JPS60197841A - Spheroidal graphite cast iron - Google Patents

Spheroidal graphite cast iron

Info

Publication number
JPS60197841A
JPS60197841A JP5290784A JP5290784A JPS60197841A JP S60197841 A JPS60197841 A JP S60197841A JP 5290784 A JP5290784 A JP 5290784A JP 5290784 A JP5290784 A JP 5290784A JP S60197841 A JPS60197841 A JP S60197841A
Authority
JP
Japan
Prior art keywords
cast iron
molybdenum
spheroidal graphite
graphite cast
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5290784A
Other languages
Japanese (ja)
Inventor
Mamoru Sayashi
鞘師 守
Yoshio Jinbo
嘉雄 神保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5290784A priority Critical patent/JPS60197841A/en
Priority to DE19853509709 priority patent/DE3509709A1/en
Publication of JPS60197841A publication Critical patent/JPS60197841A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening

Abstract

PURPOSE:To improve heat treatability by incorporating specific weight % of carbon, manganese, molybdenum, copper, etc. into a titled cast iron and cooling the cast iron from the austenitization temp. down to bainitization temp. at a cooling rate at which pearlite does not precipitate. CONSTITUTION:A spherical graphite cast iron consisting essentially, by weight %, of 3-4% carbon, 1.5-3% silicon and 0.005-0.2% graphite spheroidizing treating agent is incorporated therein with 0.3-0.8% manganese, 0.3-2% copper, 0.2-2.5% molybdenum, and if necessary, <=0.3% Ni and is cooled from the austenitization temp. down to the bainitization temp. at the cooling temp. at which pearlite does not precipitate. The manganese, molybdenum, etc. improves the stability of the supercooled austenite, by which the heat treatability is improved. Since Ni is not always contained, the inexpensive spheroidal graphite cast iron having excllent strength and toughness is obtd.

Description

【発明の詳細な説明】 (+1業上の利用分野) この発明は、各種自動車部品、トラクタ部品。[Detailed description of the invention] (+1 field of industrial use) This invention is applicable to various automobile parts and tractor parts.

船舶部品、製鉄機械部品等において、クランクシャフト
、ロッカーアーム、ケーシング、ピストンリング、ドラ
ム、フォーク、金具類等々の部品の素材に使用され、と
くに厚肉製品のオーステンパ、塩浴を用いないオーステ
ンパ、あるいは上部ベイナイトを利用するオーステンパ
嘗、オーステナイト化1kAIaからベイナイト化温度
に至る冷却速度を十分速くすることができない場合に適
用しうる熱処理性の優れたオーステンパ用球状黒鉛鋳鉄
に関するものである。
Used as material for parts such as crankshafts, rocker arms, casings, piston rings, drums, forks, metal fittings, etc. in ship parts, steel manufacturing machinery parts, etc., especially for austempering of thick-walled products, austempering without a salt bath, or This invention relates to spheroidal graphite cast iron for austempering that utilizes upper bainite and has excellent heat treatability and can be applied when the cooling rate from austenitizing 1 kAla to the bainitizing temperature cannot be made sufficiently fast.

(従来技術) 従来、とくにオーステンパ球状黒鉛i4鉄は、鋼にとっ
て代わることができる安価でかつ軽量な材料としてこれ
までも注目されてきたが、これはこの種のオーステンパ
球状黒鉛鋳鉄がフェライト系あるいはパーライト系の球
状黒鉛鋳鉄に比べて著しく高いレベルの伸びと強さとを
同時に具備することに起因している。例えば、Gies
serei 65(1978)、4,73.には、■素
材費、加工・熱処理費の低減による原価低減、■密度の
差による軽量化、および■高振動減衰能による低騒音化
、等を達成するために、鍛造ギヤをオーステナイト球状
黒鉛鋳鉄ギヤに代替し、成功を修めた例が報告されてい
る。
(Prior art) In the past, austempered spheroidal graphite I4 iron in particular has been attracting attention as an inexpensive and lightweight material that can replace steel. This is due to the fact that it has a significantly higher level of elongation and strength than the spheroidal graphite cast iron. For example, Gies
Serei 65 (1978), 4, 73. The forged gears are made from austenitic spheroidal graphite cast iron in order to achieve the following: ■Cost reduction due to lower material costs, processing and heat treatment costs, ■Weight reduction due to density differences, and ■Lower noise due to high vibration damping ability. There have been reports of success in replacing it with gears.

