JPS58217601A - Manufacture of high-strength sintered material - Google Patents

Manufacture of high-strength sintered material

Info

Publication number
JPS58217601A
JPS58217601A JP57101665A JP10166582A JPS58217601A JP S58217601 A JPS58217601 A JP S58217601A JP 57101665 A JP57101665 A JP 57101665A JP 10166582 A JP10166582 A JP 10166582A JP S58217601 A JPS58217601 A JP S58217601A
Authority
JP
Japan
Prior art keywords
powder
sintered body
steel powder
sintered
dew point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57101665A
Other languages
Japanese (ja)
Inventor
Kuniaki Ogura
邦明 小倉
Takeyoshi Kajinaga
梶永 剛啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57101665A priority Critical patent/JPS58217601A/en
Publication of JPS58217601A publication Critical patent/JPS58217601A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To inexpensively manufacture the sintered material excellent in mechanical properties, by mixing graphite powder in high-oxygen alloyed steel powder, subjecting the mixture to the reactions of sintering-reducing-alloying with C in the step of sintering, and then heat treating it. CONSTITUTION:Alloyed steel powder containing, by wt%, 0.4-0.7% one or two of Mn<=2.3% anc Cr<=5.5% and 0.25-1.0% O is prepared. Graphite and a selective lubricant are then added to this alloyed steel powder, to prepare a powdery mixture having C content controlled at 0.25-1.0%. Thereafter, this powdery mixture is compression-formed to obtain a compressed powdery body having compression density above 6.0g/cm<3>. This compressed powdery body is then heated at a temp. of 1,150-1,300 deg.C in an unoxidizing atmosphere such as H2 gas having a dew point below -30 deg.C for a predetermined time, to obtain a sintered body of 0.2-0.5% C and 0-0.25% O. This sintered body is then quenched in a cooling medium of cooling power above 0.16cm<-1> from the temp. range of the point Ac3- the point Ac3+100 deg.C in an unoxidizing atmosphere having a dew point below -30 deg.C and tempered, to obtain the objective high-strength sintered material.

Description

【発明の詳細な説明】 本発明は、高強度焼結材料の製造方法に関するものであ
り、とくに高酸素合金鋼粉を原料粉として使うことで安
価なものを製造することにあわせ、黒鉛粉を混合するこ
とにより焼結過程で焼結−還元−C合金化の反応を起さ
せてから熱処理を施すことで機械的性質に優れた焼結材
料を製造する方法について提案するものであ墨。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-strength sintered materials, and in particular, to manufacture inexpensive materials using high oxygen alloy steel powder as raw material powder, graphite powder is used. This paper proposes a method for producing a sintered material with excellent mechanical properties by mixing to cause a sintering-reduction-C alloying reaction in the sintering process and then heat-treating.

・ 従来、純鉄粉を主原料とした焼結機械部品は、強度
レベルが低いためその用途が限られていた。
・ Conventionally, sintered machine parts made mainly from pure iron powder had a low strength level, which limited their use.

そこで、上記欠点を補うために焼入性に優れた低合金鋼
粉を主原料とする方法が開発されたが、焼入性への寄与
が顕著で低廉な合金元素であるKn 。
Therefore, in order to compensate for the above drawbacks, a method was developed that uses low-alloy steel powder, which has excellent hardenability, as the main raw material, but Kn is an inexpensive alloying element that makes a significant contribution to hardenability.

Orを含んだ合金鋼粉の場合を例にとると、水アトマイ
ズ時によって製造した場合、アトマイズ時に水と反応し
てIn 、 Qrが優先的に酸化するため、焼入性に有
効なIn 、 Orの銅粉中面溶量が少なく歩留が悪か
った。一方、この鋼粉の焼入性を回復させるためには、
銅粉の軟化焼鈍にあわせてIn 。
Taking the case of alloyed steel powder containing Or as an example, if it is manufactured by water atomization, In and Qr react with water during atomization and preferentially oxidize, so In and Or are effective for hardenability. The amount of surface melting in the copper powder was small and the yield was poor. On the other hand, in order to restore the hardenability of this steel powder,
In in conjunction with softening annealing of copper powder.

Orの酸化物を還元する必要があるが、銅粉の段階で還
元するには特殊な還元焼鈍炉を要する欠点がある。
Although it is necessary to reduce the oxide of Or, there is a drawback that a special reduction annealing furnace is required to reduce the copper powder.

一般に焼結を行うと時間の経過とともGこ次第に焼結密
度が向上して焼結体の強度が向上するが、例えば本発明
で目指すような還元反応を伴って焼結が進行するような
場合は還元反応による焼結密度の減少があるため、従来
の焼結のみを行わせるための焼結時間では充分な焼結強
度が得られないという問題点がある。
Generally, when sintering is performed, the sintered density gradually increases as time passes, and the strength of the sintered body increases. In this case, since the sintered density decreases due to the reduction reaction, there is a problem that sufficient sintering strength cannot be obtained with the conventional sintering time for only sintering.

また、焼結体に焼入れを施すものでは、焼入れのために
オーステナイト化の加熱を行うときにも、その雰囲気に
より焼結体が酸化されるので焼入性が低下し、合金鋼粉
の特徴を充分には発揮できない問題点もある。
In addition, in products where the sintered body is hardened, even when heating is performed to austenitize for quenching, the sintered body is oxidized by the atmosphere, resulting in a decrease in hardenability and the characteristics of alloyed steel powder. There are also some problems in which they are not able to perform to their full potential.

