EP0747154B1 - Process and apparatus for producing sintered parts - Google Patents

Process and apparatus for producing sintered parts Download PDF

Info

Publication number
EP0747154B1
EP0747154B1 EP96250118A EP96250118A EP0747154B1 EP 0747154 B1 EP0747154 B1 EP 0747154B1 EP 96250118 A EP96250118 A EP 96250118A EP 96250118 A EP96250118 A EP 96250118A EP 0747154 B1 EP0747154 B1 EP 0747154B1
Authority
EP
European Patent Office
Prior art keywords
zone
temperature
sintering
sintered parts
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96250118A
Other languages
German (de)
French (fr)
Other versions
EP0747154A1 (en
Inventor
Karl-Heinz Lindner
Rudolf Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinterwerke Herne GmbH
QMP Metal Powders GmbH
Original Assignee
BT Magnet Technologie GmbH
QMP Metal Powders GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7764535&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0747154(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BT Magnet Technologie GmbH, QMP Metal Powders GmbH filed Critical BT Magnet Technologie GmbH
Publication of EP0747154A1 publication Critical patent/EP0747154A1/en
Application granted granted Critical
Publication of EP0747154B1 publication Critical patent/EP0747154B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Definitions

  • the invention relates to a method for producing sintered parts with high Wear resistance and at the same time good dynamic strength properties pressed moldings according to the preamble of claim 1 and a Device for performing this method.
  • EP-A-0 354 389 discloses a method in which a Sintered steel powder is pressed and sintered.
  • the sintered parts are austenitized by heating in a salt bath, rapidly cooled to a temperature of 280 to 450 ° C and in kept within this temperature range a bainitic microstructure of the structure to reach.
  • the object of the invention is to provide a method of the generic type modify that while ensuring good dynamic strength properties and good wear properties and significantly improved dimensional accuracy (tighter manufacturing tolerances) is achieved, with the procedural and the plant engineering effort should remain as low as possible.
  • a Apparatus for performing this method can be specified.
  • the invention is based on the fact that for the production of the sintered parts a known tempered steel powder is used, which is made of a pre-alloyed steel is produced, that is (with the exception of the C content) an even distribution of Has alloy components. The latter does not have to be done accordingly long-term diffusion processes during the sintering are aimed for.
  • the Previously required separate heat treatment of the sintered parts after sintering Setting the good dynamic strength properties with high at the same time Wear resistance is eliminated.
  • the setting of these properties is rather in Carried out directly during the sintering treatment.
  • the steel powder used consists of an air-hardening material. This can help the use of an oil bath which is undesirable anyway for environmental reasons To achieve a deterrent effect.
  • the carbon content of the sintered parts is usually separated in the form of Graphite added to allow the steel powder to ensure adequate Pressability remains soft enough. The diffuses during the sintering process Graphite into the powder particles that bind together.
  • Fig. 1 shows schematically, immediately after sintering (section a) to cool the sintered parts from the sintering temperature to a first holding temperature, which is in a temperature range from Ar 3 to a maximum of 150 ° C above Ar 3 .
  • the cooling (section b) from the sintering temperature to the first holding temperature is expediently carried out at a cooling rate of 0.5-1.5 ° C./s.
  • the sintered parts are held at the first holding temperature for about 5 to 25 minutes (first holding time, section c). This results in a smaller austenite grain size.
  • the first holding temperature in a range of at most 50-100 ° C. above Ar 3 .
  • a useful duration of the first stopping time is 10-20 minutes.
  • the device according to the invention which is electronically controlled Continuous sintering furnace is designed schematically in its simplest form shown.
  • An arrow on the left indicates that the sintered parts in a first zone will be introduced, which acts as a heating zone and in which the in the Lubricants contained in green compacts (e.g. waxes) can be evaporated.
  • This the first zone is therefore also referred to as dewaxing zone 1.
  • the actual sintering zone 2 is arranged in the direction of transport, in which the sintered parts kept at sintering temperature (at least 1000 ° C) for a sufficiently long time become. Because the sintered parts at a constant speed through the sintering zone 2 has a corresponding length on.
  • a Maintain an oxygen-free atmosphere (protective gas atmosphere).
  • the sintering zone 2 is followed by an austenitizing zone 3 in which the sintered parts first cooled and kept at austenitizing temperature.
  • a rugged cooling zone 4 which is equipped with a corresponding (not shown) Gas shower is equipped to provide sufficiently intense convective gas cooling cause.
  • the sintered parts have reached the second holding temperature, they kick into the bainitis zone 7 and become sufficient over a second holding time held at this temperature for a long time, so that it is at least 50% Can form bainite in the structure.
  • the bainitis zone 7 has a corresponding length. After sufficient bainitis, if possible before If a 95% share is reached, the sintered parts enter a final one Normal cooling zone 5, where they from the bainitization temperature to the vicinity of Be cooled to room temperature.
  • FIG. 3 shows the diagram of a system modified compared to FIG. 2, which differs in that the green compacts used in the device can choose between two different paths.
  • the arrangement of the Dewaxing zone 1 to the rugged cooling zone 4 coincides with that shown in FIG completely match. Behind the rugged cooling zone 4, the material flow direction can be set optionally. Either the sintered parts produced come on immediately a separate normal cooling zone 5a and the system can be sintered as "normal", so leave as parts not manufactured in accordance with the invention; or you are for the sequence of procedures according to the invention after leaving the Rugged cooling zone 4 via an optionally connectable transverse transport device 6, such as this is indicated by the arrows, in a parallel to the first part bainitization zone 7 arranged throughout the device.
  • the direction of transport is expediently opposite to the first part the device.
  • This is followed by a normal cooling zone 5b, in which the parts treated according to the invention are cooled to room temperature.
  • This modified device thus has two normal cooling zones. So one offers such a system has a particular flexibility with regard to what is to be processed Product range.
  • it would be possible without further ado Arrangement of the normal cooling zone 5a and that of the bainitization zone 7 and The normal cooling zone 5b of the plant line formed is to be interchanged.
  • the illustrated embodiment however, has the advantage that it is a has a comparatively short overall length.
  • the dimensional accuracy corresponded to the tolerance class IT9.
  • Compressed bodies of the same type as in the previous example were produced from a fully alloyed steel powder of the composition Fe-4 Ni-0.5 Mo, to which 1% Cu and 0.6% graphite and conventional lubricants were added.
  • the sintering was carried out at a temperature of 1120 ° C. over a period of 30 min in an endogas atmosphere with controlled C potential.
  • a rugged cooling with a cooling rate of 3 ° C./s took place as well as the bainitization according to the invention and a subsequent normal cooling down to room temperature.
  • a bainitic structure emerged in the components with the following properties: tensile strenght 750 - 800 N / mm 2 Hardness level 350 - 450 HV1 Elongation at break A3 until 6 %
  • the dimensional accuracy of the parts produced according to the invention was also significantly better. It corresponded to the tolerance class IT8.
  • the method according to the invention allows components in the sintered state at the same time combine high toughness with high strength, which otherwise also with a separate heat treatment cannot be achieved, one clearly improved dimensional tolerance can be guaranteed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

