EP0149210B1 - Process for manufacturing highly resistant ductile work pieces from iron based alloys rich in carbon - Google Patents

Process for manufacturing highly resistant ductile work pieces from iron based alloys rich in carbon Download PDF

Info

Publication number
EP0149210B1
EP0149210B1 EP84116080A EP84116080A EP0149210B1 EP 0149210 B1 EP0149210 B1 EP 0149210B1 EP 84116080 A EP84116080 A EP 84116080A EP 84116080 A EP84116080 A EP 84116080A EP 0149210 B1 EP0149210 B1 EP 0149210B1
Authority
EP
European Patent Office
Prior art keywords
iron
carbon
powder
process step
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84116080A
Other languages
German (de)
French (fr)
Other versions
EP0149210A3 (en
EP0149210A2 (en
Inventor
Barry Leslie Prof. Dr. Mordike
Hans Wilhelm Dr.-Ing. Bergmann
Georg Prof. Dr. Frommeyer
Karl-Ulrich Dr. Kainer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROBERT ZAPP WERKSTOFFTECHNIK GmbH and CO KG
Original Assignee
ROBERT ZAPP WERKSTOFFTECHNIK GmbH and CO KG
Robert Zapp Werkstofftechnik & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROBERT ZAPP WERKSTOFFTECHNIK GmbH and CO KG, Robert Zapp Werkstofftechnik & Co KG GmbH filed Critical ROBERT ZAPP WERKSTOFFTECHNIK GmbH and CO KG
Publication of EP0149210A2 publication Critical patent/EP0149210A2/en
Publication of EP0149210A3 publication Critical patent/EP0149210A3/en
Application granted granted Critical
Publication of EP0149210B1 publication Critical patent/EP0149210B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements

Definitions

  • the invention relates to a method for producing high-strength, ductile bodies from carbon-rich iron-based alloys, in which a molten iron-based alloy is quenched, atomized and thermomechanically compressed.
  • end products are desired that have a high strength on the one hand, on the other hand, they are also characterized by favorable ductility parameters.
  • the heat treatment of the steel or iron or the workpieces made from it i.e. the thermal treatment of the metal in the solid state.
  • a grain refinement is achieved by annealing at approx. 800 - 950 ° C and then quenching, which requires a significant increase in strength, but at the same time also increases the brittleness of the workpiece. Subsequent quenching and tempering (for example by so-called tempering) will then cause the workpiece to lose some strength again, but favorable ductility and homogeneity properties can be achieved.
  • thermomechanical treatment processes particularly for micro-alloyed structural steels, have recently come to the fore.
  • These metals dissolve and, on the other hand, they can be eliminated again specifically, allows the effects of very fine carbonitride particles on the structure and the mechanical properties of the rolled products to be exploited.
  • the carbonitrides When the carbonitrides are precipitated in austenite in a relatively fine form during the subsequent austenite transformation, they act as germs and act as a brake against the migration of the phase and grain boundaries.
  • thermomechanical technologies as described, for example, by Kaspar et. al. in “Stahl und Eisen” 101 (1981), 721 "Metallurgical processes during preheating and pre-rolling of microalloyed structural steels" all refer to weldable, i.e. low-carbon steels or iron alloys.
  • unalloyed and alloyed cast iron ie iron with a carbon content of more than 1.7% by weight
  • the plastic deformability of carbon-rich cast iron alloys is only 1 - 2%. The reason for this is in particular the relatively high volume fraction of carbides (V carbide ⁇ 33%) or the amount, shape and distribution of the carbon separated out as graphite.
  • a two-stage powder metallurgical process is also known from British Patent Application 2 116 207, in which a melt is atomized at a high cooling rate and the powder is then thermomechanically treated, that is to say hot consolidated.
  • a melt or powder comes with it for use, which contains 0.1 to 1.5% boron. Boron improves supercooling and promotes the formation of a homogeneous and metastable crystallized structure when the melt is atomized with a high cooling rate.
  • the melt or alloy contains in principle neither manganese, nor silicon and nickel, which can at best be considered impurities.
  • the invention has for its object to apply the aforementioned method to another alloy powder and to show a way of producing workpieces from carbon-rich iron-based alloys which have both a particularly high strength and particularly advantageous ductile properties.
  • This object is achieved by a method of the type mentioned in the introduction, in which, according to the invention, an alloy with over 1.7% carbon, over 3.0% nickel and / or manganese, up to 15% chromium and / or cobalt and individually or side by side to 1 % Boron, tellurium, bismuth, selenium, antimony, titanium, niobium, magnesium and phosphorus as well as optionally 2 to 4% silicon, the rest iron is atomized to an average particle diameter of less than 30 ⁇ m and then thermomechanically compressed.
  • thermomechanical compression either temperatures below 720 ° C., preferably 650 ° C., are to be regarded as particularly advantageous in the sense of the invention, or the thermomechanical treatment can also be carried out at normal annealing temperatures of 850 to 1000 ° C.
  • the first stage of the process the quenching and atomization of the molten metal in such a way that powder particles with a diameter of less than 30 ⁇ m are formed, has the effect that the structure structures obtained by normal solidification conditions, such as coarse dendrites and / or acicular carbides, are changed in favor of a fine crystalline structure.
  • This process section is preferably carried out according to the so-called "rapid solidification technology", a temperature gradient of, for example, 104 - 104 K / s being selected. With such a quenching rate, extremely high germination rates can be achieved, however, to keep the germ growth very low due to the short crystallization time until the solid phase is reached.
  • the quenching rate should be chosen depending on the alloy and the particular process so that particles with an average diameter that is smaller than 30 microns are available for the second process stage and the phases of the structure that forms in the particles unite Have a diameter that is less than 0.1 microns.
  • the quenching according to an exemplary embodiment of the invention is particularly advantageous if additives such as tellurium, bismuth, selenium or antimony, in amounts of up to 1% by weight, achieve a higher supercooling of the melt.
  • the rapid cooling from the homogeneous melting phase has the further consequence that the crystals formed do not precipitate out in the total weight composition, since the short diffusion times available are not sufficient to bring about complete segregation.
  • a preferred method for carrying out the first method step according to the teaching of the invention is the so-called “melt spinning” method known for low-carbon steels.
  • the melt which is saturated with carbon due to its high solubility at high temperatures, is atomized and at the same time extremely quenched, which causes the small particles formed to freeze due to the short diffusion times.
  • the carbon dissolved in the melt cannot separate out in the form of graphite, but on the other hand, precipitation in carbide form is only fine-grained possible or even completely excluded if suitable additional alloying elements are added.
  • a preferred embodiment of the invention provides that after the completion of the first process stage and before the start of the thermomechanical treatment, the powders are pre-compacted in an intermediate stage to form a blank and / or are encased in a metal container. It can also be provided that the powders are sifted to a grain size of less than 30 microns after atomization. Furthermore, it can be provided that the powders are subjected to a reducing annealing before they are compacted, optionally with deoxidizing additives being added.
  • the invention teaches in a first embodiment to work in a temperature range below the A 1 temperature.
  • the metastable ⁇ phase and the martensite phase in finely disperse cementite with a grain size can be obtained by hot isostatic pressing, forging or extrusion at temperatures between 600 ° C and 720 ° C, preferably in the range around 650 ° C below 0.5 ⁇ m and fine-grained ferrite with a particle size below 2 ⁇ m can be converted.
  • the dendritic microstructure is simultaneously molded into a finely crystalline, equiaxial structure made of spherodized, dispersed carbides in the ferrite.
  • the volume fraction of the Carbide particles for example, is over 50% and thus forms the matrix of these high-carbon iron-based alloys.
  • this iron-based alloy is adjusted by adding up to 1% by weight of boron to the iron-based alloy in such a way that the powders produced therefrom by the first process step according to the invention also at temperatures between 850 ° C. - 1000 ° C, ie at "normal" processing temperatures, can be treated thermomechanically, since the addition of boron reduces the carbon solubility of the austenite. Materials of ferrite and carbide are then produced in such a process.
  • the alloy can also be adjusted by adding nickel and / or manganese, in an order of magnitude greater than 3% by weight, so that iron-based materials with a purely austenitic structure are formed. Also leave these iron base materials treat themselves thermomechanically at normal processing temperatures.
  • iron-based alloy is that silicon is added in an order of magnitude of 2-4% by weight to the melt, so that a material with a bainitic matrix and carbides is produced, which is also found in the previous examples mentioned temperatures can be treated.
  • superplasticity can be achieved in the temperature range between 600 ° C and 720 ° C with deformation values of up to 1,300% with high strength at the same time.
  • the structure, structure, hardness and ductility were tested in the strips obtained.
  • the samples were produced according to the so-called "melt spinning” process.
  • the fracture appearance of tempered samples is different from that of the as-quenched sample.
  • the samples with a content of 6% by weight of chromium and 3% by weight of carbon have different properties after an annealing treatment in that the fracture no longer runs along the former dendrite grain boundaries.
  • the samples were produced by the powder atomization method, which allows large quantities of rapidly quenched material to be produced, so that further processing by means of powder metallurgical techniques is possible.
  • Creep properties in the temperature range between 500 and 720 ° C were investigated on rapidly quenched strips of Fe-Cr-C alloys. This leads to changes during heating in the form of changes in length, which are due to the residual austenite transformation, precipitations, etc. (1st-3rd tempering stage). Such falsifying effects can be eliminated by heating once at 10 K / min.
  • the change in length depending on the temperature in the temperature range of 500 - 600 ° C indicates a normal dislocation creep. In the temperature range of 600 to 650 ° C, however, the creep speed drops. This is due on the coagulation of cementite. Above 650 ° C, up to around 720 ° C, effects are obtained which indicate superplasticity.
  • the compacting and compacting of the extremely rapidly quenched Fe-C-Cr powder by a combination of powder metallurgical and thermomechanical process techniques, namely hot isostatic pressing and rolling just below the A 1 transformation temperature, causes profound structural changes in the structure. These consist in the transformation of the metastable ⁇ phase and the martensite into finely disperse cementite with a grain size of less than 0.5 ⁇ m and fine-grained ferrite with a grain size of less than 2 ⁇ m.
  • the dendritic microstructure is molded into a finely crystalline, equiaxial structure made of spherodized, dispersed carbides in the ferrite.
  • FIG. 2 shows a scanning electron microscope micrograph of the equiaxial microstructure of the compacted and thermomechanically treated high-carbide iron alloys.
  • the volume fraction of the carbide particles is approximately 56 vol .-% and thus represents the matrix phase of this high-carbon iron-based alloy.
  • the yield stresses and compressive strengths of the two alloys produced according to the invention are different from one another.
  • the higher strength values of the chromium-rich alloy are due to the structurally more stable, fine-crystalline structure after the thermomechanical treatment.
  • the predominant content of chromium is dissolved in the cementite, stabilizes the carbides and prevents undesired carbide growth.
  • a strength-increasing contribution due to the solid solution hardening of the ferrite by the chromium dissolved in the ⁇ -iron can be assumed.
  • the optimal superplastic deformation temperature is about 650 ° C.
  • the diffusion-controlled accommodation mechanisms of grain boundary sliding are sufficiently thermally activated, and at this temperature the microstructure is stable against a stress or strain-induced grain growth of the cementite and ferrite phase. This applies in particular to the chromium-containing alloy.
  • Superplastic materials are generally characterized by high amounts of uniform expansion. In the fracture zone, however, local constrictions can often be found, which are caused by the plastomechanical instabilities due to local hardening processes.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen hochfester, duktiler Körper aus kohlenstoffreichen Eisenbasis-Legierungen, bei dem eine schmelzflüssige Eisenbasis-Legierung abgeschreckt, zerstäubt und thermomechanisch verdichtet wird.The invention relates to a method for producing high-strength, ductile bodies from carbon-rich iron-based alloys, in which a molten iron-based alloy is quenched, atomized and thermomechanically compressed.

