JPS5931567B2 - Heat treatment method for spheroidal graphite cast iron parts - Google Patents

Heat treatment method for spheroidal graphite cast iron parts

Info

Publication number
JPS5931567B2
JPS5931567B2 JP4148078A JP4148078A JPS5931567B2 JP S5931567 B2 JPS5931567 B2 JP S5931567B2 JP 4148078 A JP4148078 A JP 4148078A JP 4148078 A JP4148078 A JP 4148078A JP S5931567 B2 JPS5931567 B2 JP S5931567B2
Authority
JP
Japan
Prior art keywords
weight
heat treatment
austempering
cast iron
spheroidal graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4148078A
Other languages
Japanese (ja)
Other versions
JPS54133420A (en
Inventor
政史 寄高
和雄 佐藤
昭男 宮里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kogyo Co Ltd filed Critical Toyo Kogyo Co Ltd
Priority to JP4148078A priority Critical patent/JPS5931567B2/en
Publication of JPS54133420A publication Critical patent/JPS54133420A/en
Publication of JPS5931567B2 publication Critical patent/JPS5931567B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 この発明は球状黒鉛鋳鉄部品の熱処理力法に関し、特に
、オーステンパー処理時の製品の変形を少なくし製品精
度を向上させると共に、機械的!特性および耐摩耗性の
向上を図るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for heat treatment of spheroidal graphite cast iron parts, and in particular, it reduces deformation of products during austempering, improves product precision, and improves mechanical efficiency. This aims to improve properties and wear resistance.

周知の如く、球状黒鉛鋳鉄をオーステンパー処理すると
耐摩耗性及び疲労強度が向上するため、ギヤ、スプロケ
ット及びカム等の高度の耐摩耗性及び疲労強度が要求さ
れるものに好適に採用される。
As is well known, austempering treatment of spheroidal graphite cast iron improves wear resistance and fatigue strength, so it is suitably used in gears, sprockets, cams, and other items that require high wear resistance and fatigue strength.

しかしながら、通常、製品(部品)を機械加工した後に
オーステンパー処理をしており、該処理時多こ部品を加
熱及び冷却した際に部品の変形を生じる。
However, usually, austempering is performed after machining a product (part), and when the multi-part part is heated and cooled during this process, the part is deformed.

従って、高精度を要求する製品の製造時には、オーステ
ンパー処理の後にさらに機械加工あるいは研磨する必要
があるが、高硬度で高耐摩耗性を有するため、上記機械
加工及び研磨作業が難しく、かつ、該作業に非常に手間
がかかり、必然的に生産性が劣化し、コスト高になる欠
点がある。
Therefore, when manufacturing products that require high precision, it is necessary to perform further machining or polishing after austempering treatment, but since the product has high hardness and high wear resistance, the machining and polishing operations described above are difficult, and This work is very time-consuming, which inevitably leads to lower productivity and higher costs.

さらに、オーステンパー処理の恒温変態時の温度が低い
場合、温度が高い場合に比べて疲労強度が弱く、変形量
が大きくなる傾向にあるため恒温変態時の渦部条件範囲
が限定される欠点がある。
Furthermore, if the temperature during isothermal transformation during austempering is low, the fatigue strength will be weaker and the amount of deformation will tend to be larger than when the temperature is high, which has the disadvantage that the range of vortex conditions during isothermal transformation is limited. be.

この発明は上記した欠点を解消したものであり、球状黒
鉛鋳鉄部品の熱処理力法において、オーステンパー処理
時の変形がほとんど加熱時と冷却時に生じることに着目
し、機械加工工程の前に1次熱処理を行って機械加工工
程後のオーステンパー処理時に生ずる部品の変形を前取
って取除き、その結果、オーステンパー処理後の部品に
生じる変形を許容量以下におさえ、オーステンパー処理
後の再度の機械加工工程を省くようにしたことを特徴と
するものである。
This invention eliminates the above-mentioned drawbacks, and focuses on the fact that most of the deformation during austempering occurs during heating and cooling in the heat treatment method for spheroidal graphite cast iron parts. Heat treatment is performed to preemptively remove the deformation of the part that occurs during austempering after the machining process, and as a result, the deformation that occurs in the part after austempering is kept below the allowable amount, making it possible to reuse the part after austempering. The feature is that the machining process is omitted.

