EP0354389B1 - Process for manufacturing sintered steel bodies, and bodies obtained thereby - Google Patents

Process for manufacturing sintered steel bodies, and bodies obtained thereby Download PDF

Info

Publication number
EP0354389B1
EP0354389B1 EP89113211A EP89113211A EP0354389B1 EP 0354389 B1 EP0354389 B1 EP 0354389B1 EP 89113211 A EP89113211 A EP 89113211A EP 89113211 A EP89113211 A EP 89113211A EP 0354389 B1 EP0354389 B1 EP 0354389B1
Authority
EP
European Patent Office
Prior art keywords
sintered
process according
filler
minutes
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89113211A
Other languages
German (de)
French (fr)
Other versions
EP0354389A1 (en
Inventor
Dieter Dr.Rer.Nat. Pohl
Hans A. Dipl.-Ing. Härle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwaebische Huettenwerke Automotive GmbH
Original Assignee
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwaebische Huettenwerke Automotive GmbH filed Critical Schwaebische Huettenwerke Automotive GmbH
Publication of EP0354389A1 publication Critical patent/EP0354389A1/en
Application granted granted Critical
Publication of EP0354389B1 publication Critical patent/EP0354389B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening

Definitions

  • the invention relates to a method for producing a molded part from sintered steel, sintered steel powder being compression-molded and sintered, after which the sintered part is austenitized by heating to temperatures above 800 ° C. and then rapidly cooled.
  • the invention also relates to a molded part produced by the method.
  • US Pat. No. 2,566,752 describes a method for producing an iron-containing metal part, namely a composite part.
  • the composite part including copper infiltrated to achieve a higher strength For this purpose, it is proposed, after cooling, for example in oil or water, to reheat the metal to a temperature between 300 and 600 ° C. for a period of one to three hours in order to achieve infiltration of the desired constituents into the structure and thereby to increase the strength of the part.
  • One of the essential features of the known molded parts made of sintered steel is the accuracy with which they can be produced. Diameter tolerances of high quality can be achieved. After the usual work sequence with a compression molding and a subsequent sintering, the sintered molding is calibrated for this. The high accuracy is achieved through the calibration process. Shaped parts that are not post-treated by calibration or another work process do not have such a high tolerance with sufficient repeatability.
  • Sintered steels can achieve considerable yield strengths and tensile strength values, but their plastic deformability, which is measured, for example, as the elongation at break, and their toughness, which is measured, for example, as impact energy, are low.
  • the strength limits the achievable accuracy of sintered molded parts. This is because post-sintering is economical, e.g. by calibration, can only be carried out if the strength of the material does not exceed 500 to a maximum of 600 N / mm2. Sintered steels with a significantly higher tensile strength can be easily produced, e.g. up to about 1200 N / mm2 tensile strength, because molded parts made from such materials can also be pressed and sintered, but they can no longer be economically calibrated to increase accuracy.
  • a high strength of sintered steels can be achieved by alloying measures or by heat treatment, if necessary by a combination of both measures. Alloy-related measures have the disadvantage mentioned that they have high strength is achieved, but no economic calibration was possible to achieve the required accuracy.
  • the present invention is therefore based on the object of providing a method for producing a sintered part and a sintered part produced thereafter, which has a high strength but at the same time also has good ductility, with the aim of achieving the highest possible dimensional accuracy.
  • the temperature range and the conversion time depend on the steel composition.
  • the first possibility is that the compression of the part to be sintered is chosen so high that a pore volume of less than 8% is achieved. With such a percentage, the pores are essentially no longer interconnected. This means that salt can then only settle into pores during the heat treatment which are open towards the surface of the sintered part. From there it can be easily washed out later.
  • the second possibility is that the pores of the sintered part are at least partially filled with a filler which is resistant to the agents and chemicals used in a rapid cooling in a bath.
  • metallic substances whose melting point is above the temperature of austenitizing but below the sintering temperature. This is e.g. generally the case for copper and corresponding copper alloys.
  • non-metallic substances such as e.g. ceramic materials are used.
  • ceramic materials e.g. Silicates or a mixture or a thin paste of talc and water glass possible.
  • Numerous sintered steel powders commonly used in sintering molded parts are suitable for intermediate stage tempering. Both fully alloyed, i.e. atomize, as well as mixed alloy or alloyed powder. Pre-alloyed powders are obtained by melting iron with the desired alloy components, after which the melt is atomized into powder, which is then compression-molded in the usual way.
  • Mixed alloy powder means that iron powder is mixed with alloy powder, after which the dry powder mixture is also compression molded.
  • a middle way is the combination of both processes, which creates an alloyed powder for the subsequent compression molding.
  • alloyed powders with, for example, 1.5 to 2% by weight of Ni, 0.3 to 0.6% by weight of Mo will be mixed with a corresponding residual amount of iron, and 0.3 to 1% by weight of graphite can also be added .
  • copper can be tolerated as a shrinking alloy element in the usual framework.
  • a molded part 1 is formed whose pores 2 are filled with copper.
  • Tests with tensile tests have shown the following property values for the above example: Status R p N / mm2 R m N / mm2 A% State of the art only sintered 420..510 530..680 2.0..3.0 State of the art: hardened and tempered 900..1040 1050..1165 1.6..2.9 bainitized (intermediate stage tempered) 685..740 780..850 7.5.9.3
  • field 3 with an alloy of FE-Cu-Ni-Mo-C having the highest tensile strength values with a relatively low elongation. If the same sintered alloy steel is hardened and tempered, field 4 is obtained. When copper is infiltrated at the same time during the sintering process and subsequent heat treatment as in field 4, field 5 with the highest tensile strength values is obtained, although the elongation is again relatively low.
  • Field 6 shows the values for a sintered part produced by the method according to the invention. As can be seen from this, the tensile strength is significantly higher than that of sintered steels without any treatment and only insignificantly lower than with a hardened and tempered alloy steel. In contrast, however, the percentage elongation is several times better.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines Formteiles aus Sinterstahl, wobei Sinterstahlpulver formgepreßt und gesintert wird, wonach das Sinterteil durch eine Erwärmung auf Temperaturen von über 800 °C austenitisiert und anschließend rasch abgekühlt wird. Ebenso betrifft die Erfindung ein nach dem Verfahren herstelltes Formteil.The invention relates to a method for producing a molded part from sintered steel, sintered steel powder being compression-molded and sintered, after which the sintered part is austenitized by heating to temperatures above 800 ° C. and then rapidly cooled. The invention also relates to a molded part produced by the method.