さら番こは焼結体のような多孔質の物質の熱伝導性は同
素材の緻密質の物質にくらべると劣るため、焼入れ冷却
媒の冷却能が小さいと焼入れ硬化深度が浅くなり、機械
的性質が悪くなるという問題点もあった。
In Sarabanko, the thermal conductivity of porous materials such as sintered bodies is inferior to that of dense materials of the same material, so if the cooling capacity of the quenching coolant is small, the quench hardening depth will be shallow and the mechanical There was also the problem that the properties deteriorated.

本発明は、高強度焼結材料製造に当っての上述したよう
な各種の問題点を克服し、とりわけ強度の高い焼結材料
を安価に製造するに有利な方法の提供を目的とするもの
である。以下その構成の詳細を説明する。
The present invention aims to overcome the various problems mentioned above in producing high-strength sintered materials, and particularly to provide an advantageous method for producing high-strength sintered materials at low cost. be. The details of the configuration will be explained below.

本発明の構成の特徴は、第一に従来の一般的な製造設備
により容易かつ低廉に製造される高酸素合金鋼粉を原料
粉として用いること、第二にその高酸素合金鋼粉に黒鉛
粉を混合することにより次の焼結過程において焼結、還
元、C合金化の8つの反応を行わせ、得られた焼結体に
熱処理を施す一連の工程を経て機械的性質に優れた焼結
材料を製造するようにしたことにある。
The features of the structure of the present invention are, firstly, that high oxygen alloy steel powder, which is easily and inexpensively produced by conventional general manufacturing equipment, is used as the raw material powder, and secondly, graphite powder is used as the high oxygen alloy steel powder. In the next sintering process, the eight reactions of sintering, reduction, and carbon alloying are carried out by mixing the two, and the resulting sintered body undergoes a series of heat treatments to create a sintered body with excellent mechanical properties. The reason lies in the fact that the materials have been manufactured.

上記のような本発明の特徴は次のような知見にもとづい
ている。
The features of the present invention as described above are based on the following findings.

げ)合金鋼粉(0,05%O−0,7%In −1%O
r −0,6%0−0.54%MnO−1,2%Or、
08) t、−黒鉛粉を混合して混合粉とし、総炭素量
を0.9%とした圧粉体を露点−50°Cの還元性ガス
雰囲気中で1150’C,50分焼結後、焼結体のO2
Mno 10”2011量を分析した結果、各々0.5
4%C10,084%Mn0 、0.1c’0%Qr 
、aOaとなり、混粉黒鉛でMn 、 Qrの酸化物が
還元されることを知見した。
) Alloy steel powder (0,05%O-0,7%In-1%O
r -0.6%0-0.54%MnO-1.2%Or,
08) t, - Graphite powder was mixed to make a mixed powder, and a green compact with a total carbon content of 0.9% was sintered at 1150'C for 50 minutes in a reducing gas atmosphere with a dew point of -50°C. , O2 of the sintered body
As a result of analyzing the amount of Mno 10”2011, each 0.5
4%C10,084%Mn0, 0.1c'0%Qr
, aOa, and it was found that the oxides of Mn and Qr were reduced by the mixed graphite powder.

(ロ) 上記(イ)と同一の鋼粉に黒鉛を混粉し9、成
形後露点−50″Cの還元性ガス雰囲気中で1250’
Cで種々の焼結時間焼結後、焼結初期の脱ロウ。
(b) Graphite was mixed with the same steel powder as in (a) above, and after molding, it was heated to 1250' in a reducing gas atmosphere with a dew point of -50'C.
After sintering at C for various sintering times, dewaxing at the initial stage of sintering.

脱9.脱Cによる密度減少と焼結の進行による密度増加
がつり合う焼結時間、すなわち焼結体の強度向上に寄与
する実質的な緻密化の開始時間をO量0.2〜0.5%
の焼結体について求めたところ、第1図に示す通り80
分以上で実質的な緻密化が開始することを知見した。
Departure 9. The sintering time during which the density decrease due to decarbonization and the density increase due to the progress of sintering are balanced, that is, the time when substantial densification that contributes to improving the strength of the sintered body begins with an O content of 0.2 to 0.5%.
As shown in Figure 1, 80
It was found that substantial densification begins in minutes or more.

(ハ) 上記(イ)と同一の鋼粉に黒鉛を混粉し、成形
後露点−50℃の還元性ガス雰囲気中で1200°C1
50分焼結した9量0.075%の焼結体を露点−10
°c 、 −a ooC,−50°CのNg雰囲気中で
870°C180分加熱後油中に焼入れを行った後、焼
結体の0量を分析した結果、各々0.225%、 0.
185%、 0.110%とμ点−ao’c以下で熱処
理時の酸化が顕著に低くなることが知見できた。
(c) Graphite is mixed with the same steel powder as in (a) above, and after molding, the temperature is 1200°C1 in a reducing gas atmosphere with a dew point of -50°C.
The 9 weight 0.075% sintered body was sintered for 50 minutes at a dew point of -10.
°c, -aooC, -50°C in an Ng atmosphere at 870°C for 180 minutes and then quenched in oil.The results of analyzing the amount of the sintered body were 0.225% and 0.225%, respectively.
It was found that oxidation during heat treatment was significantly reduced below the μ point -ao'c of 185% and 0.110%.

に) 上記(イ)と同一の鋼粉に黒鉛を混粉し、成形後
露点−60°Cの還元性ガス雰囲気中で1200℃で5
0分焼結した焼結体0量0.24%、 0.8量%。
2) Graphite was mixed with the same steel powder as in (a) above, and after molding, it was heated at 1200°C in a reducing gas atmosphere with a dew point of -60°C.
The sintered body sintered for 0 minutes had a weight of 0.24% and a weight of 0.8%.

0.46%、 0.58%の焼結体を露点−50°Cの
N。
The 0.46% and 0.58% sintered bodies were heated with N at a dew point of -50°C.