Bei der Herstellung von Werkstücken auf der Basis von Eisenlegierungen stehen stets zwei grundlegende Anforderungen im Vordergrund. Der Werkstoff muß in die gewünschte Form gebracht werden und das fertige Werkstück soll bestimmte Eigenschaften aufweisen. Dabei steht insbesondere die Festigkeit im Vordergrund, deren wichtige Kennwerte die Streckgrenze, Zähigkeit und Sprödigkeit nicht nur von der jeweiligen Legierung, sondern auch vom jeweiligen Herstellungsverfahren abhängig sind.When manufacturing workpieces based on iron alloys, two fundamental requirements are always in the foreground. The material must be brought into the desired shape and the finished workpiece should have certain properties. The main focus is on strength, the important parameters of which are the yield strength, toughness and brittleness, which depend not only on the particular alloy, but also on the respective manufacturing process.

In den meisten Anwendungsfällen werden Endprodukte gewünscht, die einerseits eine hohe Festigket aufweisen, andererseits aber auch durch günstige Duktilitätsparameter gekennzeichnet sind.In most applications, end products are desired that have a high strength on the one hand, on the other hand, they are also characterized by favorable ductility parameters.

Zur Festigkeitssteigerung kohlenstoffarmer Eisenbasis-Legierungen stehen verschiedene Möglichkeiten zur Verfügung. Die meisten Verfahren sind dabei darauf angelegt, das Ferritgefüge zu beeinflussen bzw. eine Erhöhung der Versetzungsdichte im Ferrit zu erreichen.Various options are available for increasing the strength of low-carbon iron-based alloys. Most methods are designed to influence the ferrite structure or to increase the dislocation density in the ferrite.

Im Vorderung der einzelnen Verfahrensvarianten steht die Warmbehandlung des Stahls oder Eisens bzw. der daraus hergestellten Werkstücke, d.h. die thermische Behandlung des Metalls im festen Zustand. Durch Glühen bei ca. 800 - 950°C und anschließendes Abschrecken wird eine Kornfeinung erzielt, die eine deutliche Festigkeitserhöhung bedingt, gleichzeitig aber auch eine Erhöhung der Sprödigkeit des Werkstückes nach sich zieht. Durch anschließendes Vergüten (beispielsweise durch sogenanntes Anlassen) verliert das Werkstück dann zwar wieder etwas an Festigkeit, es können jedoch günstige Duktilitäts- und Homogenitätseigenschaften erzielt werden.At the forefront of the individual process variants is the heat treatment of the steel or iron or the workpieces made from it, i.e. the thermal treatment of the metal in the solid state. A grain refinement is achieved by annealing at approx. 800 - 950 ° C and then quenching, which requires a significant increase in strength, but at the same time also increases the brittleness of the workpiece. Subsequent quenching and tempering (for example by so-called tempering) will then cause the workpiece to lose some strength again, but favorable ductility and homogeneity properties can be achieved.

Darüber hinaus sind in letzter Zeit verstärkt thermomechanische Behandlungsverfahren, insbesondere für mikrolegierte Baustähle in den Vordergrund gerückt. Dabei wird ausgenutzt, daß einige zur Karbonitrid-Bildung neigende Metalle die Eigenschaft haben, im Stahl im unteren Temperaturgebiet des Austenits und im Ferrit-Gebiet Karbonitrid-Ausscheidungen zu bilden, die sich bei einer Wärmebehandlung im oberen Temperaturbereich des Austenits auflösen. Dadurch, daß sich diese Metalle auflösen und sie andererseits wieder gezielt ausgeschieden werden können, können die Auswirkungen sehr feiner Karbonitrid-Teilchen auf die Struktur und die mechanischen Eigenschaften der Walzerzeugnisse ausgenutzt werden. Wenn sich die Karbonitride im Austenit in relativ feiner Form ausgeschieden haben, wirken sie bei der nachfolgenden Austenitumwandlung als Keime und als Bremsen gegen die Wanderung der Phasen- und Korngrenzen.In addition, thermomechanical treatment processes, particularly for micro-alloyed structural steels, have recently come to the fore. This takes advantage of the fact that some metals that tend to form carbonitride have the property of forming carbonitride precipitates in the steel in the lower temperature region of the austenite and in the ferrite region, which dissolve during heat treatment in the upper temperature region of the austenite. The fact that these metals dissolve and, on the other hand, they can be eliminated again specifically, allows the effects of very fine carbonitride particles on the structure and the mechanical properties of the rolled products to be exploited. When the carbonitrides are precipitated in austenite in a relatively fine form during the subsequent austenite transformation, they act as germs and act as a brake against the migration of the phase and grain boundaries.