Aus der US-PS 2 566 752 ist ein Verfahren zur Herstellung eines eisenhaltigen Metallteiles, nämlich eines Verbundteiles beschrieben. In das Verbundteil wird u.a. Kupfer infiltriert, um eine höhere Festigkeit zu erreichen. Hierzu wird vorgeschlagen, nach einem Abkühlen, z.B. in Öl oder Wasser, das Metall wieder auf eine Temperatur zwischen 300 und 600 °C für eine Zeitdauer von ein bis drei Stunden zu erwärmen, um ein Infiltrieren der gewünschten Bestandteile in das Gefüge zu erreichen und dadurch die Festigkeit des Teiles zu erhöhen.US Pat. No. 2,566,752 describes a method for producing an iron-containing metal part, namely a composite part. In the composite part including copper infiltrated to achieve a higher strength. For this purpose, it is proposed, after cooling, for example in oil or water, to reheat the metal to a temperature between 300 and 600 ° C. for a period of one to three hours in order to achieve infiltration of the desired constituents into the structure and thereby to increase the strength of the part.

Eines der wesentlichen Merkmale der bekannten Formteile aus Sinterstahl ist deren Genauigkeit, mit der sie hergestellt werden können. Es sind Durchmessertoleranzen hoher Qualität erreichbar. Nach der üblichen Arbeitsfolge mit einem Formpressen und einem anschließenden Sintern wird das gesinterte Formteil hierzu kalibriert. Durch den Arbeitsgang des Kalibrierens wird die hohe Genauigkeit erreicht. Formteile, die nicht durch Kalibrieren oder einen anderen Arbeitsvorgang nachbehandelt werden, besitzen keine so hohe Toleranz mit ausreichender Wiederholbarkeit.One of the essential features of the known molded parts made of sintered steel is the accuracy with which they can be produced. Diameter tolerances of high quality can be achieved. After the usual work sequence with a compression molding and a subsequent sintering, the sintered molding is calibrated for this. The high accuracy is achieved through the calibration process. Shaped parts that are not post-treated by calibration or another work process do not have such a high tolerance with sufficient repeatability.

Ein weiteres Merkmal gesinterter Formteile ist die mehr oder weniger große Porigkeit ihrer Mikrostruktur. Diese Poren stellen innere Kerben dar und beeinflußen damit die Werkstoffeigenschaften erheblich. Mit Sinterstählen lassen sich damit zwar beachtliche Streckgrenzen- und Zugfestigkeitswerte erreichen, aber deren plastische Verformbarkeit, die z.B. als Bruchdehnung gemessen wird, und deren Zähigkeit, die z.B. als Schlagarbeit gemessen wird, sind gering.Another characteristic of sintered molded parts is the more or less large porosity of their microstructure. These pores represent and influence internal notches thus the material properties considerably. Sintered steels can achieve considerable yield strengths and tensile strength values, but their plastic deformability, which is measured, for example, as the elongation at break, and their toughness, which is measured, for example, as impact energy, are low.