1   気流中で870’Cに加熱保持後、冷却能0.
12Cm 、 0.16Cm 、 0.20Cm 、 
0.25CfMの油中に焼入れだ後焼戻して引張強さを
測定した結果、第2図に示す通り焼結体C量0.5%以
下にて、冷却能0 、16 Cn1−1以上で引張強さ
が急激に向上することが知見できた。
1 After heating and holding at 870'C in air flow, cooling capacity is 0.
12Cm, 0.16Cm, 0.20Cm,
After quenching in 0.25 CfM oil and then tempering, the tensile strength was measured. As shown in Figure 2, when the sintered body had a C content of 0.5% or less, the cooling capacity was 0, and when the cooling capacity was 16 Cn1-1 or more, the tensile strength was measured. It was found that strength improved rapidly.

上述のような知見にもとづいて本発明は、基本的に1重
量%で、2.8%を上限とするMnおよび5.5%を上
限とするQrにつきそれらの少なくとも一種を合計量で
は0.4〜7.0%になるように含有し、しかも9量が
0.25〜1.0%である合金鋼粉と、黒鉛粉および選
択的に加えられる潤滑剤からなる混合粉から、圧粉密度
6.09/cr1以上の圧粉体を得、その圧粉体を露点
−80°C以下の非酸化性雰囲気中において1150〜
1800°Cの温度で80〜180分加熱するこiによ
り、C;0.2〜0.5%、 0 : 0.25%以下
の焼結体とし、この焼結体を露点−80°C以下の非酸
化・性雰囲気でAC点〜AO8点+100°Cの範囲の
温度域から、冷却能0.16Cm−1以上の冷却媒中に
焼入れ後焼戻す処理を行う構成とした。
Based on the above-mentioned knowledge, the present invention basically contains 1% by weight of Mn with an upper limit of 2.8% and Qr with an upper limit of 5.5%, with a total amount of at least 0.0%. A compacted powder is made from a mixed powder consisting of an alloy steel powder containing 4 to 7.0% and an amount of 0.25 to 1.0%, graphite powder, and a lubricant selectively added. Obtain a green compact with a density of 6.09/cr1 or higher, and store the green compact in a non-oxidizing atmosphere with a dew point of -80°C or lower at 1150~
By heating at a temperature of 1800 ° C for 80 to 180 minutes, a sintered body with C: 0.2 to 0.5% and 0: 0.25% or less is made, and this sintered body has a dew point of -80 ° C. The structure was such that the quenching and tempering process was performed in a cooling medium with a cooling capacity of 0.16 Cm-1 or more in the following non-oxidizing and aqueous atmosphere from a temperature range of AC point to AO8 point +100°C.

原料鋼粉の主合金元素をMn 、 arの何れか少なく
とも1種とした理由は、Mn 、 Orが鋼粉の焼入・
れ性向上に優れた性能を示し、他のlti 、 MO等
の合金元素にくらべて極めて安価で、かつ鋼粉中のその
酸化物が1150〜1800 ”Cの温度範囲内で混粉
黒鉛にて還元が可能で、製品焼結部品の高強度化、低廉
化が図れるためであり、各々その合金量を限定した理由
は以下の通りである。
The reason why the main alloying element of the raw steel powder is at least one of Mn and ar is that Mn and Or are
It shows excellent performance in improving corrosion resistance, is extremely inexpensive compared to other alloying elements such as lti, MO, etc., and its oxide in steel powder can be used in mixed powder graphite within a temperature range of 1150 to 1800"C. This is because reduction is possible, and the resulting sintered parts can be made with higher strength and lower cost.The reason for limiting the amount of each alloy is as follows.

Mn・・・焼入性の向上に効果があるが、過剰な場合は
鋼粉の圧縮性が劣化するとともGこ鋼粉酸素量の増加に
より焼結性が低下するため上限を2.8%とした。
Mn: Effective in improving hardenability, but if excessive, the compressibility of the steel powder will deteriorate and the sinterability will decrease due to an increase in the amount of oxygen in the steel powder, so the upper limit should be set at 2.8%. And so.

Or・・・焼入性、硬さの向上に効果があるが、過剰な
場合は鋼粉の圧縮性が低下するとともに銅粉酸素量の増
加−により焼結性が低下し、さらGこ炭化物の増加によ
り被削性が低下するため上限を5.6%とした。
Or: It is effective in improving hardenability and hardness, but if it is excessive, the compressibility of the steel powder decreases and the sinterability decreases due to an increase in the amount of oxygen in the copper powder. The upper limit was set at 5.6% because machinability deteriorates due to an increase in .

さらGこMn 、 (lrの合計量範囲は焼入性の向上
と鋼粉の圧縮性低化を考慮して0.4〜7.0%とした
Furthermore, the total amount range of G, Mn, and (lr) was set to 0.4 to 7.0% in consideration of improvement in hardenability and reduction in compressibility of steel powder.

原料鋼粉の9量を0.25〜1.0%とした理由&ま、
Inおよび/またはOrを合金させた水アトマイズ鋼粉
の場合、従来の純鉄粉製造設備を用いて容易に還元製造
可能な2量範囲であり、容易に製造可能なことより銅粉
を低廉に提供して製品焼結部品の製造コストを低減する
からである。
Reason for setting the amount of raw material steel powder to 0.25-1.0% &amp;
In the case of water atomized steel powder alloyed with In and/or Or, the amount is within the range of 2, which can be easily produced by reduction using conventional pure iron powder production equipment, and because it is easy to produce, copper powder can be produced at low cost. This is because it reduces the manufacturing cost of the product sintered parts.