しかし、現実には厚肉部品へのオーステンパの適用や上
部ベイナイトを利用するオーステンパが強く望まれてい
るにもかかわらず、通常組成の球状黒鉛鋳鉄には本来オ
ーステンパ球状黒鉛鋳鉄にイζJ与されるべきすぐれた
性質を与えることができず、オーステンバ熱処理の利用
範囲は極めて狭いものとなっていた。それは上記要求に
基づくオーステンパでは、オーステナイト化温瓜からベ
イナイト化温度に至る冷却速度が遅くなるため、冷却の
過41:で適冷オーステナイトから多くのパーライトを
析出することに起因している。このようなオーステンパ
熱処理には一般に塩浴が用いられるが、1M浴が持つ危
険性および環境悪化ならびに作業性の悪さ等の欠点をさ
けるべく空冷によるオーステンパ熱処理を望む場合も同
様であり1通常組成の球状黒鉛鋳鉄では小部品を除きそ
の目的を達成することができがたい。
However, in reality, despite the strong desire to apply austempering to thick-walled parts and austempering using upper bainite, spheroidal graphite cast iron with a normal composition originally has a high Austemper heat treatment has been unable to provide excellent properties, and the range of application of Austemper heat treatment has been extremely narrow. This is because in austempering based on the above requirements, the cooling rate from the austenitizing temperature to the bainitizing temperature is slow, and a large amount of pearlite is precipitated from the properly cooled austenite during cooling. A salt bath is generally used for such austempering heat treatment, but the same is true when austempering heat treatment by air cooling is desired to avoid the disadvantages of a 1M bath such as danger, environmental deterioration, and poor workability. It is difficult to achieve this purpose with spheroidal graphite cast iron except for small parts.

すなわち、通常組成の球状黒鉛鋳鉄にあっては過んオー
ステナイトの安定性が不十分であるため、オーステナイ
ト化温度からベイナイト化温度に至る冷却速度を十分速
くし得ない場合には正常なオーステンパができず、すぐ
れた性質が得られないという欠点があった。
In other words, in spheroidal graphite cast iron with a normal composition, the stability of austenite is insufficient, so if the cooling rate from the austenitizing temperature to the bainitizing temperature cannot be made fast enough, normal austempering cannot occur. However, there was a drawback that excellent properties could not be obtained.

そこで、上記問題を解決する従来の考え方として、例え
ば特開昭50−127823号公報、特開昭54−13
3420号公報あるいは特公昭47−19496号公報
に開示されているように、多量のモリブデンおよびニッ
ケル等を含有させてオースナイトを安定化した球状黒鉛
鋳鉄を用いるものがある。このようにすれば、オーステ
ナイトが安定化されているため、オーステナイト化温度
からベイナイト化温度に至る過程を冷却速度の極めて遅
い空冷とすることによっても、パーライトを析出す掃こ
となく正常なオースナイトが可能となり、加えて冷却速
度が遅いことにより歪の発生を小さくすることができる
という利点を有している。
Therefore, as a conventional way of thinking to solve the above problem, for example, Japanese Patent Application Laid-open No. 50-127823, Japanese Patent Application Laid-Open No. 54-13
As disclosed in Japanese Patent Publication No. 3420 or Japanese Patent Publication No. 47-19496, spheroidal graphite cast iron containing a large amount of molybdenum, nickel, etc. to stabilize ausnite is used. In this way, since the austenite is stabilized, even if the process from the austenitization temperature to the bainitization temperature is performed by air cooling with an extremely slow cooling rate, normal austenite can be produced without precipitating pearlite. In addition, it has the advantage that the generation of distortion can be reduced due to the slow cooling rate.

しかしながら、このような高合金球状黒鉛鋳鉄にあって
は、■モリブデンとニッケルを同時にかつ多量に含有す
るため極めて高価な素材になること、■ニッケルを多量
に含有するためベイナイト化の進行が遅くなり、優れた
機械的性質をV’Jるには極めて長時間のベイナイト化
処理か必要になること、などといった問題を抱えていた
However, such high-alloy spheroidal graphite cast iron: ■ Contains both molybdenum and nickel in large quantities, making it an extremely expensive material. ■ Containing a large amount of nickel slows the progress of bainite formation. However, in order to obtain excellent mechanical properties, an extremely long bainitic treatment is required.

また、他の球状黒鉛鋳鉄として、マンガンと銅の星をコ
ントロールすることにより機械的性質を確保てきる組成
範囲で熱処理性を改善し、高価なモリブデンとニッケル
の竜を極力抑えたものを、本発明者等はすでに提案した
。この球状黒鉛鋳鉄は、■ニッケルとモリブデンの量を
低く抑えであるため安価であること、■ニッケルhi、
が少ないためベイナイト化時間が短くてすむこと、とい
う特徴を持っており、オーステンパ球状黒鉛鋳鉄のすぐ
れた性質を厚肉部品のオーステンパや塩浴を使わないオ
ーステンパにも適用し得る極めて有用な材料である。し
かし、この球状黒鉛鋳鉄においてもその熱処理性には限
界があり、より厚肉で大きな部品においてもオーステン
パを適用し得る材料の開発が望まれていた。
In addition, as other spheroidal graphite cast iron, we have improved heat treatability in a composition range that ensures mechanical properties by controlling the stars of manganese and copper, and suppressed the presence of expensive molybdenum and nickel as much as possible. The inventors have already proposed this. This spheroidal graphite cast iron is: - low cost due to low nickel and molybdenum content; - high nickel content,
It has the characteristic that the bainitization time is short because of the low amount of bainite, and it is an extremely useful material that can apply the excellent properties of austempered spheroidal graphite cast iron to austempering of thick-walled parts and austempering that does not use a salt bath. be. However, even this spheroidal graphite cast iron has a limit in its heat treatability, and there has been a desire to develop a material that can be austempered even in thicker and larger parts.

