EP0724079B1 - Dampfinjektor - Google Patents

Dampfinjektor Download PDF

Info

Publication number
EP0724079B1
EP0724079B1 EP95118403A EP95118403A EP0724079B1 EP 0724079 B1 EP0724079 B1 EP 0724079B1 EP 95118403 A EP95118403 A EP 95118403A EP 95118403 A EP95118403 A EP 95118403A EP 0724079 B1 EP0724079 B1 EP 0724079B1
Authority
EP
European Patent Office
Prior art keywords
injector
section
annular
mixing chamber
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95118403A
Other languages
English (en)
French (fr)
Other versions
EP0724079A1 (de
Inventor
Helmut Bälz
G. Dr.-Ing. Ehrhardt
Hans Dipl.-Ing. Hesselbacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmut Baelz GmbH
Original Assignee
Helmut Baelz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmut Baelz GmbH filed Critical Helmut Baelz GmbH
Publication of EP0724079A1 publication Critical patent/EP0724079A1/de
Application granted granted Critical
Publication of EP0724079B1 publication Critical patent/EP0724079B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/28Feed-water heaters, i.e. economisers or like preheaters for direct heat transfer, e.g. by mixing water and steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/24Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing liquids, e.g. containing solids, or liquids and elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • F28C3/08Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour with change of state, e.g. absorption, evaporation, condensation

