EP0738572A1 - Procédé pour l'orientation de monocristaux pour le découpage dans une machine de découpage et dispositif pour la mise en oeuvre de ce procédé - Google Patents

Procédé pour l'orientation de monocristaux pour le découpage dans une machine de découpage et dispositif pour la mise en oeuvre de ce procédé Download PDF

Info

Publication number
EP0738572A1
EP0738572A1 EP96105699A EP96105699A EP0738572A1 EP 0738572 A1 EP0738572 A1 EP 0738572A1 EP 96105699 A EP96105699 A EP 96105699A EP 96105699 A EP96105699 A EP 96105699A EP 0738572 A1 EP0738572 A1 EP 0738572A1
Authority
EP
European Patent Office
Prior art keywords
single crystal
cutting
plane
machine
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96105699A
Other languages
German (de)
English (en)
Other versions
EP0738572B1 (fr
Inventor
Charles Hauser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Switzerland SARL
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH113595A external-priority patent/CH690422A5/fr
Priority claimed from CH113695A external-priority patent/CH690423A5/fr
Application filed by Individual filed Critical Individual
Publication of EP0738572A1 publication Critical patent/EP0738572A1/fr
Application granted granted Critical
Publication of EP0738572B1 publication Critical patent/EP0738572B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/0082Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work
    • B28D5/0088Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material for supporting, holding, feeding, conveying or discharging work the supporting or holding device being angularly adjustable