(発明の目的) この発明は、このような従来の問題点に着目し、マンガ
ンおよび銅量が適正な値に調整された材料に対するモリ
ブデンの影響を詳細に検討した結果なされたもので、ベ
イナイト化時+1Jfを短く保ったまま肉厚のかなり大
きな部品のオーステンパや塩浴を使わないオースナイト
に適用でき、強力な鋳造部品を得ることができる安価な
オーステンパ球状黒鉛鋳鉄を提供することを目的として
いる。
(Purpose of the Invention) This invention was made as a result of a detailed study of the influence of molybdenum on materials in which the amounts of manganese and copper have been adjusted to appropriate values, focusing on such conventional problems. The purpose of the present invention is to provide an inexpensive austempered spheroidal graphite cast iron that can be applied to austempering of fairly thick parts and austenite without using a salt bath while keeping the time +1Jf short, and can be used to obtain strong cast parts. .

(発明の構成) この発明による球状黒鉛鋳鉄は、重量%で、炭素:3〜
4%、けい素=1.5〜3%、黒鉛球状化処理剤: 0
.005〜o、2%を基本成分とし、その他マンガン二
0.3〜0.8%、銅:0.3〜2%、モリブデン二0
.2〜2.5%、必要に応じてニッケル=0.3%以下
を含み、残部実質的に鉄よりなり、とくにオーステナイ
ト化温度からベイナイト化温度までパーライト組織を析
出しない冷却速度で冷却したことを特徴としている。
(Structure of the Invention) The spheroidal graphite cast iron according to the present invention has a carbon content of 3 to 3% by weight.
4%, silicon = 1.5-3%, graphite spheroidizing agent: 0
.. 005~o, 2% as a basic component, other manganese 20.3~0.8%, copper: 0.3~2%, molybdenum 20
.. 2 to 2.5%, including 0.3% or less of nickel if necessary, the remainder being substantially iron, and in particular cooled from the austenitizing temperature to the bainitizing temperature at a cooling rate that does not precipitate a pearlite structure. It is a feature.

次に、この発明による球状黒鉛鋳鉄の成分範囲(重量%
)の限定理由について説明する。
Next, the composition range (weight%) of the spheroidal graphite cast iron according to this invention
) will be explained below.

炭素(C):3〜4% 炭素は鋳鉄の主要合金元素であるが、3%未満では鋳造
性を劣化するので好ましくなく、4%を超えるとけい素
との共存で初晶の黒鉛が晶出しやすくなり、機械的性質
を害するので、3〜4%の範囲とした。
Carbon (C): 3 to 4% Carbon is the main alloying element of cast iron, but if it is less than 3%, it deteriorates castability, so it is not preferable, and if it exceeds 4%, primary graphite will crystallize due to coexistence with silicon. The content was set in the range of 3 to 4%, since the content would become easy and impair mechanical properties.

けい素(Si):1.5〜3% けい素は炭素と共に鋳鉄の主要合金元素であるが、1.
5%未満では黒鉛化や鋳造性を害するのでtl−fまし
くなく、3%を超えると機械的性質を害するので1.5
〜3%の範囲とした。
Silicon (Si): 1.5-3% Silicon is a major alloying element in cast iron, along with carbon.
If it is less than 5%, it will impair graphitization and castability, making it undesirable for tl-f, and if it exceeds 3%, it will impair mechanical properties, so 1.5
The range was set at ~3%.

黒鉛球状化処理剤:0.005〜0.2%黒鉛球状化処
理剤は鋳造時に黒鉛を球状化するのに添加するものであ
る。この場合、黒鉛を良好に球状化し、しかも機械的性
質を劣化させない残留黒鉛球状化処理剤の量は0.00
5〜0.2%の範囲である。なお、黒鉛球状化処理剤と
してはマグネシウムが好ましいが、マグネシウムのほか
にセリウム(Ce)やカルシウム(Ca)などを黒鉛球
状化処理剤として用いることも可能である。
Graphite spheroidizing agent: 0.005-0.2% Graphite spheroidizing agent is added to spheroidize graphite during casting. In this case, the amount of residual graphite spheroidization treatment agent that can properly spheroidize graphite and do not deteriorate mechanical properties is 0.00.
It is in the range of 5-0.2%. Although magnesium is preferable as the graphite spheroidizing agent, it is also possible to use cerium (Ce), calcium (Ca), etc. in addition to magnesium as the graphite spheroidizing agent.

上記した炭素、けい素、黒鉛球状化処理剤の成分範囲は
、一般的な球状黒鉛鋳鉄の範囲に属する組成として選ん
だもので、この範囲に属していれは他の組成であっても
実質的な影響は少ない。
The above-mentioned range of components of carbon, silicon, and graphite nodularizing treatment agent was selected as a composition that falls within the range of general spheroidal graphite cast iron, and as long as it falls within this range, even other compositions are substantially There is little impact.