Definitions

  • a controllable jet pump is known from DE-OS 23 46 112 known, by means of which two fluids mixed together can be.
  • the jet pump has one in one Housing arranged drive current channel, which in a circular blowing nozzle opening opens.
  • a rod-operated Adjusting cone arranged by means of which the effective Cross section of the nozzle opening can be varied.
  • a catch nozzle is located opposite the driving nozzle opening arranged, which extends away from the driving nozzle Area of constant cross-section and one itself adjoining area with an expanding flow cross-section having. Between the capture nozzle and the An annular suction gap is provided, which is in fluid communication with a suction connection.
  • the forms propellant emerging from the propellant nozzle a beam with a circular cross section, which is in the catch nozzle gradually widens. That through the ring-shaped Fluid flowing into the suction gap lies down as a hollow cone Coat around the propellant jet and is from taken away with this.
  • a capacitor with one Housing base body known, which is approximately tubular is. At one end is a steam inlet nozzle round, funnel-shaped cross section arranged. Opposite the steam inlet nozzle is one Regulation device arranged that the nozzle more or can release or close less.
  • the regulator forms with the inner wall of the tubular Basic body element an annular mixing space.
  • the tubular one Basic body Beginning from the suction port is the tubular one Basic body somewhat waisted. With the steam inlet nozzle it forms a somewhat narrowing annular interior, which widens somewhat from the nozzle mouth.
  • an injector for introducing a vaporous heat transfer medium into a liquid to be heated with which is the mixture of the heat transfer medium with the one to be heated Liquid and the subsequent condensation of the heat transfer medium allowed without collapse of vapor bubbles.
  • this should be made possible in the partial load range.
  • the injector has a mixing chamber with an annular one Section in which a mixture of the vaporous Heat transfer medium with the liquid takes place and the vaporous heat transfer medium condenses.
  • the vapor bubbles that are formed can be radial Do not exceed the expansion of the mixing chamber in the form of an annular gap, so that the size of those imploding Bubble outgoing pressure surges is limited. So that's it Prerequisite for calm condensation of the vapor Heat transfer medium without knocking.
  • the vaporous heat transfer medium becomes through the ring nozzle axially inserted into the mixing chamber, being in the areas creates a suction in front of the outlet opening.
  • the steam happens immediately after leaving the ring nozzle has at least one inflow opening, which is preferably as annular opening arranged coaxially to the ring nozzle is designed with a radial opening direction. It sucks the steam from the inflow opening is the liquid to be heated and mixes intensively with it. It has it turned out that by the arrangement of the inflow opening a good one in the immediate vicinity of the ring nozzle Mixing of the vaporous heat transfer medium with the heating liquid is reached.
  • the inner wall and the outer wall of the mixing chamber can at least in sections from the ring nozzle define the widening flow cross-section, which creates a speed profile over the length of the mixing chamber is produced. Especially in the areas creates suction at high flow rates, which is used to suck in the liquid to be heated can be.
  • the actual mixing area is divided by a section the mixing chamber formed, the outer wall of a tubular part and its inner wall a guide body is formed.
  • This, preferably rotationally symmetrical trained guide body can be cylindrical Have section that with the outer wall delimits a hollow cylindrical section of the mixing chamber.
  • the flow cross-section is in this actual mixing area constant, due to the condensation of the vaporous heat transfer medium mixed with the liquid the flow velocity over the length of the Mixing chamber can take off.
  • An advantageous embodiment that leads to a quiet Condensation and good controllability, has an annularly shaped mixing chamber section on, one length exceeding its outside diameter having. Even at high flow rates here enough distance and therefore enough time for one sufficient, ie complete condensation of the vaporous heat transfer medium in the ring-shaped Section of the mixing chamber available. Following the A hub diffuser can be arranged in the mixing area the flow decelerated.
  • Calm condensation is particularly encouraged if the radial thickness of the annular portion is considerable is smaller than the inner diameter of the inner wall. For example, good results are achieved if the radial thickness is less than a fifth of the inside diameter the inner wall is.
  • a substantially axial direction of steam flow is erected when the outer diameter of the ring nozzle with the inner diameter of the outer wall of the mixing chamber in essentially coincides.
  • a very effective and a constant high flow rate the one to be injected into the liquid vaporous heat transfer medium is achieved when the Ring nozzle for regulating the injector in its flow cross section is designed to be changeable. This can be done easily Can be achieved by using the ring nozzle as an annular gap between the guide body and one in the mixing chamber provided axial bore is limited. If the lead body held axially displaceable and in the area of the ring nozzle is conical, the nozzle cross-section changes with an axial displacement of the guide body.
  • the also between the outer tubular mixing chamber and the cylindrical portion of the guide body defined high cylindrical section of the mixing chamber is in its geometry essentially unaffected, whereby also at part load, that is, at lower injected Amount of steam the condensation of the steam calmly and without essential vapor accumulations leading to implosions takes place.
  • the regulation of the injector with regard to its Performance thus occurs through a change in Layer thickness of the injected steam.
  • Another possibility for the partial load operation of the Injector is given if it has a channel, through which the outflow opening is connected to the inflow opening is. A liquid exchange can take place via this channel take place so that heated liquid from the outflow opening flows to the inflow opening. At this Operating mode, less cold liquid is absorbed, less steam injected and less at the outlet heated liquid dispensed, but the full desired Temperature reached.
  • This channel can be annular and the Surround mixing chamber, which makes it simple constructive Relationships.
  • the outer wall of the Mixing chamber kept at a relatively high temperature, which are above the ambient temperature and the temperature of the incoming cold liquid to be heated.
  • each with a Backflow preventer are equipped.
  • This backflow preventer can advantageously in the injector to get integrated.
  • the backflow preventer prevent one Backflow of liquid into the ring nozzle and leakage of steam through the inflow opening.
  • the injector can be used to heat heating water or of service water.
  • the injector increased thereby the pressure of the liquid to be heated through utilization that in the strained gaseous or vaporous Medium contained energy. This makes it possible to Dual function injector for both heating the Use liquid as well as to convey the same.
  • a steam injector 1 a housing 2 with a connecting flange 4 for steam and a further connection flange 5 for to be heated Liquid, such as cold water.
  • the Flange 4 is a steam connection O1 and flange 5 is a cold water connection 03.
  • the steam connection O1 and the Cold water connection 03 each lead with a cylindrical Channel 9, 11 in the housing 2, the channel 9 and the channel 11 on a common, the respective opening direction defining central axis 13.
  • the housing 2 On the housing 2 is also a right angle to the Flanges 4, 5 vertical third flange 15 provided, which surrounds an outflow opening 17.
  • the outflow opening 17 is a circular opening in the housing 2 leading channel, the outer wall 19 of a hollow cylindrical Socket 21 is formed.
  • the socket 21 is firmly from a section leading to the flange 15 the housing 2 held and protrudes into one of the Channel 11 formed into the annular space 23, which over the channel 11 with liquid, such as cold water, acted upon is.
  • annular space 23 there is an end 25 of the socket 21, in which they both on the inner wall 19, as well their outer walls each have a cylindrical outer surface having.
  • the inner outer wall 19 and the outer lateral surfaces are via an end surface 27 connected to each other, following the as the outer wall 19 designated inner circumferential surface an annular Section 27a which is concentric to one defined by the hollow cylindrical bushing 21 Longitudinal central axis 29 is arranged.
  • an annular Section 27a which is concentric to one defined by the hollow cylindrical bushing 21 Longitudinal central axis 29 is arranged.
  • Radially outwards the end face 27 has one, the circular ring Section 27a adjoining frustoconical Section 27b, which is also concentric with the Longitudinal central axis 29 lies.
  • a nozzle body 31 is provided which has a conical opening 33 has.
  • the nozzle body 31 is on one on the housing 2 provided and the channel 9 separating from the channel 11 Intermediate wall 35 held the nozzle body 31 in a corresponding opening.
  • the nozzle body 31 has a flat surface lying towards the end face 27 37 on, which are spaced and parallel to the annular Section 27a of the end face 27 is arranged and thus defines an annular gap 39 through which the channel 11 communicates with the outflow opening 17.
  • a rotationally symmetrical shaped body 43 Via a concentric to the longitudinal central axis 29 lying, held on the housing 2 rod 41 is a rotationally symmetrical shaped body 43 held through the opening 33 of the nozzle body 31 into the bushing 21 extends into it.
  • the molded body 43 has a thickened and at least Section 45, which is conical in sections on which is essentially within the channel 9 with the Outflow opening 17 connecting and in the nozzle body 31st provided opening 33 is arranged.
  • the frustoconical Section 45 has a lateral surface that with the longitudinal central axis 29 makes an acute angle, which is noticeably less than that between the inner wall the opening 33 and the longitudinal central axis 29 included acute angle. This turns itself into a mouth the opening 33 narrowing annular gap 47 is formed.
  • a cylindrical section 49 which extends over the area of the annular gap 39 into the Socket 21 extends into it.
  • the diameter of the cylindrical Section 49 is less than the diameter the outer wall 19 of the socket 21, so that the cylindrical Section 49 with the outer wall 19 an annular gap Mixing chamber 51 limited.
  • This mixing chamber 51 is hollow their radial thickness is much smaller than their inside diameter is.
  • the cylindrical section 49 of the molded body 43 closes a frustoconical section 53 without Paragraph, the length of which is that of the cylindrical portion 49 exceeds and one with the longitudinal central axis 29 shoots in an acute angle. This expands the between the frustoconical section 53 and the Inner wall 19 defined free flow cross section of seen from the annular gap 47.
  • the cylindrical section 49 and the frustoconical section 53 delimit in the socket 21 is a mixing chamber with an annular cross section, whose length exceeds their diameter.
  • the molded body 43 has a conical end region 55 which forms a hub diffuser and its outer surface an acute angle with the longitudinal central axis 29 includes, which is larger than that of the lateral surface of the frustoconical section 53 with the longitudinal central axis 29 included acute angle.
  • the molded body 43 held on the rod 41 is slidable in the housing along the longitudinal central axis 29 2 held.
  • the rod 41 is in the wall of the channel 9 penetrating bush 57 stored.
  • the longitudinal position of the rod 41 and thus the exact position of the molded body 43 within the nozzle body 31 and the socket 21 is by a with the rod 41st connected, not shown actuator set.
  • the actuator can be both hand and motor operated be executed.
  • the Drive device can be an element of a control loop, which, for example, a constant water temperature at the To ensure discharge opening 17.
  • the injector 1 described so far works as follows:
  • the flange 4 is connected to a steam line, via the channel 9 under a constant pressure Steam is supplied.
  • the pressure is 1 to 7 bar and is kept constant for the respective application, although it can also be higher.
  • the flange 5 is connected to a cold water pipe, the channel 11 under less pressure Cold water supplies, the temperature of which, for example, 14 ° C. is.
  • the molded body 43 is off the rod 41 and this acting control element is adjusted so that the annular gap 47 has a sufficient width to the required Allow the amount of steam to pass through.
  • the one via the steam connection O1 Incoming steam flows through the from the annular gap 47 formed ring nozzle, its speed is considerable increases. It therefore occurs at high axial speed out of the annular gap 47 and into the mixing chamber 51 a, whereby it is supplied via the cold water connection 03 Cold water is sucked in through the annular gap 39. Mix while doing this the steam and the cold water sucked in intensely with formation of vapor bubbles with relatively little Diameter. The diameter of these vapor bubbles can be Do not exceed the radial thickness of the mixing chamber 51.
  • the resulting mixture moves axially through the Mixing chamber 51, wherein the steam condenses and the released heat is transferred to the water.
  • the in the mixing chamber 51 at high axial speed moving mixture slows down its axial speed, if it is by the of section 53 or Termination area 55 and the inner wall 9 formed flows through the annular mixing chamber section. No later than when the mixture has passed the termination area 55 is the steam contained in the mixture completely condenses.
  • the mixture now has a temperature of, for example. about 90 ° C, the mixture immediately following at the annular gap 47 and 39 on the hub diffuser or Closing area 55 flows along, due to the increasing flow cross section its speed reduced.
  • the injector When leaving the injector through the outflow opening 17 it has one opposite at the cold water connection 03 applied water pressure increased pressure.
  • a modified injector 1a is shown in FIG. 2, this injector 1a as far as it is related same or functionally described with the injector 1 Parts contains the same, for identification purposes is provided with a reference symbol "a". The description given in connection with injector 1 the structure and function is so far on the Transfer injector 1a.
  • the injector 1a has a hot water return duct 60 through which the outflow opening 17a with the annular space 23a is in fluid communication.
  • the hot water return duct 60 is characterized by a wide, groove-like opening open to the outside Recess 62 in the outer surface of the Socket 21 formed.
  • the recess 62 and the corresponding section of the housing 2a enclosed Ring channel opens with a wide and open flow cross-section into the annular space 23a.
  • the socket 21a is only with its end lying at the outflow opening 17 connected to the housing 2a, this area with axial bores 64 is provided.
  • the steam jet being formed is therefore very thin-walled and only comes with preheated water in contact.
  • the developing ones As a result, vapor bubbles are very small and their tendency to implode due to the elevated temperature of the mixture contained water decreased.
  • the injector 1a therefore works quietly even in the extreme partial load range and reliable.
  • FIG 3 is a particularly for heating systems illustrated injector 1b intended for residential buildings, the basic structure corresponds to the steam injector 1, but the steam injector 1b also with Check valves 70, 71 provided and in the four-way scheme is constructed. Parts of the injector 1b that with Parts of the injector 1 are functionally the same same reference numerals, being used for identification with ab are provided.
  • the flanges 4b, 5b are as Screw flanges or screw connections executed, whereby it does not, as in the case of the injector 1 shown in FIG. 1 opposite, but on opposite sides of the Housing 2b laterally offset from each other are.
  • the flange 5b is another communicating with the flange 5b via an annular chamber 72 Screw flange 74 provided another one Cold water connection 02 forms and over the water both can flow in and out. This allows the steam injector 1b of return or cold water can flow through it.
  • the annular chamber 72 is provided in the bush 21b Ring groove formed, the width of the diameter of the Flanges 5b, 74 exceeds.
  • the socket 21b is at her at the outflow opening 17b side with a Provided external thread, by means of which they are in the housing 2b is held. Between the annular chamber 72 and the external thread there is an O-ring 76 to provide a seal.
  • the socket 21b sits in a cylindrical, in which Housing 2b provided receiving space 78, which is the annular chamber 72 limited to the outside. Following the ring chamber 72 the bushing 21b has a radially outwardly extending one Wall 80 on, in the axial openings or Bores 82, 84 are provided which provide a fluid connection create between the annular chamber 72 and the annular space 23b.
  • Allowing annular space 23b is one with a central one Hole provided rubber washer 86 provided as a diaphragm valve forms the backflow preventer 71.
  • the rubber washer 76 is in one at its radially outer edge corresponding groove of the wall 80 and puts in their In the rest position, the bores 82, 86 close to them on.
  • the sleeve 21b abuts an annular, on the Wall 80 provided radial projection 88 on the here disc-shaped nozzle body 31b, the Opening 33b with the shaped body 43 which is cylindrical here Annular gap 47 limited and an annular nozzle for steam forms.
  • the molded body 43b is axially immovable with a disc 92 connected in the cylindrical Recording room 78 sits.
  • the disk 92 is supported each ring-shaped, in opposite directions axially protruding projections, both on the nozzle body 31b, as well as on a control valve disk 94, the one has conical steam inlet opening 96.
  • the disc 92 is with several, on one concentric to the longitudinal central axis 29b lying circle arranged axial bores 98, 100 provided by an edge clamped, the rubber washer 102 forming the backflow preventer 70 are covered.
  • the frustoconical and a valve seat Vapor inlet port 96 is axial in sleeve 57b slidable valve member l04 assigned to its, end movable into the steam inlet opening 96 in the shape of a truncated cone trained and there with an O-ring 106 is provided.
  • the valve member l04 can be different Assume axial positions, in Figure 3 above the Longitudinal central axis 29b a completely closed valve position and a completely open one below the longitudinal central axis 29b Valve position is shown. When the valve member 104 Intermediate positions is a partial load operation possible.
  • the injector 1b essentially consists of rotationally symmetrical ones Share what is manufacturing significantly simplified.
  • FIG. 4 schematically shows a heat consumer station shown, the at their steam connection 01 with over a steam line is supplied with steam. Condensate accumulating in the heat consumer station via a condensate manifold forming the cold water connection 02 dissipated.
  • the heat consumer station contains essentially a heat consumer 110 that has a Flow line 112 to the flange 15 of the injector 1 connected and supplied with hot water.
  • the injector 1 is with its flange 4 to the steam connection 01 connected.
  • the flange 5 is connected to a suction line the condensate manifold, to which the Heat consumer 110 connected to a return line 114 is.
  • the consumer 110 is any with Industrial consumer heatable water.
  • FIG. 5 shows one with hot water operated living space heater 116, which by means of 2 is supplied with hot water.
  • the living space heater 116 is via the flow line 112 connected to the flange 15b of the injector 1b while the return line 114 directly to the to a suction port forming flange 5b of the injector 1b is guided.
  • the condensate brought in via the return line 114 flows across the injector 1b and is on the screw flange 74 out and into the condensate manifold 02 derived.
  • FIG. 6 Another application is shown in Fig. 6, at which a hot water tank 118 by means of the injector 1a Hot water is fed.
  • the pelvis is above that at the Flange 15a connected flow line 112 with hot water fed.
  • the hot water is mixed by that is called the injection of the steam connection 01 Steam with sucked in from the condensate manifold 02, cooler condensate generated.
  • the injector la is included its flange 4a to the steam connection 01 and with its Flange 5a connected to the condensate manifold 02.
  • the condensate manifold 02 originating condensate both heated and in the possibly higher-lying hot water pool 118 promoted.
  • the injector 1 In the heat consumer station shown in FIG. 7 is the injector 1 with its as a suction connection serving flange 5 connected to a cold water basin 120.
  • the flange 4 from the steam connection 01 Steam flowing into the injector conveys from the cold water basin 120 drawn cold water and heats it.
  • the hot water generated in this way is under increased pressure ready on the flange 15 and flows over the feed line 112 into the hot water pool 118.
  • the injector 1 acts with it as a pump.
  • Fig. 8 In the heat consumer station shown in Fig. 8 is by means of the steam injector 1 in one Reservoir 122 kept heated water in the circuit. To is the one with its flange 4 on the steam connection 01 lying injector with its flange 5 so to the reservoir 122 connected to the reservoir 122 water in its Bottom area is removed. The flange 15 leads into the Reservoir 122 back and feeds this with hot water. If steam is applied to the flange 4 of the injector 1, the injector sucks cold water over the flange 5 close to the ground from the reservoir 122 and feeds it with Steam mixing and thereby warming water into the Reservoir 122 back.