A process for producing sintered parts with high wear resistance and good dynamic strength properties from formed bodies, which have been pressed as green parts from a completely-alloyed air-hardened heat-treatment steel powder with a carbon content of at least 0.3% added in the form of graphite. The process includes sintering the parts under protective gas at a sintering temperature of at least 1000 DEG C. and subsequent cooling. The sintered parts are cooled immediately after sintering from the sintering temperature to a first holding temperature in the range of Ar3 to a maximum of 150 DEG C. above Ar3 and are held for a first holding period of 5 to 25 minutes at this temperature (austenitizing phase). Immediately after this, the sintered parts are cooled in accelerated fashion to a second holding temperature by convective gas cooling and are held at this temperature for a second holding period. The second holding temperature lies in a temperature range in which a bainitic structure forms and is of such a length that a bainitic structure portion of at least 50% is established. The sintered parts are then cooled to room temperature.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Sinterteilen mit hoher Verschleißfestigkeit und gleichzeitig guten dynamischen Festigkeitseigenschaften aus gepreßten Formkörpern gemäß dem Oberbegriff des Patentanspruchs 1 sowie eine Vorrichtung zur Durchführung dieses Verfahrens.The invention relates to a method for producing sintered parts with high Wear resistance and at the same time good dynamic strength properties pressed moldings according to the preamble of claim 1 and a Device for performing this method.

Mechanisch hochbeanspruchte Bauteile aus Stahl wie etwa Getriebezahnräder müssen nicht nur eine hohe Maßgenauigkeit aufweisen, sondern müssen darüber hinaus insbesondere auch sehr gute dynamische Festigkeitseigenschaften und gleichzeitig eine hohe Verschleißfestigkeit zeigen. Die Herstellung derartiger Teile durch zerspanende Fertigungsverfahren mit anschließender Einsatzhärtung erschien lange Zeit als einzig gangbarer Weg. Zur Reduzierung des Formgebungsaufwandes ist es jedoch auch möglich, pulvermetallurgische Verfahren anzuwenden. In diesem Zusammenhang ist es bekannt, aus einem diffusionslegierten ölhärtenden Stahlpulver, dem Graphit in der dem gewünschten C-Gehalt entsprechenden Menge sowie übliche Schmiermittel zugesetzt wurden, entsprechende Preßkörper als Grünlinge zu formen, diese im Durchlaufverfahren in einem Ofen zu sintern und anschließend auf Raumtemperatur abzukühlen. Zur Verbesserung der Maßgenauigkeit erfolgt anschließend auf einer Kalibrierpresse ein erneuter Preßvorgang. Anschließend wird eine Einsatzhärtung mit Abschreckung in Öl vorgenommen, dem sich eine Anlaßbehandlung anschließt. Die so hergestellten Bauteile zeigen ein typisches Anlaßgefüge. Steel components subject to high mechanical stress, such as gearwheels not only must have a high degree of dimensional accuracy, but must also be above it in addition also very good dynamic strength properties and show high wear resistance at the same time. The manufacture of such parts through machining manufacturing processes followed by case hardening for a long time as the only viable way. To reduce the design effort however, it is also possible to use powder metallurgical processes. In this Connection it is known from a diffusion alloy oil hardening steel powder, the graphite in the amount corresponding to the desired C content and usual Lubricants were added to form corresponding compacts as green parts, sinter these in a continuous process in an oven and then open Cool down to room temperature. To improve the dimensional accuracy is done then a new pressing process on a calibration press. Then will a case hardening with quenching in oil, which is a Tempering treatment follows. The components produced in this way show a typical one Occasion.

Ein solches Herstellverfahren liefert Bauteile mit guten statischen (Zugfestigkeit, Härte, Verschleißfestigkeit) und gleichzeitig auch guten dynamischen Festigkeitseigenschaften. Trotz des Aufwandes der durch einen zweiten Preßvorgang (Kalibrierung) getrieben wird, läßt dennoch die Maßgenauigkeit und deren Gleichmäßigkeit gelegentlich Wünsche offen: Die erreichbare Toleranzklasse beträgt etwa IT10.Such a manufacturing process provides components with good static (tensile strength, hardness, Wear resistance) and at the same time good dynamic Strength properties. Despite the effort of a second pressing (Calibration) is driven, the dimensional accuracy and their Uniformity from time to time: the achievable tolerance class is about IT10.

