatur und anschließende Normalkühlung bis auf Raumtemperatur wurden folgende Eigenschaften ermittelt:
Zugfestigkeit 650 N/mm2
Härteniveau 550 - 700 HV1
Bruchdehnung A3 0,3 - 0,6 %
Die Maßhaltigkeit entsprach der Toleranzklasse IT9.
Erfindungsgemäßes Beispiel
Aus einem fertiglegierten Stahlpulver der Zusammensetzung Fe - 4 Ni - 0,5 Mo, dem 1 % Cu und 0,6 % Graphit sowie übliche Schmiermittel zugesetzt wurden, wurden gleichartige Preßkörper wie im vorhergehenden Beispiel erzeugt. Die Sinterung wurde bei einer Temperatur von 1120 °C über eine Dauer von 30 min in einer Endogasatmosphäre mit kontrolliertem C-Potential durchgeführt. Nach der Austenitisierung erfolgte eine Schroffkühlung mit einer Abkühlgeschwindigkeit von 3 °C/s sowie die erfindungsgemäße Bainitisierung und eine anschließende normale Abkühlung bis auf Raumtemperatur. Dabei stellte sich in den Bauteilen ein bainitisches Gefüge mit folgenden Eigenschaften ein:
Zugfestigkeit 750 - 800 N/mm2
Härteniveau 350 - 450 HV1
Bruchdehnung A3 bis 6 %
Die Maßgenauigkeit der erfindungsgemäß hergestellten Teile war außerdem signifikant besser. Sie entsprach der Toleranzklasse IT8.
Durch das erfindungsgemäße Verfahren lassen sich bei Bauteilen im Sinterzustand gleichzeit hohe Zähigkeiten mit hohen Festigkeiten kombinieren, die sonst auch mit einer separaten Wärmebehandlung nicht erreicht werden können, wobei eine deutlich verbesserte Maßtoleranz gewährleistet werden kann.

Claims (12)

  1. Verfahren zur Herstellung von Sinterteilen mit hoher Verschleißfestigkeit und guten dynamischen Festigkeitseigenschaften aus Formkörpern, die als Grünlinge aus einem fertiglegierten lufthärtenden Vergütungsstahlpulver mit einem in Form von Graphit zugesetzten Kohlenstoffgehalt von mindestens 0,3 % gepreßt worden sind, durch Sintern unter Schutzgas bei einer Sintertemperatur von mindestens 1000 °C und nachfolgende Abkühlung, wobei
    die Sinterteile unmittelbar im Anschluß an das Sintern von der Sintertemperatur auf eine erste Haltetemperatur im Bereich von Ar3 bis maximal 150 °C oberhalb Ar3 abgekühlt und über eine erste Haltezeit von 5 - 25 min auf dieser Temperatur gehalten werden, um die Teile zu austenitisieren,
    und die Sinterteile unmittelbar anschließend durch eine konvektive Gaskühlung beschleunigt bis auf eine zweite Haltetemperatur abgekühlt und über eine zweite Haltezeit auf dieser Temperatur gehalten werden, wobei die zweite Haltetemperatur in einem Temperaturbereich liegt, in dem sich ein Bainit-Gefüge ausbildet, und die zweite Haltezeit so bemessen wird, daß sich ein Gefügeanteil des Bainit von mindestens 50 % einstellt, und
    die Sinterteile danach auf Raumtemperatur abgekühlt werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die erste Haltetemperatur maximal 50 - 100 °C oberhalb Ar3 liegt.
  3. Verfahren nach einem der Ansprüche 1 bis 2,
    dadurch gekennzeichnet,
    daß die erste Haltezeit 10 - 20 min beträgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß die konvektive Gaskühlung mit 3 - 6 °C/s erfolgt.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß die Abkühlung auf die erste Haltetemperatur mit 0,5 - 1,5 °C/s erfolgt.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    daß die zweite Haltezeit nach oben so begrenzt wird, daß der Gefügeanteil des Bainit höchstens 95 % beträgt.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet,
    daß die zweite Haltezeit so bemessen wird, daß der Gefügeanteil des Bainit 60-80 % beträgt.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    daß die Schutzgasatmosphäre während der Austenitisierungsphase aufrechterhalten wird und auf ein eine Aufkohlung der Sinterteile bewirkendes C-Potential eingestellt wird.
  9. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, enthaltend einen als Durchlaufaggregat ausgebildeten, elektronisch gesteuerten Sinterofen mit einer Sinterzone (2), einer hinter der Sinterzone (2) angeordneten Schroffkühlzone (4) mit Gaskühlung und mit einer hinter der Schroffkühlzone (4) angeordneten Normalkühlzone (5), wobei
    zwischen der Sinterzone (2) und der Schroffkühlzone (4) eine Austenitisierungszone (3) angeordnet ist und daß zwischen der Schroffkühlzone (4) und der Normalkühlzone (5, 5b) eine Bainitisierungszone (7) angeordnet ist.
  10. Vorrichtung nach Anspruch 9,
    dadurch gekennzeichnet,
    daß eine zweite Normalkühlzone (5a) vorgesehen ist, die materialflußtechnisch parallel zu der ersten Normalkühlzone angeordnet ist, wobei eine der beiden Normalkühlzonen (5b) über eine Quertransporteinrichtung (6) beschickbar ist und die andere Normalkühlzone (5a) zur wahlweisen Umgehung der Bainitisierungszone (7) unmittelbar an die Schroffkühlzone (4) angeschlossen ist.
  11. Vorrichtung nach Anspruch 10,
    dadurch gekennzeichnet,
    daß die Quertransporteinrichtung (6) zwischen der Schroffkühlzone (4) und der Bainitisierungszone (7) angeordnet ist.
  12. Vorrichtung nach Anspruch 11,
    dadurch gekennzeichnet,
    daß die erste Normalkühlzone (5b) und die Bainitisierungszone (7) eine zur Transportrichtung der Sinterzone (2), der Austenitisierungszone (3) und der Schroffkühlzone (4) entgegengesetzte parallele Transportrichtung aufweisen.
EP96250118A 1995-06-07 1996-06-04 Verfahren und Vorrichtung zur Herstellung von Sinterteilen Expired - Lifetime EP0747154B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19521941 1995-06-07
DE19521941A DE19521941C1 (de) 1995-06-07 1995-06-07 Verfahren und Vorrichtung zur Herstellung von Sinterteilen