Definitions

  • the present invention relates to a method for orienting single crystals for cutting in a cutting machine according to a predetermined cutting plane.
  • Monocrystals generally for optical or semiconductor uses require that they be cut according to very precise orientations relative to the axes of the crystal lattice.
  • their manufacture does not allow perfect control of the orientation of the axes of the crystal lattice relative to the geometric axes. It is therefore necessary for correct cutting to correct on the one hand the manufacturing error and on the other hand, take into account the angles formed between the cutting plane and the crystalline plane chosen or imposed by the subsequent uses or processes. Since the cutting is done from a geometric single crystal, it will have to be positioned and maintained in space so that the movement of the cutting system is parallel to the desired cutting plane.
  • the present invention aims to remedy the aforementioned drawbacks and to allow precise adjustment of the positioning of the single crystal in a clean environment and to increase the productivity of cutting.
  • the invention is characterized for this purpose by the characteristics appearing in the independent claims and is characterized by the fact that the single crystal is oriented by means of a positioning device outside the cutting machine in a predetermined orientation relative to a cutting support, which the single crystal is fixed in accordance with said predetermined orientation on the cutting support, the positioning of which in the machine cutting is geometrically defined with respect to the cutting plane of the machine, and that the cutting support is available after fixing the single crystal in the cutting machine according to said geometrically defined positioning to obtain said predetermined orientation of the single crystal in the machine cutting.
  • the invention is characterized in that said predetermined orientation is obtained by placing the single crystal on the positioning device so that one of its geometric axes of the geometric shape of the single crystal is included in a reference plane corresponding to the working plane of the cutting machine perpendicular to the cutting plane, by rotating the single crystal by a first predetermined angle around said geometric axis to bring the normal to the cutting plane of the single crystal in said reference plane , and by performing a relative rotation between the cutting support and the single crystal of a second predetermined angle about an axis perpendicular to said reference plane so that the normal to the cutting plane is oriented in a reference direction corresponding to the normal in the cutting plane of the machine, said geometric axis and the normal to the cutting plane of the single crystal being included in the reference plane.
  • the disadvantage of having an inclined position of the single crystal relative to the direction of advance of the cutting elements of the machine is thus remedied in a precise and easy manner, which is particularly unfavorable in wire saws.
  • the main geometrical axis of the single crystal can thus be oriented perfectly parallel to the work surface or to the ply of wires, an optimal cutting is therefore obtained while minimizing the cutting length.
  • the method is characterized in that the orientation of the cutting plane of the single crystal is defined relative to the crystal lattice, in that the orientation of the crystal lattice is measured in relation to the geometric shape of the single crystal, and in what the first and second angles of rotation are calculated taking into account the orientation of the cutting plane with respect to the crystal lattice and with respect to the geometric shape of the single crystal.
  • the method according to the invention is particularly advantageously applicable to the use of a single crystal of which the geometric shape is substantially circular cylindrical, said geometric axis corresponding to the main axis of the single crystal and by placing the single crystal on two parallel rotating cylinders of the positioning device, the axes of the two cylinders being parallel to said reference plane.
  • the invention also applies to a device for implementing the method which is characterized in that it comprises a positioning device intended to orient the single crystal out of the cutting machine in accordance with a predetermined orientation relative to a cutting support on which the single crystal is intended to be fixed and whose placement in the cutting machine is geometrically defined and whose main axes are parallel to the axes of the cutting machine.
  • This device for implementing the method is advantageously characterized in that it comprises first means for supporting the single crystal in an orientation such that one of the geometric axes of the geometric shape of the single crystal is included in a corresponding reference plane to the working plane of the cutting machine and to perform a rotation of the single crystal by a first predetermined angle about said geometric axis to bring the normal to the cutting plane of the single crystal in said reference plane and second means for carrying out a relative rotation between the cutting support and the single crystal of a second predetermined angle around an axis perpendicular to said reference plane so that the normal to the cutting plane is oriented along a reference direction corresponding to the normal to the cutting plane of the machine, and by the fact that it comprises third means for effecting a relative translational movement between the single crystal and the cutting support intended to bring the cutting support closer and the single crystal in order to fix the latter on the cutting support, in said predetermined orientation.
  • a favorable embodiment is characterized in that the first means comprise two parallel cylindrical supports rotatably mounted on a chassis of the positioning device and arranged so as to support the single crystal and a first angular measurement member capable of determining the first predetermined angle of rotation, by the fact that the second means comprise a rotary plate rotatably mounted with respect to said chassis and the main plane of which is parallel to the axes of said cylindrical supports, this rotary plate being arranged so as to maintain the support of cutting in a geometrically defined position, a second angular measuring member being provided for determining said second predetermined angle of rotation, by the fact that the third means comprise a translation mechanism allowing the cutting support to be brought closer to the single crystal and by the fact that the cutting support is shaped so that its positioning in the cutting machine is effected according to a geometric position corresponding to the geometric position defined on said rotary table so that the reference plane and the reference direction correspond to the work plan and normal to the cutting plane of the machine.
  • Figure 1 illustrates in perspective an example of a single crystal with its geometric and crystallographic axes and the chosen cutting plane.
  • FIGS. 2A and 2B illustrate in two orthogonal views the position of the single crystal obtained by a known and commonly used method.
  • Figures 3A and 3B show in two orthogonal views the position of the single crystal obtained in accordance with the present invention.
  • FIG. 4 represents a vector diagram of the various reference systems used.
  • FIGS. 5A, 5B, 5C illustrate the positions occupied by the single crystal following the orientation method according to the invention.
  • Figure 6 is a perspective view of an embodiment of the device for the implementation of the method.
  • the invention gives the possibility of installing pre-oriented single crystals on the cutting machine, the cutting plane of which is oriented parallel to the cutting plane of the machine and rotated along a perpendicular axis (normal to the cutting plane), so as to minimize the cutting length.
  • This determination will be made mathematically from the measurements carried out to determine the error of the geometric single crystal with respect to the crystal lattice by including the requirements of the subsequent process in relation to the crystal axes.
  • the mounting of the single crystal on its support can then be done using a positioning device which allows the exact measurement of the angles of rotation of the geometric single crystal, and to mount it as is on a cutting support which is a part with indexing belonging to the cutting machine.
  • the single crystal can be clamped or preferably glued to the support, support which once transferred to the cutting machine will present a perfectly preoriented single crystal ready to be sawed without subsequent adjustment.
  • the cutting precision will be independent of the machine used or of the operator in the case of production lines.
  • the positioning device will be in the form of a table or a frame with a rotary table having its axis of rotation z '''vertical on which is posed the support of the single crystal on which it will be fixed later.
  • This support has an indexing system identical to that of the cutting machine.
  • the single crystal support is an interface piece between the positioning device and the cutting machine. It will therefore have the same position on the positioning device and on the cutting machine.
  • Above the rotary table but fixed relative to the table is a mechanism for holding the single crystal and rotating it along its horizontal axis x. This system is composed in the case of cylindrical single crystals of two cylinders on which the single crystal rests. The single crystal can then rotate along its x axis.
  • the movement of the plate and the rotation of the single crystal x allow it to be positioned in any orientation.
  • the value of the two angles of rotation will be determined by the requirements of the finished product and calculated mathematically.
  • a mechanism brings the support into contact with the single crystal itself while retaining their relative position. This can be done either by raising the turntable or by lowering the single crystal. Once brought into contact, the single crystal will be clamped or glued in position.
  • the single crystal support can then be transferred to the cutting machine.
  • the single crystal is then oriented, ready to be cut.
  • FIG. 1 represents an example of a single crystal to be cut 2 which has a cylindrical geometric shape with geometric axes x, y, z, the x axis being the main axis.
  • the axes x ', y', z 'of the crystal lattice of this single crystal are not parallel to the geometric axes.
  • the angles a and f between the axes y ', y and z', z are determined by optical or X-ray measurement and generally define the manufacturing error of the single crystal.
  • Figure 1 also shows the chosen or imposed cutting plane 16 of the single crystal with its axes y '' and Z '' inclined by the angular values p and t relative to the axes y ', z' of the crystal lattice and the normal x '' on the cutting plane.
  • the angular values p and t are generally defined according to the needs of the subsequent use of the cut single crystal. It is understood that these angles p and t may for example be equal to zero in the case where it is desired to obtain silicon wafers cut parallel to the plane (100).