Ebenso wie die Poren die Zähigkeit begrenzen, so begrenzt die Festigkeit die erreichbare Genauigkeit gesinterter Formteile. Dies liegt daran, daß eine Nacharbeit nach dem Sintern auf wirtschaftliche Weise, z.B. durch Kalibrieren, nur durchgeführt werden kann, wenn die Festigkeit des Werkstoffes 500 bis höchstens 600 N/mm² nicht übersteigt. Sinterstähle mit deutlich höherer Zugfestigkeit sind zwar ohne weiteres herstellbar, z.B. bis etwa 1200 N/mm² Zugfestigkeit, denn Formteile aus solchen Werkstoffen lassen sich zwar auch noch Pressen und Sintern, aber sie lassen sich nicht mehr auf wirtschaftliche Weise zur Erhöhung der Genauigkeit Kalibrieren.Just as the pores limit the toughness, the strength limits the achievable accuracy of sintered molded parts. This is because post-sintering is economical, e.g. by calibration, can only be carried out if the strength of the material does not exceed 500 to a maximum of 600 N / mm². Sintered steels with a significantly higher tensile strength can be easily produced, e.g. up to about 1200 N / mm² tensile strength, because molded parts made from such materials can also be pressed and sintered, but they can no longer be economically calibrated to increase accuracy.

Eine hohe Festigkeit an Sinterstählen läßt sich durch legierungstechnische Maßnahme oder durch eine Wärmebehandlung, ggf. durch eine Kombination beider Maßnahmen, erzielen. Legierungstechnische Maßnahmen haben den erwähnten Nachteil, daß damit zwar eine hohe Festigkeit erreicht wird, aber zur Erreichung einer erforderlichen Genauigkeit keine wirtschaftliche Kalibrierung möglich war.A high strength of sintered steels can be achieved by alloying measures or by heat treatment, if necessary by a combination of both measures. Alloy-related measures have the disadvantage mentioned that they have high strength is achieved, but no economic calibration was possible to achieve the required accuracy.

Aus diesem Grunde ist bereits versucht worden mit Legierungsbestandteilen in dem Sinterstahlpulver zu arbeiten, wobei nach dem Sintern eine Festigkeit von höchstens ca. 500 N/mm² erreicht worden ist. Anschließend konnten die auf diese Weise hergestellten Formteile kalibriert werden. Um eine höhere Festigkeit zu erhalten, wurde das Sinterteil danach gehärtet. Hierzu wurde es auf eine Temperatur zwischen 800 und 940 °C in Abhängigkeit von der Stahlzusammensetzung erwärmt, wobei eine Austenitisierung einsetzte. Durch ein rasches Abkühlen auf Raumtemperatur und ein anschließendes Anlassen (Wiedererwärmung) in bekannter Weise auf Temperaturen von max. ca. 500 °C wurde die gewünschte höhere Festigkeit erreicht, die auch bei über 1000 N/mm² liegen konnte. Ein derartig behandelter Sinterstahl war jedoch sehr spröde. Dies bedeutete, daß seine Verformbarkeit und Zähigkeit auf ein sehr niedriges Niveau abfielen. Es wurden Dehnungswerte von nur 1% bis 2% gemessen. Weiterhin traten dabei Maßveränderungen infolge von Verzug auf, die so groß waren, daß Toleranzen nur in einer geringen Qualität reproduziert werden konnten.For this reason, attempts have already been made to work with alloy components in the sintered steel powder, a strength of at most approx. 500 N / mm 2 having been achieved after the sintering. The molded parts produced in this way could then be calibrated. The sintered part was then hardened in order to obtain a higher strength. For this purpose, it was heated to a temperature between 800 and 940 ° C, depending on the steel composition, whereby austenitization started. By rapid cooling to room temperature and subsequent tempering (reheating) in a known manner to temperatures of max. Approx. 500 ° C the desired higher strength was reached, which could also be over 1000 N / mm². Sintered steel treated in this way was very brittle. This meant that its ductility and toughness dropped to a very low level. Strain values of only 1% to 2% were measured. Furthermore, there were dimensional changes due to warping that were so large that tolerances could only be reproduced in poor quality.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde ein Verfahren zum Herstellen eines Sinterteiles und ein danach hergestelltes Sinterteil zu schaffen, das eine hohe Festigkeit besitzt, gleichzeitig jedoch auch eine gute Dehnbarkeit aufweist, wobei darüberhinaus eine möglichst hohe Formgenauigkeit erreicht werden soll.The present invention is therefore based on the object of providing a method for producing a sintered part and a sintered part produced thereafter, which has a high strength but at the same time also has good ductility, with the aim of achieving the highest possible dimensional accuracy.

Erfindungsgemäß wird diese Aufgabe durch die Merkmale der kennzeichnenden Teile der Ansprüche 1, 2 und 13 gelöst. Bevorzugte Ausführungsformen sind in den abhängigen Ansprüchen offenbart.According to the invention, this object is achieved by the features of the characterizing parts of claims 1, 2 and 13. Preferred embodiments are disclosed in the dependent claims.

Es wurde nämlich festgestellt, daß das durch eine rasche Abkühlung auf den genannten Temperaturbereich erzielte bainitische Gefüge eine hohe Festigkeit bei gleichzeitig guter Dehnbarkeit bzw. Zähigkeit besitzt. Im Vergleich zu einer normalen Härtung bzw. Vergütung können nahezu die gleichen Festigkeitswerte erreicht werden, wobei jedoch die Dehnung und Zähigkeit deutlich besser ist und gleichzeitig auch ein wesentlich geringerer maßlicher Verzug auftritt.It has been found that the bainitic structure achieved by rapid cooling to the temperature range mentioned has a high strength with good ductility or toughness. Compared to normal hardening or tempering, almost the same strength values can be achieved, but the elongation and toughness is significantly better and at the same time there is a much smaller dimensional distortion.