マンガン(Mn): 0.3〜0.8%マンガンは球状
黒鉛鋳鉄の適冷オーステナイトの安定性を高めるのに有
効な元素であり、このような効果を得るために0.3%
以上含有させる。
Manganese (Mn): 0.3 to 0.8% Manganese is an effective element for increasing the stability of properly cooled austenite in spheroidal graphite cast iron, and in order to obtain this effect, 0.3%
or more.

しかし、多すぎると強度および靭性を低下させるので0
.8%以下とした。
However, too much will reduce the strength and toughness, so 0
.. It was set to 8% or less.

銅(Cu):0.3〜2% 銅は熱処理性の改善に有効な元素であって、このような
効果をf+)るために0.3%以上含有させる。しかし
、脇加量が多くなると黒鉛の球状化が困難になりはじめ
、添加量が過大になると強さおよび衝撃値の低下をさけ
ることができなくなるので2%以下とした。
Copper (Cu): 0.3 to 2% Copper is an element effective in improving heat treatability, and in order to achieve this effect, it is contained in an amount of 0.3% or more. However, if the addition amount increases, it becomes difficult to make the graphite spheroidized, and if the addition amount becomes too large, it becomes impossible to avoid a decrease in strength and impact value, so the addition amount was set at 2% or less.

モリブデン(Mo):0.2〜2.5%モリブデンは適
冷オーステナイトの安定性を増力1けるのに有効な元素
であるのでこのような効果を十分に得るために0.2%
以上含有させる。
Molybdenum (Mo): 0.2-2.5% Molybdenum is an effective element for increasing the stability of properly cooled austenite, so in order to fully obtain this effect, 0.2%
or more.

しかし、高価な元素であるので2.5%以下とした。However, since it is an expensive element, it was set at 2.5% or less.

ニッケル(Ni):0.3%以下 ニッケルは適冷オーステナイトの安定性を増すのに有効
な元素であるので、必要に応じて添加することができる
が、0.3%を超えるとその効果はパーライト変1ルi
に対するよりもベイナイト変態に対する力がより強くな
り、同等の機械的性質を得るためにはより長時間のベイ
ナイト化を要するようになり、また、高価な元素でもあ
るので、0.3%以下とするのがよい。
Nickel (Ni): 0.3% or less Nickel is an effective element for increasing the stability of properly cooled austenite, so it can be added as necessary, but if it exceeds 0.3%, its effect will be reduced. perlite weird 1 le i
It has a stronger force on bainite transformation than on steel, requires longer bainite transformation to obtain the same mechanical properties, and is also an expensive element, so it should be kept at 0.3% or less. It is better.

さらに、上記したマンガン、モリブデン、銅。Furthermore, the above-mentioned manganese, molybdenum, and copper.

ニッケルがTTT線図中におけるパーライトノーズの潜
伏時間(t i)に及ぼす影響を考慮した場合に、3 
(Mn+Mo)+2 (Cu+Ni)≧7となるような
範囲とすることかより望ましい。
When considering the influence of nickel on the incubation time (t i ) of pearlite nose in the TTT diagram, 3
It is more desirable to set the range such that (Mn+Mo)+2 (Cu+Ni)≧7.

この発IJJによる球状黒鉛鋳鉄は上記の組成よりなり
、オーステナイト化温度からベイナイト化温度までパー
ライトが析出しない冷却速度で冷却してなるものであり
、このようにマンガンと銅の含有量を適+JJな伯に規
定すると共にモリブデンの含有h1を調整することによ
り、オーステナイトの安定性を劣化させることなく、ベ
イナイト化時間を短く保ったまま肉厚のかなり大きな部
品のオーステンパや塩浴を使わないオーステンパに適用
でき、強力な鋳造部品を安価に得ることができる高性能
の球状黒鉛鋳鉄である。
This spheroidal graphite cast iron produced by IJJ has the above composition and is cooled from the austenitizing temperature to the bainitizing temperature at a cooling rate that does not precipitate pearlite. By stipulating the above and adjusting the molybdenum content h1, it can be applied to austempering of fairly thick parts and austempering without using a salt bath, while keeping the bainitization time short without deteriorating the stability of austenite. It is a high-performance spheroidal graphite cast iron that can be used to produce strong cast parts at low cost.