Die bisher bekannten thermomechanischen Technologien, wie sie beispielsweise von Kaspar et. al. in "Stahl und Eisen" 101 (1981), 721 "metallkundliche Vorgänge beim Vorwärmen und Vorwalzen von mikrolegierten Baustählen" beschrieben sind, beziehen sich sämtlich auf schweißbare, d.h. kohlenstoffarme Stähle bzw. Eisenlegierungen.The previously known thermomechanical technologies, as described, for example, by Kaspar et. al. in "Stahl und Eisen" 101 (1981), 721 "Metallurgical processes during preheating and pre-rolling of microalloyed structural steels" all refer to weldable, i.e. low-carbon steels or iron alloys.

Unlegiertes und legiertes Gußeisen, d.h. Eisen mit einem Kohlenstoffgehalt von mehr als 1,7 Gew.-%, ist im Gegensatz zu kohlenstoffarmen Eisenlegierungen, z.B. Knetlegierungen, insbesondere durch eine hohe Sprödigkeit gekennzeichnet. Die plastische Verformbarkeit kohlenstoffreicher Gußeisenlegierungen beträgt lediglich 1 - 2%. Ursächlich ist hierfür insbesondere der relativ hohe Volumenanteil an Karbiden (VKarbid ≳ 33%) bzw. Menge, Form und Verteilung des als Graphit ausgeschiedenen Kohlenstoffs.In contrast to low-carbon iron alloys, for example wrought alloys, unalloyed and alloyed cast iron, ie iron with a carbon content of more than 1.7% by weight, is particularly characterized by high brittleness. The plastic deformability of carbon-rich cast iron alloys is only 1 - 2%. The reason for this is in particular the relatively high volume fraction of carbides (V carbide ≳ 33%) or the amount, shape and distribution of the carbon separated out as graphite.

Die für kohlenstoffarme Eisenbasis-Legierungen bekannten Verfahren zur Verbesserung der Festigkeits- bzw. Duktilitätseigenschaften der herzustellenden Werkstücke sind auf kohlenstoffreiche Eisenbasis-Legierungen bisher nicht angewandt worden. Die Ursache hierfür liegt wohl insbesondere darin, daß die unterschiedlichen Gefügeparameter und Phasenzusammensetzungen bei hochkohlenstoffartigen Eisenbasis-Legierungen völlig andere metallchemische Vorgänge bedingen als bei kohlenstoffarmen Eisenbasislegierungen.The processes known for low-carbon iron-based alloys for improving the strength or ductility properties of the workpieces to be produced have not hitherto been applied to high-carbon iron-based alloys. The reason for this is probably in particular that the different structural parameters and phase compositions in the case of high-carbon-like iron-based alloys require completely different metal-chemical processes than in the case of low-carbon iron-based alloys.

Bei Gußeisenlegierungen ist man deshalb einen anderen Weg gegangen und hat versucht, die störende Graphitbildung derart zu beeinflußen, daß die Kristallisation des Graphites in bestimmter Weise gesteuert wird. Während der Graphit bei normaler Verfahrensführung in Form von Lamellen auskristallisiert, hat ein Werkstoff, bei dem der Hauptteil des Kohlenstoffes im Gußzustand in Form von Kugelgraphit ausgeschieden ist, den besonderen Vorzug, daß er eine höhere Zugestigkeit und eine bessere Duktilität besitzt. Die Bildung von Kugelgraphit ist jedoch nur in nahezu schwefelfreien Schmelzen möglich. Darüber hinaus erreichen auch so hergestellte Werkstücke nicht die Festigkeits- und Duktilitätswerte von Körpern aus kohlenstoffarmen Eisenlegierungen.For cast iron alloys, therefore, a different approach has been taken and an attempt has been made to influence the disruptive graphite formation in such a way that the crystallization of the graphite is controlled in a certain way. While the graphite crystallizes out in the form of lamellae in the normal course of the process, a material in which the majority of the carbon in the cast state is precipitated in the form of spheroidal graphite has the particular advantage that it has a higher tensile strength and a better ductility. The formation of spheroidal graphite is only possible in almost sulfur-free melts. In addition, workpieces manufactured in this way do not achieve the strength and ductility values of bodies made of low-carbon iron alloys.

Aus der britischen Offenlegungsschrift 2 116 207 ist auch bereits ein zweistufiges pulvermetallurgisches Verfahren bekannt, bei dem eine Schmelze mit hoher Abkühlungsgeschwindigkeit zerstäubt und das Pulver alsdann thermomechanisch behandelt, d.h. heißkonsolidiert wird. Dabei kommt eine Schmelze bzw. ein Pulver mit

Figure imgb0001

zur Verwendung, das zwingend 0,1 bis 1,5% Bor enthält. Bor verbessert die Unterkühlung und fördert das Entstehen eines homogenen und metastabil kristallisierten Gefüges beim Zerstäuben der Schmelze mit hoher Abkühlungsgeschwindigkeit. Hingegen enthält die Schmelze bzw. Legierung prinzipiell weder Mangan noch Silizium und Nickel, die allenfalls als Verunreinigungen in Frage kommen.A two-stage powder metallurgical process is also known from British Patent Application 2 116 207, in which a melt is atomized at a high cooling rate and the powder is then thermomechanically treated, that is to say hot consolidated. A melt or powder comes with it
Figure imgb0001

for use, which contains 0.1 to 1.5% boron. Boron improves supercooling and promotes the formation of a homogeneous and metastable crystallized structure when the melt is atomized with a high cooling rate. On the other hand, the melt or alloy contains in principle neither manganese, nor silicon and nickel, which can at best be considered impurities.

Der Erfindung liegt die Aufgabe zugrunde, das vorerwähnte Verfahren bei einem anderen Legierungspulver anzuwenden und dabei einen Weg zur Herstellung von Werkstücken aus kohlenstoffreichen Eisenbasis-Legierungen aufzuzeigen, die sowohl eine besonders hohe Festigkeit als auch besonders vorteilhafte duktile Eigenschaften aufweisen.The invention has for its object to apply the aforementioned method to another alloy powder and to show a way of producing workpieces from carbon-rich iron-based alloys which have both a particularly high strength and particularly advantageous ductile properties.

Diese Aufgabe wird gelöst durch ein Verfahren der eingangs erwähnten Art, bei dem erfindungsgemäß eine Legierung mit über 1,7% Kohlenstoff, über 3,0% Nickel und/oder Mangan, bis 15% Chrom und/oder Kobalt sowie einzeln oder nebeneinander bis 1% Bor, Tellur, Wismuth, Selen, Antimon, Titan, Niob, Magnesium und Phosphor sowie fakultativ 2 bis 4% Silizium, Rest Eisen auf einem mittleren Teilchendurchmesser unter 30 µm zerstäubt und anschließend thermomechanisch verdichtet wird.This object is achieved by a method of the type mentioned in the introduction, in which, according to the invention, an alloy with over 1.7% carbon, over 3.0% nickel and / or manganese, up to 15% chromium and / or cobalt and individually or side by side to 1 % Boron, tellurium, bismuth, selenium, antimony, titanium, niobium, magnesium and phosphorus as well as optionally 2 to 4% silicon, the rest iron is atomized to an average particle diameter of less than 30 µm and then thermomechanically compressed.