さらに、この発明は、上記した熱処理工程−機械加工工
程−オーステンパー処理工程により部品の変形を極力押
えるとともに、オーステンパー処理工程の後にショット
ピーニングを行い、部品の疲労強度を飛躍的1こ増大さ
せ、それによって、オーステンパー処理における恒温変
態時の渦部範囲を拡大することを特徴とする球状黒鉛鋳
鉄部品の熱処理力法を提供することを目的とするもので
ある。
Furthermore, this invention suppresses the deformation of the parts as much as possible through the above-mentioned heat treatment process, machining process, and austempering process, and also performs shot peening after the austempering process to dramatically increase the fatigue strength of the parts. The object of the present invention is to provide a heat treatment method for spheroidal graphite cast iron parts, which is characterized by expanding the vortex range during isothermal transformation during austempering.

上記目的を達成するために本発明方法は、基礎となる球
状黒鉛鋳鉄素材として、その化学組成が通常の球状黒鉛
鋳鉄の組成に、Ni:0.3〜2.0゜Mo:0.1〜
1.5(以上重量%)添加したものを用い、下記の如く
、該素材を750〜950℃で0.5〜4.0時間加熱
保持してのち徐冷する1次熱処理を行い、ついで機械加
工を行い、その後に、850〜1000℃で4時間以内
加熱保持したのち200〜400℃に急冷し、その温度
で30分以上加熱保持するオーステンパー処理を行い、
最後に、ショットピーニング加工を行うものである。
In order to achieve the above object, the method of the present invention uses, as a basic spheroidal graphite cast iron material, a chemical composition of normal spheroidal graphite cast iron, Ni: 0.3 to 2.0 degrees, Mo: 0.1 to
1.5 (or more by weight) was added, and the material was heated and held at 750 to 950°C for 0.5 to 4.0 hours, and then gradually cooled, as described below. After processing, the material is heated and held at 850 to 1000°C for less than 4 hours, then rapidly cooled to 200 to 400°C, and then subjected to austempering treatment in which the material is heated and held at that temperature for 30 minutes or more.
Finally, shot peening is performed.

尚、必ずしもショットピーニング加工を行う必要なく、
特に高度の疲労強度が要求される部品の製造時に行われ
る。
In addition, it is not necessarily necessary to perform shot peening processing,
This is especially done when manufacturing parts that require a high degree of fatigue strength.

したがって、本発明の方法は、概路次の工程を行うもの
である。
Accordingly, the method of the present invention generally involves the following steps.

以下、本発明の方法を詳述すると、上記の如く、基礎と
なる球状黒鉛鋳鉄素材は次の化学組成よりなる。
Hereinafter, the method of the present invention will be described in detail. As mentioned above, the basic spheroidal graphite cast iron material has the following chemical composition.

即ち、C: 2.6〜4.0重量%(以下重量係を示す
) 、 Si : 1.5〜3.5 、 Mn : 0
.1〜1.0゜Mg : 0.02’−0,10、Ni
: 0.3〜2.0 、Mo :0.1〜1.5.残
部は実質的に鉄からなる化学組成である。
That is, C: 2.6 to 4.0% by weight (hereinafter referred to as weight percentage), Si: 1.5 to 3.5, Mn: 0
.. 1~1.0゜Mg: 0.02'-0,10, Ni
: 0.3-2.0, Mo: 0.1-1.5. The remainder has a chemical composition consisting essentially of iron.

上記NiとMoの添加理由及び成分の限定理由を説明す
る。
The reason for adding Ni and Mo and the reason for limiting the components will be explained.

尚C、Si 、Mn 、Mgについては一般に知られて
いる球状黒鉛鋳鉄組成と同じ範囲にあり、かつその数値
もよく知られた理由に基づくものと同じであるため説明
を省略する。
Note that C, Si 2 , Mn 2 , and Mg are in the same range as the generally known composition of spheroidal graphite cast iron, and the numerical values are also the same as those based on well-known reasons, so the explanation will be omitted.