Description

Zum Erwärmen von Flüssigkeiten, wie beispielsweise Wasser, wird häufig ein dampfförmiger Wärmeträger in die betreffende Flüssigkeit eingeleitet, wobei es zu einem direkten Kontakt zwischen dem Wärmeträger und der Flüssigkeit kommt. Dies ist bspw. bei der Heißwasserbereitung oder bei der Erzeugung von Warmwasser zu Heizzwecken mittels Dampfes der Fall. Der dampfförmige Wärmeträger vermischt sich dabei mit der zu erwärmenden Flüssigkeit, wobei er kondensiert. Es kann bei diesem Verfahren dazu kommen, daß der in die Flüssigkeit eingeleitete dampfförmige Wärmeträger schlagartig kondensierende Blasen bildet. Dabei können regelrechte Implosionserscheinungen, sogenannte Dampfschläge auftreten, die die zum Einleiten des dampfförmigen Wärmeträgers in die Flüssigkeit verwendeten Apparaturen besonderen Belastungen unterwerfen. Solche Belastungen können beispielsweise zu Leitungsbrüchen führen.
Aus der DE-OS 23 46 112 ist eine regelbare Strahlpumpe bekannt, mittels derer zwei Fluide miteinander vermischt werden können. Die Strahlpumpe weist einen in einem Gehäuse angeordneten Treibstromkanal auf, der in einer kreisförmigen Treibdüsenöffnung mündet. Mittig in der Treibdüsenöffnung ist ein über eine Stange betätigbarer Einstellkegel angeordnet, mittels dessen der wirksame Querschnitt der Treibdüsenöffnung variiert werden kann. Der Treibdüsenöffnung gegenüberliegend ist eine Fangdüse angeordnet, die einen sich von der Treibdüse weg erstreckenden Bereich konstanten Querschnitts und einen sich daran anschließenden Bereich mit sich erweiterndem Strömungsquerschnitt aufweist. Zwischen der Fangdüse und der Treibstromdüse ist ein ringförmiger Saugspalt vorgesehen, der mit einem Sauganschluß in Fluidverbindung steht. Das aus der Treibmitteldüse austretende Treibmittel bildet einen Strahl mit kreisförmigem Querschnitt, der sich in der Fangdüse allmählich aufweitet. Das durch den ringförmigen Saugspalt zuströmende Fluid legt sich als hohlkegelförmiger Mantel um den Treibmittelstrahl und wird von diesem mitgenommen.
Bei der Verwendung einer derartigen regelbaren Strahlpumpe zum Mischen von Dampf mit Wasser kann es zu einer lediglich groben Mischung und in der Folge zu Kondensatschlägen kommen.
Aus der GB-A-612839 ist ein Kondensator mit einem Gehäusegrundkörper bekannt, der etwa rohrförmig ausgebildet ist. An einem Ende ist eine Dampfeinlassdüse mit runden, sich trichterförmig erweiterndem Querschnitt angeordnet. Der Dampfeinlassdüse gegenüberliegend ist eine Reguliereinrichtung angeordnet, die die Düse mehr oder weniger freigeben oder verschließen kann. Die Reguliereinrichtung bildet mit der Innenwandung des rohrförmigen Grundkörperelements einen ringförmigen Mischraum.
Der Dampfeinlassdüse benachbart, zweigt seitlich ein Sauganschluß von dem Grundkörper ab, der in den Innenraum führt. An dem gegenüberliegenden Ende zweigt von dem Grundkörper ein Anschluß ab, an dem das Dampfwassergemisch oder erwärmtes Wasser abgenommen werden kann.
Ausgehend von dem Sauganschluß ist der rohrförmige Grundkörper etwas tailliert. Mit der Dampfeinlassdüse bildet er einen sich etwas verengenden ringförmigen Innenraum, der sich ab der Düsenmündung etwas erweitert.
Davon ausgehend ist es eine Aufgabe der Erfindung, einen Injektor zum Einleiten eines dampfförmigen Wärmeträgers in eine zu erwärmende Flüssigkeit zu schaffen, mit dem die Mischung des Wärmeträgers mit der zu erwärmenden Flüssigkeit und die anschließende Kondensation des Wärmeträgers ohne Kollabieren von Dampfblasen gestattet. Insbesondere soll dies im Teillastbereich ermöglicht werden. Darüber hinaus ist es Aufgabe der Erfindung einen regelbaren Injektor mit den oben genannten Eigenschaften zu schaffen.
Der Injektor weist eine Mischkammer mit einem ringförmigen Abschnitt auf, in dem eine Vermischung des dampfförmigen Wärmeträgers mit der Flüssigkeit stattfindet und der dampfförmige Wärmeträger kondensiert. Der Durchmesser der sich bildenden Dampfblasen kann dabei die radiale Ausdehnung der ringspaltförmigen Mischkammer nicht übersteigen, so daß auch die Größe der von den implodierenden Blasen ausgehenden Druckstöße begrenzt ist. Damit ist die Voraussetzung für eine ruhige Kondensation des dampfförmigen Wärmeträgers ohne Klopferscheinungen gegeben.
Durch die Ringdüse wird der dampfförmige Wärmeträger axial in die Mischkammer eingelassen, wobei er im Bereiche vor der Austrittsöffnung einen Sog erzeugt. Der Dampf passiert, unmittelbar nachdem er die Ringdüse verlassen hat, wenigstens eine Einströmöffnung, die vorzugsweise als ringförmige, koaxial zu der Ringdüse angeordnete Öffnung mit radialer Öffnungsrichtung ausgebildet ist. Dabei saugt der Dampf aus der Einströmöffnung die zu erwärmende Flüssigkeit an und vermischt sich mit dieser intensiv. Es hat sich herausgestellt, daß durch die Anordnung der Einströmöffnung in unmittelbarer Nähe zu der Ringdüse eine gute Durchmischung des dampfförmigen Wärmeträgers mit der zu erwärmenden Flüssigkeit erreicht wird. Es werden insbesondere gute Ergebnisse erzielt, wenn zwischen der von der Ringdüse definierten Dampfströmungsrichtung und der von der Einströmöffnung definierten Einströmrichtung ein im wesentlichen rechter Winkel eingeschlossen wird. Dies ist der Fall, wenn die Ringdüse eine im wesentlichen axiale Öffnungsrichtung und die Einströmöffnung eine im wesentlichen radiale Öffnungsrichtung aufweist.
Die Innenwandung und die Außenwandung der Mischkammer können einen sich wenigstens abschnittsweise von der Ringdüse weg erweiternden Strömungsquerschnitt definieren, wodurch über die Länge der Mischkammer ein Geschwindigkeitsprofil erzeugt wird. Insbesondere wird im Bereiche mit hohen Durchströmungsgeschwindigkeiten ein Sog erzeugt, der zum Ansaugen der zu erwärmenden Flüssigkeit genutzt werden kann.
Der eigentliche Mischbereich wird durch einen Abschnitt der Mischkammer gebildet, dessen Außenwandung von einem rohrförmigen Teil und dessen Innenwandung durch einen Leitkörper gebildet ist. Dieser, vorzugsweise rotationssymetrisch ausgebildete Leitkörper kann einen zylindrischen Abschnitt aufweisen, der mit der Außenwandung einen hohlzylindrischen Abschnitt der Mischkammer begrenzt. In diesem eigentlichen Mischbereich ist der Strömungsquerschnitt konstant, wobei infolge der Kondensation des mit der Flüssigkeit vermischten dampfförmigen Wärmeträgers die Strömungsgeschwindigkeit über die Länge der Mischkammer abnehmen kann. Jedoch werden übermäßige Druckänderungen, insbesondere plötzliche Druckanstiege vermieden, so daß die von der Flüssigkeit umschlossenen Blasen des dampfförmigen Wärmeträgers nur geringe Implosionsneigung zeigen.
Eine vorteilhafte Ausführungsform, die zu einer ruhigen Kondensation und zu einer guten Regelbarkeit führt, weist einen ringförmig ausgebildeten Mischkammerabschnitt auf, der eine, seinen Außendurchmesser übersteigende Länge aufweist. Selbst bei hoher Strömungsgeschwindigkeit ist hier genügend Wegstrecke und damit genügend Zeit für eine ausreichende, das heißt vollständige Kondensation des dampfförmigen Wärmeträgers in dem ringförmig ausgebildeten Abschnitt der Mischkammer vorhanden. Im Anschluß an den Mischbereich kann ein Nabendiffusor angeordnet werden, der die Strömung verzögert.
Eine ruhige Kondensation wird insbesondere gefördert, wenn die radiale Dicke des ringförmigen Abschnittes beträchtlich kleiner ist, als der Innendurchmesser der Innenwandung. Beispielsweise werden gute Ergebnisse erzielt, wenn die radiale Dicke kleiner als ein Fünftel des Innendurchmesser der Innenwandung ist.
Wenn die Ringdüse eine gegen ihren Außendurchmesser geringe Spaltweite aufweist, wird ein besonders dünnwandiger hohlzylindrischer oder leicht hohlkegelförmiger Dampfstrom ausgebildet. Infolge seiner geringen Dicke weist der damit nahezu flächig geformte Dampfstrom von vorne herein eine sehr geringe Neigung auf, nach dem Vermischen mit der Flüssigkeit größere Dampfblasen zu bilden.