また本発明において上述した主成分の他心こ、副成分と
して焼入れ性の向上、耐食性、高温強度あるいは切削性
にも優れる焼結材料とするためOこ、それぞれの用途に
応じてNb 、 V 、 B 、 Ou 、 Ni 。
In addition, in the present invention, in addition to the above-mentioned main components, Nb, V, and O can be added as subcomponents in order to obtain a sintered material that is excellent in hardenability, corrosion resistance, high-temperature strength, and machinability. B, Ou, Ni.

の合金元素はいずれも鋼粉中のその酸化物が1150〜
1300°Cの温度範囲内で混粉黒鉛Gこて還元が可能
であり、Mnおよび/またはOrと共同して焼結部品特
性のより一層の向上を図り得る特徴を有する′。
All of the alloying elements in the steel powder have an oxide of 1150~
It is possible to reduce the mixed powder graphite G with a trowel within a temperature range of 1300°C, and it has the characteristic that it can work with Mn and/or Or to further improve the properties of sintered parts.

本発明合金鋼粉に含有させる上記選択成分について、そ
れを該鋼粉中に添加するときに顕れる効果から、その合
金量範囲は次のような理由で限定される。
Regarding the above-mentioned selected components to be included in the alloy steel powder of the present invention, the alloy amount range is limited for the following reasons due to the effects that appear when they are added to the steel powder.

Nb・・・結晶粒を微細化させ強度の向上に効果がある
が、0.01%以下ではその効果が少なく、過剰な場合
は焼入性、被削性が低下するため0.01〜1.0%と
した。
Nb: It is effective in making crystal grains finer and improving strength, but if it is less than 0.01%, the effect is small, and if it is in excess, hardenability and machinability will decrease, so 0.01 to 1%. .0%.

■・・・0.25%以下では焼入性を向上させ、0.8
%以上では結晶粒を微細化させ強度の向上に効果がある
が、0.01%以下ではその効果が少なく、過剰な場合
は焼入性が低下するため0.01〜8.5%とした。
■...0.25% or less improves hardenability, and 0.8% or less improves hardenability.
% or more, it is effective in making crystal grains finer and improving strength, but if it is less than 0.01%, the effect is small, and if it is in excess, hardenability decreases, so it was set at 0.01 to 8.5%. .

B・・・焼入性の向上に効果があるが、0.001%以
下ではその効果が少なく、過剰な場合は靭性が低下する
ため0.001〜0.6%とした。
B: It is effective in improving hardenability, but if it is less than 0.001%, the effect is small, and if it is excessive, the toughness decreases, so it was set to 0.001 to 0.6%.

CU・・・強度、耐食性の向上に効果があるが、0.1
%以下ではその効果が少なく、過剰な場合は銅粉の圧縮
性および靭性が低下するため0.1〜8.0%とした。
CU...Effective in improving strength and corrosion resistance, but 0.1
% or less, the effect is small, and if it is excessive, the compressibility and toughness of the copper powder decreases, so it was set at 0.1 to 8.0%.

N土・・・焼入性、耐食性、a性の向上に効果があるが
、0.1%以下ではその効果が少なく、過剰な場合は経
済性および銅粉の圧縮性が低下するため0.1〜5.0
%とした。
N soil: It is effective in improving hardenability, corrosion resistance, and a property, but if it is less than 0.1%, the effect is small, and if it is excessive, the economical efficiency and compressibility of the copper powder will decrease. 1-5.0
%.

CO・・・高温強度の向上に効果があるが、0.1%以
下ではその効果が少なく、過剰な場合は経済性および鋼
粉の圧縮性が低下するため0.1〜10.0%とした。
CO... is effective in improving high-temperature strength, but if it is less than 0.1%, the effect is small, and if it is excessive, the economical efficiency and compressibility of the steel powder will decrease. did.

MO・・・Inや(Hrと共同して焼入性の向上に効果
があるが、0.1%以下ではその効果が少なく、過剰な
場合は経済性、銅粉の圧縮性および被削性が低下するた
め0.1〜7.0%とした。
MO...It is effective in improving hardenability in conjunction with In and (Hr), but if it is less than 0.1%, the effect is small, and if it is in excess, it will affect economic efficiency, compressibility of copper powder, and machinability. was set at 0.1 to 7.0%.

Sn・・・被削性、耐食性の向上に効果があるが、0.
1%以下ではその効果が少なく、過剰な場合は経済性お
よび銅粉の圧縮性が低下するため0.1〜8.0%とし
た。
Sn: Effective in improving machinability and corrosion resistance, but 0.
If it is less than 1%, the effect will be small, and if it is excessive, the economical efficiency and compressibility of the copper powder will decrease, so it was set to 0.1 to 8.0%.

W・・・単独もしくはQrやVと共同して高温強度硬さ
、焼入性の向上に効果があるが、0.1%以下ではその
効果が少なく、過剰な場合は経済性、銅粉の圧縮性およ
び被削性が低下するため0.1〜8.0%とした。
W...Effective alone or in combination with Qr and V to improve high temperature strength, hardness, and hardenability, but if it is less than 0.1%, the effect is small, and if it is in excess, it will affect the economy and copper powder. Since compressibility and machinability decrease, the content was set at 0.1 to 8.0%.

P・・・被削性、耐食性の向上に効果があるが、0.0
4%以下ではその効果が少なく、過剰な場合は鋼粉の圧
縮性および靭性が低下するため0.04〜0.8%とし
た。
P: Effective in improving machinability and corrosion resistance, but 0.0
If it is less than 4%, the effect will be small, and if it is excessive, the compressibility and toughness of the steel powder will decrease, so it was set to 0.04 to 0.8%.

S・・・被剛性の向上に効果があるが、0.04%以下
 □ではその効果が少なく、過剰な場合は靭性が低下す
るため0.04〜0.8%とした。
S: is effective in improving stiffness, but if it is 0.04% or less, the effect is small, and if it is excessive, the toughness decreases, so it was set to 0.04 to 0.8%.