Weiterhin ist es bekannt, Sinterteile aus Preßkörpern herzustellen, die aus fertiglegierten, lufthärtenden Stahlpulvern gepreßt wurden. Hierbei wird durch Abkühlung an Luft bis unter die Martensitstarttemperatur ein martensitisches Gefüge erzeugt. Derartige Sinterteile zeigen wegen ihrer hohen Härte zwar gute Verschleißeigenschaften, sind jedoch aufgrund der niedrigen Bruchdehnung für dynamische Beanspruchungsarten, wie sie bei Zahnrädern regelmäßig auftreten, ungeeignet. Auch im Hinblick auf die erreichbare Maßgenauigkeit (Toleranzklasse IT9) können derartig hergestellte Sinterteile vielfach nicht befriedigen.Furthermore, it is known to produce sintered parts from compacts that consist of Alloyed, air-hardening steel powders were pressed. Here is by Cooling in air to below the martensite start temperature is a martensitic structure generated. Such sintered parts show good because of their high hardness Wear properties, however, are due to the low elongation at break for dynamic types of stress, such as occur regularly with gears, not suitable. Also with regard to the achievable dimensional accuracy (tolerance class IT9) can often not satisfy sintered parts produced in this way.

Schließlich ist es aus der DE 40 01 899 C1 bekannt, daß zur Herstellung hochfester Sinterteile-Grünlinge aus fertiglegiertem Stahlpulver mit einem in Form von Graphitpulver zugesetztem Massenanteil von 0,3 bis 0,7% Kohlenstoff gepreßt, bei einer Temperatur im Bereich von 1120 bis 1280 °C gesintert, durch Abkühlung gehärtet und anschließend angelassen wird.Finally, it is known from DE 40 01 899 C1 that for the production of high strength Sintered green parts made of alloy steel powder with a shape of Graphite powder added mass fraction of 0.3 to 0.7% carbon pressed, at sintered at a temperature in the range of 1120 to 1280 ° C, by cooling hardened and then tempered.

EP-A-0 354 389 offenbart ein Verfahren in dem ein Sinterstahlpulver formgepreßt und gesintert wird. Die Sinterteile werden durch eine Erwärmung in einem Salzbad austenitisiert, rasch auf eine Temperatur von 280 bis 450°C abgekühlt und in diesem Temperaturbereich gehalten, um eine bainitische Mikrostruktur des Gefüges zu erreichen.EP-A-0 354 389 discloses a method in which a Sintered steel powder is pressed and sintered. The sintered parts are austenitized by heating in a salt bath, rapidly cooled to a temperature of 280 to 450 ° C and in kept within this temperature range a bainitic microstructure of the structure to reach.

Aufgabe der Erfindung ist es, ein Verfahren der gattungsgemäßen Art so zu modifizieren, daß bei Gewährleistung guter dynamischer Festigkeitseigenschaften und gleichzeitig guten Verschleißeigenschaften eine deutlich verbesserte Maßhaltigkeit (engere Fertigungstoleranzen) erreicht wird, wobei der verfahrensmäßige und der anlagentechnische Aufwand möglichst gering bleiben sollen. Außerdem soll eine Vorrichtung zur Durchführung dieses Verfahrens angegeben werden.The object of the invention is to provide a method of the generic type modify that while ensuring good dynamic strength properties and good wear properties and significantly improved dimensional accuracy (tighter manufacturing tolerances) is achieved, with the procedural and the plant engineering effort should remain as low as possible. In addition, a Apparatus for performing this method can be specified.

Gelöst wird diese Aufgabe durch die kennzeichnenden Merkmale des Patentanspruchs 1. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen 2 bis 8. Eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens weist die Merkmale des Patentanspruchs 9 auf und ist in vorteilhafter Weise durch die in den Unteransprüchen 10 bis 12 anaeaebenen Merkmale weiter ausaestaltbar. This object is achieved by the characterizing features of the patent claim 1. Advantageous further developments result from subclaims 2 to 8. One The device for carrying out the method according to the invention has the features of claim 9 and is advantageously by the in the Subclaims 10 to 12 anaeaebenen characteristics can be further developed.

Nachfolgend wird die Erfindung anhand der Figuren näher erläutert. Es zeigen:

Fig. 1
einen schematischen Ablauf des erfindungsgemäßen Verfahrens anhand eines ZTU-Schaubildes und
Fig. 2 und 3
schematische Darstellungen eines Sinterofens zur Durchführung des erfindungsgemäßen Verfahrens.
The invention is explained in more detail below with reference to the figures. Show it:
Fig. 1
a schematic sequence of the method according to the invention using a ZTU diagram and
2 and 3
schematic representations of a sintering furnace for performing the method according to the invention.

Die Erfindung geht davon aus, daß zur Herstellung der Sinterteile ein an sich bekanntes Vergütungsstahlpulver verwendet wird, das aus einem fertiglegierten Stahl hergestellt ist, also (mit Ausnahme des C-Gehalts) eine gleichmäßige Verteilung der Legierungsbestandteile aufweist. Letzteres muß also nicht erst durch entsprechend zeitlich ausgedehnte Diffusionsvorgänge während des Sinterns angestrebt werden. Die bisher erforderliche separate Wärmebehandlung der Sinterteile nach dem Sintern zur Einstellung der guten dynamischen Festigkeitseigenschaften bei gleichzeitig hoher Verschleißfestigkeit entfällt. Die Einstellung dieser Eigenschaften wird vielmehr im Zuge der Sinterbehandlung direkt durchgeführt. Hierfür ist es wesentlich, daß das eingesetzte Stahlpulver aus einem lufthärtenden Werkstoff besteht. Dadurch kann auf den Einsatz eines aus Umweltschutzgründen ohnehin unerwünschten Ölbades zur Erzielung eines Abschreckeffektes verzichtet werden.The invention is based on the fact that for the production of the sintered parts a known tempered steel powder is used, which is made of a pre-alloyed steel is produced, that is (with the exception of the C content) an even distribution of Has alloy components. The latter does not have to be done accordingly long-term diffusion processes during the sintering are aimed for. The Previously required separate heat treatment of the sintered parts after sintering Setting the good dynamic strength properties with high at the same time Wear resistance is eliminated. The setting of these properties is rather in Carried out directly during the sintering treatment. For this it is essential that the steel powder used consists of an air-hardening material. This can help the use of an oil bath which is undesirable anyway for environmental reasons To achieve a deterrent effect.