(実施例) この実施例では、銅とマンガンを含む球状黒鉛鋳鉄の適
冷オーステナイトの熱的安定性におよぼすモリブデンの
影響について調べた。ここで使用した鋳鉄の基本組成は
、重量%で、炭素3.6%、けい素2.8%、リン0.
02%、いお□う0.007%、マグネシウム0.04
%のものである。この実施例において使用した供試材の
基本組成は、一般的な球状黒鉛鋳鉄の範囲に属する組成
として選んだもので、この範囲に属していれば他の組成
のものであっても実験結果に実質的な影響はないもので
ある。また、この実施例では、黒鉛の球状化処理剤とし
て主にマグネシウムを用いたが、そのほか、黒鉛球状化
の目的が十分に達成されるならばカルシウム(Ca)あ
るいはセリウム(Ce)等を用いてもさしつかえない。
(Example) In this example, the influence of molybdenum on the thermal stability of properly cooled austenite of spheroidal graphite cast iron containing copper and manganese was investigated. The basic composition of the cast iron used here is, in weight percent, 3.6% carbon, 2.8% silicon, and 0.5% phosphorus.
02%, Io 0.007%, Magnesium 0.04
%belongs to. The basic composition of the sample material used in this example was selected as a composition that falls within the range of general spheroidal graphite cast iron, and as long as it falls within this range, the experimental results will be valid even if other compositions are used. There is no real impact. In this example, magnesium was mainly used as the graphite spheroidizing agent, but in addition, calcium (Ca) or cerium (Ce) may also be used if the purpose of graphite spheroidization is sufficiently achieved. I can't help it.

そして、上記した組成に対して、1.5%の銅、0.5
%のマンガンを含む球状黒鉛鋳鉄組成を基準とし、0〜
2.5%のモリブデンを加えて熱処理性と機械的性質を
評価した。また、上記した範囲における高合金化上限材
として、0.3%のニッケル、0.8%のマンガンおよ
び2%の銅を含む鋳鉄、低合金化下限材として0.3%
のマンガン、0.3%の銅を含む鋳鉄を選び、これに1
%のモリブデンを加えたものに′ついても検討した。
Then, for the above composition, 1.5% copper, 0.5%
Based on spheroidal graphite cast iron composition containing % manganese, 0~
Heat treatability and mechanical properties were evaluated by adding 2.5% molybdenum. In addition, cast iron containing 0.3% nickel, 0.8% manganese and 2% copper is used as the upper limit of high alloying in the above range, and 0.3% is the lower limit of low alloying.
of manganese and 0.3% copper, and add 1
% of molybdenum was also investigated.

一方、適冷オーステナイトの安定性(熱処理性)は、変
態膨張(収縮)測定装置によりTTT線図をめることに
よって評価した。その他JIS 14−A号φ7試験片
による静的強さ試験と、JIS a号試験片による衝蛤
試験を行うことにより機械的性質の確認を行った。この
場合のオーステンパ熱処理は、900°QX4hrのオ
ーステナイト化および250°CX2hrのベイナイト
化で行い、その間の冷却は流動層炉を用いて行った。こ
れらの結果を添付図および表に示す。
On the other hand, the stability (heat treatability) of properly cooled austenite was evaluated by measuring a TTT diagram using a transformation expansion (contraction) measuring device. In addition, the mechanical properties were confirmed by performing a static strength test using a JIS No. 14-A φ7 test piece and an impact test using a JIS No. A test piece. The austempering heat treatment in this case was carried out by austenitizing at 900°C for 4 hours and bainizing at 250°C for 2 hours, during which cooling was performed using a fluidized bed furnace. These results are shown in the accompanying figures and tables.

添イζj図は、モリブデンがマンガン(0,3%。The attached ζj diagram shows that molybdenum is manganese (0.3%).

0.5%、0.8%)と銅(0,3%、1.5%、2%
)を含む球状黒鉛鋳鉄の適冷オーステナイトの熱的安定
性におよぼす影響をめた結果である。添イリ図の縦軸は
900°OX 15m1nオーステナイト化後のTTT
線図中に現われるパーライトノーズの潜伏時間(t i
)を示すものである。
0.5%, 0.8%) and copper (0.3%, 1.5%, 2%
) is the result of considering the influence on the thermal stability of appropriately cooled austenite in spheroidal graphite cast iron. The vertical axis of the attached diagram is 900°OX TTT after 15m1n austenitization
The incubation time of the pearlite nose appearing in the diagram (t i
).

また、横軸はモリブデンの含有量を示す。ここで、ti
の値が大きい程オーステナイトは安定であり、徐冷して
もパーライトを析出せず、正常なオーステンパ熱処理が
できるため、熱処理性のすぐ″れた材料であるというこ
とができる。
Moreover, the horizontal axis shows the content of molybdenum. Here, ti
The larger the value of the austenite, the more stable the austenite is, and it does not precipitate pearlite even when slowly cooled, allowing normal austempering heat treatment, so it can be said that it is a material with excellent heat treatability.

添牛j図の1.5Cu−o 、5Mn線に示すように、
モリブデンを0.2%以上含有させるとその効果があら
れれはしめ、モリブデン量の増加に伴なってオーステナ
イトの安定性は著しく改善されていくことがわかる。ま
た、2Cu−0,8Mn−0、3N iおよび0.3C
u−0,3Mnに1%のMoを添加したものにおいても
モリソテン添加の効果が確認された。このように、0.
3〜2%の銅、0.3〜0.8%のマンガンおよびθ〜
0.3%のニッケルを含む球状黒鉛鋳鉄に対するモリブ
デンの熱処理性改善の効果は、0.2%からあられれ、
それ以上の雄加により極めて有効にこの種鋳鉄の熱処理
性を改善することかできる。
As shown in the 1.5Cu-o and 5Mn lines in the diagram,
It can be seen that the effect becomes more pronounced when molybdenum is contained in an amount of 0.2% or more, and the stability of austenite is significantly improved as the amount of molybdenum increases. Also, 2Cu-0, 8Mn-0, 3N i and 0.3C
The effect of adding morisothene was also confirmed in u-0,3Mn with 1% Mo added. In this way, 0.
3-2% copper, 0.3-0.8% manganese and θ~
The heat treatability improvement effect of molybdenum on spheroidal graphite cast iron containing 0.3% nickel starts from 0.2%.
The heat treatability of this kind of cast iron can be improved very effectively by applying more force than that.