Bevorzugte Lösungen sind im den abhängingen Ansprüchen 2 bis 17 im finden. Je nach Zusammensetzung der Legierung sind in der zweiten Verfahrensstufe (thermomechanisches Verdichten) entweder Temperaturen unterhalb 720°C, vorzugsweise 650°C, als besonders vorteilhaft im Sinne der Erfindung anzusehen, oder aber es kann die thermomechanische Behandlung auch bei den normalen Glühtemperaturen von 850 bis 1000°C erfolgen.Preferred solutions are found in dependent claims 2-17. Depending on the composition of the alloy, in the second process stage (thermomechanical compression) either temperatures below 720 ° C., preferably 650 ° C., are to be regarded as particularly advantageous in the sense of the invention, or the thermomechanical treatment can also be carried out at normal annealing temperatures of 850 to 1000 ° C.

Die erste Verfahrensstufe, das Abschrecken und Zerstäuben der Metallschmelze derart, daß Pulverteilchen mit einem Durchmesser kleiner als 30 µm entstehen, bewirkt, daß die durch normale Erstarrungsbedingungen erhaltenen Gefügestrukturen, wie grobe Dendrite und/oder nadelförmige Karbide zugunsten eines feinkristallinen Gefüges verändert werden. Dieser Verfahrensabschnitt wird vorzugsweise nach der sogenannten "rapid solidification technology" durchgeführt, wobei ein Temperaturgefälle von beispielsweise 10⁴ - 10⁷ K/s gewählt wird. Bei einer solchen Abschreckgeschwindigkeit gelingt es, extrem hohe Keimraten zu erzielen, das Keimwachstum jedoch wegen der geringen Kristallisationszeit bis zum Erreichen der festen Phase sehr gering zu halten. Die Abschreckgeschwindigkeit soll dabei in Abhängigkeit von der jeweiligen Legierung und der speziellen Verfahrensführung so gewählt werden, daß für die zweite Verfahrensstufe Teilchen mit einem mittleren Durchmesser, der kleiner als 30 µm ist, zur Verfügung stehen und die Phasen des sich bildenden Gefüges in den Teilchen einen Durchmesser aufweisen, der kleiner als 0,1 µm ist.The first stage of the process, the quenching and atomization of the molten metal in such a way that powder particles with a diameter of less than 30 μm are formed, has the effect that the structure structures obtained by normal solidification conditions, such as coarse dendrites and / or acicular carbides, are changed in favor of a fine crystalline structure. This process section is preferably carried out according to the so-called "rapid solidification technology", a temperature gradient of, for example, 10⁴ - 10⁴ K / s being selected. With such a quenching rate, extremely high germination rates can be achieved, however, to keep the germ growth very low due to the short crystallization time until the solid phase is reached. The quenching rate should be chosen depending on the alloy and the particular process so that particles with an average diameter that is smaller than 30 microns are available for the second process stage and the phases of the structure that forms in the particles unite Have a diameter that is less than 0.1 microns.

Im Hinblick auf eine feine Endkorngröße verläuft die Abschreckung nach einem Ausführungseispiel der Erfindung besonders vorteilhaft, wenn durch Zusätze wie Tellur, Wismuth, Selen oder Antimon, und zwar in Gehalten von bis zu 1 Gew.-%, eine höhere Unterkühlung der Schmelze erreicht wird.With regard to a fine final grain size, the quenching according to an exemplary embodiment of the invention is particularly advantageous if additives such as tellurium, bismuth, selenium or antimony, in amounts of up to 1% by weight, achieve a higher supercooling of the melt.

Die rasche Abkühlung aus der homogenen Schmelzphase hat weiter zur Folge, daß die entstehenden Kristalle nicht in der Gesamtgewichtszusammensetzung ausfallen, da die zur Verfügung stehenden kurzen Diffusionszeiten nicht ausreichen, eine vollständige Entmischung herbeizuführen.The rapid cooling from the homogeneous melting phase has the further consequence that the crystals formed do not precipitate out in the total weight composition, since the short diffusion times available are not sufficient to bring about complete segregation.

Ein bevorzugtes Verfahren zur Durchführung der ersten Verfahrensstufe gemäß der Lehre der Erfindung ist das für kohlenstoffarme Stähle bekannte, sogenannte "melt-spinning"-Verfahren. Die an Kohlenstoff aufgrund der hohen Löslichkeit bei hohen Temperaturen gesättigte Schmelze wird dabei verdüst und gleichzeitig extrem abgeschreckt, wodurch es aufgrund der kurzen Diffusionszeiten zu einem Einfrieren der gebildeten Kleinstteilchen kommt. Auf diese Weise kann der in der Schmelze gelöste Kohlenstoff sich nicht in Form von Graphit ausscheiden, andererseits ist aber eine Ausscheidung in Karbidform nur feinkörnig möglich oder bei Zugabe geeigneter weiterer Legierungselemente sogar vollständig auszuschließen.A preferred method for carrying out the first method step according to the teaching of the invention is the so-called “melt spinning” method known for low-carbon steels. The melt, which is saturated with carbon due to its high solubility at high temperatures, is atomized and at the same time extremely quenched, which causes the small particles formed to freeze due to the short diffusion times. In this way, the carbon dissolved in the melt cannot separate out in the form of graphite, but on the other hand, precipitation in carbide form is only fine-grained possible or even completely excluded if suitable additional alloying elements are added.

Die Herstellung eines pulverförmigen Materials gemäß der Verfahrensstufe 1 ermöglicht es dann in der zweiten Verfahrensstufe, pulvermetallurgische Techniken anzuwenden, um das Metallgefüge noch weiter zu kompaktieren und zu verdichten, wobei die verschiedenen Werkstücke unmittelbar oder als Halbzeuge hergestellt werden könnenThe production of a powdery material according to process stage 1 then enables powder metallurgical techniques to be used in the second process stage in order to further compact and compact the metal structure, the various workpieces being able to be produced directly or as semi-finished products

Eine bevorzugte Ausführungsform der Erfindung sieht vor, daß nach Abschluß der ersten Verfahrensstufe und vor Beginn der thermomechanischen Behandlung die Pulver in einer Zwischenstufe zu einem Rohling vorverdichtet und/oder in einen Metallbehälter eingemantelt werden. Dabei kann auch vorgesehen sein, daß nach der Verdüsung die Pulver auf eine Korngröße von kleiner 30 µm gesichtet werden. Weiterhin kann vorgesehen sein, daß die Pulver vor ihrer Verdichtung reduzierend geglüht werden, wobei gegebenenfalls desoxydierende Zusätze zugegeben werden.A preferred embodiment of the invention provides that after the completion of the first process stage and before the start of the thermomechanical treatment, the powders are pre-compacted in an intermediate stage to form a blank and / or are encased in a metal container. It can also be provided that the powders are sifted to a grain size of less than 30 microns after atomization. Furthermore, it can be provided that the powders are subjected to a reducing annealing before they are compacted, optionally with deoxidizing additives being added.