Eine im wesentlichen axiale Dampfströmungsrichtung wird erricht, wenn der Außendurchmesser der Ringdüse mit dem Innendurchmesser der Außenwandung der Mischkammer im wesentlichen übereinstimmt.
Eine sehr wirkungsvolle und eine konstante hohe Strömungsgeschwindigkeit des in die Flüssigkeit zu injizierenden dampfförmigen Wärmeträgers wird erreicht, wenn die Ringdüse zur Regelung des Injektors in ihrem Strömungsquerschnitt veränderbar ausgelegt ist. Dies kann auf einfache Weise erreicht werden, indem die Ringdüse als Ringspalt zwischen dem Leitkörper und einer in der Mischkammer vorgesehenen Axialbohrung begrenzt ist. Wenn der Leitkörper axial verschiebbar gehalten und im Bereich der Ringdüse konisch ausgebildet ist, verändert sich der Düsenquerschnitt bei einer axialen Verschiebung des Leitkörpers. Der außerdem zwischen der äußeren rohrförmigen Mischkammer und dem zylindrischen Abschnitt des Leitkörpers definierte hohe zylindrische Abschnitt der Mischkammer wird davon in seiner Geometrie im wesentlichen nicht betroffen, wodurch auch bei Teillast, daß heißt, bei geringerer injizierter Dampfmenge die Kondensation des Dampfes ruhig und ohne wesentliche, zu Implosionen führende Dampfansammlungen stattfindet. Die Regelung des Injektors hinsichtlich seiner Leistung erfolgt somit durch eine Veränderung der Schichtdicke des injizierten Dampfes.
Eine weitere Möglichkeit für den Teillastbetrieb des Injektors ist gegeben, wenn dieser einen Kanal aufweist, über den die Ausströmöffnung mit der Einströmöffnung verbunden ist. Über diesen Kanal kann ein Flüssigkeitsaustausch erfolgen, so daß erwärmte Flüssigkeit von der Ausströmöffnung zu der Einströmöffnung fließt. Bei dieser Betriebsweise wird weniger kalte Flüssigkeit aufgenommen, weniger Dampf injiziert und an der Ausströmöffnung weniger erhitzte Flüssigkeit abgegeben, die jedoch die volle gewünschte Temperatur erreicht.
Dieser Kanal kann ringförmig ausgebildet sein und die Mischkammer umgeben, wodurch sich einfache konstruktive Verhältnisse ergeben. Außerdem wird die Außenwandung der Mischkammer auf einer relativ hohen Temperatur gehalten, die über der Umgebungstemperatur und der Temperatur der zuströmenden kalten, zu erwärmenden Flüssigkeit liegt.
Um einen sicheren Betrieb insbesondere bei schwankenden Druckverhältnissen in der die Ringdüse mit dampf förmigem Wärmeträger beaufschlagenden Zuführungsleitung und der die Einströmöffnung mit Flüssigkeit versorgenden Zuführungsleitung zu gestatten, können diese jeweils mit einem Rückflußverhinderer ausgestattet werden. Diese Rückflußverhinderer können in vorteilhafter Weise in den Injektor integriert werden. Die Rückflußverhinderer verhindern ein Rückströmen von Flüssigkeit in die Ringdüse und ein Austreten von Dampf durch die Einströmöffnung.
Der Injektor kann zum Erwärmen von Heizwasser oder von Brauchwasser verwendet werden. Der Injektor erhöht dabei den Druck der zu erwärmenden Flüssigkeit durch Ausnutzung der in dem gespannten gas- oder dampfförmigen Medium enthaltenen Energie. Es ist dadurch möglich, den Injektor in einer Doppelfunktion sowohl zum Aufheizen der Flüssigkeit als auch zum Fördern derselben zu verwenden.
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung dargestellt. Es zeigen:
  • Fig. 1 einen Injektor in einer leicht schematisierten Schnittdarstellung,
  • Fig. 2 einen Injektor mit Rückflußkanälen in einer leicht schematisierten Schnittdarstellung,
  • Fig. 3 einen mit Rückflußverhinderern ausgestatteten Injektor in einer etwas schematisierten Schnittdarstellung,
  • Fig. 4 einen Wärmeverbraucher, der durch mittels des Injektors nach Fig. 1 oder 2 erzeugten Warmwassers beheizt ist, in schematischer Darstellung,
  • Fig. 5 einen Wärmeverbraucher, der durch mittels des in Fig. 3 dargestellten Injektors erzeugten Warmwassers beheizt ist, in schematischer Darstellung,
  • Fig. 6 ein mit Warmwasser gespeistes Becken, wobei das Warmwassers mittels des Injektors nach der Fig. 1 oder des Injektors nach der Fig. 2 erzeugt ist, in schematischer Darstellung,
  • Fig. 7 ein mit Warmwasser gespeistes Becken, das mittels des Injektors nach Fig. 1 mit erwärmtem, aus einem tiefergelegenen Reservoir gefördertem Wasser beaufschlagt ist, in schematischer Darstellung, und
  • Fig. 8 ein mit Warmwasser gespeistes Becken, dem mittels des in Fig. 1 dargestellten Injektors Wasser entnommen, erwärmt und wieder zugeführt wird, in schematischer Darstellung.
  • Wie in Figur 1 dargestellt ist, weist ein Dampfinjektor 1 ein Gehäuse 2 mit einem Anschlußflansch 4 für Dampf und einen weiteren Anschlußflansch 5 für zu erwärmende Flüssigkeit, wie beispielsweise Kaltwasser, auf. Der Flansch 4 ist ein Dampfanschluß O1 und der Flansch 5 ist ein Kaltwasseranschluß 03. Der Dampfanschluß O1 und der Kaltwasseranschluß 03 führen jeweils mit einem zylindrischen Kanal 9, 11 in das Gehäuse 2, wobei der Kanal 9 und der Kanal 11 auf einer gemeinsamen, die jeweilige Öffnungsrichtung definierenden Mittelachse 13 liegen.
    An dem Gehäuse 2 ist außerdem ein rechtwinklig zu den Flanschen 4, 5 stehender dritter Flansch 15 vorgesehen, der eine Ausströmöffnung 17 umgibt. Die Ausströmöffnung 17 ist eine kreisförmige Öffnung eines in das Gehäuse 2 führenden Kanals, dessen Außenwandung 19 von einer hohlzylindrischen Buchse 21 gebildet ist. Die Buchse 21 ist dabei fest von einem zu dem Flansch 15 führenden Abschnitt des Gehäuses 2 gehalten und ragt bis in einen von dem Kanal 11 gebildeten Ringraum 23 hinein, der über den Kanal 11 mit Flüssigkeit, wie beispielsweise Kaltwasser, beaufschlagbar ist.
    In dem Ringraum 23 liegt ein Ende 25 der Buchse 21, bei dem sie sowohl an der Innenwandung 19, als auch an ihrer Außenwandung jeweils eine zylindrische Mantelflächen aufweist. Die innen liegende Außenwandung 19 und die außenliegende Mantelfläche sind über eine Stirnfläche 27 miteinander verbunden, die im Anschluß an die als Außenwandung 19 bezeichnete innere Mantelfläche einen kreisringförmigen Abschnitt 27a aufweist, der konzentrisch zu einer von der hohlzylindrischen Buchse 21 definierten Längsmittelachse 29 angeordnet ist. Radial nach außen hin weist die Stirnfläche 27 einen, sich an den kreisringförmigen Abschnitt 27a anschließenden kegelstumpfförmigen Abschnitt 27b auf, der ebenfalls konzentrisch zu der Längsmittelachse 29 liegt.
    Konzentrisch zu der Längsmittelachse 29 ist außerdem ein Düsenkörper 31 vorgesehen, der eine konische Öffnung 33 aufweist. Der Düsenkörper 31 ist an einer an dem Gehäuse 2 vorgesehenen und den Kanal 9 von dem Kanal 11 scheidenden Zwischenwand 35 gehalten, die den Düsenkörper 31 in einer entsprechenden Öffnung aufnimmt. Der Düsenkörper 31 weist eine zu der Stirnfläche 27 hin liegende Planfläche 37 auf, die im Abstand und parallel zu dem kreisringförmigen Abschnitt 27a der Stirnfläche 27 angeordnet ist und somit einen Ringspalt 39 definiert, über den der Kanal 11 mit der Ausströmöffnung 17 kommuniziert.
    Über eine konzentrisch zu der Längsmittelachse 29 liegenden, an dem Gehäuse 2 gehaltenen Stange 41 ist ein rotationssymetrischer Formkörper 43 gehalten, der sich durch die Öffnung 33 des Düsenkörpers 31 in die Buchse 21 hinein erstreckt.
    Der Formkörper 43 weist einen verdickten und wenigstens abschnittsweise konisch ausgebildeten Abschnitt 45 auf, der im wesentlichen innerhalb der den Kanal 9 mit der Ausströmöffnung 17 verbindenden und in dem Düsenkörper 31 vorgesehenen Öffnung 33 angeordnet ist. Der kegelstumpfförmige Abschnitt 45 weist eine Mantelfläche auf, die mit der Längsmittelachse 29 einen spitzen Winkel einschießt, der merklich geringer ist, als der zwischen der Innenwandung der Öffnung 33 und der Längsmittelachse 29 eingeschlossene spitze Winkel. Dadurch wird ein sich zur Mündung der Öffnung 33 verengender Ringspalt 47 gebildet.