Es ist lediglich erforderlich, das zu behandelnde Gut so lange in dem angegebenen Temperaturbereich zu halten, bis das gesamte Gefüge in Bainit umgewandelt ist. Der Temperaturbereich und auch die Umwandlungszeit sind dabei abhängig von der Stahlzusammensetzung.It is only necessary to keep the material to be treated in the specified temperature range until the entire structure is converted into bainite. The temperature range and the conversion time depend on the steel composition.

Zwar ist der Arbeitsgang des Bainitisierens bereits bekannt, aber für Sinterstähle, war das Verfahren noch nicht angewendet worden. Dies liegt insbesondere daran, daß es bei einer einfachen Übertragung durch die vorhandene Porosität des Sinterteiles zu Problemen bei der nachfolgenden Härtung bzw. Abkühlung kommen würde. Zum Austenitisieren, d.h. zur Erwärmung des Sinterteiles, verwendet man ein Salzbad und anschließend für das isothermische Bainitisieren ein zweites Salzbad. Da Sinterstähle im allgemeinen sehr porös sind und die Poren häufig untereinander noch Verbindungen haben, besteht somit die Gefahr, daß bei der Salzschmelze oder bei Verwendung eines anderen Bades die hierfür verwendeten Chemikalien in das Innere der Sinterteile eindringen. Dadurch entstehen später sogenannte Ausblühungen, wodurch das Sinterteil sogar unbrauchbar werden kann.The process of bainitising is already known, but the method has not yet been used for sintered steels. This is due in particular to the fact that, in the case of a simple transfer, the porosity of the sintered part would cause problems during the subsequent hardening or cooling. To austenitize, ie to heat the sintered part, use a salt bath and then for isothermal bainitizing a second salt bath. Since sintered steels are generally very porous and the pores often still have connections to one another, there is a risk that the chemicals used for this will penetrate into the interior of the sintered parts when the salt is melted or when another bath is used. This later results in so-called efflorescence, which can even render the sintered part unusable.

Erfindungsgemäß werden deshalb zur Lösung dieses Problemes zwei Wege vorgeschlagen.According to the invention, two ways are therefore proposed to solve this problem.

Die erste Möglichkeit besteht darin, daß die Formpressung des zu sinternten Teiles so hoch gewählt wird, daß ein Porenvolumen von weniger als 8% erreicht wird. Bei einem derartigen Prozentsatz haben die Poren im wesentlichen untereinander keine Verbindung mehr. Dies bedeutet, daß Salz sich dann nur noch bei der Wärmebehandlung in Poren setzen kann, die zur Oberfläche des Sinterteiles hin offen sind. Von dort läßt es sich später leicht auswaschen.The first possibility is that the compression of the part to be sintered is chosen so high that a pore volume of less than 8% is achieved. With such a percentage, the pores are essentially no longer interconnected. This means that salt can then only settle into pores during the heat treatment which are open towards the surface of the sintered part. From there it can be easily washed out later.

Zur Anwendung dieses Verfahrens ist es erforderlich hoch verdichtbare Basispulver und/oder sehr hohe Pressdrücke zu verwenden. Dabei kann in vorteilhafter Weise auch eine stufenweise Behandlung mit einer Operationsfolge: Vorpressen - Vorsintern - Nachpressen - Fertigsintern - und ein anschließendes Bainitisieren durchgeführt werden.To use this method, it is necessary to use highly compactable and / or very high base powders To use pressures. In this case, a step-by-step treatment with an operation sequence: pre-pressing - pre-sintering - post-pressing - finished sintering - and a subsequent bainitization can advantageously be carried out.

Die zweite Möglichkeit besteht darin, daß die Poren des Sinterteiles wenigstens teilweise mit einem Füllstoff gefüllt werden, der gegen die bei einer raschen Abkühlung in einem Bad verwendeten Mittel und Chemikalien resistent ist.The second possibility is that the pores of the sintered part are at least partially filled with a filler which is resistant to the agents and chemicals used in a rapid cooling in a bath.

Für eine derartige Infiltration eignen sich z.B. metallische Stoffe, deren Schmelzpunkt über der Temperatur des Austenitisierens aber unter der Sintertemperatur liegt. Diese ist z.B. im allgemeinen für Kupfer und entsprechend Kupferlegierungen der Fall.For such infiltration, e.g. metallic substances whose melting point is above the temperature of austenitizing but below the sintering temperature. This is e.g. generally the case for copper and corresponding copper alloys.

Zur Füllung der Poren können jedoch auch nichtmetallische Stoffe, wie z.B. keramische Stoffe verwendet werden. So sind z.B. Silikate oder eine Mischung bzw. ein dünner Brei aus Talkum und Wasserglas möglich.However, non-metallic substances such as e.g. ceramic materials are used. For example, Silicates or a mixture or a thin paste of talc and water glass possible.