Der Kohlenstoffgehalt der Sinterteile wird in üblicher Weise separat in Form von Graphit zugesetzt, damit das Stahlpulver zur Gewährleistung einer ausreichenden Verpreßbarkeit weich genug bleibt. Während des Sinterprozesses diffundiert der Graphit in die sich untereinander verbindenden Pulverpartikel hinein.The carbon content of the sintered parts is usually separated in the form of Graphite added to allow the steel powder to ensure adequate Pressability remains soft enough. The diffuses during the sintering process Graphite into the powder particles that bind together.

Die Erfindung sieht vor, wie Fig. 1 schematisch zeigt, im unmittelbaren Anschluß an das Sintern (Abschnitt a) die Sinterteile von der Sintertemperatur bis auf eine erste Haltetemperatur abzukühlen, die in einer Temperaturspanne von Ar3 bis maximal 150 °C oberhalb Ar3 liegt. Die Abkühlung (Abschnitt b) von der Sintertemperatur auf die erste Haltetemperatur erfolgt zweckmäßig mit einer Abkühlgeschwindigkeit von 0,5 - 1,5 °C/s. Die Sinterteile werden für etwa 5 - 25 min (erste Haltezeit, Abschnitt c) auf der ersten Haltetemperatur gehalten. Dadurch wird eine kleinere Austenitkorngröße erreicht. The invention provides, as Fig. 1 shows schematically, immediately after sintering (section a) to cool the sintered parts from the sintering temperature to a first holding temperature, which is in a temperature range from Ar 3 to a maximum of 150 ° C above Ar 3 . The cooling (section b) from the sintering temperature to the first holding temperature is expediently carried out at a cooling rate of 0.5-1.5 ° C./s. The sintered parts are held at the first holding temperature for about 5 to 25 minutes (first holding time, section c). This results in a smaller austenite grain size.

In der Austenitisierungsphase (Abschnitt c) empfiehlt es sich, das C-Potential in der Schutzgasatmosphäre, die während des Sintervorgangs aufrechterhalten werden muß, ein erhöhtes, eine Aufkohlung bewirkendes C-Potential einzustellen. Hierdurch werden die Sinterteile in der äußeren Oberfläche mit Kohlenstoff angereichert, so daß im Oberflächenbereich eine besonders hohe Härte erreichbar ist. Dies ist für eine gute Verschleißfestigkeit von großer Bedeutung. Im Inneren der Sinterteile bleibt dagegen ein niedrigerer Kohlenstoffgehalt erhalten und führt zu besonders guten dynamischen Festigkeitseigenschaften (Härteprofil). Besonders vorteilhaft ist es, die erste Haltetemperatur in einem Bereich von maximal 50 - 100 °C oberhalb Ar3 zu wählen. Eine zweckmäßige Dauer der ersten Haltezeit beträgt 10 - 20 min.In the austenitization phase (section c), it is advisable to set the C potential in the protective gas atmosphere, which must be maintained during the sintering process, to an increased C potential which causes carburization. As a result, the sintered parts in the outer surface are enriched with carbon, so that a particularly high hardness can be achieved in the surface area. This is very important for good wear resistance. In contrast, a lower carbon content is retained inside the sintered parts and leads to particularly good dynamic strength properties (hardness profile). It is particularly advantageous to choose the first holding temperature in a range of at most 50-100 ° C. above Ar 3 . A useful duration of the first stopping time is 10-20 minutes.

Im unmittelbaren Anschluß an die erste Haltezeit erfolgt durch eine konvektive Gaskühlung eine beschleunigte Abkühlung (Abschnitt d) bis auf eine zweite Haltetemperatur. Hierfür empfiehlt sich eine Abkühlgeschwindigkeit im Bereich von 3 - 6°C/s. Diese zweite Haltetemperatur ist anhand des zum jeweiligen Werkstoff gehörigen ZTU-Schaubilds so ausgewählt, daß das Gebiet der Ferritbildung gemieden wird und sich ein bainitisches Gefüge auszubilden beginnt. Die Haltezeit auf dieser zweiten Haltetemperatur (Abschnitt e) wird mindestens so lange ausgedehnt, bis sich ein Gefügeanteil des Bainits von mindestens 50 % eingestellt hat. Eine vollständige Umwandlung des Gefüges in Bainit ist jedoch im allgemeinen nicht erwünscht. Bei maximal 95 % Bainit sollte das Halten auf der zweiten Haltetemperatur zweckmäßigerweise spätestens beendet werden. Als besonders vorteilhaft hat sich ein Anteil des Bainit in einer Größenordnung von 60 - 80 % erwiesen. Anschließend werden die Sinterteile in üblicher Weise bis auf Raumtemperatur abgekühlt (Normalkühlung, Abschnitt f).Immediately after the first stopping time there is a convective Gas cooling accelerated cooling (section d) except for a second Holding temperature. A cooling rate in the range of 3 - is recommended for this. 6 ° C / s. This second holding temperature is based on the material appropriate ZTU diagram selected so that the area of ferrite formation avoided and a bainitic structure begins to develop. The hold time on this second holding temperature (section e) is extended at least until has a structure share of bainite of at least 50%. A complete However, the transformation of the structure into bainite is generally not desirable. At A maximum of 95% bainite should be kept at the second holding temperature expediently be ended at the latest. A has proven to be particularly advantageous Proportion of bainite in the order of 60-80% has been proven. Subsequently the sintered parts are cooled down to room temperature in the usual way (Normal cooling, section f).