    An dem kegelstumpfförmigen Abschnitt 45 des Formkörpers 43 schließt sich ein zylindrischer Abschnitt 49 an, der sich über den Bereich des Ringspaltes 39 hinweg in die Buchse 21 hinein erstreckt. Der Durchmesser des zylindrischen Abschnittes 49 ist geringer, als der Durchmesser der Außenwandung 19 der Buchse 21, so daß der zylindrische Abschnitt 49 mit der Außenwandung 19 eine ringspaltförmige Mischkammer 51 begrenzt. Diese Mischkammer 51 ist hohlwobei ihre radiale Dicke sehr viel kleiner als ihr Innendurchmesser ist.
    An den zylindrischen Abschnitt 49 des Formkörpers 43 schließt sich ein kegelstumpfförmiger Abschnitt 53 ohne Absatz an, dessen Länge die des zylindrischen Abschnitts 49 übersteigt und der mit der Längsmittelachse 29 einen spitzen Winkel einschießt. Dadurch erweitert sich der zwischen dem kegelstumpfförmigen Abschnitt 53 und der Innenwandung 19 definierte freie Strömungsquerschnitt von dem Ringspalt 47 aus gesehen. Der zylindrische Abschnitt 49 und der kegelstumpfförmige Abschnitt 53 begrenzen in der Buchse 21 eine Mischkammer mit ringförmigen Querschnitt, deren Länge ihren Durchmesser übersteigt.
    Anschließend an den kegelstumpfförmigen Abschnitt 53 weist der Formkörper 43 einen konischen Abschlußbereich 55 auf, der einen Nabendiffusor bildet und dessen Mantelfläche einen spitzen Winkel mit der Längsmittelachse 29 einschließt, der größer als der von der Mantelfläche des kegelstumpfförmigen Abschnitts 53 mit der Längsmittelachse 29 eingeschlossene spitze Winkel ist.
    Der an der Stange 41 gehaltene Formkörper 43 ist entlang der Längsmittelachse 29 verschiebbar in dem Gehäuse 2 gehalten. Dazu ist die Stange 41 in einer die Wandung des Kanales 9 durchgreifenden Buchse 57 verschiebbar gelagert. Die Längsstellung der Stange 41 und damit die genaue Position des Formkörpers 43 innerhalb des Düsenkörpers 31 und der Buchse 21 wird durch ein mit der Stange 41 verbundenes, nicht dargestelltes Stellorgan eingestellt. Das Stellorgan kann sowohl hand- als auch motorbetätigt ausgeführt sein. Falls es erforderlich ist, kann die Antriebseinrichtung ein Element einer Regelschleife sein, die beispielsweise eine konstante Wassertemperatur an der Ausströmöffnung 17 sicherstellen soll.
    Der insoweit beschriebene Injektor 1 arbeitet wie folgt:
    Der Flansch 4 ist an eine Dampfleitung angeschlossen, über die dem Kanal 9 unter einem konstanten Druck stehender Dampf zugeführt wird. Der Druck beträgt 1 bis 7 bar und wird für den jeweiligen Anwendungsfall konstant gehalten, wobei er auch höher sein kann.
    Der Flansch 5 ist an eine Kaltwasserleitung angeschlossen, die den Kanal 11 unter minderem Druck stehendes Kaltwasser zuführt, dessen Temperatur beispielsweise 14 °C beträgt.
    Von dem Flansch 15 führt eine an diesen angeschlossene Leitung weg, die von dem Injektor 1 mit Heißwasser zu speisen ist. Die Temperatur dieses Heißwassers soll im Beispiel ungefährt 90 °C betragen.
    Der Formkörper 43 wird von der Stange 41 und auf diese wirkenden Regelorgan derart justiert, daß der Ringspalt 47 eine ausreichende Weite hat, um die erforderliche Dampfmenge durchzulassen. Der über den Dampfanschluß O1 zuströmende Dampf strömt dabei durch die von dem Ringspalt 47 gebildete Ringdüse, wobei seine Geschwindigkeit erheblich zunimmt. Er tritt deshalb mit großer Axialgeschwindigkeit aus dem Ringspalt 47 aus und in die Mischkammer 51 ein, wobei er über den Kaltwasseranschluß 03 zugeführtes Kaltwasser durch den Ringspalt 39 ansaugt. Dabei vermischen sich der Dampf und das angesaugte Kaltwasser intensiv unter Ausbildung von Dampfblasen mit relativ geringem Durchmesser. Der Durchmesser dieser Dampfblasen kann die radiale Dicke der Mischkammer 51 nicht überschreiten.
    Das entstandene Gemisch bewegt sich axial durch die Mischkammer 51, wobei der Dampf kondensiert und dabei die frei werdende Wärmemenge auf das Wasser überträgt. Das sich in der Mischkammer 51 mit hoher Axialgeschwindigkeit fortbewegende Gemisch verlangsamt seine Axialgeschwindigkeit, wenn es durch die von dem Abschnitt 53 bzw. dem Abschlußbereich 55 und der Innenwandung 9 gebildeten ringförmigen Mischkammerabschnitt durchströmt. Spätestens wenn das Gemisch den Abschlußbereich 55 passiert hat, ist der in dem Gemisch enthaltene Dampf vollständig kondensiert. Das Gemisch besitzt nun eine Temperatur von bspw. ungefähr 90 °C, wobei das Gemisch unmittelbar im Anschluß an den Ringspalt 47 und 39 an dem Nabendiffusor oder Abschlußbereich 55 entlangströmt, wobei sich aufgrund des zunehmenden Strömungsquerschnittes seine Geschwindigkeit vermindert. Bei Verlassen des Injektors durch die Ausströmöffnung 17 weist es einen gegenüber an dem Kaltwasseranschluß 03 anliegenden Wasserdruck erhöhten Druck auf.
    Zur Teillastregelung oder zum Stillsetzen des Injektors 1 wird die Stange 41 in Figur 1 nach rechts bewegt, so daß sich der Ringspalt 47 verengt oder ganz schließt. Der an dem Dampfanschluß anliegende Dampfdruck wird dabei nicht reduziert; die Teillastregelung erfolgt ausschließlich durch Verengen des in dem Ringspalt 47 vorhandenen freien Strömungsquerschnittes. Dadurch wird auch bei Teillast eine hohe Strömungsgeschwindigkeit im Bereiche des Ringspaltes 47 erhalten. Dadurch kann auch im Teillastbetrieb ein gutes Vermischen des Dampfes mit dem Wasser erreicht werden. Die Kondensation bleibt ruhig und es bilden sich keine heftig implodierenden Dampfblasen. Außerdem wird an der Ausströmöffnung 17 auch im Teillastbereich ein erhöhter Druck erreicht.
    Ein abgewandelter Injektor 1a ist in Figur 2 dargestellt, wobei dieser Injektor 1a soweit er im Zusammenhang mit dem Injektor 1 beschriebene gleiche oder funktionsgleiche Teile enthält mit den gleichen, zur Kenntlichmachung mit einem "a" versehenen Bezugszeichen versehen ist. Die im Zusammenhang mit dem Injektor 1 gegebene Beschreibung des Aufbaus und der Funktion ist insoweit auf den Injektor 1a zu übertragen.
    Abweichend von dem bereits beschriebenen Injektor 1 weist der Injektor 1a einen Warmwasserrückführungskanal 60 auf, über den die Ausströmöffnung 17a mit dem Ringraum 23a in Fluidverbindung steht. Der Warmwasserrückführungskanal 60 wird durch eine breite, nach außen geöffnete ringnutartige Ausnehmung 62 in der äußeren Mantelfläche der Buchse 21 gebildet. Der von der Ausnehmung 62 und dem entsprechenden Abschnitt des Gehäuses 2a umschlossene Ringkanal mündet mit breitem und offenem Strömungsquerschnitt in den Ringraum 23a. Die Buchse 21a ist lediglich mit ihrem, bei der Ausströmöffnung 17 liegenden Ende mit dem Gehäuse 2a verbunden, wobei dieser Bereich mit Axialbohrungen 64 versehen ist. Über diese Axialbohrungen 64 strömt Heißwasser mit einer Temperatur von etwa 90 °C über den Warmwasserrückführungskanal 60 in dem Ringraum 23a, wo es sich mit Kaltwasser, das eine Temperatur von etwa 14 °C aufweist, vermischt. Die Temperatur der entstehenden Mischung liegt bei etwa 50 °C. Dieses vorgewärmte Wasser wird über den Ringspalt 39a in die Mischkammer 51a gesaugt. Um dieses vorgewärmte Wasser auf 90 °C zu bringen, die es an der Ausströmöffnung 17a aufweist, ist entsprechend weniger Dampf erforderlich, als wenn Wasser mit einer Temperatur von 14 °C angesaugt würde. Dadurch kann der Formkörper 43a im Teillastbetrieb sehr weit in die Öffnung 33a hineingefahren werden, so daß der Ringspalt 47a sehr eng ist. Der sich ausbildende Dampfstrahl ist dadurch sehr dünnwandig und kommt überdies lediglich mit vorgewärmtem Wasser in Berührung. Die sich ausbildenden Dampfblasen sind dadurch sehr klein und deren Implosionsneigung infolge der erhöhten Temperatur des in der Mischung enthaltenen Wassers verringert. Der Injektor 1a arbeitet deshalb auch im extremen Teillastbereich ruhig und zuverlässig.