Im allgemeinen wird man jedoch eine Füllung der Poren mit metallischen Werkstoffen vorziehen, da ja bei der Wärmebehandlung die Abkühlung von der hohen Austenittemperatur auf die Temperatur der Bainitumwandlung sehr rasch erfolgen muß. Dies wird durch Metall oder andere Werkstoffe mit einer guten Wärmeleitfähigkeit als Infiltrate gewährleistet.In general, however, it is preferable to fill the pores with metallic materials, since in the heat treatment the cooling from the high austenite temperature takes place to the temperature of the bainite transformation must be done very quickly. This is ensured by metal or other materials with good thermal conductivity as infiltrates.

Zum Zwischenstufenvergüten sind zahlreiche in der sintertechnischen Formteilefertigung gängigen Sinterstahlpulver geeignet. Möglich sind sowohl fertiglegierte, d.h. verdüste, ebenso wie mischlegierte oder anlegierte Pulver. Fertiglegierte Pulver erhält man durch Erschmelzen von Eisen mit den gewünschten Legierungsbestandteilen, wonach die Schmelze zu Pulver verdüst wird, das anschließend in üblicher Weise formgepreßt wird. Mischlegiertes Pulver bedeutet, daß man Eisenpulver mit Legierungspulver zusammenmischt, wonach die trockene Pulvermischung ebenfalls formgepreßt wird. Ein Mittelweg ist die Kombination aus beiden Verfahren, womit ein anlegiertes Pulver für die nachfolgende Formpressung entsteht.Numerous sintered steel powders commonly used in sintering molded parts are suitable for intermediate stage tempering. Both fully alloyed, i.e. atomize, as well as mixed alloy or alloyed powder. Pre-alloyed powders are obtained by melting iron with the desired alloy components, after which the melt is atomized into powder, which is then compression-molded in the usual way. Mixed alloy powder means that iron powder is mixed with alloy powder, after which the dry powder mixture is also compression molded. A middle way is the combination of both processes, which creates an alloyed powder for the subsequent compression molding.

Im allgemeinen wird man fertiglegierte Pulver mit z.B. 1,5 bis 2 Gew.% Ni, 0,3 bis 0,6 Gew.% Mo einer entsprechenden Restmenge Eisen zumischen, wobei zusätzlich noch 0,3 bis 1 Gew.% Graphit beigegeben werden kann. Ggf. kann Kupfer im üblichen Rahmen als schwundausgleichendes Legierungselement toleriert werden.In general, alloyed powders with, for example, 1.5 to 2% by weight of Ni, 0.3 to 0.6% by weight of Mo will be mixed with a corresponding residual amount of iron, and 0.3 to 1% by weight of graphite can also be added . Possibly. copper can be tolerated as a shrinking alloy element in the usual framework.

Nachfolgend sind nähere Einzelheiten der Erfindung beispielsweise anhand der Zeichnung beschrieben.Further details of the invention are described below, for example with reference to the drawing.

Es zeigt:

Fig. 1:
ausschnittsweise Schnitt durch ein Sinterteil;
Fig. 2:
die Beziehung zwischen Zugfestigkeit und Dehnung für verschiedene Legierungssysteme und Wärmebehndlungen.
It shows:
Fig. 1:
Sectional section through a sintered part;
Fig. 2:
the relationship between tensile strength and elongation for different alloy systems and heat treatments.

Aus einem fertiglegierten Pulver mit folgender Zusammensetzung:
   1,8 Gew.% Ni
   0,5 Gew.% Mo
   1,5 Gew.% Cu
   Rest Fe
dem als Zusätze
   ca. 0,4 Gew.% Graphitpulver
   ca. 1% Mikrowachs als Schmiermittel
zugemischt werden, wird ein Formteil so gepreßt, daß seine Dichte ca. 7,1 g/cm² beträgt. Dies entspricht damit einem Porenvolumen von 9,9%. Anschließend wird bei ca. 1230 °C für 40 Minuten unter Schutzgas gesintert. Während des Sintervorganges wird auf das Formteil so viel Kupferblech aufgelegt, daß sein Gewicht dem Porenvolumen entspricht, welches im vorliegenden Falle rund 10% des Teilegewichtes beträgt. Bei der Sintertemperatur schmilzt das Kupfer und kann damit in die Poren infiltrieren.
From a finished alloy powder with the following composition:
1.8 wt% Ni
0.5% by weight Mo
1.5% by weight of Cu
Rest of Fe
that as additives
approx. 0.4% by weight graphite powder
approx. 1% micro wax as lubricant
admixed, a molded part is pressed so that its density is about 7.1 g / cm². This corresponds to a pore volume of 9.9%. Then sintered under protective gas at approx. 1230 ° C for 40 minutes. During the sintering process, so much copper sheet is placed on the molded part that its weight corresponds to the pore volume, which in the present case is around 10% of the part weight. At the sintering temperature, the copper melts and can thus infiltrate into the pores.

Nach dem Sintern wird das Formteil kalibriert und anschließend folgender Wärmebehandlung unterzogen.