原料鋼粉には上述の例示の他、不可避的に含まれる不純
物ならびにFeを当然含有し、加えて好適例で示せば合
金鋼粉としての圧縮性、成形成の観点からO:0.2%
以下、 On 1.0 %以下、S土二0.1%以下、
 Al: 0.01%以下、 Ti : o、o1%以
下を含有させる。これらの元素のうち、Q 、 Si 
In addition to the above-mentioned examples, the raw material steel powder naturally contains impurities and Fe, which are unavoidable.In addition, in a preferred example, O: 0.2% from the viewpoint of compressibility and formation as an alloy steel powder.
Below, On 1.0% or less, S Sat2 0.1% or less,
Al: 0.01% or less; Ti: o, o1% or less. Among these elements, Q, Si
.

Al、 Tiはいずれもその含有量が限定値より多くな
ると焼結体の非金属介在物が増し、製品焼結部品の焼入
性が急激に低下して機械的特性が損われてしまう。
When the content of both Al and Ti exceeds a limited value, nonmetallic inclusions in the sintered body increase, and the hardenability of the product sintered part decreases rapidly, resulting in loss of mechanical properties.

上述の鋼粉を70%以上混合することを条件として、原
料鋼粉の特性を補助的に向上させる目的で、その残部に
非鉄金属粉9合金粉、非金属粉。
On the condition that 70% or more of the above-mentioned steel powder is mixed, the balance is non-ferrous metal powder 9 alloy powder and non-metal powder in order to supplementally improve the characteristics of the raw steel powder.

前記合金鋼粉以外の合金粉のうちいずれか1種以上を混
合させて用いることも可能である。なお、原料鋼粉の割
合を70%以上とした理由は、70%以下では上記混合
粉から原料鋼粉自体の特徴が失われて焼結体の焼入れ性
1機械的性質が損われるからである。
It is also possible to mix and use any one or more of the alloy powders other than the alloy steel powder. The reason why the proportion of the raw material steel powder is set at 70% or more is that if it is less than 70%, the characteristics of the raw material steel powder itself will be lost from the mixed powder, and the hardenability 1 mechanical properties of the sintered body will be impaired. .

また、必要に応じて、さらに潤滑剤を添加して混合粉を
得る。
Further, if necessary, a lubricant is further added to obtain a mixed powder.

上述の混合粉は次に圧縮成形して圧粉体とするが、その
圧縮成形後の圧粉密度を6.09 /cr1以上とした
理由は、焼結を充分に促進せしめて充分な強度を得るた
めと、焼入時の冷却速度を充分大きく保つためである。
The above-mentioned mixed powder is then compression-molded to form a green compact.The reason why the compacted powder density after compression-molding is set to 6.09/cr1 or more is to sufficiently promote sintering and obtain sufficient strength. This is in order to obtain a sufficient amount of heat and to maintain a sufficiently high cooling rate during quenching.

余り密度が低過ぎると、冷却媒の冷却能を上げても充分
な急冷が不能となり充分な硬化深さが得られない。なお
、上記潤滑剤は原料鋼粉と黒鉛粉との混合物の金型中で
の圧縮成形に際して必要に応じて予め混合させておく形
態で用いる。
If the density is too low, even if the cooling capacity of the coolant is increased, sufficient rapid cooling will not be possible and a sufficient hardening depth will not be obtained. The above-mentioned lubricant is used in the form of a mixture of raw material steel powder and graphite powder in advance, if necessary, when the mixture is compression-molded in a mold.

次に上記圧粉体を焼結して焼結体とするが、その処理に
当って焼結温度を1150〜1300℃とした理由は、
1150°Cより低い温度範囲では焼結の進行、混粉黒
鉛の合金化2m化物の還元がいずれも不充分で、焼入れ
性や強度が十分得られないためであり、一方1800°
Cより高い温度では経済性が低下し、かつ焼結時の寸法
変化が太きくなり実用的でないためである。
Next, the compacted powder is sintered to form a sintered body.
This is because in a temperature range lower than 1150°C, the progress of sintering and the reduction of the alloyed 2m compound of mixed graphite are insufficient, and sufficient hardenability and strength cannot be obtained.
This is because a temperature higher than C lowers the economical efficiency and causes large dimensional changes during sintering, making it impractical.

また、焼結雰囲気を露点−30°C以下の非酸化性雰囲
気とした理由は、加熱時の鋼粉の酸化\特ニ鋼粉中(7
) In 、 Or 、 Nb 、 V 、 Bの酸化
を抑制し、焼結体の焼入れ性の低下を防ぐためである。
In addition, the reason why the sintering atmosphere was set to be a non-oxidizing atmosphere with a dew point of -30°C or less was because of the oxidation of the steel powder during heating.
) This is to suppress the oxidation of In, Or, Nb, V, and B, and prevent a decrease in the hardenability of the sintered body.

なお、非酸化性雰囲気とは還元性、不活性、浸炭性のう
ちから1種あるいは2種以上の性質をあわせて構成した
雰囲気を指す。ただし焼結促進の面からはH3を8%以
上含んだ雰囲気が望ましい。
Note that the non-oxidizing atmosphere refers to an atmosphere having one or more of reducing, inert, and carburizing properties. However, from the viewpoint of promoting sintering, an atmosphere containing 8% or more of H3 is desirable.