    In Figur 3 ist ein insbesondere für Heizungsanlagen für Wohnhäuser vorgesehener Injektor 1b dargestellt, der vom prinzipiellen Aufbau mit dem Dampfinjektor 1 übereinstimmt, wobei der Dampfinjektor 1b jedoch zusätzlich mit Rückschlagverhinderern 70, 71 versehen und im Vierwegeschema konstruiert ist. Teile des Injektors 1b, die mit Teilen des Injektors 1 funktionsgleich sind, tragen die gleichen Bezugszeichen, wobei sie zur Kenntlichmachung mit einem b versehen sind.
    An dem Gehäuse 2b sind die Flansche 4b, 5b als Schraubflansche oder Schraubanschlüsse ausgeführt, wobei sie nicht wie bei dem in Figur 1 dargestellten Injektor 1 gegenüberliegen, sondern an gegenüberliegenden Seiten des Gehäuses 2b seitlich gegeneinander versetzt angeordnet sind. Dem Flansch 5b gegenüberliegend ist ein weiterer, über eine Ringkammer 72 mit dem Flansch 5b kommunizierender Schraubflansch 74 vorgesehen, der einen weiteren Kaltwasseranschluß 02 bildet und über den Wasser sowohl zu- als auch abfließen kann. Damit kann der Dampfinjektor 1b von Rücklauf- oder Kaltwasser quer durchströmt werden.
    Die Ringkammer 72 ist als in der Buchse 21b vorgesehene Ringnut ausgebildet, deren Breite die Durchmesser der Flansche 5b, 74 übersteigt. Die Buchse 21b ist bei ihrer bei der Ausströmöffnung 17b liegenden Seite mit einem Außengewinde versehen, mittels dessen sie in dem Gehäuse 2b gehalten ist. Zwischen der Ringkammer 72 und dem Außengewinde liegt ein O-Ring 76, um eine Abdichtung herbeizuführen.
    Die Buchse 21b sitzt in einem zylindrischen, in dem Gehäuse 2b vorgesehen Aufnahmeraum 78, der die Ringkammer 72 nach außen begrenzt. Im Anschluß an die Ringkammer 72 weist die Buchse 21b eine sich radial nach außen erstrekkende Wand 80 auf, in der axiale Durchtrittsöffnungen oder Bohrungen 82, 84 vorgesehen sind, die eine Fluidverbindung zwischen der Ringkammer 72 und dem Ringraum 23b schaffen. Um lediglich eine Strömung aus der Ringkammer 72 in den Ringraum 23b zuzulassen, ist eine mit einem zentrischen Loch versehene Gummischeibe 86 vorgesehen, die als Membraneventil den Rückflußverhinderer 71 bildet. Die Gummischeibe 76 ist an ihrem radial äußeren Rand in einer entsprechenden Nut der Wand 80 gefaßt und legt in ihrer Ruhestellung die Bohrungen 82, 86 verschließend an diesen an.
    Die Buchse 21b stößt mit einem ringförmigen, an der Wand 80 vorgesehenen radialen Vorsprung 88 an den hier scheibenförmig ausgebildeten Düsenkörper 31b an, dessen Öffnung 33b mit dem Formkörper 43 den hier zylinderförmigen Ringspalt 47 begrenzt und eine Kreisringdüse für Dampf bildet.
    Der Formkörper 43b ist axial unverschieblich mit einer Scheibe 92 verbunden, die in dem zylindrischen Aufnahmeraum 78 sitzt. Die Scheibe 92 stützt sich mit jeweils ringförmigen, in entgegengesetzten Richtungen axial vorstehenden Vorsprüngen, sowohl an dem Düsenkörper 31b, als auch an einer Steuerventilscheibe 94 ab, die eine kegelförmige Dampfeinlaßöffnung 96 aufweist. Die Scheibe 92 ist mit mehreren, auf einem konzentrisch zu der Längsmittelachse 29b liegenden Kreis angeordneten Axialbohrungen 98, 100 versehen, die von einer randseitig eingespannten, den Rückflußverhinderer 70 bildenden Gummischeibe 102 abgedeckt sind. In Ruhestellung liegt die auf der dem Düsenkörper 3lb zugewandten Seite angeordnete Gummischeibe 102 an den Axialbohrungen 98, 100 an, wobei sie die Axialbohrungen 98, 100 für eine Flußrichtung von dem Dampfanschluß Ol zu dem Ringspalt 47b freigibt.
    Der kegelstumpfförmigen und einen Ventilsitz bildenden Dampfeinlaßöffnung 96 ist ein in der Buchse 57b axial verschiebbares Ventilglied l04 zugeordnet, das an seinem, in die Dampfeinlaßöffnung 96 hinein bewegbaren Ende kegelstumpfförmig ausgebildet und dort mit einem O-Ring 106 versehen ist. Das Ventilglied l04 kann unterschiedliche Axialpositionen einnehmen, wobei in Figur 3 oberhalb der Längsmittelachse 29b eine ganz geschlossene Ventilstellung und unterhalb der Längsmittelachse 29b eine ganz offene Ventilstellung dargestellt ist. Wenn das Ventilglied 104 Zwischenstellungen einnimmt, ist ein Teillastbetrieb möglich.
    Die Funktionsweise des insoweit beschriebenen Injektors 1b stimmt im wesentlichen mit der Funktionsweise des Injektors 1 überein, wobei jedoch der Rückflußverhinderer 71 ausschließt, daß Warmwasser oder Dampf an den Kaltwasseranschlüssen 02, 03 austreten. Der Rückflußverhinderer 70 bewirkt, daß weder Kaltwasser, noch Warmwasser durch den Dampfanschluß O1 zurückdrücken können.
    Der Injektor 1b besteht im wesentlichen aus rotationssymmetrischen Teilen, was die Fertigung erheblich vereinfacht.
    In Fig. 4 ist schematisch eine Wärmeverbraucherstation dargestellt, die an ihrem Dampfanschluß 01 mit über eine Dampfleitung herangeführten Dampf beaufschlagt ist. In der Wärmverbraucherstation anfallendes Kondensat wird über eine den Kaltwasseranschluß 02 bildende Kondensatsammelleitung abgeführt. Die Wärmeverbraucherstation enthält im wesentlichen einen Wärmeverbraucher 110, der über eine Vorlaufleitung 112 an den Flansch 15 des Injektors 1 angeschlossen und mit Warmwasser versorgt ist. Der Injektor 1 ist mit seinem Flansch 4 an den Dampfanschluß 01 angeschlossen. Der Flansch 5 ist über eine Saugleitung an der Kondensatsammelleitung angeschlossen, an die auch der Wärmeverbraucher 110 mit einer Rücklaufleitung 114 angeschlossen ist. Der Verbraucher 110 ist ein beliebiger mit Warmwasser beheizbarer industrieller Verbraucher.
    Im Gegensatz dazu zeigt die Fig. 5 eine mit Warmwasser betriebene Wohnraumheizung 116, die mittels des Injektors 1b nach Fig. 2 mit Warmwasser beaufschlagt ist. Die Wohnraumheizung 116 ist über die Vorlaufleitung 112 mit dem Flansch 15b des Injektors 1b verbunden, während die Rücklaufleitung 114 direkt an den an einen Sauganschluß bildenden Flansch 5b des Injektors 1b geführt ist. Das über die Rücklaufleitung 114 herangeführte Kondensat durchströmt den Injektor 1b quer und wird an dem Schraubflansch 74 heraus- und in die Kondensatsammelleitung 02 abgeleitet.
    Eine weitere Anwendung ist in Fig. 6 dargestellt, bei der ein Warmwasserbecken 118 mittels des Injektors 1a mit Warmwasser gespeist ist. Das Becken ist über die an dem Flansch 15a angeschlossene Vorlaufleitung 112 mit Warmwasser gespeist. Das Warmwasser wird durch Mischung, das heißt Injektion des an dem Dampfanschluß 01 anliegenden Dampfes mit aus der Kondensatsammelleitung 02 angesaugtem, kühleren Kondensat erzeugt. Dazu ist der Injektor la mit seinem Flansch 4a an den Dampfanschluß 01 und mit seinem Flansch 5a an die Kondensatsammelleitung 02 angeschlossen. Mittels des Injektors 1a wird das aus der Kondensatsammelleitung 02 stammende Kondensat sowohl erwärmt, als auch in das möglicherweise höhergelegene Warmwasserbecken 118 gefördert.
    Bei der in Fig. 7 dargestellten Wärmeverbraucherstation ist der Injektor 1 mit seinem als Sauganschluß dienenden Flansch 5 an ein Kaltwasserbecken 120 angeschlossen. Der über den Flansch 4 aus dem Dampfanschluß 01 in den Injektor einströmende Dampf fördert aus dem Kaltwasserbecken 120 angesaugtes Kaltwasser und erwärmt dieses. Das so erzeugte Warmwasser steht mit erhöhtem Druck an dem Flansch 15 bereit und strömt über die Vorlaufleitung 112 in das Warmwasserbecken 118. Der Injektor 1 wirkt damit zugleich als Pumpe.
    Bei der in Fig. 8 dargestellten Wärmeverbraucherstation wird mittels des Dampfinjektors 1 in einem Reservoir 122 gehaltenes Wasser im Kreislauf erwärmt. Dazu ist der mit seinem Flansch 4 an dem Dampfanschluß 01 liegende Injektor mit seinem Flansch 5 so an das Reservoir 122 angeschlossen, daß dem Reservoir 122 Wasser in seinem Bodenbereich entnommen wird. Der Flansch 15 führt in das Reservoir 122 zurück und speist dieses mit Warmwasser. Wird der Flansch 4 des Injektors 1 mit Dampf beaufschlagt, saugt der Injektor über den Flansch 5 bodennahes Kaltwasser aus dem Reservoir 122 ab und speist das sich mit Dampf mischende und dadurch erwärmende Wasser in das Reservoir 122 zurück.