  • FIGS. 2A and 2B show in lateral and plan view, the position of the single crystal 2 obtained by the known method and commonly used before the present invention by performing an orientation of the single crystal by rotation around the geometric axes y and z.
  • the single crystal 2 is then not parallel to the plane of the ply of wires 17 in the case of the use of a wire saw as a cutting means.
  • the machine plane x ''',y''' of the cutting machine is not parallel to the geometrical axis x of the single crystal 1.
  • the direction of advance along z '''of the ply of wires 17 n ' is not perpendicular to the single crystal, which is detrimental to the quality of the cut.
  • Figures 3A and 3B illustrate the orientation of the single crystal obtained by the method according to the present invention by performing an orientation of the single crystal by rotation around the geometric axes x and z '' '.
  • the ply of wires 17 of the saw used as a cutting machine is located in the plane x '' 'y' '' and the geometric axis x of the single crystal is parallel to this plane x '' ', y' ''.
  • the single crystal is therefore in an optimal position relative to the cutting means, so as to obtain a very precise cutting.
  • the vector diagram of the various reference systems used for positioning is shown in FIG. 4 and includes the reference system x, y, z linked to the geometric shape of the single crystal, the reference system x ', y', z 'linked to the crystal lattice of the single crystal, the reference frame x '', y '', z '' corresponding to the cutting plane of the single crystal and the reference frame x '' ', y' ', z '' 'used for the positioning device and the cutting machine.
  • the cutting plane corresponds to the y '', z '' plane and its normal corresponds to the x '' direction.
  • the misalignment of the geometric shape of the single crystal 2 with the crystal lattice is determined by the angles a and f, corresponding to the angles y'y and z'z.
  • the angles p and t corresponding to the angles y''y 'and z''z' determine the orientation of the chosen cutting planes with respect to the reference frame of the crystal lattice.
  • the normal x '' to the cutting plane y''z '' defines a vector x '' (x, y, z) which makes an angle g with the geometric axis x and the projection of the vector X '' (x, y, z) on the y-plane, z makes an angle d with y.
  • the angle d therefore corresponds to the angle of rotation around the geometric axis x to bring the normal x '' to the cutting plane y '', z '' in a reference plane corresponding to the work plane x '' ', y' '' of the machine.
  • the angle g corresponds to the angle of rotation around the vertical axis z '' 'so that the normal x' 'to the cutting plane is oriented in a reference direction corresponding to the normal x' '' to the plane cutting y '' 'z' '' of the machine to make the desired cutting plane coincide with the cutting plane of the cutting machine.
  • FIGS. 5A, 5B and 5C illustrating three successive positions.
  • the single crystal is placed on the positioning device and its geometric axes x, y, z are aligned with the axes x ''',y''', z '''of the alignment device and the cutting machine.
  • the geometric single crystal x, y, z is oriented parallel to the plane x '' ', y' '' with an angle g relative to the normal X '' 'to the cutting plane corresponding to the requirements of the process used later.
  • the resulting sawing will have the angles t and p relative to the crystallographic axes y 'and z'. It is understood that the second rotation may also be carried out by rotating the cutting support by an angle -g, the single crystal remaining stationary as is done in the embodiment illustrated in FIG. 6.
  • the latter is constituted by a positioning device 1 which makes it possible to orient the single crystal 2 out of a cutting machine in accordance with a predetermined orientation with respect to a cutting support which is in the form of a support 3 on which the single crystal will be fixed after proper orientation.
  • the positioning device 1 for this purpose comprises a table or a frame 5 with an upper part 6 and a lower part 7.
  • the single crystal 2 is carried by two support cylinders 8 mounted rotating on the upper part 6 with their main axis oriented parallel to the x axis.
  • An angular measuring member, in the form of an encoder 10 makes it possible to measure the angle of rotation d of the single crystal around the x axis.
  • a rotary plate 12 is mounted to rotate along the axis z '' 'on the lower part 7 of the chassis.
  • An angular measurement system integrated in the rotary plate 12 makes it possible to measure the angle of rotation g around the axis z '' '.
  • the support 3 is maintained in a precise predetermined orientation on the rotary plate 12.
  • the turntable 12 is also slidably mounted in the direction z '''on the lower part 7 of the chassis in order to be able to bring the support 3 closer to the single crystal 2 by means of a lifting mechanism 14 to fix the single crystal 2 to the support 3.
  • the support 3 and the single crystal 2 can be placed in the cutting machine according to a predetermined geometric position so that the reference plane x ''' s , y''' s of the support 3 corresponds to the plane x ''',y''' of the cutting machine and so that the perpendicular x '''to the cutting plane of the machine is parallel to the reference direction x''' s of the support.
  • the method and the device described allow the positioning of a single crystal on a support outside the cutting machine so that the single crystal, once mounted with its support on a cutting machine, is cut with a given orientation of the axes crystalline with respect to the saw plane.
  • the position of a cylindrical single crystal is such that the generators thereof are placed parallel to the ply of wires 17 in the case of a wire saw or parallel to the direction of movement defining the thickness of the slices if it is a cut with cam.
  • the orientation of the crystal lattice is measured with respect to the geometric shape of the single crystal optically or by means of X-rays.
  • the positioning device or the cutting support can advantageously be arranged for this purpose so that they can be mounted on a generator X-rays so that the positioning of the single crystal can be carried out and controlled simultaneously.
  • the orientation of the cutting plane y '', z '' with respect to the crystal lattice x ', y,' z 'being imposed by the subsequent application, the values of the two angles of rotation of the single crystal d along the x axis and g along the z axis''' of the positioning device are determined mathematically. Once the two rotations carried out according to the calculated values, the single crystal will be in the position sought for the cutting machine, namely perpendicular to the cutting advance having in addition its cutting plane parallel to that of the machine.
  • the positioning device will allow the single crystal to be fixed either by clamping or by gluing on a pre-indexed support relative to the cutting machine.
  • the orientation given by the method minimizes in the case of cylindrical single crystals the sawing length.
  • the cutting machine therefore does not require any adjustment device to ensure cutting according to the angular specifications required after the transfer of the single crystal onto its cutting support and of the latter into the cutting machine.
  • the wire table of a wire saw remains parallel to the geometrical single crystal throughout the cutting while ensuring an adequate orientation of the slices thus produced. Likewise, the saw blade of a blade machine remains perpendicular to the single crystal.
  • the embodiment described above has no limiting character and that it can receive any desirable modifications inside the frame as defined by claim 1.
  • the two angles of rotation around x and z axes' '' could be replaced by angles taken and calculated with respect to other geometric and crystallographic reference frames, but which lead to the same result as the normal to the cutting plane of the single crystal is oriented in a reference direction corresponding to the normal to the cutting plane of the machine and that a predetermined geometric axis of the single crystal and the normal to the cutting plane are included in a reference plane corresponding to the working plane of the machine.
  • the cutting plane can be determined by other angles than p and t relative to the crystal lattice and the shift of the crystal lattice relative to the geometric shape of the single crystal can be indicated by other angles measured than a and f.
  • the two support cylinders 8 could be replaced by other means for supporting the single crystal and for performing a rotation of the single crystal such as for example a single support in or on which the single crystal is temporarily fixed and which is mounted to rotate on the table or the chassis.
  • This rotation support could be arranged at one or two opposite ends of the single crystal.
  • the relative rotation between the single crystal and the cutting support around the axis z '''could also be obtained by rotating the single crystal with respect to the cutting support which would remain stationary on the table or the chassis of the positioning device.
  • the rotary table would then be replaced by a rotary member along z '''and carrying the temporary support of the single crystal.
  • the angular measurement members could be electronic, optical or mechanical.
  • the approximation or bringing into contact of the single crystal and the cutting support could be carried out from the bottom or from the top and by moving either the cutting support or the single crystal.
  • the rotations around the two horizontal and vertical axes x, z '''could be inverted over time by first performing the rotation around the z axis' '' and then the rotation around the horizontal x axis.
  • the method and the device could also be used for the oriented cutting of single crystals of any other geometric shape or of any material other than a single crystal, such as polycrystalline assemblies with predetermined crystal orientation, crystals with simple or polysynthetic rings, aggregates. oriented crystallines, alloys, oriented crystalline substances contained in an amorphous substance, for example polarizing materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Le procédé et le dispositif de positionnement (1) d'un monocristal (2) en vue d'une découpe selon des directions bien définies supprime le réglage en machine et minimise la durée de découpe en procédant à une mise en position hors machine selon des angles de rotation (d,g) obtenus mathématiquement à partir de données mesurées et/ou imposées et qui positionnent le monocristal géométrique dans un plan perpendiculaire à la direction de découpage (z''') tout en amenant le plan de découpe du monocristal (2) parallèle à la direction de découpage de la machine. Le dispositif de mise en oeuvre du procédé comprend un châssis (5), deux cylindres (8) montés tournant sur le châssis et portant le monocristal (2) et un plateau rotatif (12) destiné à maintenir le support de découpage (3) appartenant à la fois au dispositif de positionnement (1) et à la machine de découpage. Par un mécanisme de levage (14), le support (3) et le monocristal (2) sont mis en contact et rendus solidaires après avoir obtenu leur orientation relative prédéterminée par rotation autour des axes x et z'''. Le procédé et le dispositif permettent d'obtenir un positionnement exact du monocristal (2) hors machine dans des conditions propices, un découpage très précis et rapide et une augmentation de la productivité. <IMAGE>