Ni、Moは熱変化に対する材料の感受性を高める元素
であり、後述するオーステンパー処理における恒温変態
を容易完全に行わしめる。
Ni and Mo are elements that increase the sensitivity of the material to thermal changes, and facilitate complete isothermal transformation in the austempering process described below.

かつ、鋳造材料として良好な生産性を上げるためtこけ
、チル化傾向をそれ程促進しないことが条件であり、本
発明者達が実験した結果、Ni、Moが最も適した元素
であることが判った。
In addition, in order to improve productivity as a casting material, it is a condition that the tendency of melting and chilling is not promoted so much, and as a result of experiments conducted by the present inventors, it was found that Ni and Mo are the most suitable elements. Ta.

上記Niの添加量を0.3〜2.0重量%に限定したの
は、0.3%未満では効果が現われず、添加量を増加し
て、1.5係付近でその効果は次第に飽和し、2.0%
以上としてもコストが上昇するだけで効果の向上は望め
ない。
The reason why the amount of Ni added was limited to 0.3 to 2.0% by weight is that the effect does not appear when it is less than 0.3%, and when the amount is increased, the effect gradually becomes saturated at around 1.5%. 2.0%
Even if this is done above, the cost will only increase and no improvement in effectiveness can be expected.

Moを0.1〜1.5%としたのは、MoはNiに比べ
て微量でも効果は顕著であり、0.1%以上の添加量で
効果が現われ、1.5%程度で効果は飽和し、それ以上
になると鋳造性を阻害し、かつ、コストが上昇するため
である。
The reason why Mo is set at 0.1 to 1.5% is that the effect of Mo is remarkable even in a small amount compared to Ni, and the effect appears when the amount added is 0.1% or more, and the effect is not effective when it is added at about 1.5%. This is because if it becomes saturated and exceeds that level, castability will be hindered and costs will increase.

上記素材を、製造部品に鋳造後、前記の如く、まず、7
50〜950°Cに加熱し、0.5〜4時間保持し、そ
の後に徐冷する1次熱処理を行う。
After casting the above material into manufacturing parts, first, as described above, 7
A primary heat treatment is performed by heating to 50 to 950°C, holding for 0.5 to 4 hours, and then slowly cooling.

この1次熱処理は、その後のオーステンパー処理のため
の加熱時および冷却時lこ生じる変形のうち、加熱時の
変形をこの1次熱処理によって生じさせるものであり、
該1次熱処理によって素材の基地をほとんどフエーライ
ト組織とすることにより、変形を生じさせる。
This primary heat treatment causes deformation during heating among the deformations that occur during heating and cooling for the subsequent austempering treatment,
The primary heat treatment transforms the base of the material into almost a ferrite structure, thereby causing deformation.

この変形は次の機械加工で取り除き、該機械加工後のオ
ーステンパー処理時の変形を少なくシ、かつ、フエーラ
イト地として次の機械加工工程が非常にスムーズに行え
るようにする。
This deformation is removed in the next machining process, so that the deformation during the austempering process after the machining process is minimized, and the next machining process can be performed very smoothly as a ferrite base.

上記1次熱処理の温度及び時間は下記の理由により限定
している。
The temperature and time of the primary heat treatment are limited for the following reasons.

温度を750〜950℃とするのは、750℃が基地を
フエーライト化するために必要な温度であり、950°
Cを越えると結晶粒が粗大化しもろくなる。
The reason why the temperature is 750 to 950°C is that 750°C is the temperature necessary to turn the base into ferrite, and 950°C is the temperature required to turn the base into ferrite.
If it exceeds C, the crystal grains become coarse and brittle.

時間を0.5〜4.0時間とするのは、0.5時間が基
地をフエーライト化するために必要な時間であり、4.
0時間を越えると結晶粒が粗大化しもろくなる。
The reason for setting the time to 0.5 to 4.0 hours is that 0.5 hours is the time required to turn the base into ferrite, and 4.
If the time exceeds 0 hours, the crystal grains become coarse and brittle.