Zur Erzielung optimaler Festigkeits- und Duktilitätswerte der Werkstücke aus hochkohlenstoffhaltigen Eisenlegierungen lehrt die Erfindung in einem ersten Ausführungsbeispiel, in einem Temperaturbereich unterhalb der A₁-Temperatur zu arbeiten. Auf diese Weise kann je nach dem herzustellenden Werkstück durch isostatisches Heißpressen, Schmieden oder Strangpressen bei Temperaturen zwischen 600°C und 720°C, vorzugsweise im Bereich um 650°C die metastabile γ-Phase und die Martensit-Phase in feindispersen Zementit mit einer Korngröße unter 0,5 µm und feinkörigen Ferrit mit einer Teilchengröße unter 2 µm umgewandelt werden. Zudem erfolgt gleichzeitig die Einformung der dendritischen Mikrostruktur in ein feinkristallines äquiaxiales Gefüge aus sphärodisierten, dispers verteilten Karbiden im Ferrit. Der Volumenanteil der Karbidteilchen beträgt beispielsweise über 50% und bildet somit die Matrix dieser hochkohlenstoffhaltigen Eisenbasis-Legierungen.In order to achieve optimum strength and ductility values of the workpieces made of high-carbon iron alloys, the invention teaches in a first embodiment to work in a temperature range below the A 1 temperature. In this way, depending on the workpiece to be manufactured, the metastable γ phase and the martensite phase in finely disperse cementite with a grain size can be obtained by hot isostatic pressing, forging or extrusion at temperatures between 600 ° C and 720 ° C, preferably in the range around 650 ° C below 0.5 µm and fine-grained ferrite with a particle size below 2 µm can be converted. In addition, the dendritic microstructure is simultaneously molded into a finely crystalline, equiaxial structure made of spherodized, dispersed carbides in the ferrite. The volume fraction of the Carbide particles, for example, is over 50% and thus forms the matrix of these high-carbon iron-based alloys.

Bei einer Durchführung der zweiten Verfahrensstufe im erfindungsgemäß vorgeschlagenen Temperaturintervall wird erreicht, daß der zuvor im Eisen gelöste Kohlenstoff sich als Eisenkarbid ausscheidet, wobei die Karbidausscheidungen einen Durchmesser von etwa 0,1 bis 0,01 µm aufweisen. Diese feinen, aber hochfesten Partikel sind dann aufgrund der erfindungsgemäßen Verfahrensführung in die Ferritmatrix eingebettet und bilden die Ursache für die ungewöhnlich hohe Festigkeit und Duktilität der so hergestellten Werkstücke. Im Gegensatz zu den üblichen Mechanismen der Festigkeitssteigerung im Eisen hat man es hier im wesentlichen mit einer Dispersionshärtung des Ferrits durch Zementitpartikel zu tun.When the second process stage is carried out in the temperature interval proposed according to the invention, it is achieved that the carbon previously dissolved in the iron precipitates out as iron carbide, the carbide precipitates having a diameter of approximately 0.1 to 0.01 μm. These fine, but high-strength particles are then embedded in the ferrite matrix due to the process according to the invention and form the cause of the unusually high strength and ductility of the workpieces produced in this way. In contrast to the usual mechanisms for increasing strength in iron, this is essentially a case of dispersion hardening of the ferrite using cementite particles.

Gemäß einem zweiten Ausführungsbeispiel der Erfindung ist jedoch auch vorgesehen, durch Zugabe von bis zu 1 Gew.-% Bor zur Eisenbasis-Legierung diese Eisenbasis-Legierung so einzustellen, daß die daraus nach dem erfindungsgemäßen ersten Verfahrensschritt erzeugten Pulver auch bei Temperaturen zwischen 850°C - 1000°C, also bei "normalen" Verarbeitungstemperaturen, thermomechanisch behandelt werden können, da durch die Zugabe von Bor die Kohlenstofflöslichkeit des Austenits verringert wird. Bei einer derartigen Verfahrensführung entstehen dann Werkstoffe aus Ferrit und Karbid.According to a second exemplary embodiment of the invention, however, provision is also made for this iron-based alloy to be adjusted by adding up to 1% by weight of boron to the iron-based alloy in such a way that the powders produced therefrom by the first process step according to the invention also at temperatures between 850 ° C. - 1000 ° C, ie at "normal" processing temperatures, can be treated thermomechanically, since the addition of boron reduces the carbon solubility of the austenite. Materials of ferrite and carbide are then produced in such a process.

Anstelle der Bor-Zugabe kann die Legierung auch durch Zugabe von Nickel und/oder Mangan, und zwar in einer Größenordnung größer 3 Gew.-% so eingestellt werden, daß Eisenbasiswerkstoffe mit einem rein austenitischen Grundgefüge entstehen. Auch diese Eisenbasiswerkstoffe lassen sich bei den normalen Verarbeitungstemperaturen thermomechanisch behandeln.Instead of adding boron, the alloy can also be adjusted by adding nickel and / or manganese, in an order of magnitude greater than 3% by weight, so that iron-based materials with a purely austenitic structure are formed. Also leave these iron base materials treat themselves thermomechanically at normal processing temperatures.

Als ein weiteres Beispiel für eine derartige Einstellung der Eisenbasislegierung ist zu nennen, daß Silizium in einer Größenordnung on 2 - 4 Gew.-% zur Schmelze gegeben wird, so daß ein Werkstoff mit bainitischer Matrix und Karbiden erzeugt wird, welcher sich ebenfalls bei den zuvor genannten Temperaturen behandeln läßt.Another example of such an adjustment of the iron-based alloy is that silicon is added in an order of magnitude of 2-4% by weight to the melt, so that a material with a bainitic matrix and carbides is produced, which is also found in the previous examples mentioned temperatures can be treated.

Diese drei Beispiele für die Einstellung der Eisenbasis-Legierung im Hinblick auf höhe Verarbeitungstemperaturen der erfindungsgemäß hergestellten Pulver stehen jedes für sich, sie dürften nicht miteinander kombiniert werden.These three examples of the setting of the iron-based alloy with regard to the high processing temperatures of the powders produced according to the invention each stand on their own and should not be combined with one another.

Durch die erfindungsgemäße Lehre wird ein Verfahren vorgeschlagen, mit dem auch hochkohlenstoffhaltige Gußeisenlegierungen mit günstigen Duktilitätseigenschaften hergestellt werden können. Die in der Fachwelt bisher vorherrschende Meinung, daß kohlenstoffreiche Legierungen spröde sein müssen, kann insoweit nicht weiter aufrechterhalten werden. Vielmehr ist es mit der erfindungsgemäßen Lehre möglich, durch die feine Verteilung der Karbidphase hochfeste, sehr duktile Werkstoffe zu erhalten, die bei geringen Legierungsgehalten an Metallen Eigenschaften aufweisen, die den hochlegierten Eisenbasis-Legierungen entsprechen.Through the teaching according to the invention, a method is proposed with which cast iron alloys containing high carbon and having favorable ductility properties can also be produced. The prevailing opinion in the professional world that carbon-rich alloys must be brittle cannot be maintained in this respect. Rather, it is possible with the teaching according to the invention to obtain, through the fine distribution of the carbide phase, high-strength, very ductile materials which, with low alloy contents of metals, have properties which correspond to the high-alloy iron-based alloys.

Erfindungsgemäß kann im Temperaturbereich zwischen 600°C und 720°C Superplastizität erreicht werden mit Verformungswerten bis 1.300% bei gleichzeitig hoher Festigkeit.According to the invention, superplasticity can be achieved in the temperature range between 600 ° C and 720 ° C with deformation values of up to 1,300% with high strength at the same time.

Die Erfindung ergibt sich einschließlich vorteilhafter Ausgestaltungen und Weiterbildungen aus den Merkmalen der Patentansprüche, welche dieser Beschreibung nachgestellt sind.The invention, including advantageous refinements and developments, results from the features of the claims, which follow this description.

Anhand der Zeichnung und der nachfolgenden Ausführungsbeispiele wird die Erfindung näher erläutert. Es zeigen:

Fig. 1
eine Gegenüberstellung einer unverformten und zweier superplastisch bis zum Bruch gedehnten Proben, die nach dem erfindungsgemäßen Verfahren hergestellt worden sind,
Fig. 2
eine Raster-Elektronen-Mikroskop-Gefügeaufnahme einer nach dem erfindungsgemäßen Verfahren hergestellten Eisenlegierung.
The invention is explained in more detail with reference to the drawing and the following exemplary embodiments. Show it:
Fig. 1
a comparison of an undeformed and two superplastically stretched samples that have been produced by the method according to the invention,
Fig. 2
a scanning electron microscope micrograph of an iron alloy produced by the inventive method.