Description

  • La présente invention concerne un procédé pour l'orientation de monocristaux en vue d'une découpe dans une machine de découpage selon un plan de découpe prédéterminé.
  • Les monocristaux généralement à usages optiques ou semiconducteurs nécessitent que ceux-ci soient découpés selon des orientations très précises par rapport aux axes du réseau cristallin. De plus, leur fabrication ne permet pas de contrôler de manière parfaite l'orientation des axes du réseau cristallin par rapport aux axes géométriques. Il faut donc pour que la découpe soit correcte corriger d'une part l'erreur de fabrication et d'autre part, tenir compte des angles formés entre le plan de découpe et le plan cristallin choisi ou imposé par les utilisations ou procédés subséquents. Etant donné que la découpe se fait à partir d'un monocristal géométrique, il faudra le positionner et le maintenir dans l'espace de telle manière que le déplacement du système de découpe soit parallèle au plan de découpe désiré. Il existe une infinité de positions possibles, toutefois il n'en n'existe que quatre qui en plus place le monocristal dans un plan perpendiculaire au plan de découpe de la machine. Le positionnement des monocristaux selon l'une de ces quatre positions permet donc de découper non seulement dans l'orientation désirée mais également de minimiser le temps de la découpe donc d'améliorer la productivité du dispositif de découpe.
  • Des dispositifs d'orientation de monocristaux sont déjà connus et utilisés dans l'industrie des semiconducteurs sur des tronçonneuses à diamètre intérieur ou sur des scies à fils. Le positionnement se fait à l'aide de table orientable y''', z''' montée directement sur la machine. L'ajustement se fait après mesure optique ou aux rayons X. La correction est alors introduite selon y''',z'''. Cette manière de pratiquer a le désavantage d'une part d'avoir une position du monocristal inclinée par rapport à l'avance de l'élément de découpe, ce qui est très défavorable dans le cas d'une scie à fils ou la nappe de fils doit être parallèle au monocristal géométrique, et d'autre part de ne pas minimiser la longueur de découpe, ce qui est alors défavorable pour les scies à diamètre intérieur en diminuant leur productivité. De plus, cette manière de pratiquer oblige à régler la table de la machine avant chaque découpe de manière très précise et dans un environnement industriel souvent sale donc peu propice à ce type d'opération. Le temps de réglage de la machine contribue également à la baisse de la productivité.
  • La présente invention a pour but de remédier aux inconvénients précités et de permettre un réglage précis du positionnement du monocristal dans un environnement propre et d'augmenter la productivité du découpage.
  • L'invention est caractérisée à cet effet par les caractéristiques figurant aux revendications indépendantes et est caractérisée par le fait qu'on oriente le monocristal au moyen d'un dispositif de positionnement hors de la machine de découpage selon une orientation prédéterminée par rapport à un support de découpage, qu'on fixe le monocristal conformément à ladite orientation prédéterminée sur le support de découpage dont la mise en place dans la machine de découpage est géométriquement définie par rapport au plan de découpage de la machine, et qu'on dispose le support de découpage après fixation du monocristal dans la machine de découpage selon ladite mise en place géométriquement définie pour obtenir ladite orientation prédéterminée du monocristal dans la machine de découpage.
  • Par ces caractéristiques, il est possible d'obtenir un positionnement et une orientation précise du monocristal dans un environnement de mesure propice, sans qu'il soit nécessaire d'effectuer aucun réglage de positionnement sur la machine de découpe. Les temps d'arrêt de cette dernière peuvent donc être diminués considérablement de manière a augmenter la productivité.
  • Dans un mode d'exécution préféré, l'invention est caractérisée par le fait que ladite orientation prédéterminée est obtenue en disposant le monocristal sur le dispositif de positionnement de façon qu'un de ses axes géométriques de la forme géométrique du monocristal soit compris dans un plan de référence correspondant au plan de travail de la machine de découpage perpendiculaire au plan de découpage, en effectuant une rotation du monocristal d'un premier angle prédéterminé autour dudit axe géométrique pour amener la normale au plan de découpe du monocristal dans ledit plan de référence, et en effectuant une rotation relative entre le support de découpage et le monocristal d'un second angle prédéterminé autour d'un axe perpendiculaire audit plan de référence de façon que la normale au plan de découpe soit orientée suivant une direction de référence correspondant à la normale en plan de découpage de la machine, ledit axe géométrique et la normale au plan de découpe du monocristal étant compris dans le plan de référence.
  • On remédie ainsi de façon précise et aisée au désavantage d'avoir une position du monocristal inclinée par rapport à la direction de l'avancement des éléments de découpage de la machine, ce qui est particulièrement défavorable dans les scies à fils. L'axe géométrique principal du monocristal peut ainsi être orienté parfaitement parallèlement au plan de travail ou à la nappe de fils, on obtient donc une découpe optimale tout en minimisant la longueur de découpe.
  • Favorablement, le procédé est caractérisé en ce qu'on définit l'orientation du plan de découpe du monocristal par rapport au réseau cristallin, en ce qu'on mesure l'orientation du reseau cristallin par rapport à la forme géométrique du monocristal, et en ce qu'on calcule les premier et second angles de rotation en tenant compte de l'orientation du plan de découpe par rapport au réseau cristallin et par rapport à la forme géométrique du monocristal.
  • Par ces caractéristiques, on obtient une grande précision du positionnement et une rapidité de montage considérable.
  • Le procédé selon l'invention s'applique particulièrement avantageusement à l'utilisation d'un monocristal dont la forme géométrique est sensiblement cylindrique circulaire, ledit axe géométrique correspondant à l'axe principal du monocristal et en disposant le monocristal sur deux cylindres tournants parallèles du dispositif de positionnement, les axes des deux cylindres étant parallèles audit plan de référence.
  • L'invention s'applique également à un dispositif de mise en oeuvre du procédé qui est caractérisé par le fait qu'il comprend un dispositif de positionnement destiné à orienter le monocristal hors de la machine de découpage conformément à une orientation prédéterminée par rapport à un support de découpage sur lequel le monocristal est destiné à être fixé et dont la mise en place dans la machine de découpage est géométriquement définie et dont les axes principaux sont parallèles aux axes de la machine de découpage.
  • Ce dispositif pour la mise en oeuvre du procédé est avantageusement caractérisé par le fait qu'il comprend des premiers moyens pour supporter le monocristal dans une orientation telle qu'un des axes géométriques de la forme géométrique du monocristal est compris dans un plan de référence correspondant au plan de travail de la machine de découpage et pour effectuer une rotation du monocristal d'un premier angle prédéterminé autour dudit axe géométrique pour amener la normale au plan de découpe du monocristal dans ledit plan de référence et des seconds moyens pour effectuer une rotation relative entre le support de découpage et le monocristal d'un second angle prédéterminé autour d'un axe perpendiculaire audit plan de référence de façon que la normale au plan de découpe soit orientée suivant une direction de référence correspondant à la normale au plan de découpage de la machine, et par le fait qu'il comprend des troisièmes moyens pour effectuer un mouvement de translation relatif entre le monocristal et le support de découpage destiné à rapprocher le support de découpage et le monocristal en vue de fixer ce dernier sur le support de découpage, dans ladite orientation prédéterminée.
  • Par ces caractéristiques, on obtient un positionnement rapide, précis et adapté aux machines de découpage permettant un découpage exact dans un temps minimum. De plus, la précision de la découpe sera indépendante de la machine utilisée ou de l'opérateur dans le cas de chaînes de production.
  • Un mode d'exécution favorable est caractérisé par le fait que les premiers moyens comprennent deux supports cylindriques parallèles montés de façon tournante sur un châssis du dispositif de positionnement et agencés de façon à supporter le monocristal et un premier organe de mesure angulaire susceptible de déterminer le premier angle de rotation prédéterminé, par le fait que les seconds moyens comprennent un plateau rotatif monté de façon tournante par rapport audit châssis et dont le plan principal est parallèle aux axes desdits supports cylindriques, ce plateau rotatif étant agencé de façon à maintenir le support de découpage dans une position géométriquement définie, un second organe de mesure angulaire étant prévu pour déterminer ledit second angle de rotation prédéterminé, par le fait que les troisièmes moyens comprennent un mécanisme de translation permettant le rapprochement du support de découpage et du monocristal et par le fait que le support de découpage est conformé de façon que son positionnement dans la machine de découpage s'effectue selon une position géométrique correspondant à la position géométrique définie sur ledit plateau rotatif de façon que le plan de référence et la direction de référence correspondent au plan de travail et à la normale au plan de découpage de la machine.
  • Ces caractéristiques permettent une construction du dispositif de positionnement particulièrement simple et peu onéreuse, tout en assurant une grande précision de découpe.
  • D'autres avantages ressortent des caractéristiques exprimées dans les revendications dépendantes et de la description exposant ci-après l'invention plus en détail à l'aide de dessins qui représentent schématiquement et à titre d'exemple un mode d'exécution.
  • La figure 1 illustre en perspective un exemple de monocristal avec ses axes géométriques et cristallographiques et le plan de découpe choisi.
  • Les figures 2A et 2B illustrent selon deux vues orthogonales la position du monocristal obtenu par un procédé connu et couramment utilisé.
  • Les figures 3A et 3B représentent selon deux vues orthogonales la position du monocristal obtenu conformement à la présente invention.
  • La figure 4 représente un schéma vectoriel des différents référentiels utilisés.
  • Les figures 5A, 5B, 5C illustrent les positions occupées par le monocristal en suivant le procédé d'orientation conformément à l'invention.
  • La figure 6 est une vue en perspective d'un mode d'exécution du dispositif pour la mise en oeuvre du procédé.
  • De façon générale, l'invention donne la possibilité d'installer sur la machine de découpage des monocristaux préorientés dont le plan de découpe est orienté parallèlement au plan de découpage de la machine et tourné selon un axe perpendiculaire (normale au plan de découpage), de manière à minimiser la longueur de découpe. Cette détermination se fera mathématiquement à partir des mesures effectuées pour déterminer l'erreur du monocristal géométrique par rapport au réseau cristallin en y incluant les exigences du procédé subséquent en relation avec les axes cristallins. Le montage du monocristal sur son support pourra se faire alors à l'aide d'un dispositif de positionnement qui autorise la mesure exacte des angles de rotation du monocristal géométrique, et de le monter tel quel sur un support de découpage qui est une pièce avec indexation appartenant à la machine de découpage. Le monocristal peut être bridé ou de préférence collé sur le support, support qui une fois transféré sur la machine de découpage présentera un monocristal parfaitement préorienté prêt à être scier sans ajustement subséquent. De plus, la précision de la découpe sera indépendante de la machine utilisée ou de l'opérateur dans le cas de chaînes de production.
  • Le dispositif de positionnement se présentera sous la forme d'une table ou d'un châssis avec un plateau rotatif ayant son axe de rotation z''' vertical sur lequel est posé le support du monocristal sur lequel il sera ultérieurement fixé. Ce support a un système d'indexation identique a celui de la machine de découpage. Le support du monocristal est une pièce interface entre le dispositif de positionnement et la machine de découpage. Il aura donc la même position sur le dispositif de positionnement et sur la machine de découpage. Au dessus du plateau rotatif mais fixe par rapport à la table se trouve un mécanisme permettant la tenue du monocristal et de le faire tourner selon son axe horizontal x. Ce système est composé dans le cas de monocristaux cylindriques de deux cylindres sur lesquels repose le monocristal. Le monocristal peut alors tourner selon son axe x. Le mouvement du plateau et la rotation du monocristal x permettent de le positionner dans n'importe quelle orientation. La valeur des deux angles de rotation sera déterminée par les exigences du produit terminé et calculé mathématiquement. Une fois les deux rotations effectuées, un mécanisme fait mettre en présence le support avec le monocristal lui-même tout en conservant leur position relative. Ceci peut se faire soit par l'élévation du plateau rotatif soit par l'abaissement du monocristal. Une fois mis en contact le monocristal sera bridé ou collé en position. Le support de monocristal pourra alors être transféré sur la machine de découpage. Le monocristal est alors orienté, prêt à être découpé. Les angles de rotation selon x et z''' sont mesurés par des dispositifs électroniques intégrés tels qu'encodeurs ou mécaniques par verniers par exemple.