    Claims (25)

    1. Injektor (1) zum Einleiten eines dampfförmigen Wärmeträgers in eine zu erwärmende Flüssigkeit,
      mit einer eine Ausströmöffnung (17) aufweisenden Mischkammer (51), die wenigstens einen ringförmig ausgebildeten, radial durch eine Innenwandung (49, 53) und eine Außenwandung (19) begrenzten Abschnitt aufweist
      mit einer mit dem dampfförmigen Wärmeträger beaufschlagbaren Düse (31), die in die Mischkammer (51) mündet,
      mit wenigstens einer mit der zu erwärmenden Flüssigkeit beaufschlagbaren in den ringförmigen Abschnitt der Mischkammer (51) mündenden Einströmöffnung (39), die in Bezug auf die von der Ringdüse (31) definierten Durchströmungsrichtung der Ringdüse (31) nachfolgend angeordnet ist,
         dadurch gekennzeichnet,
      daß die Düse (31) eine ringspaltförmige Austrittsöffnung (47) aufweist und
      daß die Einströmöffnung (39) im wesentlichen mit radialer Öffnungsrichtung in den Saugbereich mündet.
    2. Injektor nach Anspruch 1, dadurch gekennzeichnet, daß die Durchströmungsrichtung axial zu der Ringdüse (31) festgelegt ist.
    3. Injektor nach Anspruch 1, dadurch gekennzeichnet, daß in der Mischkammer (51) ein ringförmiger Saugbereich ausgebildet ist, in den die Einströmöffnung (39) mündet.
    4. Injektor nach Anspruch 1, dadurch gekennzeichnet, daß die Einströmöffnung (39) von einem koaxial zu der Ringdüse (31) angeordneten Ringspalt gebildet ist.
    5. Injektor nach Anspruch 1, dadurch gekennzeichnet, daß die Innenwandung (49, 53) und die Außenwandung (19) einen sich wenigstens abschnittsweise von der Ringdüse (31) weg erweiternden Strömungsquerschnitt definieren.
    6. Injektor nach Anspruch 1, dadurch gekennzeichnet, daß der Injektor (1) einen von der ringspaltförmigen Ausströmöffnung (47) umgebenen und sich von dieser weg erstreckenden Leitkörper (43) aufweist, der im Anschluß an die Ausströmöffnung (47) eine Innenwandung des ringförmigen Abschnittes der Mischkammer (51) bildet.
    7. Injektor nach Anspruch 6, dadurch gekennzeichnet, daß die die Mischkammer (51) stirnseitig begrenzende Ringdüse durch eine von dem Leitkörper (43) durchgriffene, an einem Düsenkörper (31) vorgesehene Öffnung (33) gebildet ist.
    8. Injektor nach Anspruch 6, dadurch gekennzeichnet, daß der Strömungskörper (43) einen zylindrischen Abschnitt (49) aufweist, der sich in einen zylindrischen Abschnitt der Mischkammer (51) erstreckt.
    9. Injektor nach Anspruch 1, dadurch gekennzeichnet, daß der ringförmig ausgebildete Abschnitt der Mischkammer (51) axial durchströmt ist.
    10. Injektor nach Anspruch 1, dadurch gekennzeichnet, daß der ringförmig ausgebildete Abschnitt der Mischkammer (51) wenigstens über einen Bereich seiner Längserstreckung einen konstanten Strömungsquerschnitt aufweist.
    11. Injektor nach Anspruch 1, dadurch gekennzeichnet, daß der ringförmig ausgebildete Abschnitt der Mischkammer (51) wenigstens einen hohlzylindrisch ausgebildeten Bereich aufweist.
    12. Injektor nach Anspruch 1, dadurch gekennzeichnet,daß die Länge des ringförmigen Abschnittes der Mischkammer (51) größer oder gleich dem Außendurchmesser des Abschnittes und derart bemessen ist, daß eingeströmter Dampf vor Verlassen des Bereiches vollständig kondensiert ist.
    13. Injektor nach Anspruch 1, dadurch gekennzeichnet daß die radiale Dicke des ringförmigen Abschnittes (51) beträchtlich kleiner ist, als der Außendurchmesser der Innenwandung.
    14. Injektor nach Anspruch 13, dadurch gekennzeichnet daß die radiale Dicke des ringförmigen Abschnittes (51) höchstens ein Fünftel des Außendurchmessers der Innenwandung beträgt.
    15. Injektor nach Anspruch 1, dadurch gekennzeichnet daß die Ringdüse (31) eine gegen ihren Außendurchmesser geringe Spaltweite aufweist.
    16. Injektor nach Anspruch 1, dadurch gekennzeichnet daß der Durchmesser der die Ringdüse (31) bildenden Öffnung mit dem Innendurchmesser der Außenwandung (19) der Mischkammer (51) im wesentlichen übereinstimmt.
    17. Injektor nach Anspruch 1, dadurch gekennzeichnet daß die Ringdüse (31) in ihrem Strömungsquerschnitt veränderbar ausgelegt ist.
    18. Injektor nach Anspruch 1, dadurch gekennzeichnet, daß der Leitkörper (43) derart beweglich gehalten ist, daß die Erstreckung, mit der er in die Mischkammer (51) ragt, einstellbar ist.
    19. Injektor nach Anspruch 1, dadurch gekennzeichnet, daß der Injektor (1) einen Kanal (60, 62, 64) aufweist, über den die Auströmöffnung (17) mit der Einströmöffnung (39) verbunden ist.
    20. Injektor nach Anspruch 19, dadurch gekennzeichnet, daß der Kanal (60, 62, 64), über den die Auströmöffnung (17) mit der Einströmöffnung (39) verbunden ist, ringförmig ausgebildet ist und die Mischkammer (51) umgibt.
    21. Injektor nach Anspruch 1, dadurch gekennzeichnet, daß der Ringdüse (31) ein Rückflußverhinderer (70) vorgeschaltet ist.
    22. Injektor nach Anspruch 21, dadurch gekennzeichnet, daß der Einströmöffnung (39) ein Rückflußverhinderer (71) vorgeschaltet ist.
    23. Verfahren zum Einleiten eines dampfförmigen Wärmeträgers in eine zu erwärmende Flüssigkeit, um diese zu erwärmen,
      bei dem ein Dampfstrahl mit ringförmigem Querschnitt erzeugt wird, der einen ortsfesten stationären Bereich aufweist, innerhalb dessen der statische Druck ein Minimum einnimmt, und
      bei dem dem Dampfstrahl mit ringförmigem Querschnitt in dem Bereich seines Minimums des statischen Drucks die zu erwärmende Flüssigkeit aus, in Bezug auf den Dampfstrahl, radialer Richtung beigegeben wird.
    24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß bei dem zum Regeln der Erwärmung der Flüssigkeit die ringförmige Querschnittsfläche des Dampfstrahls verändert wird, wobei der Ruhedruck des dampfförmigen Wärmeträgers konstant gehalten wird.
    25. Verwendung des Injektors nach Anspruch 1 zum Einleiten von Wasserdampf in zu erwärmendes Wasser.
    EP95118403A 1995-01-27 1995-11-23 Dampfinjektor Expired - Lifetime EP0724079B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19502539 1995-01-27
    DE19502539A DE19502539C2 (de) 1995-01-27 1995-01-27 Dampfinjektor