  • 1. Austenitisieren bei 870 °C, 15 Minuten im Salzbad
  • 2. Innerhalb von 2 Minuten abkühlen auf 345 °C durch Tauchen in entsprechend erwärmtes Salzbad
  • 3. Halten auf 320 °C 45 Minuten im Salzbad
  • 4. beliebige Abkühlung.
After sintering, the molded part is calibrated and then subjected to the following heat treatment.
  • 1. Austenitize at 870 ° C, 15 minutes in a salt bath
  • 2. Cool to 345 ° C within 2 minutes by immersing in a suitably heated salt bath
  • 3. Hold at 320 ° C for 45 minutes in a salt bath
  • 4. any cooling.

Auf diese Weise entsteht gemäß Fig. 1 ein Formteil 1 dessen Poren 2 mit Kupfer gefüllt sind.1, a molded part 1 is formed whose pores 2 are filled with copper.

Versuche mit Zerreißproben haben für das vorstehend aufgeführte Beispiel folgende Eigenschaftswerte ergeben: Zustand Rp N/mm² Rm N/mm² A % Stand der Technik nur gesintert 420..510 530..680 2,0..3,0 Stand der Technik: gehärtet und angelassen 900..1040 1050..1165 1,6..2,9 bainitisiert (Zwischenstufenvergütet) 685..740 780..850 7,5..9,3 Tests with tensile tests have shown the following property values for the above example: Status R p N / mm² R m N / mm² A% State of the art only sintered 420..510 530..680 2.0..3.0 State of the art: hardened and tempered 900..1040 1050..1165 1.6..2.9 bainitized (intermediate stage tempered) 685..740 780..850 7.5.9.3

Dabei bedeutet:

Rp =
Proportionalitätsgrenze
Rm =
Festigkeit
A% =
Dehnung.
Here means:
R p =
Proportionality limit
R m =
strength
A% =
Strain.

Wie ersichtlich, liegt zwar gegenüber einem gehärteten und angelassenen Sinterteil 1 eine etwas geringere Proportionalität und Festigkeit vor, aber die Dehnbarkeit ist um ein mehrfaches besser. Gegenüber nur gesinterten Formteilen ist neben der höheren Proportionalität und Festigkeit auch die Dehnbarkeit deutlich besser.As can be seen, there is a somewhat lower proportionality and strength compared to a hardened and tempered sintered part 1, but the extensibility is several times better. Compared to only sintered molded parts, in addition to the higher proportionality and strength, the ductility is significantly better.

In der Fig. 2 sind Werte für verschiedene Sinterstahlsorten bezüglich der Zugfestigkeit über der Dehnung aufgetragen.In FIG. 2, values for different types of sintered steel are plotted with regard to tensile strength over elongation.

Dabei sind im unteren Bereich der Zugfestigkeit mehrere Felder mit verschiedenen bekannten Legierungszusammensetzungen dargestellt, wobei das Feld 3 mit einer Legierung aus FE-Cu-Ni-Mo-C die höchsten Zugfestigkeitswerte bei einer allerdings relativ geringen Dehnung aufweist. Wird der gleiche gesinterte Legierungstahl gehärtet und angelassen, so erhält man das Feld 4. Bei einer gleichzeitigen Infiltrierung von Kupfer während des Sintervorganges und einer anschließend gleichen Wärmebehandlung wie bei Feld 4 erhält man das Feld 5 mit den höchsten Zugfestigkeitswerten, wobei allerdings die Dehnung wiederum relativ gering ist. In dem Feld 6 sind die Werte für ein nach dem erfindungsgemäßen Verfahren hergestelltes Sinterteil ersichtlich. Wie daraus zu entnehmen ist, ist die Zugfestigkeit deutlich höher als die von Sinterstählen ohne jede Behandlung und nur unwesentlich niedriger als bei einem gehärteten und angelassenen Legierungsstahl. Im Unterschied dazu ist jedoch die prozentuale Dehnung um ein mehrfaches besser.Several fields with different known alloy compositions are shown in the lower area of tensile strength, field 3 with an alloy of FE-Cu-Ni-Mo-C having the highest tensile strength values with a relatively low elongation. If the same sintered alloy steel is hardened and tempered, field 4 is obtained. When copper is infiltrated at the same time during the sintering process and subsequent heat treatment as in field 4, field 5 with the highest tensile strength values is obtained, although the elongation is again relatively low. Field 6 shows the values for a sintered part produced by the method according to the invention. As can be seen from this, the tensile strength is significantly higher than that of sintered steels without any treatment and only insignificantly lower than with a hardened and tempered alloy steel. In contrast, however, the percentage elongation is several times better.

Aus dem Vergleich zwischen den Feldern 4 und 5 ist ersichtlich, daß zwar durch Infiltrieren mit Kupfer die Zugfestigkeit nochmals gesteigert werden kann, aber die Dehnung bleibt in dem gleichen geringen Umfange, wenn sie nicht sogar etwas niedriger ausfällt.It can be seen from the comparison between fields 4 and 5 that the tensile strength can be increased again by infiltration with copper, but the elongation remains in the same small extent, if not even a little lower.