Es wurden Eisenbasis-Legierungen des Typs Fe-C-X (X = Cr., Mn, Co, Ni) untersucht, wobei der Kohlenstoffgehalt zwischen 2 und 4 Gew.-% und der Anteil der metallischen Zusätze zwischen 0 und 15 Gew.-% variierte. In den erhaltenen Bändern wurden das Gefüge, die Struktur, die Härte und die Duktilität geprüft.Iron-based alloys of the Fe-CX type (X = Cr., Mn, Co, Ni) were investigated, the carbon content varying between 2 and 4% by weight and the proportion of metallic additives varying between 0 and 15% by weight . The structure, structure, hardness and ductility were tested in the strips obtained.

Mit Hilfe kalorimetrischer und dilatometrischer Verfahren wurde das Umwandlungsverhalten untersucht.The conversion behavior was examined using calorimetric and dilatometric methods.

Darüber hinaus wurde mit einem thermomechanischen Prüfsystem das Kriechverhalten der Legierungen studiert.In addition, the creep behavior of the alloys was studied using a thermomechanical test system.

Die Proben wurden nach dem sogenannten "melt-spinning"-Verfahren hergestellt.The samples were produced according to the so-called "melt spinning" process.

Bei den schnellabgeschreckten Gefügen sind deutliche Unterschiede in Abhängigkeit vom Legierungsgehalt festzustellen. So bilden sich in Fe-,Cr-,C-Legierungen bei geringen Chromgehalten ausgehend von einer Schreckschicht Dendrite. Bei höheren Chromgehalten geht das Gefüge über in äquiaxiale Kristallite. Mit zunehmendem Kohlenstoffgehalt werden die ehemaligen Dendrite durch größere Karbidkörner ersetzt. Die Zugabe von Nickel, Silizium oder Mangan fördert die Ausbildung äquiaxialer Partikelchen, wobei auf den Korngrenzen Seigerungen von Karbid feststellbar sind.In the rapidly quenched structure, there are clear differences depending on the alloy content. In Fe, Cr, C alloys with low chromium contents, dendrites form from a quench layer. At higher chromium contents, the structure changes into equiaxial crystallites. With increasing carbon content, the former dendrites are replaced by larger carbide grains replaced. The addition of nickel, silicon or manganese promotes the formation of equiaxial particles, with segregations of carbide being detectable at the grain boundaries.

Durch kurzzeitiges Glühen der Proben ist es möglich, feine Karbidausscheidungen in einer austenitischen oder ferritischen Matrix - je nach Zusammensetzung der Probe - zu erzielen. Die Korngröße liegt dann im Bereich von 0,1 µm und darunter.By briefly annealing the samples, it is possible to achieve fine carbide deposits in an austenitic or ferritic matrix - depending on the composition of the sample. The grain size is then in the range of 0.1 µm and below.

Das Bruchaussehen bei angelassenen Proben ist unterschiedlich von dem der as-quenched Probe. Die Proben mit einem Gehalt von 6 Gew.-% Chrom und 3 Gew.-% Kohlenstoff weisen nach einer Glühbehandlung insofern andere Eigenschaften auf, als der Bruch nicht mehr entlang der ehemaligen Dendritenkorngrenzen verläuft.The fracture appearance of tempered samples is different from that of the as-quenched sample. The samples with a content of 6% by weight of chromium and 3% by weight of carbon have different properties after an annealing treatment in that the fracture no longer runs along the former dendrite grain boundaries.

Die Proben wurden nach dem Verfahren der Pulveratomisierung hergestellt, das es erlaubt, größere Mengen schnell abgeschreckten Materials zu erzeugen, so daß eine Weiterverarbeitung mittels pulvermetallurgischer Techniken möglich ist.The samples were produced by the powder atomization method, which allows large quantities of rapidly quenched material to be produced, so that further processing by means of powder metallurgical techniques is possible.

An schnell abgeschreckten Bändern von Fe-Cr-C-Legierungen wurden die Kriecheigenschaften im Temperaturbereich zwischen 500 und 720°C untersucht. Dabei kommt es zu Veränderungen während der Erwärmung in Form von Längenänderungen, die auf die Restaustenitumwandlung, Ausscheidungen usw. (1.-3. Anlaßstufe) zurückzuführen sind. Derartige meßverfälschende Effekte können durch einmaliges Aufheizen mit 10 K/min ausgeschaltet werden. Die Längenänderung in Abhängigkeit von der Temperatur im Temperaturbereich von 500 - 600°C deutet auf ein übliches Versetzungskriechen hin. Im Temperaturbereich von 600 bis 650°C sinkt jedoch die Kriechgeschwindigkeit. Dies ist zurückzuführen auf die Koagulation des Zementits. Oberhalb von 650°C, bis etwa in den Bereich von 720°C, erhält man Effekte, die auf Superplastizität hindeuten.Creep properties in the temperature range between 500 and 720 ° C were investigated on rapidly quenched strips of Fe-Cr-C alloys. This leads to changes during heating in the form of changes in length, which are due to the residual austenite transformation, precipitations, etc. (1st-3rd tempering stage). Such falsifying effects can be eliminated by heating once at 10 K / min. The change in length depending on the temperature in the temperature range of 500 - 600 ° C indicates a normal dislocation creep. In the temperature range of 600 to 650 ° C, however, the creep speed drops. This is due on the coagulation of cementite. Above 650 ° C, up to around 720 ° C, effects are obtained which indicate superplasticity.

Die in geringen Volumenanteilen der rasch abgeschreckten Pulverpartikel auftretenden martensitischen Gefügebestandteile sind überwiegend auf verformungsinduzierte Ms-Umwandlungen während der Teilchenkollisionen beim Abschreckvorgang zurückzuführen. Es ist davon auszugehen, daß nicht alle Pulverpartikel mit einem mittleren Durchmesser unterhalb von 30 µm die aus der chemischen Analyse des Austenits berechneten Ms-Temperaturen der untersuchten Legierungen: Fe - 3,5 Gew.-% C, TMs = 85 K und für Fe 3,5 Gew.-% C + 1,5 Gew.-% Cr, TMs = 140 K, im kühlenden Heliumdampf erreichen. Offensichtlich ist jedoch, daß die chromreichen Pulverpartikel für die Ms-Transformation begünstigt sind.The martensitic structural components that occur in small volume fractions of the rapidly quenched powder particles are predominantly due to deformation-induced Ms conversions during the particle collisions during the quenching process. It can be assumed that not all powder particles with an average diameter below 30 µm have the Ms temperatures of the alloys investigated calculated from the chemical analysis of austenite: Fe - 3.5% by weight C, T Ms = 85 K and for Fe 3.5% by weight C + 1.5% by weight Cr, T Ms = 140 K, in the cooling helium vapor. However, it is evident that the chromium-rich powder particles are favored for the Ms transformation.