Überraschenderweise hat sich gezeigt, daß durch die erfindungsgemäße Verfahrensweise eine besonders gute Teilequalität gewährleistet wird. Es ergibt sich nämlich nicht nur eine vergleichsweise hohe Maßgenauigkeit, sondern die auftretenden Toleranzen liegen bedeutend enger als bei der herkömmlichen Herstellungsweise. Anstelle der bisher bei Ölhärtung und Vergütung erreichbaren Güteklasse IT10 läßt sich nun die Güteklasse IT8 erreichen. Dies ist um so überraschender, als sogar auf die Durchführung eines separaten Kalibriervorgangs vollständig verzichtet werden kann. Dadurch wird ein kompletter aufwendiger Arbeitsschritt eingespart. Weiterhin erübrigt sich der Energie- und Handhabungsaufwand für ein separates Wärmebehandlungsverfahren.Surprisingly, it has been shown that the inventive Procedure, a particularly good part quality is guaranteed. It follows namely not only a comparatively high dimensional accuracy, but the Tolerances that occur are significantly narrower than those of conventional ones Production method. Instead of what has been achieved with oil hardening and tempering so far Quality class IT10 can now achieve quality class IT8. This is the case more surprising than even performing a separate calibration process can be completely dispensed with. This makes a complete more complex Work step saved. Furthermore, the energy and Handling effort for a separate heat treatment process.

In Figur 2 ist die erfindungsgemäße Vorrichtung, die als elektronisch gesteuerter Durchlauf-Sinterofen ausgebildet ist, in ihrer einfachsten Form schematisch dargestellt. Durch einen Pfeil an der linken Seite ist angedeutet, daß die Sinterteile in eine erste Zone eingeführt werden, die als Aufheizzone fungiert und in der die in den Grünlingen enthaltenen Schmierstoffe (z.B. Wachse) ausgedampft werden. Diese erste Zone wird daher auch als Entwachszone 1 bezeichnet. Unmittelbar anschließend in Transportrichtung ist die eigentliche Sinterzone 2 angeordnet, in der die Sinterteile auf Sintertemperatur (mindestens 1000 °C) über eine ausreichend lange Zeit gehalten werden. Da die Sinterteile mit einer gleichbleibenden Geschwindigkeit durch die gesamte Anlage bewegt werden, weist die Sinterzone 2 eine entsprechende Länge auf. Um eine Oxidation der Sinterteile zu vermeiden, wird in der gesamten Anlage eine sauerstofffreie Atmosphäre (Schutzgasatmosphäre) aufrechterhalten. Unmittelbar an die Sinterzone 2 schließt sich eine Austenitisierungszone 3 an, in der die Sinterteile zunächst abgekühlt und auf Austenitisierungstemperatur gehalten werden. Danach folgt eine Schroffkühlzone 4, die mit einer entsprechenden (nicht dargestellten) Gasdusche ausgestattet ist, um eine ausreichend intensive konvektive Gaskühlung zu bewirken. Sobald die Sinterteile die zweite Haltetemperatur erreicht haben, treten sie in die Bainitisierungszone 7 ein und werden über eine zweite Haltezeit ausreichend lange auf dieser Temperatur gehalten, damit sich ein mindestens 50 % betragender Bainit-Anteil im Gefüge ausbilden kann. Hierzu weist die Bainitisierungszone 7 eine entsprechende Länge auf. Nach ausreichender Bainitisierungszeit, möglichst vor Erreichen eines 95 %-Anteils, treten die Sinterteile in eine abschließende Normalkühlzone 5 ein, wo sie von der Bainitisierungstemperatur bis in die Nähe der Raumtemperatur abgekühlt werden.In Figure 2, the device according to the invention, which is electronically controlled Continuous sintering furnace is designed schematically in its simplest form shown. An arrow on the left indicates that the sintered parts in a first zone will be introduced, which acts as a heating zone and in which the in the Lubricants contained in green compacts (e.g. waxes) can be evaporated. This the first zone is therefore also referred to as dewaxing zone 1. Immediately afterwards the actual sintering zone 2 is arranged in the direction of transport, in which the sintered parts kept at sintering temperature (at least 1000 ° C) for a sufficiently long time become. Because the sintered parts at a constant speed through the sintering zone 2 has a corresponding length on. In order to avoid oxidation of the sintered parts, a Maintain an oxygen-free atmosphere (protective gas atmosphere). Immediately the sintering zone 2 is followed by an austenitizing zone 3 in which the sintered parts first cooled and kept at austenitizing temperature. After that follows a rugged cooling zone 4, which is equipped with a corresponding (not shown) Gas shower is equipped to provide sufficiently intense convective gas cooling cause. As soon as the sintered parts have reached the second holding temperature, they kick into the bainitis zone 7 and become sufficient over a second holding time held at this temperature for a long time, so that it is at least 50% Can form bainite in the structure. For this purpose, the bainitis zone 7 has a corresponding length. After sufficient bainitis, if possible before If a 95% share is reached, the sintered parts enter a final one Normal cooling zone 5, where they from the bainitization temperature to the vicinity of Be cooled to room temperature.