Messungen der Durchmesser an ringähnlichen Teilen (außen und innen) die aus einer Pulvermischung entsprechend dem o.a. Ausführungsbeispiel gepreßt und wie beschrieben bainitisiert worden sind, haben ergeben, daß die Toleranz vor und nach der Wärmebehandlung auf der gleichen Qualitätsstufe lag. Bekannte Sinterteile, die durch Härten und nachfolgendes Anlassen vergütet worden sind, erfuhren bei gleichen Teilen dagegen durch die Wärmebehandlung eine deutliche Toleranzvergröberung. Auch für porige Stähle zeigt es sich damit, daß der Maßverzug durch das erfindungsgemäße Bainitisieren deutlich kleiner ist als der durch eine konventionelle Vergütung hervorgerufene.Measurements of the diameter of ring-like parts (outside and inside), which were pressed from a powder mixture in accordance with the above embodiment and bainitized as described, showed that the tolerance before and after the heat treatment was at the same quality level. Known sintered parts, tempered by hardening and subsequent tempering on the other hand, with the same parts, the heat treatment caused a clear increase in tolerance. For porous steels it also shows that the dimensional distortion due to the bainitization according to the invention is significantly smaller than that caused by conventional tempering.

Claims (20)

  1. Process for manufacturing sintered steel bodies, in which sintered steel powder is compression moulded and sintered, after which the sintered body is austenitised by heating to temperatures in excess of 800°C and then is cooled rapidly, characterised in that the compression moulding of the body to be sintered is so great that a pore volume of less than 8 % is obtained, and that, after the austenitic heat treatment, the sintered body is cooled to a temperature of 280 to 450°C and is kept in this temperature range for between 5 and 60 minutes, a bainitic microstructure thereby being obtained.
  2. Process for manufacturing sintered steel bodies, in which sintered steel powder is compression moulded and sintered, after which the sintered body is austenitised by heating to temperatures in excess of 800°C and then is cooled rapidly, characterised in that the pores of the sintered body are at least partially filled with a filler which is resistant to the compositions and chemicals used during rapid cooling in a bath, and that, after the austenitic heat treatment, the sintered body is cooled to a temperature of 280 to 450°C and is kept in this temperature range for between 5 and 60 minutes, a bainitic microstructure thereby being obtained.
  3. Process according to claim 1 or claim 2, characterised in that cooling is effected in a temperature range of 320 to 360°C.
  4. Process according to claim 1, 2 or 3, characterised in that the sintered body is kept in the temperature range for between 20 and 40 minutes.
  5. Process according to one of claims 1 - 4, characterised in that the austenitic heat treatment is carried out at 800 to 900°C for a period of 10 to 60 minutes.
  6. Process according to claim 5, characterised in that the austenitic heat treatment is carried out at 800 to 900°C for a period of 15 to 20 minutes.
  7. Process according to claim 1, characterised in that the body to be sintered is rough-pressed, then presintered and subsequently repressed and finish sintered.
  8. Process according to claim 2, characterised in that a metallic substance the melting point of which is situated above the austenitising temperature but below the sintering temperature is used as a filler.
  9. Process according to claim 8, characterised in that copper or a copper alloy is used as a filler.
  10. Process according to claim 2, characterised in that a ceramic substance is used as a filler.
  11. Process according to claim 10, characterised in that silicate, such as talc and/or water glass, is used as a filler.
  12. Process according to one of claims 1 - 11, characterised in that, as a sintered material, in addition to iron, 1.5 to 2 % by weight Ni and 0.3 to 0.6 % by weight Mo are used as an alloying powder, 0.3 to 1.0 % by weight graphite being added.
  13. Sintered steel body, characterised in that it has a pore volume of less than 8 % and that its microstructure consists of bainite.
  14. Sintered steel body according to claim 13, characterised in that the pores of the sintered body are at least partially filled with a filler which is resistant to the compositions and chemicals used during rapid cooling in a bath and that its microstructure consists of bainite.
  15. Body according to claim 14, characterised in that its pore spaces are at least partially filled with a non-ferrous metal the melting point of which is between 920 and 1230°C.
  16. Body according to claim 15, characterised in that the non-ferrous metal is copper or a copper alloy.
  17. Body according to claim 14, characterised in that its pore spaces are at least partially filled with a non-metallic substance.
  18. Body according to claim 17, characterised in that the non-metallic substance is a ceramic substance, such as talc and/or water glass.
  19. Body according to claim 13 or claim 14, characterised in that its specific weight is between 6.8 g/cm³ and 7.4 g/cm³.
  20. Body according to claim 19, characterised in that the specific weight is approximately 7.3 g/cm³.
EP89113211A 1988-07-27 1989-07-19 Process for manufacturing sintered steel bodies, and bodies obtained thereby Expired - Lifetime EP0354389B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3825463 1988-07-27
DE3825463A DE3825463A1 (en) 1988-07-27 1988-07-27 METHOD FOR PRODUCING A MOLDING PART FROM SINTERMETAL AND MOLDING PART MADE THEREOF