Das Kompaktieren und Verdichten der extrem rasch abgeschreckten Fe-C-Cr-Pulver durch eine Kombination pulvermetallurgischer und thermomechanischer Prozeßtechniken, nämlich heißisostatisches Pressen und Walzen dicht unterhalb der A₁-Transformationstemperatur bewirkt tiefgreifende strukturelle Gefügeänderungen. Diese bestehen in der Umwandlung der metastabil vorliegenden γ-Phase und des Martensits in feindispersen Zementit mit einer Korngröße von unterhalb 0,5 um und feinkörnigen Ferrit mit einer Korngröße unterhalb von 2 µm. Zudem erfolgt die Einformung der dendritischen Mikrostruktur in ein feinkristallines, äquiaxiales Gefüge aus sphärodisierten, dispers verteilten Karbiden im Ferrit. In Fig. 2 ist eine Raster-Elektronen-Mikroskop-Gefügeaufnahme der äquiaxialen Mikrostruktur der kompaktierten und thermomechanisch behandelten hochkarbidhaltigen Eisenlegierungen dargestellt. Der Volumenanteil der Karbidteilchen beträgt etwa 56 Vol.-% und repräsentiert damit die Matrixphase dieser hochkohlenstoffhaltigen Eisenbasis-Legierung.The compacting and compacting of the extremely rapidly quenched Fe-C-Cr powder by a combination of powder metallurgical and thermomechanical process techniques, namely hot isostatic pressing and rolling just below the A 1 transformation temperature, causes profound structural changes in the structure. These consist in the transformation of the metastable γ phase and the martensite into finely disperse cementite with a grain size of less than 0.5 µm and fine-grained ferrite with a grain size of less than 2 µm. In addition, the dendritic microstructure is molded into a finely crystalline, equiaxial structure made of spherodized, dispersed carbides in the ferrite. 2 shows a scanning electron microscope micrograph of the equiaxial microstructure of the compacted and thermomechanically treated high-carbide iron alloys. The volume fraction of the carbide particles is approximately 56 vol .-% and thus represents the matrix phase of this high-carbon iron-based alloy.

Texturuntersuchungen vom walzverformten Zustand lassen keine bevorzugte kristallografische Orientierungsverteilung dieser zweiphasigen Legierungen erkennen. Dies wird mit der texturinhibierenden Wirkung der Karbidteilchen in großen Volumenbruchteilen erklärt.Texture studies of the rolled state show no preferred crystallographic orientation distribution of these two-phase alloys. This is explained by the texture-inhibiting effect of the carbide particles in large volume fractions.

Wie Fig. 1 zu entnehmen ist, sind die Fließspannungen und Druckfestigkeiten der beiden erfindungsgemäß hergestellten Legierungen voneinander verschieden. Die höheren Festigkeitswerte der chromreichen Legierung sind durch das nach der thermomechanischen Behandlung strukturstabilere, feinkristalline Gefüge bedingt. Der überwiegende Gehalt des Chroms ist im Zementit gelöst, stabilisiert die Karbide und verhindert ein unerwünschtes Karbidwachstum. Zudem ist ein festigkeitssteigender Beitrag infolge der Mischkristallhärtung des Ferrites durch das im γ-Eisen gelöste Chrom anzunehmen.As can be seen in FIG. 1, the yield stresses and compressive strengths of the two alloys produced according to the invention are different from one another. The higher strength values of the chromium-rich alloy are due to the structurally more stable, fine-crystalline structure after the thermomechanical treatment. The predominant content of chromium is dissolved in the cementite, stabilizes the carbides and prevents undesired carbide growth. In addition, a strength-increasing contribution due to the solid solution hardening of the ferrite by the chromium dissolved in the γ-iron can be assumed.

Mit zunehmender Testtemperatur treten beachtliche Änderungen der Verformungs- und Verfestigungseigenschaften der erfindungsgemäß hergestellten Legierungen auf. Bei Temperaturen oberhalb von etwa 600°C werden diese feinkristallinen, hoch karbidhaltigen Eisenwerkstoffe superplastisch. Die optimale superplastische Verformungstemperatur beträgt erfindungsgemäß etwa 650°C. Bei dieser, für Eisenlegierungen relativ niedrigen Verformungstemperatur, sind die die diffusionsgesteuerten Akkomodationsmechanismen des Korngrenzengleitens hinreichend thermisch aktiviert, zudem ist bei dieser Temperatur das Mikrogefüge gegenüber einem spannungs- bzw. dehnungsinduzierten Kornwachstum der Zementit- und Ferritphase stabil. Das gilt insbesondere für die chromhaltige Legierung.As the test temperature increases, considerable changes in the deformation and hardening properties of the alloys produced according to the invention occur. At temperatures above about 600 ° C, these fine crystalline, high carbide iron materials become superplastic. According to the invention, the optimal superplastic deformation temperature is about 650 ° C. At this deformation temperature, which is relatively low for iron alloys, the diffusion-controlled accommodation mechanisms of grain boundary sliding are sufficiently thermally activated, and at this temperature the microstructure is stable against a stress or strain-induced grain growth of the cementite and ferrite phase. This applies in particular to the chromium-containing alloy.

Superplastische Werkstoffe zeichnen sich im allgemeinen durch hohe Beträge der Gleichmaßdehnung aus. In der Bruchzone sind aber vielfach lokale Einschnürungen vorzufinden, die aufgrund der plastomechanischen Instabilitäten infolge lokaler Verfestigungsvorgänge hervorgerufen werden.Superplastic materials are generally characterized by high amounts of uniform expansion. In the fracture zone, however, local constrictions can often be found, which are caused by the plastomechanical instabilities due to local hardening processes.

Bei den vorliegenden Legierungen unter dem erfindungsgemäßen Herstellungsverfahren treten diese Vorgänge offensichtlich nicht auf.These processes obviously do not occur in the present alloys under the production method according to the invention.

Nach der erfindungsgemäßen Lehre sind unterschiedliche Konsolidierungsverfahren möglich, solange sie mit einer ausreichend hohen Verformung verbunden sind, so daß das vorgepreßte Pulver zu einem Massivkörper mit geringer Porigkeit umgeformt wird und die Umformtemperatur im Bereich zwischen 600 und 720°C liegt.According to the teaching of the invention, different consolidation methods are possible as long as they are associated with a sufficiently high deformation so that the pre-pressed powder is formed into a solid body with low porosity and the forming temperature is in the range between 600 and 720 ° C.

Claims (17)

  1. Method of making ductile, high-strength bodies of carbon-rich iron-base alloys, wherein an molten iron-base alloy is quenched, pulverised and thermomechanically consolidated, characterised in that an alloy containing more than 1,7% carbon, more than 3,0% nickel and/or manganese, up to 15% chromium and/or cobalt and, singly or in combination, up to 1% of boron, tellurium, bismuth, selenium, antimony, titanium, niobium, magnesium and phosphorus, and optionally 2 to 4% silicon, balance iron, is pulverised to an average particle diameter of less than 30µm and then thermomechanically consolidated.
  2. Method according to claim 1, characterised in that the iron-base alloy has an extremely low content of silicon and manganese, preferably less than 0.02% silicon or less than 0.02% manganese or less than 0.02% silicon and manganese.
  3. Method according to one of claim 1 and claim 2, characterised in that in the first process step the rate of quenching is from 10⁴ to 10⁷K/s.
  4. Method according to any one of claims 1 to 3, characterised in that the quenching in the first process step is performed using a temperature gradient such that the phases of the structure formed in the particles have a diameter less than 0.1µm.
  5. Method according to any one of claims 1 to 4, characterised in that the powder particles in the first process step are formed by the powder atomisation process.
  6. Method according to any one of claims 1 to 5, characterized in that carbide stabilizing additives are added to the iron-base alloy in order to inhibit grain growth of the carbide and/or of the matrix structure.
  7. Method according to any one of claims 1 to 6, characterised in that elements that bind the residual carbon in the ferrite are added to the iron-base alloy.
  8. Method according to any one of claims 1 to 7, characterised in that a two-phase structure consisting exclusively of carbide and ferrite is produced.
  9. Method according to any one of claims 1 to 8, characterised in that the thermomechanical consolidation treatment in the second process step is performed between 600 and 720°C.
  10. Method according to claim 9, characterised in that the thermomechanical consolidation treatment is performed at about 650°C.
  11. Method according to claim 9 or claim 10, characterised in that the thermomechanical consolidation treatment is performed under a mechanical load of 1500 to 2000 MPa.
  12. Method according to any one of claims 9 to 11, characterised in that the thermomechanical consolidation treatment is performed by hot isostatic pressing.
  13. Method according to any one of claims 9 to 11, characterised in that the thermomechanical consolidation treatment is performed by extrusion.
  14. Method according to any one of claims 9 to 11, characterised in that the thermomechanical consolidation treatment is performed by forging.
  15. Method according to any one of claims 1 to 15, characterised in that the powder produced in the first process step is preconsolidated to a green compact and/or clad in a metal container before the second process step.
  16. Method according to claim 15, characterised in that the powder is sieved to a particle size of less than 30µm after atomising.
  17. Method according to claim 15 or claim 16, characterised in that before consolidation the powder is subjected to a reducing anneal and/or deoxidising additives are optionally added to it.
EP84116080A 1983-12-21 1984-12-21 Process for manufacturing highly resistant ductile work pieces from iron based alloys rich in carbon Expired - Lifetime EP0149210B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3346089 1983-12-21
DE19833346089 DE3346089A1 (en) 1983-12-21 1983-12-21 METHOD FOR MANUFACTURING HIGH-STRENGTH, DUCTILE BODY FROM CARBON-BASED IRON-BASED ALLOYS