In Figur 3 ist das Schema einer gegenüber Figur 2 abgewandelten Anlage dargestellt, die sich dadurch unterscheidet, daß die in die Vorrichtung eingesetzten Grünlinge wahlweise zwei unterschiedliche Wege durchlaufen können. Die Anordnung von der Entwachszone 1 bis zur Schroffkühlzone 4 stimmt mit der in Figur 1 dargestellten vollständig überein. Hinter der Schroffkühlzone 4 kann die Materialflußrichtung wahlweise eingestellt werden. Entweder treten die erzeugten Sinterteile unmittelbar in eine separate Normalkühlzone 5a ein und können die Anlage als "normal" gesinterte, also als in nicht erfindungsgemäßer Weise hergestellte Teile verlassen; oder sie werden für die erfindungsgemäße Verfahrensfolge nach Verlassen der Schroffkühlzone 4 über eine wahlweise zuschaltbare Quertransporteinrichtung 6, wie dies durch die eingezeichneten Pfeile angedeutet ist, in eine parallel zum ersten Teil der gesamten Vorrichtung angeordnete Bainitisierungszone 7 eingeführt. Zweckmäßigerweise ist die Transportrichtung hier entgegengesetzt zum ersten Teil der Vorrichtung. Anschließend folgt wiederum eine Normalkühlzone 5b, in der die erfindungsgemäß behandelten Teile auf Raumtemperatur abgekühlt werden. Diese abgewandelte Vorrichtung weist also zwei Normalkühlzonen auf. Damit bietet eine solche Anlage eine besondere Flexibilität im Hinblick auf das zu verarbeitende Produktspektrum. Selbstverständlich wäre es möglich, die Bainitisierungszone 7 und die zweite Normalkühlzone 5b um 180° verdreht anzuordnen, also die ursprüngliche Materialflußrichtung beizubehalten. Ebenso wäre es ohne weiteres möglich, die Anordnung der Normalkühlzone 5a und des aus der Bainitisierungszone 7 und der Normalkühlzone 5b gebildeten Anlagenstrangs miteinander zu vertauschen. Die dargestellte Ausführungsform weist jedoch den Vorteil auf, daß sie eine vergleichsweise kurze Baulänge hat.FIG. 3 shows the diagram of a system modified compared to FIG. 2, which differs in that the green compacts used in the device can choose between two different paths. The arrangement of the Dewaxing zone 1 to the rugged cooling zone 4 coincides with that shown in FIG completely match. Behind the rugged cooling zone 4, the material flow direction can be set optionally. Either the sintered parts produced come on immediately a separate normal cooling zone 5a and the system can be sintered as "normal", so leave as parts not manufactured in accordance with the invention; or you are for the sequence of procedures according to the invention after leaving the Rugged cooling zone 4 via an optionally connectable transverse transport device 6, such as this is indicated by the arrows, in a parallel to the first part bainitization zone 7 arranged throughout the device. The direction of transport is expediently opposite to the first part the device. This is followed by a normal cooling zone 5b, in which the parts treated according to the invention are cooled to room temperature. This modified device thus has two normal cooling zones. So one offers such a system has a particular flexibility with regard to what is to be processed Product range. Of course, it would be possible to use the bainitis zone 7 and to arrange the second normal cooling zone 5b rotated by 180 °, ie the original one Maintain material flow direction. Likewise, it would be possible without further ado Arrangement of the normal cooling zone 5a and that of the bainitization zone 7 and The normal cooling zone 5b of the plant line formed is to be interchanged. The illustrated embodiment, however, has the advantage that it is a has a comparatively short overall length.

Die Wirksamkeit der Erfindung wird anhand der nachfolgenden beiden Beispiele näher erläutert.The effectiveness of the invention is illustrated by the following two examples explained.

VergleichsbeispielComparative example

Aus einem fertiglegierten Stahlpulver mit der Zusammensetzung Fe -4 Ni - 0,5 Mo, dem elementar 1 % Cu, 0,6 % Graphit und übliche Schmiermittel zugesetzt wurden, wurden Preßkörper mit einer Dichte von 6,80-6,90 g/cm3 hergestellt. Die Teile wurden bei einer Temperatur von 1150 °C während einer Dauer von 30 min gesintert. Dabei wurde eine aus Endogas bestehende Schutzgasatmosphäre mit kontrolliertem C-Potential aufrechterhalten. Nach konvektiver Gaskühlung der Teile (Abkühlgeschwindigkeit 3 - 6 °C/s) unter die Martensitstarttemperatur und anschließende Normalkühlung bis auf Raumtemperatur wurden folgende Eigenschaften ermittelt: Zugfestigkeit 650 N/mm2 Härteniveau 550 - 700 HV1 Bruchdehnung A3 0,3 - 0,6 % From a fully alloyed steel powder with the composition Fe -4 Ni - 0.5 Mo, to which elementary 1% Cu, 0.6% graphite and conventional lubricants were added, compacts with a density of 6.80-6.90 g / cm were made 3 manufactured. The parts were sintered at a temperature of 1150 ° C for 30 minutes. A protective gas atmosphere with controlled C potential consisting of endogas was maintained. After convective gas cooling of the parts (cooling rate 3 - 6 ° C / s) below the martensite start temperature and subsequent normal cooling down to room temperature, the following properties were determined: tensile strenght 650 N / mm 2 Hardness level 550-700 HV1 Elongation at break A3 0.3 - 0.6%

Die Maßhaltigkeit entsprach der Toleranzklasse IT9.The dimensional accuracy corresponded to the tolerance class IT9.

Erfindungsgemäßes BeispielExample according to the invention

Aus einem fertiglegierten Stahlpulver der Zusammensetzung Fe - 4 Ni - 0,5 Mo, dem 1 % Cu und 0,6 % Graphit sowie übliche Schmiermittel zugesetzt wurden, wurden gleichartige Preßkörper wie im vorhergehenden Beispiel erzeugt. Die Sinterung wurde bei einer Temperatur von 1120 °C über eine Dauer von 30 min in einer Endogasatmosphäre mit kontrolliertem C-Potential durchgeführt. Nach der Austenitisierung erfolgte eine Schroffkühlung mit einer Abkühlgeschwindigkeit von 3 °C/s sowie die erfindungsgemäße Bainitisierung und eine anschließende normale Abkühlung bis auf Raumtemperatur. Dabei stellte sich in den Bauteilen ein bainitisches Gefüge mit folgenden Eigenschaften ein: Zugfestigkeit 750 - 800 N/mm2 Härteniveau 350 - 450 HV1 Bruchdehnung A3 bis 6 % Compressed bodies of the same type as in the previous example were produced from a fully alloyed steel powder of the composition Fe-4 Ni-0.5 Mo, to which 1% Cu and 0.6% graphite and conventional lubricants were added. The sintering was carried out at a temperature of 1120 ° C. over a period of 30 min in an endogas atmosphere with controlled C potential. After the austenitization, a rugged cooling with a cooling rate of 3 ° C./s took place as well as the bainitization according to the invention and a subsequent normal cooling down to room temperature. A bainitic structure emerged in the components with the following properties: tensile strenght 750 - 800 N / mm 2 Hardness level 350 - 450 HV1 Elongation at break A3 until 6 %

Die Maßgenauigkeit der erfindungsgemäß hergestellten Teile war außerdem signifikant besser. Sie entsprach der Toleranzklasse IT8.The dimensional accuracy of the parts produced according to the invention was also significantly better. It corresponded to the tolerance class IT8.