  • La figure 1 représente un exemple de monocristal à découper 2 qui possède une forme géométrique cylindrique avec des axes géométriques x,y,z, l'axe x étant l'axe principal. Les axes x',y',z' du réseau cristallin de ce monocristal ne sont pas parallèles aux axes géométriques. Les angles a et f entre les axes y',y et z',z sont déterminés par mesure optique ou aux rayons X et définissent généralement l'erreur de fabrication du monocristal. La figure 1 montre également le plan de découpe 16 choisi ou imposé du monocristal avec ses axes y'' et Z'' inclinés des valeurs angulaires p et t par rapport aux axes y', z' du réseau cristallin et la normale x'' au plan de découpe. Les valeurs angulaires p et t sont généralement définies en fonction des nécessités de l'utilisation ultérieure du monocristal découpé. Il est bien entendu que ces angles p et t pourront par exemple être égaux à zéro au cas où l'on désire obtenir des plaquettes de silicium découpées parallèlement au plan (100).
  • Les figures 2A et 2B représentent en vue latérale et en plan, la position du monocristal 2 obtenue par le procédé connu et couramment utilisé avant la présente invention en effectuant une orientation du monocristal par rotation autour des axes géométriques y et z. Le monocristal 2 n'est alors pas parallèle au plan de la nappe des fils 17 dans le cas de l'utilisation d'une scie à fils comme moyen de découpage. Le plan de machines x''',y''' de la machine de découpage n'est pas parallèle à l'axe géométrique x du monocristal 1. La direction d'avancement selon z''' de la nappe de fils 17 n'est pas perpendiculaire au monocristal, ce qui est préjudiciable pour la qualité de la découpe.
  • Les figures 3A et 3B illustrent l'orientation du monocristal obtenu par le procédé conformément à la présente invention en effectuant une orientation du monocristal par rotation autour des axes géométriques x et z'''. La nappe de fils 17 de la scie utilisée comme machine de découpage se trouve dans le plan x'''y''' et l'axe géométrique x du monocristal est parallèle à ce plan x''',y'''. Le monocristal se trouve donc dans une position optimale par rapport aux moyens de découpage, de façon à obtenir une découpe très précise.
  • Le schéma vectoriel des divers référentiels utilisés pour le positionnement est représenté à la figure 4 et comprend le référentiel x,y,z lié à la forme géométrique du monocristal, le référentiel x',y',z' lié au réseau cristallin du monocristal, le référentiel x'',y'',z'' correspondant au plan de découpe du monocristal et le référentiel x''',y''',z''' utilisé pour le dispositif de positionnement et la machine de découpage.
  • Le plan de découpe correspond au plan y'',z'' et sa normale correspond à la direction x''. Le défaut d' alignement de la forme géométrique du monocristal 2 avec le reseau cristallin est déterminé par les angles a et f, correspondant aux angles y'y et z'z. Les angles p et t correspondant aux angles y''y' et z''z' déterminent l'orientation des plans de découpe choisis par rapport au référentiel du réseau cristallin. La normale x'' au plan de découpe y''z'' définit un vecteur x''(x,y,z) qui fait un angle g avec l'axe géométrique x et la projection du vecteur X''(x,y,z) sur le plan y,z fait un angle d avec y.
  • L'angle d correspond donc à l'angle de rotation autour de l'axe géométrique x pour amener la normale x'' au plan de découpe y'',z'' dans un plan de référence correspondant au plan de travail x''',y''' de la machine.
  • L'angle g correspond à l'angle de rotation autour de l'axe vertical z''' de façon que la normale x'' au plan de découpe soit orientée suivant une direction de référence correspondant à la normale x''' au plan de découpage y'''z''' de la machine pour faire coïncider le plan de découpe souhaité avec le plan de découpage de la machine de découpage.
  • Les angles d et g peuvent être calculés et la solution mathématique se présentera sous la forme suivante : X' = M(a,f)X
    Figure imgb0001
    avec M(a,f) matrice de rotation pour les angles a,f et X'' = M(t,p)X'
    Figure imgb0002
    avec M(t,p) matrice de rotation pour les angles p,t.
  • On en déduit que les deux angles d et g que l'on fera effectuer au monocristal géométrique selon x et z''' seront obtenus par les composantes X''x, X''y, X''z de X''(x,y,z) dans le repère x''',y''',z''' où X'' est le vecteur normal au plan y'',Z'' dans le référentiel machine. d = arctang (X''z/X''y) g = arctang ((sqrt(X''y**2+X''z**2))/X''x)
    Figure imgb0003
  • Le procédé de positionnement pour obtenir l'orientation optimale représentée aux figures 3A et 3B est décrit plus précisément en référence aux figures 5A, 5B et 5C illustrant trois positions successives. En figure 5A, le monocristal est place sur le dispositif de positionnement et ses axes géométriques x,y,z sont alignés avec les axes x''',y''',z''' du dispositif d'alignement et de la machine de découpage.
  • On effectue alors une rotation autour de l'axe géométrique x''' ou x de la valeur angulaire d pour amener le vecteur X'' dans le plan x''',y''' (figure 5B). Une rotation d'un angle g du monocristal géométrique selon l'axe z''' amène le vecteur X'' dans une position colinéaire avec l'axe x''' (figure 5C). Après ces deux rotations, le monocristal géométrique x,y,z est orienté parallèlement au plan x''',y''' avec un angle g par rapport à la normale X''' au plan de découpage correspondant aux nécessités du procédé utilisé ultérieurement. Le sciage résultant aura bien les angles t et p par rapport aux axes cristallographies y' et z'. Il est bien entendu que la seconde rotation pourra également être effectuée en tournant le support de découpage d une angle -g, le monocristal restant immobile comme cela est réalisé dans le mode d'exécution illustré à la figure 6.
  • Ce dernier est constitué par un dispositif de positionnement 1 qui permet d'orienter le monocristal 2 hors d'une machine de découpage conformément à une orientation prédéterminée par rapport a un support de découpage se présentant sous forme d'un support 3 sur lequel le monocristal sera fixé après orientation adéquate. Le dispositif de positionnement 1 comprend à cet effet une table ou un châssis 5 avec une partie supérieure 6 et une partie inférieure 7.
  • Le monocristal 2 est porté par deux cylindres de support 8 montés tournant sur la partie supérieure 6 avec leur axe principal orienté parallèlement à l'axe x. Un organe de mesure angulaire, sous forme d'une encodeur 10 permet de mesurer l'angle de rotation d du monocristal autour de l'axe x.
  • Un plateau rotatif 12 est monté tournant selon l axe z''' sur la partie inférieure 7 du châssis. Un système de mesure angulaire intégré dans le plateau rotatif 12 permet de mesurer l'angle de rotation g autour de l'axe z'''. Le support 3 est maintenu dans une orientation prédéterminée précise sur le plateau rotatif 12.
  • Le plateau rotatif 12 est également monté de façon coulissante suivant la direction z''' sur la partie inférieure 7 du châssis afin de pouvoir rapprocher le support 3 du monocristal 2 au moyen d'un mécanisme de levage 14 pour fixer le monocristal 2 sur le support 3. Après fixation, le support 3 et le monocristal 2 peuvent être placés dans la machine de découpage selon une position géométrique prédéterminée de façon que le plan de référence x'''s,y'''s du support 3 corresponde au plan de travail x''',y''' de la machine de découpage et de façon que la perpendiculaire x''' au plan de découpage de la machine soit parallèle à la direction de référence x'''s du support.
  • Ainsi le procédé et le dispositif décrits permettent le positionnement d'un monocristal sur un support hors de la machine de découpage de telle manière que le monocristal, une fois monté avec son support sur une machine de découpage, soit découpé avec une orientation donnée des axes cristallins par rapport au plan de sciage. De plus, la position d un monocristal cylindrique est telle que les génératrices de celui-ci se trouvent placées parallèlement à la nappe de fils 17 dans le cas d'une scie à fils ou parallèlement à la direction du mouvement définissant l'épaisseur des tranches s'il s'agit d'une découpe avec came. On mesure pour ceci l'orientation du réseau cristallin par rapport à la forme géométrique du monocristal optiquement ou au moyen de rayons X. Le dispositif de positionnement ou le support de découpage pourront à cet effet avantageusement être agencés pour pouvoir être montés sur un générateur de rayons X de façon que le positionnement du monocristal puisse être effectué et contrôlé simultanément. L'orientation du plan de découpe y'',z'' par rapport au réseau cristallin x',y,'z' étant imposée par l' application ultérieure, les valeurs des deux angles de rotation du monocristal d selon l'axe x et g selon l'axe z''' du dispositif de positionnement sont déterminés mathématiquement. Une fois les deux rotations réalisées selon les valeurs calculées, le monocristal se trouvera dans la position recherchée pour la machine de découpage, à savoir perpendiculairement à l'avance de la découpe ayant en plus son plan de découpe parallèle à celui de la machine. Le dispositif de positionnement permettra la fixation du monocristal soit par bridage soit par collage sur un support préindexé par rapport à la machine de découpage. En outre, l'orientation donnée par le procédé minimise dans le cas de monocristaux cylindriques la longueur de sciage. La machine de découpage ne nécessite donc aucun dispositif de réglage pour assurer une découpe selon les spécifications angulaires requises après le transfert du monocristal sur son support de découpage et de celui-ci dans la machine de découpage. La nappe de fils d'une scie à fils demeure parallèle au monocristal géométrique durant toute la découpe tout en assurant une orientation adéquate des tranches ainsi produites. De même, la lame de scie d'une machine à lames demeure perpendiculaire au monocristal.
  • Il est bien entendu que le mode de réalisation décrit ci-dessus ne présente aucun caractère limitatif et qu'il peut recevoir toutes modifications désirables à l'intérieur du cadre tel que défini par la revendication 1. En particulier, les deux angles de rotation autour des axes x et z''' pourraient être remplacés par des angles pris et calculés par rapport à d'autres référentiels géométriques et cristallographiques, mais qui aboutissent au même résultat que la normale au plan de découpe du monocristal est orientée dans une direction de référence correspondant à la normale au plan de découpage de la machine et qu'un axe géométrique prédéterminé du monocristal et la normale au plan de découpe sont compris dans un plan de référence correspondant au plan de travail de la machine. De même, le plan de découpe pourra être déterminé par d'autres angles que p et t par rapport au reseau cristallin et le décalage du réseau cristallin par rapport à la forme géométrique du monocristal pourra être indiqué par d'autres angles mesurés que a et f.
  • Les deux cylindres de support 8 pourraient être remplacés par d'autres moyens pour supporter le monocristal et pour effectuer une rotation du monocristal tel que par exemple un seul support dans ou sur lequel le monocristal est fixé temporairement et qui est monté tournant sur la table ou le châssis. Ce support de rotation pourrait être agencé à une ou à deux extrémités opposées du monocristal. La rotation relative entre le monocristal et le support de découpage autour de l'axe z''' pourrait également être obtenu en effectuant une rotation du monocristal par rapport au support de découpage qui resterait immobile sur la table ou le chassis du dispositif de positionnement. Le plateau rotatif serait alors remplacé par un organe rotatif selon z''' et portant le support temporaire du monocristal.
  • Les organes de mesures angulaires pourraient être électroniques, optiques ou mécaniques.
  • Le rapprochement ou la mise en contact du monocristal et du support de découpage pourraient être effectués par le bas ou par le haut et en déplaçant soit le support de découpage soit le monocristal.
  • Les rotations autour des deux axes horizontal et vertical x,z''' pourraient être interverties dans le temps en effectuant d'abord la rotation autour de l'axe z''' et ensuite la rotation autour de l'axe horizontal x.
  • Le procédé et le dispositif pourraient également être utilisés pour le découpage orienté de monocristaux de toute autre forme géométrique ou de tout autre matériau qu'un monocristal, tel que des ensembles polycristallins à orientation cristalline prédéterminée, des cristaux à mâcles simples ou polysynthétiques, des agrégats cristallins orientés, des alliages, des substances cristallines orientées contenues dans une substance amorphe, par exemple des matériaux polarisants.