そして、焼結時間を80〜180分とした理由は、80
分より短い時間では実用的な圧粉体C蓋範囲で焼結が充
分に進行せず、焼結体の実質的な緻密化が生じない上還
元も不充分なため強度、焼入れ性が充分に得られないた
めである。また180分より長い時間では経済性が低下
し、かつ焼結時の寸法変化が大きくなり実用的でないた
めである。
The reason why the sintering time was set to 80 to 180 minutes is that
If the time is shorter than 1 minute, sintering will not proceed sufficiently in the practical compact C lid range, the sintered compact will not be substantially densified, and reduction will also be insufficient, resulting in insufficient strength and hardenability. This is because they cannot be obtained. Further, if the time is longer than 180 minutes, the economical efficiency decreases and the dimensional change during sintering increases, making it impractical.

焼結を経て生成した焼結体のC量が0.2〜0.5%、
03iO,25%以下になるようにする理由は、O量0
.2%以下では焼入マルテンサイト中のO量が少ないた
め強度・硬さが不充分となるからであり、0.5%以上
では焼入れ時の冷却媒の冷却能を上げることによる引張
長さ向上の効果が少ないからである。すなわち、0量の
多い焼結体中では主要合金成分のIn 、 Qrや副成
分中のNb 、 Vなど炭化物生成傾向の強い元素は焼
結体中Cとの強い相互作用とのもとに%曳粗大な炭化物
を形成しやすく、焼入れ時の冷却能を上げても焼入性向
上の効果が少ないからである。
The amount of C in the sintered body produced through sintering is 0.2 to 0.5%,
03iO, the reason for keeping it below 25% is that the amount of O is 0.
.. If it is less than 2%, the strength and hardness will be insufficient due to the small amount of O in the quenched martensite, and if it is more than 0.5%, the tensile length will be improved by increasing the cooling ability of the coolant during quenching. This is because the effect is small. In other words, in a sintered body with a large amount of zero, elements with a strong tendency to form carbides, such as the main alloy components In and Qr and the subcomponents Nb and V, have a strong interaction with C in the sintered body. This is because coarse carbides are easily formed, and even if the cooling capacity during hardening is increased, the effect of improving hardenability is small.

次に、上記焼結体は熱処理されて所定の焼結部品とされ
るが、この熱処理において焼結後の焼入れ加熱を、露点
−80°C以下の非酸化性雰囲気中で、該焼結体のAO
8変態点より0−100’C高い温度範囲で行なうよう
にした理由は、露点−ao’c以上では加熱雰囲気によ
り銅粉中固溶Mn 、 Or 。
Next, the sintered body is heat-treated to form a predetermined sintered part. AO of
8 The reason why the temperature range is 0-100'C higher than the transformation point is that at temperatures above the dew point -ao'c, Mn and Or are solidly dissolved in the copper powder due to the heating atmosphere.

Nb 、 V 、 Bノ!<が急激に酸化物として、失
われ焼結体の焼入性が不充分となるからであり、Ac8
変態点より低い温度ではオーステナイト化が不充分でフ
ェライト相の出現により強度が低下するためで、AO,
変態点より100 ’C以上高い温度ではオーステナイ
トの安定化による焼入後の残留オーステナイト置の増加
、および結晶粒の粗大化により強度が低下するため好ま
しくないからである。
Nb, V, Bno! This is because Ac8 is rapidly lost as an oxide and the hardenability of the sintered body becomes insufficient.
This is because at temperatures lower than the transformation point, austenitization is insufficient and strength decreases due to the appearance of ferrite phase.
This is because a temperature higher than the transformation point by 100'C or more is undesirable because it increases the amount of retained austenite after quenching due to stabilization of austenite and coarsens the crystal grains, resulting in a decrease in strength.

また、この焼入れ処理において用いる冷却媒冷却能を0
.16Cm  としたのは、0 、16 em−”以下
では冷却速度が遅く、本発明のような低炭素・低合金鋼
焼結体のようなものでは同−粗性の緻密質材にくらべて
熱伝導性が低いため焼入れを行っても充分な硬化深さと
硬さが得られないためである。焼入れ後の焼結体は最終
的に焼もどしに付されて最終製品となる。
In addition, the cooling capacity of the coolant used in this quenching process is reduced to 0.
.. The reason for this is that below 0.16 cm, the cooling rate is slow, and the low carbon/low alloy steel sintered body of the present invention has a lower heat resistance than a dense material with the same roughness. This is because sufficient hardening depth and hardness cannot be obtained even with quenching due to low conductivity.After quenching, the sintered body is finally tempered to become the final product.

次に本発明を実施例について比較例と対比して説明する
Next, the present invention will be explained by comparing examples with comparative examples.

実施例 原料鋼粉 圧粉密度    6.859/cd 焼結時の加熱雰囲気 H4+露点−50°C焼結条件 
   1200℃×150分焼結体O量      0
.041% 焼結体C量      0.87% 焼入時の加熱雰囲気  N、111点−50°C焼入条
件      810°C×80分保持後冷却能6.2
cm”1の油中に焼入れ 焼戻条件      170″C×90分泊中保持後大
気中放冷−成形形状      JSPM標準引張試験
片引張強さ    112.4 kg /ad本実施例
では焼結、焼入れ時の焼結体の酸化防止、大きな冷却能
での焼入効果に加えて焼結時間の延長による焼結体の実
質的な緻密化と還元の強化に伴う焼入性の一層の回復に
より、110 kg/yrd以上の高い引張強さが得ら
れた。
Example raw material steel powder green density 6.859/cd Heating atmosphere during sintering H4 + dew point -50°C sintering conditions
1200℃×150 minutes Sintered body O amount 0
.. 041% Sintered body C content 0.87% Heating atmosphere during quenching N, 111 points -50°C quenching conditions 810°C x 80 minutes cooling capacity after holding 6.2
Quenching in oil of cm"1 Tempering conditions: 170"C In addition to the prevention of oxidation of the sintered body and the quenching effect with a large cooling capacity, the sintered body becomes substantially denser due to the extension of the sintering time, and the hardenability is further restored due to the enhanced reduction. A high tensile strength of 110 kg/yrd or more was obtained.