次に、表に示す組成になる球状黒鉛鋳鉄の機械的性質の
評価結果を同じく表に示す。
Next, the evaluation results of the mechanical properties of spheroidal graphite cast iron having the composition shown in the table are also shown in the table.

表に示すように、No、lのM o 0 、20%から
NO,5(7)MO2、48%へとMoが増加するに従
ってTTT線図のパーライトノーズ位置を示すtiの値
が人きくなり、Moの増加によってオーステナイトを安
定にし、保冷をしてもパーライトが析出しがたくなり、
熱処理性を著しく改善できることが明らかである。また
、MOを1.01%としてこれにNiを0.29%加え
たNo、 6の場合には、同程度のMO@のものに比べ
てオーステナイトの安定性をより高めることがOf能で
あり、No、 7におけるようにNi添加とともにMo
5をざらに増−にすることによって熱処理性をより一層
向上させることができるようになる。
As shown in the table, as Mo increases from 20% for No.l to 48% for No.5(7)MO2, the value of ti, which indicates the pearlite nose position in the TTT diagram, becomes more pronounced. , the increase in Mo stabilizes austenite, making it difficult for pearlite to precipitate even when kept cold.
It is clear that heat processability can be significantly improved. In addition, in the case of No. 6, in which MO is 1.01% and Ni is added to it by 0.29%, it is possible to improve the stability of austenite more than that with the same amount of MO@. , No. 7, with Ni addition as well as Mo
By roughly increasing 5, the heat treatability can be further improved.

これに対してMoを含まないNO48、MO量が少なす
ぎるN099の場合はいずれも熱処理性が良くなく、M
n艮が過大のNo、lO,Culが過大のNo、ll、
Ni9が過大のNo、12 、No、13は機械的性質
が良くないことが明らかである。なお、高Niの場合に
は、ベイナイト化進行の遅れに起因して強度および衝撃
値が低下するものとみられる。
On the other hand, in the case of NO48, which does not contain Mo, and N099, which contains too little MO, the heat treatability is not good, and M
No, 10 with too much n, No, 1 with too much Cul,
It is clear that No. 12, No. 13, which have too much Ni9, have poor mechanical properties. In addition, in the case of high Ni, the strength and impact value are considered to decrease due to a delay in the progress of bainite formation.

さらに、比較例のNo、12に示す高ニツケル材では、
250°Cにおけるベイナイト変I出の潜伏時間は約2
000secと測定されたのに対し、本発明例のNo、
 6 、7においてそのイ1aは1ooOsec以下で
あり、パーライトノーズ時間の伸長(熱処理性の改善)
にもかかわらず本発明による鋳鉄ではベイナイト化に要
する時間が短くて済むことも明らかになった。
Furthermore, in the high nickel material shown in Comparative Example No. 12,
The incubation time of bainitic metamorphism I at 250°C is approximately 2
000 sec, whereas No. 000 sec of the present invention example
In 6 and 7, the A1a is less than 1ooOsec, and the pearlite nose time is extended (improvement of heat treatability).
Nevertheless, it has also become clear that the cast iron according to the invention requires less time to form into bainite.

次に、重量%で、■炭素3.6%、けい素2.6%、マ
ンガン0.8%、銅2%、MOo、2%、■炭素3.6
%、けい素2.6%、マンカン0.8%、銅2%、Mo
0.3%、Ni0.1%、■炭素3.6%、けい素2.
6%、マンカン0.8%、銅2%、M o 0 、3%
の3種の球状黒鉛鋳鉄からなる直径60IIIffl、
長さ180II1mの丸棒を850℃X4hrのオース
テナイト化および350℃X2hrのベイナイト化処理
を含むオーステンパ熱処理を行った。なお、オーステナ
イト化温度からベイナイト化温度までは流動層炉を用い
て冷却した。このとき、流動層炉の流動媒体としては、
80メツシユのアルミナを用い、ガスはN2ガス、流ノ
ロは230Q/win 、温度は250℃とした。次い
で、オーステンパ処理後の丸棒を切断して顕微鏡により
金属組織を調べたところ、中心部でもパーライト組織は
出現しておらず、完全にオーステナイト化が行えたこと
が確認された。
Next, in terms of weight percent, ■3.6% carbon, 2.6% silicon, 0.8% manganese, 2% copper, MOo 2%, ■3.6 carbon
%, silicon 2.6%, mankan 0.8%, copper 2%, Mo
0.3%, Ni 0.1%, ■ Carbon 3.6%, Silicon 2.
6%, mankan 0.8%, copper 2%, M o 0, 3%
Diameter 60IIIffl made of three types of spheroidal graphite cast iron,
A round bar with a length of 180 II 1 m was subjected to austempering heat treatment including austenitizing treatment at 850°C for 4 hours and bainitizing treatment at 350°C for 2 hours. Note that cooling from the austenitizing temperature to the bainitizing temperature was performed using a fluidized bed furnace. At this time, the fluidized medium of the fluidized bed furnace is
80 mesh alumina was used, the gas was N2 gas, the flow rate was 230Q/win, and the temperature was 250°C. Next, when the austempered round bar was cut and the metallographic structure was examined using a microscope, no pearlite structure appeared even in the center, confirming that complete austenitization was achieved.