上記1次熱処理加工して、素材に変形を生じさせた後、
機械加工あるいは研磨加工を周知の方法で行い、上記変
形を取り除く。
After the above primary heat treatment process to cause deformation of the material,
Machining or polishing is performed using known methods to remove the deformation.

上記機械加工後に部品をオーステンパー処理する。After the above machining, the parts are austempered.

即ち、第1図に示す如く、部品を850〜1000℃に
加熱し、数分〜4.0時間加熱保持して素材の基地をオ
ーステナイト組織;こし、その後、200〜400℃の
熔融金属またはソルト等の熱浴中に焼入し、一定温度で
30分以上保持して恒温変態をさせ、基地の主体をベー
ナイト組織にする。
That is, as shown in Fig. 1, the part is heated to 850 to 1000°C and maintained at a temperature of several minutes to 4.0 hours to form an austenitic structure; The material is quenched in a hot bath such as the above, and held at a constant temperature for 30 minutes or more to undergo isothermal transformation, making the matrix mainly a bainite structure.

このオーステンパー処理により硬度が増し耐摩耗性及び
疲労強度が向上する。
This austempering treatment increases hardness and improves wear resistance and fatigue strength.

このオーステンパー処理時に850〜1000℃に加熱
する際、従来方法では大きな変形が生じたが、該加熱時
の変形を1次熱処理によって生じさせているため、殆ん
ど該オーステンパー処理時に生じない。
When heating to 850-1000℃ during this austempering process, large deformation occurred in the conventional method, but since the deformation during heating is caused by the primary heat treatment, almost no deformation occurs during the austempering process. .

尚、850〜1000℃より200〜400℃に急冷す
る際に変形が生じるが、該変形は許容範囲である。
Note that deformation occurs when rapidly cooling from 850 to 1000°C to 200 to 400°C, but this deformation is within an allowable range.

上記オーステンパー処理時の温度及び時間の限定は下記
の理由による。
The temperature and time during the austempering treatment are limited for the following reasons.

まず、加熱時の温度を850〜1000°Cとするのは
、850℃が基地をオーステナイト化するために必要な
温度であり、1000℃を越えると結晶粒が粗大化する
と共に加熱設備が高価になる。
First, the temperature during heating is set at 850 to 1000°C because 850°C is the temperature necessary to austenite the matrix, and if it exceeds 1000°C, the crystal grains will become coarse and the heating equipment will be expensive. Become.

上記加熱時間を数分〜4.0時間とするのは、数分以下
では基地をオーステナイト化するのに不十分であり、4
.0時間を越えると結晶粒が粗大化するとともに脱炭が
生じる。
The reason for setting the above heating time to be from several minutes to 4.0 hours is that a heating time of several minutes or less is not sufficient to austenite the base;
.. If the time exceeds 0 hours, the crystal grains become coarser and decarburization occurs.

上記加熱後の急冷温度を200〜400℃とするのは、
200℃がマルテンサイト組織の生成を防止するために
必要な温度であり、400℃以下とするのはパーライト
組織の生成を防止し基地の主成分をベーナイト組織とす
るために必要な温度である。
The rapid cooling temperature after heating is set at 200 to 400°C because
200° C. is the temperature necessary to prevent the formation of martensitic structure, and 400° C. or lower is the temperature necessary to prevent the formation of pearlite structure and make the main component of the matrix to be bainite structure.

上記200〜400℃の一定温度で恒温保持する時間を
30分以上とするのは、ベーナイト組織を生成するため
には30分は必要とするためである。
The reason why the constant temperature holding time of 200 to 400° C. is set to 30 minutes or more is because 30 minutes is required to generate a bainite structure.

また、高度の疲労強度が要求される場合には、上記オー
ステンパー処理の後に、周知の方法でショットピーニン
グ処理を行う。
Further, when a high degree of fatigue strength is required, shot peening treatment is performed by a well-known method after the austempering treatment.