    Publications (2)

    Publication Number Publication Date
    EP0724079A1 EP0724079A1 (de) 1996-07-31
    EP0724079B1 true EP0724079B1 (de) 2000-05-17

    Family

    ID=7752456

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95118403A Expired - Lifetime EP0724079B1 (de) 1995-01-27 1995-11-23 Dampfinjektor

    Country Status (3)

    Country Link
    EP (1) EP0724079B1 (de)
    AT (1) ATE193098T1 (de)
    DE (2) DE19502539C2 (de)

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19719120C2 (de) * 1997-05-07 2000-10-12 Schneider Bochumer Maschf A Vorrichtung zur Kühlung von Heißdampf
    SE516081C2 (sv) 1999-01-26 2001-11-12 Tetra Laval Holdings & Finance Metod för reglering av en ånginjektor
    DE1106838T1 (de) * 1999-12-10 2002-06-13 Zhuhai Velocity Of Sound Techn Bauteil einer Heizungsanlage
    DE102007017704B4 (de) 2007-04-14 2009-12-31 Gea Tds Gmbh Injektor und Verfahren zum Einleiten eines dampfförmigen Wärmeträgers in ein flüssiges Produkt
    DE102013008435A1 (de) * 2013-05-17 2014-11-20 Herbert Kannegiesser Gmbh Verfahren und Vorrichtung zum direkten Aufheizen von Flüssigkeiten zur Nassbehandlung von insbesondere Wäschestücken mit Dampf
    EP3480435B1 (de) * 2017-11-07 2022-03-02 Volvo Car Corporation Ventilvorrichtung für ein rankine-system

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE268934C (de) *
    DE407692C (de) * 1923-08-22 1925-01-03 Actien Ges Der Dillinger Huett Strahlpumpe
    US1803054A (en) * 1926-01-09 1931-04-28 Superheater Co Ltd Method and apparatus for heating fluids
    GB612839A (en) * 1946-05-04 1948-11-18 Spirax Mfg Company Ltd Improvements in, or relating to, steam-operated heaters for water and other liquids
    DE924122C (de) * 1952-01-12 1955-02-24 Huels Chemische Werke Ag Injektor zur Foerderung von festen, fluessigen, dampf- oder gasfoermigen Stoffen
    GB790459A (en) * 1955-07-25 1958-02-12 Schiff And Stern Ges M B H Improvements in or relating to injector devices
    GB1397435A (en) * 1972-08-25 1975-06-11 Hull F R Regenerative vapour power plant
    DE2332582A1 (de) * 1973-06-27 1975-01-09 Holstein & Kappert Maschf Strahlpumpe, insbesondere zum foerdern und dosieren von fluessigkeiten und gasen
    DE2342841A1 (de) * 1973-08-24 1975-03-20 Baelz Gmbh Helmut Dreiwegeventil, insbesondere fuer warmwasserheizungs- oder -bereitungsanlagen
    DE2346112A1 (de) * 1973-09-13 1975-03-20 Baelz Gmbh Helmut Regelbare strahlpumpe
    IL74282A0 (en) * 1985-02-08 1985-05-31 Dan Greenberg Multishaft jet suction device

    Also Published As

    Publication number Publication date
    DE19502539C2 (de) 1997-10-02
    EP0724079A1 (de) 1996-07-31
    DE59508350D1 (de) 2000-06-21
    DE19502539A1 (de) 1996-08-01
    ATE193098T1 (de) 2000-06-15

    Similar Documents

    Publication Publication Date Title
    DE3125583C2 (de)
    EP1516237B1 (de) Durchflussmengenregler
    EP3714169B1 (de) Strahlpumpeneinheit mit einem dosierventil zum steuern eines gasförmigen mediums
    DE1111892B (de) Wassermischventil
    EP0001615A1 (de) Regelvorrichtung für eine Heizungsanlage
    EP0724079B1 (de) Dampfinjektor
    DE3220050A1 (de) Verbesserung bei duschsystemen fuer waschzwecke
    DE2839326C2 (de) Mischventil für sanitäre Anlagen
    DE2307084A1 (de) Ventilbetaetigter dampfwasserableiter
    DE102005062592A1 (de) Einrichtung zum temperaturabhängigen Steuern von Strömungswegen
    DE3408024A1 (de) Thermostatregelung
    DE8306612U1 (de) Druckzerstaeuberduese fuer heizungsanlagen
    EP3617569A1 (de) Anschlussarmatur sowie wasserleitungssystem
    WO2018121811A1 (de) Regelarmatur zur regelung des differenzdruckes und/oder des volumenstromes
    EP0169916B1 (de) Pumpe, insbesondere Lenkhilfpumpe
    CH400700A (de) Durchlass-Organ für Hähne, Mischbatterien und dergleichen
    EP2979015B1 (de) Ventilvorrichtung und dampfreinigungsgerät
    DE202017103931U1 (de) Mischbatterie
    DE2330486A1 (de) Gasbeheizter wassererhitzer, insbesondere durchlauf-wassererhitzer
    DE2727225A1 (de) Axialstrom-drosselorgan
    DE202015103940U1 (de) Wärmetauschersystem
    DE2502349C3 (de) Wasserarmatur für gasbeheizte Durchlauf-Wassererhitzer
    DE1782231C (de) Ventil zum Mischen einer ersten und einer zweiten Flüssigkeit mit einer von außen zugänglichen Durchflußregulier einrichtung
    DE19830761C2 (de) Warm- oder Heißwassererzeuger
    DE112017004623T5 (de) Vorrichtung zur thermostatischen Regelung eines Fluids

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK FR GB IT LI LU NL SE

    17P Request for examination filed

    Effective date: 19960816

    17Q First examination report despatched

    Effective date: 19990114

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK FR GB IT LI LU NL SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000517

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20000517

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000517

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000517

    REF Corresponds to:

    Ref document number: 193098

    Country of ref document: AT

    Date of ref document: 20000615

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59508350

    Country of ref document: DE

    Date of ref document: 20000621

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000817

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20000817

    EN Fr: translation not filed
    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20000517

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001123

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001123

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001130

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20001130

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    BERE Be: lapsed

    Owner name: HELMUT BALZ G.M.B.H.

    Effective date: 20001130

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20141027

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59508350

    Country of ref document: DE