Claims (11)

  1. Procédé pour l'orientation de monocristaux (2) en vue d'une découpe dans une machine de découpage (17) selon un plan de découpe (y'',z'') prédéterminé, caractérisé par le fait qu'on oriente le monocristal (2) au moyen d'un dispositif de positionnement (1) hors de la machine de découpage selon une orientation prédéterminée par rapport a un support de découpage (3), qu'on fixe le monocristal (2) conformément à ladite orientation prédéterminée sur le support de découpage (3) dont la mise en place dans la machine de découpage (17) est géométriquement définie par rapport au plan de découpage (y''',z''') de la machine, et qu'on dispose le support de découpage (3) après fixation du monocristal dans la machine de découpage (17) selon ladite mise en place géométriquement définie pour obtenir ladite orientation prédéterminée du monocristal (2) dans la machine de découpage.
  2. Procédé selon la revendication 1, caractérisé par le fait que ladite orientation prédéterminée est obtenue en disposant le monocristal (2) sur le dispositif de positionnement (1) de façon qu'un de ses axes géométriques (x) de la forme géométrique (x,y,z) du monocristal soit compris dans un plan de référence correspondant au plan de travail (x''',y''') de la machine de découpage (17) perpendiculaire au plan de découpage (y''',z'''), en effectuant une rotation du monocristal d'un premier angle prédéterminé (d) autour dudit axe géométrique (x) pour amener la normale (x'') au plan de découpe (y'',z'') du monocristal dans ledit plan de référence, et en effectuant une rotation relative entre le support de découpage (3) et le monocristal d'un second angle prédéterminé (g) autour d'un axe (z''' ) perpendiculaire audit plan de référence de façon que la normale (x'') au plan de découpe (y'',z'') soit orientée suivant une direction de référence correspondant à la normale au plan de découpage (y''',z''') de la machine, ledit axe géométrique (x) et la normale (x'') au plan de découpe du monocristal (2) étant compris dans ledit plan de référence.
  3. Procédé selon la revendication 2, caractérisé par le fait que les premier et second angles de rotation (d,g) sont déterminés mathématiquement.
  4. Procédé selon la revendication 3, caractérisé en ce qu'on définit l'orientation du plan de découpe (y'',z'') du monocristal par rapport au réseau cristallin (x',y',z'), en ce qu'on mesure l'orientation du réseau cristallin (x',y',z') par rapport à la forme géométrique (x,y,z) du monocristal, et en ce qu'on calcule les premier et second angles de rotation (d,g) en tenant compte de l'orientation du plan de découpe (y'',z'') par rapport au réseau cristallin (x',y',z') et par rapport à la forme géométrique (x,y,z) du monocristal.
  5. Procédé selon la revendication 4, caractérisé par le fait que l'orientation du reseau cristallin (x',y',z') par rapport à la forme géométrique (x,y,z) est déterminée optiquement ou au moyen de rayons X.
  6. Procédé selon l'une des revendications 2 à 5, caractérisé en ce qu'on utilise un monocristal (2) dont la forme géométrique est sensiblement cylindrique circulaire, ledit axe géométrique (x) correspondant à l'axe principal du monocristal et en ce qu'on dispose le monocristal sur deux cylindres tournants parallèles (8) du dispositif de positionnement (1), les axes des deux cylindres (8) étant parallèles audit plan de référence.
  7. Dispositif pour la mise en oeuvre du procédé selon l'une des revendications précédentes, caractérisé par le fait qu'il comprend un dispositif de positionnement (1) destiné à orienter le monocristal (2) hors de la machine de découpage conformément à une orientation prédéterminée par rapport à un support de découpage (3) sur lequel le monocristal est destiné à être fixé et dont la mise en place dans la machine de découpage est géométriquement définie et dont les axes principaux (X'''s,Y'''s) sont parallèles aux axes (x''',y''') de la machine de découpage.
  8. Dispositif selon la revendication 7, caractérisé par le fait qu'il comprend des premiers moyens (8) pour supporter le monocristal (2) dans une orientation telle qu'un des axes géométriques (x) de la forme géométrique (x,y,z) du monocristal est compris dans un plan de référence correspondant au plan de travail (x''',y''') de la machine de découpage et pour effectuer une rotation du monocristal (2) d'un premier angle prédéterminé (d) autour dudit axe géométrique (x) pour amener la normale (x'') au plan de découpe (y'',x'') du monocristal dans ledit plan de référence et des seconds moyens (12) pour effectuer une rotation relative entre le support de découpage (3) et le monocristal (2) d'un second angle prédéterminé (g) autour d'un axe (z''') perpendiculaire audit plan de référence de façon que la normale (x'') au plan de découpe (y',z') soit orientée suivant une direction de référence correspondant à la normale au plan de découpage (y''',z''') de la machine.
  9. Dispositif selon la revendication 8, caractérisé par le fait qu'il comprend des troisièmes moyens (14) pour effectuer un mouvement de translation relatif entre le monocristal (2) et le support de découpage (3) destinés à rapprocher le support de découpage (3) et le monocristal (2) en vue de fixer ce dernier sur le support de découpage, dans ladite orientation prédéterminee.
  10. Dispositif selon la revendication 9, caractérisé par le fait que les premiers moyens comprennent deux supports cylindriques parallèles (8) montés de façon tournant sur un châssis (5) du dispositif de positionnement (1) et agencés de façon à supporter le monocristal (2), et un premier organe de mesure angulaire (10) susceptible de déterminer le premier angle de rotation prédéterminé (d), par le fait que les seconds moyens comprennent un plateau rotatif (12) monté de façon tournante par rapport audit châssis (5) et dont le plan principal est parallèle aux axes desdits supports cylindriques (8), ce plateau rotatif (12) étant agencé de façon à maintenir le support de découpage (3) dans une position géométriquement définie, un second organe de mesure angulaire étant prévu pour déterminer ledit second angle de rotation prédéterminé (g), par le fait que les troisièmes moyens comprennent un mécanisme de translation (14) permettant le rapprochement du support de découpage (3) et du monocristal (2) et par le fait que le support de découpage (3) est conformé de façon que son positionnement dans la machine de découpage s'effectue selon une position géométrique correspondant à la position géométrique définie sur ledit plateau rotatif de façon que le plan de référence et la direction de référence correspondent au plan de travail (x''',y''') et à la normale (x''') au plan de découpage de la machine.
  11. Dispositif selon l'une des revendications 7 à 10, caractérisé en ce que le support de découpage (3) ou le dispositif de positionnement (1) sont agencés de façon à pouvoir être montés sur un générateur de rayons X.
EP96105699A 1995-04-22 1996-04-11 Procédé pour l'orientation de monocristaux pour le découpage dans une machine de découpage et dispositif pour la mise en oeuvre de ce procédé Expired - Lifetime EP0738572B1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CH113595A CH690422A5 (fr) 1995-04-22 1995-04-22 Dispositif pour l'orientation de monocristaux en vue d'une découpe dans un plan prédéterminé et selon une direction qui minimise la longueur de coupe.
CH113595 1995-04-22
CH1135/95 1995-04-22
CH113695 1995-04-22
CH1136/95 1995-04-22
CH113695A CH690423A5 (fr) 1995-04-22 1995-04-22 Procédé pour l'orientation de monocristaux en vue d'une découpe en tranches dans une direction prédéterminée.