これは、球状黒鉛鋳鉄をオーステンパー処理すれば表面
に引張りの残留応力が発生し、このために動的な曲げ疲
労が不足する欠点があり、特に、オーステンパー処理時
の恒温変態時(200〜400℃で30分以上保持)の
温度が低い程、上記疲労強度の不足が顕著で、その上、
変形量も大きくなるからである。
This is because when spheroidal graphite cast iron is austempered, tensile residual stress is generated on the surface, which has the disadvantage of insufficient dynamic bending fatigue.Especially, during isothermal transformation during austempering (200 ~ The lower the temperature (maintained at 400°C for 30 minutes or more), the more pronounced the lack of fatigue strength becomes.
This is because the amount of deformation also increases.

よって、ショットピーニングを行うことにより、疲労強
度の大巾な増大が図らへかつ、恒温変態時の温度を低温
とした場合でも疲労強度の不足を補うことにより、該恒
温変態時の湿度範囲が拡大される。
Therefore, by performing shot peening, fatigue strength can be greatly increased, and even if the temperature during isothermal transformation is low, by compensating for the lack of fatigue strength, the humidity range during isothermal transformation can be expanded. be done.

さらに、ショットピーニングによる表面の塑性加工によ
って加工硬化され、部品の硬度向上が図れると共に、基
地中にオーステナイトが残留している場合、このオース
テナイトがショットピーニングによってマルテンサイト
に変態し、その結果強度及び耐摩耗性が向上するもので
ある。
Furthermore, plastic working of the surface by shot peening improves the hardness of the part, and if austenite remains in the matrix, this austenite is transformed into martensite by shot peening, resulting in improved strength and durability. This improves abrasion resistance.

つぎに、本発明の実施例を従来の方法を用いる比較例と
比べて説明する。
Next, an example of the present invention will be described in comparison with a comparative example using a conventional method.

第2図に示す如きテストピースを5本ずつ、下記の条件
で本発明方法及び従来方法で熱処理して作成した。
Five test pieces each as shown in FIG. 2 were heat-treated by the method of the present invention and the conventional method under the following conditions.

〔本発明実施例〕[Embodiments of the present invention]

条件 成分・”・C: 3.75 、 Si : 2.65
、Mn :0.41 、Mg : 0.037.Ni
: 0.50 。
Conditional components・”・C: 3.75, Si: 2.65
, Mn: 0.41, Mg: 0.037. Ni
: 0.50.

Mo : 0.30 (以上重量係)、残りFe1次処
理・・・・・・900℃で1.5時間加熱し、徐冷オー
ステンパー処理・・・・・・900℃で10分間加熱し
、急冷して300℃で2時間恒温保持上記条件の成分で
鋳造したテストピースを1次熱処理後、機械加工し、つ
いでオーステンパー処理を行った。
Mo: 0.30 (more than weight), remaining Fe primary treatment: heated at 900°C for 1.5 hours, slow cooling austempering treatment: heated at 900°C for 10 minutes, After rapid cooling and constant temperature holding at 300° C. for 2 hours, a test piece cast with the components under the above conditions was subjected to primary heat treatment, then machined, and then subjected to austempering treatment.

(但し、ショットピーニングは行っていない。(However, shot peening was not performed.

)〔比較例 I〕 条件 成分・・・上記本発明実施例と同じ オーステンパー処理・・・ 〃 上記成分で鋳造したテストピースを機械加工し、その後
にオーステンパー処理を行った。
) [Comparative Example I] Conditions Components: Same austempering treatment as in the above-mentioned examples of the present invention... A test piece cast with the above components was machined, and then austempering treatment was performed.

〔比較例 ■〕[Comparative example ■]

条件 成分・・・上記本発明実施例と同じ オーステンパー処理・・・ 〃 焼ならし・・・930℃で1.5時間加熱した後空冷上
記成分で鋳造したテストピースを上記条件で焼ならし後
、機械加工し、その後にオーステンパー処理を行った。
Conditional components: Same austempering treatment as in the above-mentioned examples of the present invention... 〃 Normalizing: Heated at 930°C for 1.5 hours, then air cooled A test piece cast with the above components was normalized under the above conditions. After that, it was machined and then austempered.