(発明の効果) 以上説明してきたように、この発明による球状黒鉛鋳鉄
は、重量%で、炭素:3〜4%、けい素:1.5〜3%
、黒鉛球状化処理剤70 、005〜0.2%を基本成
分とする球状黒鉛鋳鉄に、マンカン二0.3〜0.8%
、銅=0.3〜2%、モリブデン二0.2〜2.5%、
必要に応じてNi:0.3%以下を含有させ、かつオー
ステナイト化温度からベイナイト化温度までパーライト
が析出しない冷却速度で冷却したものであるから、機械
的性質と基本的な熱処理性を確保した材料に対しモリブ
デンを添加することによりさらに熱処理性を改善するこ
とができ、肉厚の大きい部品や塩浴を用いないオーステ
ナイト化等に対して、本来ベイナイト基地球状黒鉛鋳鉄
に付与されるようなかなり高いレベルの強さと靭性を与
えることが可能となり、また、ニッケルを必ずしも含ま
なくともよいためベイナイト化に要する時間が短くて済
むと同時に安価であり、高強度・高靭性のオーステンバ
球状黒鉛鋳鉄の適用範囲を飛躍的に拡大させるものであ
る。
(Effects of the Invention) As explained above, the spheroidal graphite cast iron according to the present invention has a carbon content of 3 to 4% and a silicon content of 1.5 to 3% by weight.
, graphite spheroidization treatment agent 70, 0.3 to 0.8% of mankanji to spheroidal graphite cast iron whose basic component is 0.05 to 0.2%.
, copper = 0.3-2%, molybdenum di 0.2-2.5%,
It contains Ni: 0.3% or less as necessary, and is cooled from the austenitizing temperature to the bainitizing temperature at a cooling rate that does not precipitate pearlite, ensuring mechanical properties and basic heat treatability. By adding molybdenum to the material, heat treatability can be further improved, and for thick parts and austenitization without using a salt bath, the heat treatability can be improved by adding molybdenum to the material. It is possible to provide a high level of strength and toughness, and since it does not necessarily contain nickel, the time required for bainiticization is shortened, and at the same time it is inexpensive, and the application of austenba spheroidal graphite cast iron with high strength and high toughness. This dramatically expands the scope.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図は、MO話加量によるTTT線図のバーティトノ
ーズ位置への影響を調べた結果を示すグラフである。 特許出願人 日産自動車株式会社 代理人弁理士 小 塩 豊
The attached figure is a graph showing the results of investigating the influence of MO stress on the vertical nose position of the TTT diagram. Patent applicant Yutaka Oshio, patent attorney representing Nissan Motor Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で、炭素:3〜4%、けい素=1.5〜3
%、マンガン:0.3〜0.8%、銅・0,3〜2%、
モリブデン=0.2〜2.5%、黒鉛球状化処理剤:0
.005〜0.2%、残部実質的に鉄よりなり、オース
テナイト化温瓜からベイナイト化温度までパーライトが
析出しない冷却速度で冷却してなることを特徴とする球
状黒鉛鋳鉄。 。
(1) In weight%, carbon: 3-4%, silicon = 1.5-3
%, manganese: 0.3-0.8%, copper 0.3-2%,
Molybdenum = 0.2-2.5%, graphite spheroidizing agent: 0
.. 0.005 to 0.2%, the balance being substantially iron, and is characterized by being cooled from the austenitizing temperature to the bainitic temperature at a cooling rate at which pearlite does not precipitate. .
(2)ニッケル:0.3%以下を含む特許請求の範囲第
(1)項記載の球状黒鉛鋳鉄。
(2) The spheroidal graphite cast iron according to claim (1), containing nickel: 0.3% or less.
(3)3 (Mn+Mo)+2 (Cu+Ni)≧7で
ある特許請求の範囲第(1)項またはtfTj(2)項
記載の球状黒鉛鋳鉄。
(3) Spheroidal graphite cast iron according to claim (1) or tfTj (2), wherein 3 (Mn+Mo)+2 (Cu+Ni)≧7.
JP5290784A 1984-03-19 1984-03-19 Spheroidal graphite cast iron Pending JPS60197841A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5290784A JPS60197841A (en) 1984-03-19 1984-03-19 Spheroidal graphite cast iron
DE19853509709 DE3509709A1 (en) 1984-03-19 1985-03-18 Process for producing an austempered nodular cast iron article, and the article thus obtained