Publications (2)

Publication Number Publication Date
EP0747154A1 EP0747154A1 (de) 1996-12-11
EP0747154B1 true EP0747154B1 (de) 2001-02-14

Family

ID=7764535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96250118A Expired - Lifetime EP0747154B1 (de) 1995-06-07 1996-06-04 Verfahren und Vorrichtung zur Herstellung von Sinterteilen

Country Status (6)

Country Link
US (1) US5628045A (de)
EP (1) EP0747154B1 (de)
JP (1) JP3679508B2 (de)
AT (1) ATE199130T1 (de)
DE (2) DE19521941C1 (de)
ES (1) ES2153935T3 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19738919C1 (de) 1997-09-05 1999-04-29 Maxon Motor Gmbh Verfahren zur Herstellung eines Gleitlagers und Gleitlager
DE19744226A1 (de) * 1997-10-07 1999-07-29 Bt Magnet Tech Gmbh Verfahren zur Herstellung eines Ritzels mit Bund und Verzahnung
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom
DE19963973C1 (de) 1999-12-31 2001-05-31 Bosch Gmbh Robert Verfahren zum Bainitisieren von Stahlteilen
DE10045290A1 (de) * 2000-09-13 2002-03-21 Mahle Ventiltrieb Gmbh Verfahren zur Herstellung eines Metallsinterteiles
JP3698409B2 (ja) * 2000-10-25 2005-09-21 本田技研工業株式会社 焼結スプロケット
US6630101B2 (en) 2001-08-16 2003-10-07 Keystone Investment Corporation Method for producing powder metal gears
US6658260B2 (en) 2001-09-05 2003-12-02 Telecommunication Systems, Inc. Inter-carrier short messaging service providing phone number only experience
SE0201824D0 (sv) * 2002-06-14 2002-06-14 Hoeganaes Ab Pre-alloyed iron based powder
FI115389B (fi) * 2003-03-28 2005-04-29 Metso Paper Inc Menetelmä kiekkohakkurin kulutuslevyn valmistamiseksi ja kiekkohakkurin kulutuslevy
US20050095164A1 (en) * 2003-03-28 2005-05-05 Metso Paper, Inc. Method for manufacturing a wear plate of a disc chipper and wear plate of a disc chipper
DE102007061084A1 (de) 2007-12-19 2009-07-02 Federal-Mogul Sealing Systems Gmbh Metallische Flachdichtung und Herstellverfahren
JP6273519B2 (ja) * 2014-03-26 2018-02-07 住友電工焼結合金株式会社 粉末成形体の焼結方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132080A (en) * 1944-11-28 1992-07-21 Inco Limited Production of articles from powdered metals
JPS5179606A (en) * 1974-11-09 1976-07-12 Toyo Kogyo Co Kotansotetsukeishudobuzaino shoketsuhoho
GB1590113A (en) * 1978-03-21 1981-05-28 Ransome Hoffmann Pollard Rolling element bearings
DE3142359A1 (de) * 1981-10-26 1983-05-05 Horst Dipl.-Phys. Dr. 6000 Frankfurt Mühlberger Verfahren und vorrichtung zur waermebehandlung von werkstuecken
JPS58217601A (ja) * 1982-06-14 1983-12-17 Kawasaki Steel Corp 高強度焼結材料の製造方法
US4655853A (en) * 1982-08-09 1987-04-07 Federal-Mogul Corporation Method for making powder metal forging preforms of high-strength ferrous-base alloys
JPS59177325A (ja) * 1983-03-28 1984-10-08 Nippon Steel Corp 高強度熱延ベイナイト鋼板の製造方法
JPS60121253A (ja) * 1983-12-05 1985-06-28 Nissan Motor Co Ltd 球状黒鉛鋳鉄
JPS60197841A (ja) * 1984-03-19 1985-10-07 Nissan Motor Co Ltd 球状黒鉛鋳鉄
GB2197663B (en) * 1986-11-21 1990-07-11 Manganese Bronze Ltd High density sintered ferrous alloys
DE3825463A1 (de) * 1988-07-27 1990-02-01 Schwaebische Huettenwerke Gmbh Verfahren zum herstellen eines formteiles aus sintermetall und daraus hergestelltes formteil
DE4001899C1 (de) * 1990-01-19 1991-07-25 Mannesmann Ag, 4000 Duesseldorf, De
US5074533A (en) * 1990-04-06 1991-12-24 Monroe Auto Equipment Company Endothermic furnace
JP2601069B2 (ja) * 1991-08-08 1997-04-16 株式会社村田製作所 セラミック成形体の焼成方法及び焼成装置