Publications (2)

Publication Number Publication Date
EP0738572A1 true EP0738572A1 (fr) 1996-10-23
EP0738572B1 EP0738572B1 (fr) 2004-01-21

Family

ID=25686755

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96105699A Expired - Lifetime EP0738572B1 (fr) 1995-04-22 1996-04-11 Procédé pour l'orientation de monocristaux pour le découpage dans une machine de découpage et dispositif pour la mise en oeuvre de ce procédé

Country Status (4)

Country Link
US (1) US5720271A (fr)
EP (1) EP0738572B1 (fr)
JP (1) JPH08294914A (fr)
DE (1) DE69631353T2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782907A1 (fr) * 1995-11-30 1997-07-09 Nippei Toyama Corporation Système et procédé pour le travail des lingots
EP0798092A2 (fr) * 1996-03-29 1997-10-01 Shin-Etsu Handotai Co., Ltd Procédé pour découper un lingot monocristallin en matériau semi-conducteur
EP0802029A2 (fr) * 1996-04-16 1997-10-22 HAUSER, Charles Procédé pour l'orientation de plusieurs monocristaux posés cÔte à cÔte sur un support de découpage en vue d'une découpe simultanée dans une machine de découpage et dispositif pour la mise en oeuvre de ce procédé
CN102581976A (zh) * 2012-03-14 2012-07-18 浙江昀丰新能源科技有限公司 一种晶体加工用定向装置
CN112760617A (zh) * 2020-12-30 2021-05-07 上海埃原半导体设备有限公司 化学气相沉积用的非金属反应腔及其使用方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW355151B (en) * 1995-07-07 1999-04-01 Tokyo Seimitsu Co Ltd A method for cutting single chip material by the steel saw
CH692331A5 (de) * 1996-06-04 2002-05-15 Tokyo Seimitsu Co Ltd Drahtsäge und Schneidverfahren unter Einsatz derselben.
CA2220776A1 (fr) * 1996-11-13 1998-05-13 Allen Sommers Systeme de chargement de rectifieuse excentrique
JPH10160688A (ja) * 1996-12-04 1998-06-19 Rigaku Corp 単結晶インゴットのx線トポグラフィー方法および装置
JP3137600B2 (ja) * 1997-09-12 2001-02-26 株式会社日平トヤマ ワークの結晶方位調整方法
DE19825051A1 (de) * 1998-06-04 1999-12-09 Wacker Siltronic Halbleitermat Verfahren und Vorrichtung zur Herstellung eines zylinderförmigen Einkristalls und Verfahren zum Abtrennen von Halbleiterscheiben
DE19825050C2 (de) * 1998-06-04 2002-06-13 Wacker Siltronic Halbleitermat Verfahren zum Anordnen und Orientieren von Einkristallen zum Abtrennen von Scheiben auf einer ein Drahtgatter aufweisenden Drahtsäge
US6055293A (en) * 1998-06-30 2000-04-25 Seh America, Inc. Method for identifying desired features in a crystal
US6106365A (en) * 1998-11-06 2000-08-22 Seh America, Inc. Method and apparatus to control mounting pressure of semiconductor crystals
JP4659326B2 (ja) 2000-05-31 2011-03-30 エムイーエムシー・エレクトロニック・マテリアルズ・ソシエタ・ペル・アチオニ 複数の半導体インゴットをスライスするワイヤソー及びプロセス
DE10052154A1 (de) * 2000-10-20 2002-05-08 Freiberger Compound Mat Gmbh Verfahren und Vorrichtung zum Trennen von Einkristallen, Justiervorrichtung und Testverfahren zum Ermitteln einer Orientierung eines Einkristalls für ein derartiges Verfahren
US6659976B2 (en) * 2001-04-16 2003-12-09 Zevek, Inc. Feeding set adaptor
US6760403B2 (en) 2001-10-25 2004-07-06 Seh America, Inc. Method and apparatus for orienting a crystalline body during radiation diffractometry
US7027557B2 (en) * 2004-05-13 2006-04-11 Jorge Llacer Method for assisted beam selection in radiation therapy planning
EP1819473A1 (fr) * 2004-12-10 2007-08-22 Freiberger Compound Materials GmbH Support de piece a usiner et procede pour scier au fil
CN101903467B (zh) * 2007-12-19 2012-04-04 旭硝子株式会社 醚组合物
DE102010010886A1 (de) * 2010-03-10 2011-09-15 Siltronic Ag Verfahren zur Bearbeitung einer Halbleiterscheibe
US8259901B1 (en) 2010-05-25 2012-09-04 Rubicon Technology, Inc. Intelligent machines and process for production of monocrystalline products with goniometer continual feedback
EP2520401A1 (fr) 2011-05-05 2012-11-07 Meyer Burger AG Procédé de fixation d'une pièce monocristalline à traiter sur un dispositif de traitement
DE102012210047A1 (de) * 2012-06-14 2013-12-19 Crystal-N Gmbh Verfahren zum Schneiden eines Einkristalls
CN103171059B (zh) * 2013-03-07 2015-02-25 贵阳嘉瑜光电科技咨询中心 一种用于蓝宝石加工晶向实时测量的夹具及其测量方法
WO2015047819A1 (fr) * 2013-09-30 2015-04-02 Gt Crystal Systems, Llc Procédé et appareil pour le traitement de saphir
CN104493982A (zh) * 2014-12-30 2015-04-08 南京铭品机械制造有限公司 一种数控丝锯加工机
CN107020706B (zh) * 2017-04-27 2018-08-07 桂林电子科技大学 一种小尺寸单晶定向夹具
DE102018221922A1 (de) * 2018-12-17 2020-06-18 Siltronic Ag Verfahren zur Herstellung von Halbleiterscheiben mittels einer Drahtsäge, Drahtsäge und Halbleiterscheibe aus einkristallinem Silizium
CN110216801A (zh) * 2019-07-09 2019-09-10 南通友拓新能源科技有限公司 一种尺寸可调的硅片切割方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2858730A (en) * 1955-12-30 1958-11-04 Ibm Germanium crystallographic orientation
DE2752925A1 (de) * 1977-11-26 1979-05-31 Philips Patentverwaltung Vorrichtung zum ausrichten und festlegen eines einkristalles
JPH03255948A (ja) * 1990-03-07 1991-11-14 Rigaku Corp 単結晶インゴットの結晶方位測定装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8325544D0 (en) * 1983-09-23 1983-10-26 Howe S H Orienting crystals
JP2673544B2 (ja) * 1988-06-14 1997-11-05 株式会社日平トヤマ 脆性材料の切断方法
EP0396711A1 (fr) * 1988-11-03 1990-11-14 Trimex Silicon E.U.R.L. Unite de clivage par abrasion
JPH0820384B2 (ja) * 1991-02-19 1996-03-04 信越半導体株式会社 単結晶のof方位検出方法及び装置
JP2516717B2 (ja) * 1991-11-29 1996-07-24 信越半導体株式会社 ワイヤソ―及びその切断方法
JP3205402B2 (ja) * 1992-09-09 2001-09-04 東芝アイティー・コントロールシステム株式会社 結晶方位決定方法及び装置
JPH06229953A (ja) * 1993-02-04 1994-08-19 Rigaku Corp 単結晶材料の結晶格子面測定装置
JP2755907B2 (ja) * 1994-06-28 1998-05-25 信越半導体株式会社 ワイヤソー用溝ローラ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2858730A (en) * 1955-12-30 1958-11-04 Ibm Germanium crystallographic orientation
DE2752925A1 (de) * 1977-11-26 1979-05-31 Philips Patentverwaltung Vorrichtung zum ausrichten und festlegen eines einkristalles
JPH03255948A (ja) * 1990-03-07 1991-11-14 Rigaku Corp 単結晶インゴットの結晶方位測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 058 (P - 1311) 13 February 1992 (1992-02-13) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0782907A1 (fr) * 1995-11-30 1997-07-09 Nippei Toyama Corporation Système et procédé pour le travail des lingots
US6024814A (en) * 1995-11-30 2000-02-15 Nippei Toyama Corporation Method for processing ingots
US6056031A (en) * 1995-11-30 2000-05-02 Nippei Toyama Corporation System and method for processing ingots
US6182729B1 (en) 1995-11-30 2001-02-06 Nippei Toyama Corporation System and method for processing ingots
EP0798092A2 (fr) * 1996-03-29 1997-10-01 Shin-Etsu Handotai Co., Ltd Procédé pour découper un lingot monocristallin en matériau semi-conducteur
EP0798092A3 (fr) * 1996-03-29 1998-04-01 Shin-Etsu Handotai Co., Ltd Procédé pour découper un lingot monocristallin en matériau semi-conducteur
US5875769A (en) * 1996-03-29 1999-03-02 Shin-Etsu Handotai Co., Ltd. Method of slicing semiconductor single crystal ingot
EP0802029A2 (fr) * 1996-04-16 1997-10-22 HAUSER, Charles Procédé pour l'orientation de plusieurs monocristaux posés cÔte à cÔte sur un support de découpage en vue d'une découpe simultanée dans une machine de découpage et dispositif pour la mise en oeuvre de ce procédé
EP0802029A3 (fr) * 1996-04-16 2000-06-28 HCT Shaping Systems SA Procédé pour l'orientation de plusieurs monocristaux posés côte à côte sur un support de découpage en vue d'une découpe simultanée dans une machine de découpage et dispositif pour la mise en oeuvre de ce procédé
CN102581976A (zh) * 2012-03-14 2012-07-18 浙江昀丰新能源科技有限公司 一种晶体加工用定向装置
CN112760617A (zh) * 2020-12-30 2021-05-07 上海埃原半导体设备有限公司 化学气相沉积用的非金属反应腔及其使用方法
CN112760617B (zh) * 2020-12-30 2023-04-07 上海埃延半导体有限公司 化学气相沉积用的非金属反应腔及其使用方法