比較例 原料鋼粉、圧粉密度、焼結時の加熱雰囲気、焼結条件、
焼結体O量、焼結体C童は実施例1で用いたものと同一
である。
Comparative example Raw material steel powder, green powder density, heating atmosphere during sintering, sintering conditions,
The amount of sintered body O and the amount of sintered body C were the same as those used in Example 1.

焼入時の加熱雰囲気  N、111点−10°C焼入条
件      810°C×80分保持後冷却能0.1
cm−”の油中に焼入れ 焼戻条件      170°C×90分油中保持後大
気中放冷引張強さ    67.8に9/ad 上記比較例では引張強さは67.81C9/−で、焼結
体は長い焼結時間で充分緻密化・還元されているにもか
かわらず、焼入時の酸化、遅い冷却速度により、実施例
の約半分の引張強さしか得られなかった。
Heating atmosphere during quenching: N, 111 points -10°C Quenching conditions: 810°C x 80 minutes cooling capacity 0.1
cm-" Quenching and tempering conditions in oil 170°C x 90 minutes, then cooling in the air Tensile strength 67.8 to 9/ad In the above comparative example, the tensile strength was 67.81C9/-, Although the sintered body was sufficiently densified and reduced by the long sintering time, the tensile strength was only about half that of the example due to oxidation during quenching and slow cooling rate.

以上説明したように本発明にあっては、O量の高い低廉
な合金鋼粉に黒鉛粉を混粉して焼結することにより、焼
結体は充分低酸素となり、焼入れ性も回復する。しかも
焼結条件、熱処理条件を最適条件の組み合わせにするこ
とにより、以下のような効果が期待できる。
As explained above, in the present invention, by mixing graphite powder with inexpensive alloy steel powder having a high O content and sintering it, the sintered body becomes sufficiently low in oxygen and hardenability is restored. Moreover, by optimizing the combination of sintering conditions and heat treatment conditions, the following effects can be expected.

(1)低廉に製造される。すなわち高酸素の合金鋼の使
用が可能となり、焼結部品のコストを低減させるのであ
る。
(1) Manufactured at low cost. In other words, it becomes possible to use high-oxygen alloy steel, reducing the cost of sintered parts.

(g)焼結体製造条件の簡単な変更および熱処理条件の
適切な選択により、従来法では得られなかった高強度の
焼結部品が得られ、焼結部品のコストパーフォーマンス
を向上させる。
(g) By simply changing the sintered body manufacturing conditions and appropriately selecting the heat treatment conditions, high-strength sintered parts that could not be obtained by conventional methods can be obtained, and the cost performance of the sintered parts can be improved.

(8)熱処理に特殊な設備を要しないから焼結部品の製
造コストを低減する。
(8) Since no special equipment is required for heat treatment, the manufacturing cost of sintered parts is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼結体の緻密化が焼結体C量に依存することを
示すグラフ、 第2図は焼入れ時の冷却媒冷却能を大きくすることによ
り引張強さが向上することを示したグラフである。
Figure 1 is a graph showing that the densification of the sintered body depends on the amount of C in the sintered body, and Figure 2 shows that tensile strength is improved by increasing the cooling capacity of the coolant during quenching. It is a graph.

Claims (1)