Publications (3)

Publication Number Publication Date
EP0149210A2 EP0149210A2 (en) 1985-07-24
EP0149210A3 EP0149210A3 (en) 1987-07-29
EP0149210B1 true EP0149210B1 (en) 1992-04-29

Family

ID=6217490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84116080A Expired - Lifetime EP0149210B1 (en) 1983-12-21 1984-12-21 Process for manufacturing highly resistant ductile work pieces from iron based alloys rich in carbon

Country Status (2)

Country Link
EP (1) EP0149210B1 (en)
DE (2) DE3346089A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033343A (en) * 1983-08-03 1985-02-20 Nippon Piston Ring Co Ltd Wear resistance sintered alloy
JPH0610321B2 (en) * 1985-06-17 1994-02-09 日本ピストンリング株式会社 Abrasion resistant sintered alloy
DE3544759A1 (en) * 1985-12-18 1987-06-19 Zapp Robert Werkstofftech METHOD FOR PRODUCING TOOLS
JP3077410B2 (en) * 1992-07-29 2000-08-14 アイシン精機株式会社 Turbocharger turbine housing
EP0808681A4 (en) * 1995-10-18 1999-12-29 Kawasaki Steel Co Iron powder for powder metallurgy, process for producing the same, and iron-base powder mixture for powder metallurgy
JP3694732B2 (en) * 2000-05-16 2005-09-14 独立行政法人産業技術総合研究所 Manufacturing method of high hardness and high chromium cast iron powder alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE317522B (en) * 1968-04-16 1969-11-17 Hoeganaes Ab
JPS599615B2 (en) * 1974-09-25 1984-03-03 株式会社リケン Tough spheroidal graphite cast iron with superplasticity and heat treatment method
US3951697A (en) * 1975-02-24 1976-04-20 The Board Of Trustees Of Leland Stanford Junior University Superplastic ultra high carbon steel
SE7612279L (en) * 1976-11-05 1978-05-05 British Steel Corp FINALLY DISTRIBUTED STEEL POWDER, AND WAY TO PRODUCE THIS.
US4331478A (en) * 1979-02-09 1982-05-25 Scm Corporation Corrosion-resistant stainless steel powder and compacts made therefrom
BR8200106A (en) * 1982-01-11 1983-09-13 Metal Leve Sa PROCESS FOR MANUFACTURING OF RING-HOLDERS BY METALLURGY OF OP, FROM AUSTENITIC FERROUS ALLOYS
GB2116207A (en) * 1982-03-02 1983-09-21 Marko Materials Inc Improved tool steels which contain boron and have been processed using a rapid solidification process and method

Also Published As

Publication number Publication date
EP0149210A3 (en) 1987-07-29
DE3346089A1 (en) 1985-07-18
DE3485689D1 (en) 1992-06-04
EP0149210A2 (en) 1985-07-24
DE3346089C2 (en) 1988-01-14

Similar Documents

Publication Publication Date Title
DE2937724C2 (en) Steel product made by powder metallurgy with a high proportion of vanadium carbide
DE3312257C2 (en)
DE60002745T2 (en) HIGH-RESISTANT STAINLESS AUTOMATIC STEEL
DE69818138T2 (en) Cold work tool steel particles with high impact strength from metal powder and process for its production
DE3043503A1 (en) CRYSTALINE METAL ALLOY
DE60019141T2 (en) A method of making precipitation hardened martensitic stainless steel products using the method
EP2374560A1 (en) Wear-resistant material
DE2606632C2 (en) Use of carbon steel as a superplastic agent and process for its heat treatment
DE3043290A1 (en) STEEL ALLOY WITH A CONTENT IN BOR
DE1533275B1 (en) Process for the powder metallurgical production of hard alloys
DE1298293B (en) Highly wear-resistant, machinable and hardenable sintered steel alloy and process for their production
EP3591078A1 (en) Use of a steel for an additive production method, method for producing a steel component and steel component
EP3638820A1 (en) Monotectic aluminum plain bearing alloy, method for producing same, and plain bearing produced therewith
EP1274872B1 (en) Method for the production of nitrogen alloyed steel, spray compacted steel
EP3850114A1 (en) Corrosion-resistant and precipitation-hardening steel, method for producing a steel component, and steel component
EP0348380B2 (en) Use of an iron-base alloy in the manufacture of sintered parts with a high corrosion resistance, a high wear resistance as well as a high toughness and compression strength, especially for use in the processing of synthetic materials
DE102018126719A1 (en) ADDITIVE MANUFACTURING METHOD AND POWDER MATERIAL THEREFOR
AT391324B (en) POWDER METALLURGICALLY PRODUCED FAST WORK STEEL, WEARING PART MADE THEREOF AND METHOD FOR THE PRODUCTION THEREOF
EP0149210B1 (en) Process for manufacturing highly resistant ductile work pieces from iron based alloys rich in carbon
WO2021032893A1 (en) Tool steel for cold-working and high-speed applications
DE60014726T2 (en) Steel material with improved weldability for thick-walled components and manufacturing processes
DE102019104492A1 (en) PROCESS FOR PREPARING A CRYSTALLINE ALUMINUM IRON / SILICON ALLOY
DE102022120827B3 (en) Die-casting mold and process for its production
AT277300B (en) Steel that can be hardened in the martensitic state
EP3189172B1 (en) High-strength, corrosion-resistant shaped articles absorbing mechanical energy and made of iron alloys, and method for manufacturing same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI LU NL SE

Designated state(s): BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19880129

17Q First examination report despatched

Effective date: 19890908

DIN1 Information on inventor provided before grant (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KAINER, KARL-ULRICH

Owner name: FROMMEYER, GEORG, DR.

Owner name: BERGMANN, HANS WILHELM, DR.-ING.

Owner name: MORDIKE, BARRY LESLIE, PROF. DR.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KAINER, KARL-ULRICH

Inventor name: FROMMEYER, GEORG, DR.

Inventor name: BERGMANN, HANS WILHELM, DR.-ING.

Inventor name: MORDIKE, BARRY LESLIE, PROF. DR.

DIN1 Information on inventor provided before grant (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FROMMEYER, GEORG, PROF. DR.-ING.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KAINER, KARL-ULRICH, DR.

Inventor name: FROMMEYER, GEORG, PROF. DR.

Inventor name: BERGMANN, HANS WILHELM, DR.-ING.

Inventor name: MORDIKE, BARRY LESLIE, PROF. DR.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT ZAPP WERKSTOFFTECHNIK GMBH & CO KG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 3485689

Country of ref document: DE

Date of ref document: 19920604

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931206

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19931216

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931217

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931231

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940104

Year of fee payment: 10

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941221

Ref country code: GB

Effective date: 19941221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19941231

EAL Se: european patent in force in sweden

Ref document number: 84116080.7

BERE Be: lapsed

Owner name: ROBERT ZAPP WERKSTOFFTECHNIK G.M.B.H. & CO. K.G.

Effective date: 19941231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950831

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

EUG Se: european patent has lapsed

Ref document number: 84116080.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981229

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990224

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001003