Publications (2)

Publication Number Publication Date
EP0354389A1 EP0354389A1 (en) 1990-02-14
EP0354389B1 true EP0354389B1 (en) 1994-05-04

Family

ID=6359640

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89113211A Expired - Lifetime EP0354389B1 (en) 1988-07-27 1989-07-19 Process for manufacturing sintered steel bodies, and bodies obtained thereby

Country Status (4)

Country Link
EP (1) EP0354389B1 (en)
DE (2) DE3825463A1 (en)
ES (1) ES2054943T3 (en)
PT (1) PT91283B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19521941C1 (en) * 1995-06-07 1996-10-02 Mannesmann Ag Mfg. sintered air-hardenable alloy steel component
DE19524251C1 (en) * 1995-07-04 1997-02-13 Supervis Ets Process for producing a sintered molded part
JP4001450B2 (en) * 2000-05-02 2007-10-31 日立粉末冶金株式会社 Valve seat for internal combustion engine and manufacturing method thereof
SE0201824D0 (en) * 2002-06-14 2002-06-14 Hoeganaes Ab Pre-alloyed iron based powder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2566752A (en) * 1948-10-14 1951-09-04 American Electro Metal Corp Method of producing a ferrous metal article infiltrated with a cuprous infiltrant
US4002471A (en) * 1973-09-24 1977-01-11 Federal-Mogul Corporation Method of making a through-hardened scale-free forged powdered metal article without heat treatment after forging
JPS50115108A (en) * 1974-02-21 1975-09-09
US4343661A (en) * 1978-11-15 1982-08-10 Caterpillar Tractor Co. Method of making a low temperature bainite steel alloy gear
DE3142359A1 (en) * 1981-10-26 1983-05-05 Horst Dipl.-Phys. Dr. 6000 Frankfurt Mühlberger Process and device for heat-treating workpieces

Also Published As

Publication number Publication date
PT91283A (en) 1990-02-08
PT91283B (en) 1995-03-01
DE3825463A1 (en) 1990-02-01
DE58907598D1 (en) 1994-06-09
EP0354389A1 (en) 1990-02-14
ES2054943T3 (en) 1994-08-16

Similar Documents

Publication Publication Date Title
DE3740547C2 (en) Process for the manufacture of extruder screws and extruder screws made therewith
DE2706214C2 (en) Magnetic alloy based on iron-chromium-cobalt with spinodal segregation
DE2732572A1 (en) Process for the production of sintered molded articles from a pre-alloyed iron powder
DE19651740B4 (en) Process for producing an iron sintered alloy with a quenching structure
DE2625212A1 (en) Process for the production of sintered molded bodies
DE102006027851B3 (en) Sinter hardening powder for making granulated powder for use in manufacture of sintered compact, comprises iron as its primary composition, carbon, nickel, chromium, and molybdenum
DE2414909A1 (en) STEEL POWDER
DE1298293B (en) Highly wear-resistant, machinable and hardenable sintered steel alloy and process for their production
DE19756608A1 (en) Liquid phase sintered ferrous metal article production
DE3206475C2 (en)
DE2844203A1 (en) FORGED CRUSHER BODY, IN PARTICULAR CRUSHER BALL AND PROCESS FOR ITS MANUFACTURING
DE2903082C2 (en)
EP0747154B1 (en) Process and apparatus for producing sintered parts
DE102019135830A1 (en) Method of making a hot work steel article
EP0354389B1 (en) Process for manufacturing sintered steel bodies, and bodies obtained thereby
DE60011115T2 (en) STEEL MATERIAL, ITS USE AND MANUFACTURE
DE756272C (en) Process for the production of objects from aluminum-silicon alloys
DE3313736A1 (en) HIGH-STRENGTH MOLDED BODY FROM A MECHANICALLY MACHINABLE POWDER METAL ALLOY ON IRON-BASED, AND METHOD FOR THE PRODUCTION THEREOF
DE10047645C2 (en) Process for the hardness treatment of sintered parts
EP0149210B1 (en) Process for manufacturing highly resistant ductile work pieces from iron based alloys rich in carbon
DE2144560A1 (en) METHOD OF MANUFACTURING FEMN MAGNETS
DE3633614C2 (en)
DE4001899C1 (en)
DE2938541C2 (en) Process for producing a hot-forged workpiece from powder
DE2324723A1 (en) FORM FOR MANUFACTURING PLASTIC OBJECTS AND PROCESS FOR THEIR PRODUCTION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19900201

17Q First examination report despatched

Effective date: 19911223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 58907598

Country of ref document: DE

Date of ref document: 19940609

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940523

ITF It: translation for a ep patent filed

Owner name: ST. CONSUL.BREVETTUALE S.R.L.

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2054943

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 89113211.0

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000706

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000717

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000721

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000724

Year of fee payment: 12

Ref country code: DE

Payment date: 20000724

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010720

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010720

EUG Se: european patent has lapsed

Ref document number: 89113211.0

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050719