Durch das erfindungsgemäße Verfahren lassen sich bei Bauteilen im Sinterzustand gleichzeit hohe Zähigkeiten mit hohen Festigkeiten kombinieren, die sonst auch mit einer separaten Wärmebehandlung nicht erreicht werden können, wobei eine deutlich verbesserte Maßtoleranz gewährleistet werden kann.The method according to the invention allows components in the sintered state at the same time combine high toughness with high strength, which otherwise also with a separate heat treatment cannot be achieved, one clearly improved dimensional tolerance can be guaranteed.

Claims (12)

  1. Process for producing sintered parts with a high wear resistance and good dynamic strength properties from shaped bodies, which have been compacted as green compacts from a completely alloyed, air-hardening heat-treatable steel powder with a carbon content, which is added in the form of graphite, of at least 0.3 %, by sintering under protective gas at a sintering temperature of at least 1000°C and subsequent cooling, wherein
    the sintered parts are cooled directly following sintering from the sintering temperature to a first holding temperature in the range of Ar3 to a maximum of 150°C above Ar3 and held at this temperature over a first holding time of 5 - 25 minutes in order to austenitize the parts,
    and the sintered parts are directly afterwards cooled in an accelerated manner by convective gas cooling to a second holding temperature and held at this temperature over a second holding time, wherein the second holding temperature lies in a temperature range in which a bainite structure forms, and the second holding time is calculated so as to produce a structural bainite fraction of at least 50 %, and
    the sintered parts are then cooled to ambient temperature.
  2. Process according to Claim 1,
    characterised in that the first holding temperature lies a maximum of 50 - 100°C above Ar3.
  3. Process according to any one of Claims 1 and 2,
    characterised in that the first holding time is 10 - 20 minutes.
  4. Process according to any one of Claims 1 to 3,
    characterised in that the convective gas cooling is carried out at 3 - 6°C/s.
  5. Process according to any one of Claims 1 to 4,
    characterised in that the cooling to the first holding temperature is carried out at 0.5 - 1.5°C/s.
  6. Process according to any one of Claims 1 to 5,
    characterised in that the second holding time has an upper limit such that the structural bainite fraction is at most 95 %.
  7. Process according to Claim 6,
    characterised in that the second holding time is calculated such that the structural bainite fraction is 60 - 80 %.
  8. Process according to any one of Claims 1 to 7,
    characterised in that the protective atmosphere is maintained during the austenitizing phase and set to a C potential which causes the sintered parts to carburize.
  9. Apparatus for carrying out the process according to Claim 1, comprising an electronically controlled sintering furnace, which is formed as a continuous unit, with a sintering zone (2), an abrupt cooling zone (4), which is disposed after the sintering zone (2), with gas cooling, and with a normal cooling zone (5), which is disposed after the abrupt cooling zone (4), wherein an austenitizing zone (3) is disposed between the sintering zone (2) and the abrupt cooling zone (4), and a bainitizing zone (7) is disposed between the abrupt cooling zone (4) and the normal cooling zone (5, 5b).
  10. Apparatus according to Claim 9,
    characterised in that a second normal cooling zone (5a) is provided which is disposed parallel to the first normal cooling zone in terms of material flow, wherein one (5b) of the two normal cooling zones can be charged by a transverse transport device (6) and the other normal cooling zone (5a) is directly connected to the abrupt cooling zone (4) to optionally bypass the bainitizing zone (7).
  11. Apparatus according to Claim 10,
    characterised in that the transverse transport device (6) is disposed between the abrupt cooling zone (4) and the bainitizing zone (7).
  12. Apparatus according to Claim 11,
    characterised in that the first normal cooling zone (5b) and the bainitizing zone (7) have a transport direction which is opposite and parallel to the transport direction of the sintering zone (2), the austenitizing zone (3) and the abrupt cooling zone (4).
EP96250118A 1995-06-07 1996-06-04 Process and apparatus for producing sintered parts Expired - Lifetime EP0747154B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19521941A DE19521941C1 (en) 1995-06-07 1995-06-07 Mfg. sintered air-hardenable alloy steel component
DE19521941 1995-06-07

Publications (2)

Publication Number Publication Date
EP0747154A1 EP0747154A1 (en) 1996-12-11
EP0747154B1 true EP0747154B1 (en) 2001-02-14

Family

ID=7764535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96250118A Expired - Lifetime EP0747154B1 (en) 1995-06-07 1996-06-04 Process and apparatus for producing sintered parts

Country Status (6)

Country Link
US (1) US5628045A (en)
EP (1) EP0747154B1 (en)
JP (1) JP3679508B2 (en)
AT (1) ATE199130T1 (en)
DE (2) DE19521941C1 (en)
ES (1) ES2153935T3 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19738919C1 (en) 1997-09-05 1999-04-29 Maxon Motor Gmbh Process for manufacturing a plain bearing and plain bearing
DE19744226A1 (en) * 1997-10-07 1999-07-29 Bt Magnet Tech Gmbh Process for producing a sprocket with a collar and teeth
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom
DE19963973C1 (en) * 1999-12-31 2001-05-31 Bosch Gmbh Robert Production of bainite from steel parts comprises austenizing the parts, quenching to a starting temperature, isothermally storing the steel parts at the starting temperature and isothermally storing the parts at a finishing temperature
DE10045290A1 (en) * 2000-09-13 2002-03-21 Mahle Ventiltrieb Gmbh Production of sintered metal part e.g. cam involves pressing powder mixture, pre-sintering, fine contour pressing, sintering and carburizing in carbon-containing atmosphere
JP3698409B2 (en) * 2000-10-25 2005-09-21 本田技研工業株式会社 Sintered sprocket
US6630101B2 (en) 2001-08-16 2003-10-07 Keystone Investment Corporation Method for producing powder metal gears
US6658260B2 (en) 2001-09-05 2003-12-02 Telecommunication Systems, Inc. Inter-carrier short messaging service providing phone number only experience
SE0201824D0 (en) * 2002-06-14 2002-06-14 Hoeganaes Ab Pre-alloyed iron based powder
US20050095164A1 (en) * 2003-03-28 2005-05-05 Metso Paper, Inc. Method for manufacturing a wear plate of a disc chipper and wear plate of a disc chipper
FI115389B (en) * 2003-03-28 2005-04-29 Metso Paper Inc A method of making a disc chafing wear plate and a disc chipping wear plate
DE102007061084A1 (en) 2007-12-19 2009-07-02 Federal-Mogul Sealing Systems Gmbh Metallic flat gasket and manufacturing process
JP6273519B2 (en) * 2014-03-26 2018-02-07 住友電工焼結合金株式会社 Method for sintering powder compact