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5290784A JPS60197841A (en) 1984-03-19 1984-03-19 Spheroidal graphite cast iron

Publications (1)

Publication Number Publication Date
JPS60197841A true JPS60197841A (en) 1985-10-07

Family

ID=12927904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5290784A Pending JPS60197841A (en) 1984-03-19 1984-03-19 Spheroidal graphite cast iron

Country Status (2)

Country Link
JP (1) JPS60197841A (en)
DE (1) DE3509709A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160855A (en) * 1984-08-30 1986-03-28 Hitachi Metals Ltd Spheroidal graphite cast iron
CN115161539A (en) * 2022-07-14 2022-10-11 江苏天奇重工股份有限公司 Isothermal quenching nodular cast iron planet carrier blank and preparation process thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4313569C1 (en) * 1993-04-26 1994-05-26 Daimler Benz Ag Heat treatment of spheroidal graphite cast iron - to improve mechanical properties.
DE19521941C1 (en) * 1995-06-07 1996-10-02 Mannesmann Ag Mfg. sintered air-hardenable alloy steel component
AUPO978297A0 (en) * 1997-10-14 1997-11-06 Camcast Industries Pty Ltd Iron alloy
FR2866351B1 (en) * 2004-02-12 2006-04-28 Technologica Sarl PROCESS FOR MANUFACTURING SPHEROIDAL GRAPHITE CAST IRON WITH HIGH GEOMETRIC AND DIMENSIONAL PRECISION AND IMPROVED MECHANICAL CHARACTERISTICS
DE102010034529A1 (en) 2010-08-16 2012-02-16 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland Part or component of machinery and method of making such
WO2014185455A1 (en) 2013-05-14 2014-11-20 東芝機械株式会社 High-strength, high-damping-capacity cast iron

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE976573C (en) * 1947-03-22 1963-11-21 Mond Nickel Co Ltd Process for producing cast iron with spherulitic graphite
US3860457A (en) * 1972-07-12 1975-01-14 Kymin Oy Kymmene Ab A ductile iron and method of making it
JPS5931567B2 (en) * 1978-04-07 1984-08-02 マツダ株式会社 Heat treatment method for spheroidal graphite cast iron parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160855A (en) * 1984-08-30 1986-03-28 Hitachi Metals Ltd Spheroidal graphite cast iron
JP2672293B2 (en) * 1984-08-30 1997-11-05 日立金属株式会社 Spheroidal graphite cast iron with excellent mechanical properties
CN115161539A (en) * 2022-07-14 2022-10-11 江苏天奇重工股份有限公司 Isothermal quenching nodular cast iron planet carrier blank and preparation process thereof
CN115161539B (en) * 2022-07-14 2024-03-01 江苏天奇重工股份有限公司 Isothermal quenching spheroidal graphite cast iron planet carrier blank and preparation process thereof

Also Published As

Publication number Publication date
DE3509709A1 (en) 1985-09-26
DE3509709C2 (en) 1988-07-28

Similar Documents

Publication Publication Date Title
Trudel et al. Effect of composition and heat treatment parameters on the characteristics of austempered ductile irons
US4596606A (en) Method of making CG iron
US4484953A (en) Method of making ductile cast iron with improved strength
US6258180B1 (en) Wear resistant ductile iron
JP7369513B2 (en) Spheroidal graphite cast iron alloy
JPS60121253A (en) Spheroidal graphite cast iron
JPS58185745A (en) Spherical graphite cast iron parts and their manufacture
JPH0582460B2 (en)
JPS60197841A (en) Spheroidal graphite cast iron
US3485683A (en) Method of heat treating a ductile austenitic ductile iron casting including refrigeration treatment and article produced thereby
EP0272788B1 (en) A method of making wear resistant gray cast iron
JPS616249A (en) High strength spheroidal graphite cast iron with superior machinability
JPH0238645B2 (en) KOKYODOKYUJOKOKUENCHUTETSUNOSEIZOHOHO
Medyński et al. Effect of Cr, Mo and Al on structure and selected mechanical properties of austenitic cast iron
JP2775049B2 (en) Manufacturing method of spheroidal graphite cast iron
Valdés et al. Austempered ductile iron with dual matrix structures
Gobinath et al. Development of a silicon alloyed hardened and tempered ultra high strength Steel
RU2250268C1 (en) Method of production of ingots made out of mottled cast iron with austenitic-bainite structure
JPH0140900B2 (en)
Mittal et al. Property enhancement of spheroidal graphite cast iron by heat treatment
JPH01108343A (en) Ferrous casting having high strength
JPH01152240A (en) High toughness cast steel
JPH0379739A (en) High strength and high toughness spheroidal graphite cast iron
Mikusek et al. Effect of Mischmetal on the Microstructure of the Magnesium Alloy AZ91
JPH01108342A (en) Ferrous casting having high strength, high hardness, and high toughness and its manufacture