上記の如く作成したテストピースは、図示の如く、直径
15φ、長さ25Nの両側部の中央に12φ、30Mの
−廻り小径な部位を設けた形状である。
As shown in the figure, the test piece prepared as described above has a diameter of 15φ and a length of 25N, with a small diameter portion of 12φ and 30M provided in the center of both sides.

〔回転疲労テスト〕− 上記した各テストピースを水平として回転させ、テスト
ピースの12φの部位が一番上に振れた時と一番下に振
れた時の差を振れ量として測定した。
[Rotational Fatigue Test] - Each of the test pieces described above was rotated horizontally, and the difference between when the 12φ portion of the test piece swung to the top and to the bottom was measured as the amount of swivel.

その結果は第3図のグラフに示す通りであり、本発明実
施例では30μ以下であるに対し、比較例I、Iとも5
0μ以上であり振れ量は大きく、本発明実施例が比較例
と比べて回転疲労が少ない。
The results are as shown in the graph of FIG.
The amount of runout is 0 μ or more, and the amount of runout is large, and the examples of the present invention have less rotational fatigue than the comparative examples.

尚、上記振れ量の許容範囲は製品の用途によって異なる
が、好ましくは40μ以下である。
Note that the permissible range of the amount of runout varies depending on the use of the product, but is preferably 40μ or less.

つぎに、本発明方法におけるショットピーニング処理の
有無及び、オーステンパニ処理時の恒温変態時の保持温
度を変化させた場合の曲げ応力についてテストした結果
について説明する。
Next, the results of tests regarding the presence or absence of shot peening treatment in the method of the present invention and bending stress when changing the holding temperature during isothermal transformation during austempering treatment will be explained.

〔作成条件〕[Creation conditions]

成分、形状、1次熱処理、オーステンパー処理は上記第
3図に示す本発明方法の実施例と同様である。
The components, shape, primary heat treatment, and austempering treatment are the same as in the embodiment of the method of the present invention shown in FIG. 3 above.

但し、オーステンパー処理時の恒温変態条件中、−△−
及び−ム−は240℃×2時間−〇−及び−・−は30
0℃×2時間 5−ロー及び−一一は360’CX2時間上記オーステ
ンパー処理時の恒温変態条件が異なる3種のテストピー
スについて、ショットピーニングをしていないもの(図
中−△−2−〇−2−ロー)とショットピーニングをし
たもの(図中、−・ム一、−・−2−一一)と合計6種
類作成した。
However, during isothermal transformation conditions during austempering, -△-
and -mu- is 240℃ x 2 hours -〇- and -・- is 30
0°C x 2 hours 5-Ro and -11 are 360'C A total of 6 types were made, including those subjected to shot peening (-・muichi and --・-2-11 in the figure).

〔テスト力法〕[Test force method]

上記6種類のテストピースの両端に荷重をかけてテスト
ピースを回転させ、テストピースが破断した時の回転数
と応力の関係を測定した。
A load was applied to both ends of the six types of test pieces, and the test pieces were rotated, and the relationship between the number of rotations and the stress when the test pieces broke was measured.

その結果は第4図のグラフに示す通りであり、ショット
ピーニングを行ったものの力が曲げ応力が強く、かつ、
オーステンパー処理の恒温変態時の温度を高くした力が
曲げ応力が強いことが確認された。
The results are shown in the graph of Figure 4, which shows that the force of shot peening is strong bending stress, and
It was confirmed that the force that increases the temperature during isothermal transformation during austempering treatment causes strong bending stress.