Also Published As

Publication number Publication date
DE19521941C1 (de) 1996-10-02
JPH093587A (ja) 1997-01-07
EP0747154A1 (de) 1996-12-11
ATE199130T1 (de) 2001-02-15
ES2153935T3 (es) 2001-03-16
DE59606428D1 (de) 2001-03-22
JP3679508B2 (ja) 2005-08-03
US5628045A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
DE69913650T2 (de) Stahlpulver für die herstellung gesinterter produkte
DE3853000T2 (de) Zusammengesetztes legierungsstahlpulver und gesinterter legierungsstahl.
DE19651740B4 (de) Verfahren zum Herstellen einer Eisensinterlegierung mit Abschreckungsstruktur
EP2045339B1 (de) Für eine Wälzbeanspruchung ausgebildetes Werkstück aus durchhärtendem Stahl und Verfahren zur Wärmebehandlung
EP0747154B1 (de) Verfahren und Vorrichtung zur Herstellung von Sinterteilen
AT505699B1 (de) Verfahren zur herstellung eines sintergehärteten bauteils
DE1298293B (de) Hochverschleissfeste, bearbeitbare und haertbare Sinterstahllegierung und Verfahren zu deren Herstellung
DE4040355A1 (de) Verfahren zur herstellung eines duennen stahlblechs aus stahl mit hohem kohlenstoffgehalt
DE3206475C2 (de)
EP1274872B1 (de) Verfahren zur herstellung eines stickstofflegierten, sprühkompaktierten stahls, verfahren zu seiner herstellung
DE2705052A1 (de) Nach dem pulvermetallurgieverfahren hergestellter, stickstoff enthaltender schnelldrehstahl
DE2830850B2 (de) Verwendung eines Einsatzstahls
DE69331829T2 (de) Stahllegierungspulver zum sintern, mit hoher festigkeit, hoher ermüdungsfestigkeit und hoher zähigkeit, herstellungsverfahren und sinterkörper
DE60011115T2 (de) Stahlmaterial, dessen verwendung und herstellung
DE69530129T2 (de) Hochfeste gesinterte legierung und verfahren zu deren herstellung
EP0719349B1 (de) Verfahren zur herstellung von sinterteilen
DE69909940T2 (de) Teile aus martensitischem rostfreiem Stahl und Verfahren zu ihrer Herstellung
DE69214421T2 (de) Rohfabrikate grosser Länge für Herstellungsverfahren durch Kaltumformen, insbesondere für Kaltstauchen von formgebend bearbeitete Erzeugnisse wie Bolzen, und Verfahren zur Herstellung dieser kaltgeformten Gegenstände
DE2324750A1 (de) Herstellung von gehaertetem stahl
DE2358720A1 (de) Schmieden von metallpulvern
DE2109997A1 (de) Verfahren zum metallischen Zemen tieren
EP0354389B1 (de) Verfahren zum Herstellen eines Formteiles aus Sinterstahl und daraus hergestelltes Formteil
DE2938541C2 (de) Verfahren zum Herstellen aus Pulver warmgeschmiedeten Werkstücks
DE4001899C1 (de)
DE69212054T2 (de) Verschleissfeste Verbundwalze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT

17P Request for examination filed

Effective date: 19970114

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BT MAGNET-TECHNOLOGIE GMBH

Owner name: QMP METAL POWDERS GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000407

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT

REF Corresponds to:

Ref document number: 199130

Country of ref document: AT

Date of ref document: 20010215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2153935

Country of ref document: ES

Kind code of ref document: T3

REF Corresponds to:

Ref document number: 59606428

Country of ref document: DE

Date of ref document: 20010322

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070919

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070926

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070618

Year of fee payment: 12

Ref country code: GB

Payment date: 20070926

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070921

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080604

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080604

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080604

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120822

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606428

Country of ref document: DE

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101