【特許請求の範囲】 L 重量%で、2,8%を上限とするInおよび6.5
%を上限とするQrにつきそれらの少なくとも一種を合
計量では064〜7.0%になるように含有し、しかも
O量が0,25〜1.0%である合金鋼粉と、黒鉛粉お
よび選択的に加えられる潤滑剤からなる混合粉から、圧
粉密度6.09/cr!以上の圧粉体を得、その圧粉体
を露点−30°C以下の非酸化性雰囲気中において11
50〜1300°Cの温度で80〜180分加熱するこ
とにより、O: O−2〜0.5%、○: 0.25%
以下の焼結体とし、この焼結体を露点−80°C以下の
非酸化性雰囲気でAC8点〜AC8点+100”Cの範
囲の温度域から、冷却能0.16CI11−”以上の冷
却媒中に焼入れ後焼戻すことを特徴とする高強度焼結材
料の製造方法。 & 混合粉が、70重量%以上の合金鋼粉の他、黒鉛粉
と選択的に用いる潤滑剤、および非鉄金属粉1合金粉、
非金属粉、他の合金鋼粉のうちから選ばれる1種以上の
ものからなる特許請求の範囲1記載の製造方法。 & 重量%で、2.8%を上限とするMnおよび5.5
%を上限とするOrにつきそれらの少なくとも一種を合
計量では0.4〜7.0%になるように含み、カッNb
 : 0.01〜1.0 % 、 V :0.01〜L
5%、 E : 0.001〜0.5%、 Qu :0
.1〜8.0 % 、 N土 : 0.1〜5.0 %
 、 CO;0.1〜10.0%、 MO: 0.1〜
7.0%、 sn :0.1〜3.0%、 W : 0
.1〜8.0%、 P : 0.04〜0.8%および
S : 0.04〜0.8%のうちから選ばれる何れか
1種または2種以上を含有し、しかもO量が0.25〜
1.0%に調整された合金鋼粉に対し、黒鉛粉と選択的
に加えられる潤滑剤とを混合してなる混合物から、圧粉
密度6 、 Og/cff1以上の圧粉体を得、その圧
粉体を露点−30°C以下の非酸化性雰囲気中において
1150〜1300°Cの温度で30〜180分別熱す
ることにより、On 0.2〜0.5%。 0 : 0.25%以下の焼結体とし、この焼結体を露
点−80°C以下の非酸化性雰囲気でAC8点〜AC8
点+100℃の範囲の温度域から、冷却能0.16cm
  以上の冷却媒中に焼入れ後焼戻すことを特徴とする
高強度焼結材料の製造方法。 表 混合粉が、70重量%以上の合金鋼粉の他、黒鉛粉
と選択的に用いる潤滑剤、および非鉄金属粉2合金粉、
非金属粉、他の合金鋼粉のうちから選ばれる1種以上の
ものからなる特許請求の範囲8記載の製造方法。
[Claims] L in weight% with an upper limit of 2.8% and 6.5
Alloy steel powder containing at least one of them in a total amount of 0.64 to 7.0% per Qr with an upper limit of % and an O content of 0.25 to 1.0%, graphite powder and From a mixed powder consisting of a selectively added lubricant, the green density is 6.09/cr! Obtain the above green compact, and store the green compact in a non-oxidizing atmosphere with a dew point of -30°C or lower for 11
By heating at a temperature of 50 to 1300°C for 80 to 180 minutes, O: O-2 to 0.5%, ○: 0.25%
The following sintered body is used, and this sintered body is used in a non-oxidizing atmosphere with a dew point of -80°C or less, from a temperature range of AC8 points to AC8 points +100"C, using a cooling medium with a cooling capacity of 0.16CI11-" or more. A method for producing a high-strength sintered material characterized by tempering after quenching. & The mixed powder is 70% by weight or more of alloy steel powder, a lubricant selectively used with graphite powder, and non-ferrous metal powder 1 alloy powder,
The manufacturing method according to claim 1, which comprises one or more types selected from non-metal powders and other alloy steel powders. & Mn up to 2.8% and 5.5% by weight
%, and contains at least one of them in a total amount of 0.4 to 7.0%, and
: 0.01~1.0%, V:0.01~L
5%, E: 0.001-0.5%, Qu: 0
.. 1-8.0%, N soil: 0.1-5.0%
, CO; 0.1~10.0%, MO: 0.1~
7.0%, sn: 0.1-3.0%, W: 0
.. 1 to 8.0%, P: 0.04 to 0.8%, and S: 0.04 to 0.8%, and the O content is 0. .25~
A green compact with a powder density of 6, Og/cff1 or more is obtained from a mixture of graphite powder and a lubricant selectively added to alloy steel powder adjusted to 1.0%. On 0.2-0.5% by heating the green compact at a temperature of 1150-1300°C for 30-180 minutes in a non-oxidizing atmosphere with a dew point of -30°C or less. 0: A sintered body of 0.25% or less, and the sintered body is heated to AC8 to AC8 in a non-oxidizing atmosphere with a dew point of -80°C or less.
Cooling capacity 0.16cm from the temperature range of point +100℃
A method for producing a high-strength sintered material, characterized by quenching in the above-mentioned coolant and then tempering. Table Mixed powder is 70% by weight or more of alloy steel powder, lubricant selectively used with graphite powder, and non-ferrous metal powder 2 alloy powder,
9. The manufacturing method according to claim 8, which comprises one or more types selected from non-metallic powder and other alloyed steel powder.
JP57101665A 1982-06-14 1982-06-14 Manufacture of high-strength sintered material Pending JPS58217601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57101665A JPS58217601A (en) 1982-06-14 1982-06-14 Manufacture of high-strength sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57101665A JPS58217601A (en) 1982-06-14 1982-06-14 Manufacture of high-strength sintered material

Publications (1)

Publication Number Publication Date
JPS58217601A true JPS58217601A (en) 1983-12-17

Family

ID=14306663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57101665A Pending JPS58217601A (en) 1982-06-14 1982-06-14 Manufacture of high-strength sintered material

Country Status (1)

Country Link
JP (1) JPS58217601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747154A1 (en) * 1995-06-07 1996-12-11 MANNESMANN Aktiengesellschaft Process and apparatus for producing sintered parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747154A1 (en) * 1995-06-07 1996-12-11 MANNESMANN Aktiengesellschaft Process and apparatus for producing sintered parts

Similar Documents

Publication Publication Date Title
US4266974A (en) Alloy steel powder having excellent compressibility, moldability and heat-treatment property
US3901661A (en) Prealloyed steel powder for formation of structural parts by powder forging and powder forged article for structural parts
US5682588A (en) Method for producing ferrous sintered alloy having quenched structure
JP2002501122A (en) Steel powder for preparation of sintered products
US3966454A (en) Method for producing iron or iron alloy powders having a low oxygen content
JP2015108195A (en) Low alloy steel powder
US5605559A (en) Alloy steel powders, sintered bodies and method
JP3258765B2 (en) Manufacturing method of high-strength iron-based sintered body
JP2011522121A (en) Semi-finished products and methods
Cundill et al. Mechanical properties of sinter/forged low-alloy steels
JPH0849047A (en) Alloy steel powder for powder metallurgy
JPS6318001A (en) Alloy steel powder for powder metallurgy
JPS58217601A (en) Manufacture of high-strength sintered material
JP3475545B2 (en) Mixed steel powder for powder metallurgy and sintering material containing it
JPH06212368A (en) Low alloy sintered steel excellent in fatigue strength and its production
JPS58107469A (en) Preparation of high strength sintered machine parts
JPS5856020B2 (en) Method for manufacturing sintered mechanical parts with excellent specific strength
JP3396285B2 (en) Alloy steel powder for high-strength and high-toughness sintered materials and its sintered steel
JPS59173201A (en) Preparation of highly compressible alloyed steel powder
JPS5923840A (en) Production of high strength sintered material
Hanejko Advances in P/M gear materials
JPS6320431A (en) Production of free cutting sintered material
JPH0211643B2 (en)
JPH0512401B2 (en)
JPS6040505B2 (en) Manufacturing method of nitrided sintered alloy