以上の説明より明らかなように、この発明に係る球状黒
鉛鋳鉄の熱処理力法によれば、オーステンパー処理時の
製品の変形が少なくなり、高精度の製品が得られると共
に、オーステンパー処理及び、その後のショットピーニ
ング処理により耐摩耗性及び疲労強度が飛躍的iこ向上
し、ギヤ、スプロケット、カム類等の高耐摩耗性及び高
強度を要求する部品の製造に好適に採用できる利点を有
する。
As is clear from the above description, according to the heat treatment method for spheroidal graphite cast iron according to the present invention, the deformation of the product during austempering treatment is reduced, a highly accurate product can be obtained, and the austempering treatment and The subsequent shot peening treatment dramatically improves wear resistance and fatigue strength, which has the advantage that it can be suitably used in the manufacture of parts that require high wear resistance and strength, such as gears, sprockets, and cams.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はオーステンパー処理の温度と時間を示すグラフ
、第2図は本発明の効果をテストするために作成するテ
ストピースの正面図、第3図は本発明方法と従来方法と
を比較するためになされたオーステンパー処理の前工程
の違いによるテストピースの振れ量を示すグラフ、第4
図はオーステンパー処理時の温度を変化させた場合及び
ショットピーニングの有無の場合と曲げ応力との関係を
示すグラフである。
Figure 1 is a graph showing the temperature and time of austempering treatment, Figure 2 is a front view of a test piece prepared to test the effects of the present invention, and Figure 3 is a comparison between the method of the present invention and the conventional method. Graph showing the amount of deflection of the test piece due to the difference in the pre-process of the austempering treatment performed for the purpose, No. 4
The figure is a graph showing the relationship between bending stress when the temperature during austempering treatment is changed, when shot peening is performed, and when shot peening is performed.

Claims (1)

【特許請求の範囲】 IC:2.6〜4.0重量係、Si:1.5〜3.5重
量% 、 Mn : o、1〜1.o重量%、Ni:0
.3〜2.0重量%、MO: 0.1〜1.5重量%、
Mg:0.02〜0.1重量係、残部が実質的にFeか
らなる球状黒鉛鋳鉄を、750〜950℃で0.5〜4
.0時間加熱保持して後に徐冷する1次熱処理を行い、
ついで、機械加工を行い、850〜1000℃で4時間
以内加熱保持した後に200〜400℃に急冷し、該温
度で30分以上加熱保持するオーステンパー処理を行う
ことを特徴とする球状黒鉛鋳鉄部品の熱処理力法。 2C:2.6〜4.0重量係、Si:1.5〜3.5重
量%、Mn : o、1〜1.o重量% 、 Ni :
0.3〜2.0重量% 、 Mo : 0.1〜1.
5重量%、Mg:0.02〜0.1重量係、残部が実質
的にFeからなる球状黒鉛鋳鉄を、750〜950℃で
0.5〜4.0時間加熱保持して後に徐冷する1次熱処
理を行い、ついで、機械加工を行い、その後、850〜
1000℃で4時間以内加熱保持した後に200〜40
0℃に急冷し、該温度で30分以上加熱保持するオース
テンパー処理を行い、その後、ショットピーニングを行
うことを特徴とする球状黒鉛鋳鉄部品の熱処理力法。
[Claims] IC: 2.6 to 4.0 weight percent, Si: 1.5 to 3.5 weight %, Mn: o, 1 to 1. o weight%, Ni: 0
.. 3-2.0% by weight, MO: 0.1-1.5% by weight,
Mg: 0.02 to 0.1 by weight, spheroidal graphite cast iron with the balance essentially consisting of Fe at 750 to 950°C, 0.5 to 4
.. Perform a primary heat treatment of holding heat for 0 hours and then slowly cooling it,
Spheroidal graphite cast iron parts are then machined, heated at 850 to 1000°C for less than 4 hours, rapidly cooled to 200 to 400°C, and subjected to austempering treatment by heating and held at this temperature for 30 minutes or more. heat treatment method. 2C: 2.6 to 4.0 weight percent, Si: 1.5 to 3.5 weight %, Mn: o, 1 to 1. o weight%, Ni:
0.3-2.0% by weight, Mo: 0.1-1.
Spheroidal graphite cast iron consisting of 5% by weight, Mg: 0.02-0.1% by weight, and the remainder substantially Fe is heated and held at 750-950°C for 0.5-4.0 hours, and then slowly cooled. First heat treatment, then machining, then 850 ~
200-40 after heating and holding at 1000℃ for less than 4 hours
A heat treatment method for spheroidal graphite cast iron parts, which comprises rapidly cooling to 0°C, performing an austempering treatment by heating and holding at that temperature for 30 minutes or more, and then performing shot peening.
JP4148078A 1978-04-07 1978-04-07 Heat treatment method for spheroidal graphite cast iron parts Expired JPS5931567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4148078A JPS5931567B2 (en) 1978-04-07 1978-04-07 Heat treatment method for spheroidal graphite cast iron parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4148078A JPS5931567B2 (en) 1978-04-07 1978-04-07 Heat treatment method for spheroidal graphite cast iron parts