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132080A (en) * 1944-11-28 1992-07-21 Inco Limited Production of articles from powdered metals
JPS5179606A (en) * 1974-11-09 1976-07-12 Toyo Kogyo Co Kotansotetsukeishudobuzaino shoketsuhoho
GB1590113A (en) * 1978-03-21 1981-05-28 Ransome Hoffmann Pollard Rolling element bearings
DE3142359A1 (en) * 1981-10-26 1983-05-05 Horst Dipl.-Phys. Dr. 6000 Frankfurt Mühlberger Process and device for heat-treating workpieces
JPS58217601A (en) * 1982-06-14 1983-12-17 Kawasaki Steel Corp Manufacture of high-strength sintered material
US4655853A (en) * 1982-08-09 1987-04-07 Federal-Mogul Corporation Method for making powder metal forging preforms of high-strength ferrous-base alloys
JPS59177325A (en) * 1983-03-28 1984-10-08 Nippon Steel Corp Manufacture of hot rolled bainitic steel plate with high strength
JPS60121253A (en) * 1983-12-05 1985-06-28 Nissan Motor Co Ltd Spheroidal graphite cast iron
JPS60197841A (en) * 1984-03-19 1985-10-07 Nissan Motor Co Ltd Spheroidal graphite cast iron
GB2197663B (en) * 1986-11-21 1990-07-11 Manganese Bronze Ltd High density sintered ferrous alloys
DE3825463A1 (en) * 1988-07-27 1990-02-01 Schwaebische Huettenwerke Gmbh METHOD FOR PRODUCING A MOLDING PART FROM SINTERMETAL AND MOLDING PART MADE THEREOF
DE4001899C1 (en) * 1990-01-19 1991-07-25 Mannesmann Ag, 4000 Duesseldorf, De
US5074533A (en) * 1990-04-06 1991-12-24 Monroe Auto Equipment Company Endothermic furnace
JP2601069B2 (en) * 1991-08-08 1997-04-16 株式会社村田製作所 Method and apparatus for firing ceramic molded body

Also Published As

Publication number Publication date
JPH093587A (en) 1997-01-07
JP3679508B2 (en) 2005-08-03
US5628045A (en) 1997-05-06
EP0747154A1 (en) 1996-12-11
ES2153935T3 (en) 2001-03-16
DE59606428D1 (en) 2001-03-22
ATE199130T1 (en) 2001-02-15
DE19521941C1 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
DE2943601C2 (en) Pre-alloyed steel powder for the powder metallurgical production of high-strength parts
DE69913650T2 (en) STEEL POWDER FOR THE PRODUCTION OF Sintered Products
EP2045339B1 (en) Workpiece for rolling wear stress made of through hardened steel and method of heat treatment
EP0747154B1 (en) Process and apparatus for producing sintered parts
DE19651740B4 (en) Process for producing an iron sintered alloy with a quenching structure
DE2625212A1 (en) Process for the production of sintered molded bodies
DE1298293B (en) Highly wear-resistant, machinable and hardenable sintered steel alloy and process for their production
AT505699B1 (en) METHOD FOR PRODUCING A SINTERED CERTAIN COMPONENT
DE2414909A1 (en) STEEL POWDER
DE3206475C2 (en)
DE2830850C3 (en) Use of a case-hardening steel
EP1274872B1 (en) Method for the production of nitrogen alloyed steel, spray compacted steel
DE2705052A1 (en) HIGH-SPEED STEEL MANUFACTURED BY THE POWDER METALLURGY PROCESS, CONTAINING NITROGEN
DE60011115T2 (en) STEEL MATERIAL, ITS USE AND MANUFACTURE
EP0719349B1 (en) Process of producing sintered articles
DE69909940T2 (en) Martensitic stainless steel parts and process for their manufacture
DE2324750A1 (en) MANUFACTURE OF HARDENED STEEL
DE2358720A1 (en) FORGING METAL POWDER
DE2109997A1 (en) Process for metallic cementing animals
DE2507375A1 (en) FERROUS ALLOY WITH IMPROVED WEAR RESISTANCE AND PROCESS FOR THEIR PRODUCTION
EP0354389B1 (en) Process for manufacturing sintered steel bodies, and bodies obtained thereby
DE2938541C2 (en) Process for producing a hot-forged workpiece from powder
DE4001899C1 (en)
DE102012203110A1 (en) Method for producing a bearing component
DE3525071C1 (en) Process for producing highly stressable machine parts from micro-alloyed steel with a tough high-strength core and a wear-resistant Fe2B skin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT

17P Request for examination filed

Effective date: 19970114

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BT MAGNET-TECHNOLOGIE GMBH

Owner name: QMP METAL POWDERS GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20000407

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT

REF Corresponds to:

Ref document number: 199130

Country of ref document: AT

Date of ref document: 20010215

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2153935

Country of ref document: ES

Kind code of ref document: T3

REF Corresponds to:

Ref document number: 59606428

Country of ref document: DE

Date of ref document: 20010322

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070919

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070926

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070618

Year of fee payment: 12

Ref country code: GB

Payment date: 20070926

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070921

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080604

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080604

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080604

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120822

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606428

Country of ref document: DE

Effective date: 20140101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140101