Also Published As

Publication number Publication date
DE69631353D1 (de) 2004-02-26
US5720271A (en) 1998-02-24
EP0738572B1 (fr) 2004-01-21
JPH08294914A (ja) 1996-11-12
DE69631353T2 (de) 2004-12-09

Similar Documents

Publication Publication Date Title
EP0802029B1 (fr) Procédé pour l&#39;orientation de plusieurs monocristaux posés côte à côte sur un support de découpage en vue d&#39;une découpe simultanée dans une machine de découpage et dispositif pour la mise en oeuvre de ce procédé
EP0738572B1 (fr) Procédé pour l&#39;orientation de monocristaux pour le découpage dans une machine de découpage et dispositif pour la mise en oeuvre de ce procédé
FR2874263A1 (fr) Procede et dispositif pour la mesure, l&#39;orientation et la fixation d&#39;au moins un monocristal
JP3032979B2 (ja) 円柱形単結晶の製造方法及び装置、並びに半導体ウェ―ハの切断方法
EP0750172B1 (fr) Calibre étalon pour l&#39;étalonnage d&#39;un appareil de lecture de contour pour monture de lunettes, et procédé d&#39;étalonnage correspondant
EP1095744A1 (fr) Machine de poinconnage pour panneaux
CA2655636C (fr) Procede et machine d&#39;usinage pour objet optique
EP0180172B1 (fr) Procédé pour l&#39;assemblage et la connexion de circuits intégrés à des unités de circuit et machine pour sa mise en oeuvre
EP0241061A2 (fr) Dispositif pour la mesure de l&#39;orientation de matériaux massifs monocristallins par la méthode de Laüe
FR2577318A1 (fr) Chambre de laue
EP0334751B1 (fr) Procédé et dispositif de clivage d&#39;une plaquette de silicium
CH690422A5 (fr) Dispositif pour l&#39;orientation de monocristaux en vue d&#39;une découpe dans un plan prédéterminé et selon une direction qui minimise la longueur de coupe.
JP5276851B2 (ja) 結晶方位測定装置、結晶加工装置及び結晶加工方法
CH690423A5 (fr) Procédé pour l&#39;orientation de monocristaux en vue d&#39;une découpe en tranches dans une direction prédéterminée.
EP1062670B1 (fr) Procede d&#39;assemblage d&#39;un ensemble optique comprenant des coquilles coaxiales, notamment pour telescope a rayons x
JP2001272359A (ja) 単結晶インゴットの処理装置及び処理方法
JP2001124543A (ja) 薄板材の平坦度測定方法および装置
KR20050020271A (ko) 실리콘 단결정 웨이퍼의 제조방법 및 제조장치
FR2755298A1 (fr) Procede et dispositif pour le positionnement precis d&#39;objets monocristallins les uns par rapports aux autres en fonction de leurs plans cristallographiques
FR2510767A1 (fr) Procede et dispositif pour le centrage d&#39;une lentille
JP2001324457A (ja) ウェハの結晶方位測定用治具
JPH0533304Y2 (fr)
FR3121062A1 (fr) dispositif de bridage d’un panneau brut à usiner
FR2878951A1 (fr) Procede et dispositif de centrage d&#39;un rotor dans son stator au sein d&#39;une turbine de production industrielle d&#39;electricite
CH692308A5 (fr) Appareil pour contrôler la forme d&#39;une pièce.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19970121

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HCT SHAPING SYSTEMS SA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAUSER, CHARLES

17Q First examination report despatched

Effective date: 20010430

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69631353

Country of ref document: DE

Date of ref document: 20040226

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041022

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110421

Year of fee payment: 16

Ref country code: FR

Payment date: 20110510

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110421

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110422

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120411

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69631353

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101