Publications (2)

Publication Number Publication Date
JPS54133420A JPS54133420A (en) 1979-10-17
JPS5931567B2 true JPS5931567B2 (en) 1984-08-02

Family

ID=12609504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4148078A Expired JPS5931567B2 (en) 1978-04-07 1978-04-07 Heat treatment method for spheroidal graphite cast iron parts

Country Status (1)

Country Link
JP (1) JPS5931567B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719320A (en) * 1980-07-09 1982-02-01 Takaoka Kogyo Kk Heat treatment of spheroidal graphite cast iron
JPS57177918A (en) * 1981-04-24 1982-11-01 Takaoka Kogyo Kk Production of tough and strong spheroidal graphite cast iron casting
JPS5842721A (en) * 1981-09-04 1983-03-12 Takaoka Kogyo Kk Heat treatment of spheroidal graphite cast iron
JPS60500217A (en) * 1983-01-24 1985-02-21 フオ−ド モ−タ− カンパニ− Method of manufacturing ductile iron with improved strength
US4484953A (en) * 1983-01-24 1984-11-27 Ford Motor Company Method of making ductile cast iron with improved strength
JPS6024318A (en) * 1983-02-25 1985-02-07 Hitachi Metals Ltd Manufacture of spheroidal graphite cast iron
JPS59157221A (en) * 1983-02-25 1984-09-06 Hitachi Metals Ltd Manufacture of spheroidal graphite cast iron
JPS60197841A (en) * 1984-03-19 1985-10-07 Nissan Motor Co Ltd Spheroidal graphite cast iron
US4838956A (en) * 1987-04-16 1989-06-13 Mazda Motor Corporation Method of producing a spheroidal graphite cast iron
CN111910120A (en) * 2020-08-10 2020-11-10 安徽恒升铸业有限公司 Preparation method of high-toughness nodular cast iron
CN112708821A (en) * 2020-12-22 2021-04-27 重庆江增机械有限公司 Aerospace mold material and manufacturing method thereof

Also Published As

Publication number Publication date
JPS54133420A (en) 1979-10-17

Similar Documents

Publication Publication Date Title
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
EP0745696B1 (en) High strength steel composition having enhanced low temperature toughness
JPS5931567B2 (en) Heat treatment method for spheroidal graphite cast iron parts
JPS6411707B2 (en)
JPS5967365A (en) Production of machine parts
JPS582243B2 (en) Manufacturing method for non-thermal forged parts for automobiles
JPS63118048A (en) Sliding member made of cast iron and its manufacture
JPS58107416A (en) Method of directly softening steel wire or rod steel useful for mechanical construction
JP2000008140A (en) Linear or bar-shaped steel and machine parts
US4058417A (en) Turbine bucket alloy
JPH0565540A (en) Manufacture of high strength bolt
JPH04210449A (en) High toughness non-heat treated steel for hot forging
JP3474544B2 (en) Linear or rod-shaped steel with reduced deformation resistance at room temperature and in the heating area
JP2614653B2 (en) Manufacturing method of carburized parts with little heat treatment distortion
JPH07310118A (en) Production of case hardening steel suitable for cold-working
JPS6145686B2 (en)
JP6752624B2 (en) Manufacturing method of carburized steel
JPS5980715A (en) Production of spheroidal graphite cast iron having high resistance to fatigue
JPH0576522B2 (en)
JPH02166257A (en) Spheroidal graphite cast iron and its production
JPH0219425A (en) Manufacture of turbine rotor
JPH02270937A (en) High manganese steel having high rolling contact fatigue properties and its manufacture
JP2852680B2 (en) Carburizing heat treatment method for case hardened steel
JPH03267347A (en) High speed rotating member
KR100501680B1 (en) Heat treatment method of boron alloys for gear