EP0712147B1 - Feldeffekt-Elektronenquelle und Verfahren zur Herstellung; Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz - Google Patents

Feldeffekt-Elektronenquelle und Verfahren zur Herstellung; Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz Download PDF

Info

Publication number
EP0712147B1
EP0712147B1 EP95402451A EP95402451A EP0712147B1 EP 0712147 B1 EP0712147 B1 EP 0712147B1 EP 95402451 A EP95402451 A EP 95402451A EP 95402451 A EP95402451 A EP 95402451A EP 0712147 B1 EP0712147 B1 EP 0712147B1
Authority
EP
European Patent Office
Prior art keywords
diamond
carbon
source
electrically insulating
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95402451A
Other languages
English (en)
French (fr)
Other versions
EP0712147A1 (de
Inventor
Joel Danroc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0712147A1 publication Critical patent/EP0712147A1/de
Application granted granted Critical
Publication of EP0712147B1 publication Critical patent/EP0712147B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/021Electron guns using a field emission, photo emission, or secondary emission electron source
    • H01J3/022Electron guns using a field emission, photo emission, or secondary emission electron source with microengineered cathode, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30426Coatings on the emitter surface, e.g. with low work function materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30457Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels

Definitions

  • the present invention relates to a method of fabrication of a field effect electron source.
  • the present invention applies to particular to the field of display devices dishes also called “flat screens”, as well as manufacture of pressure measurement gauges.
  • microtips These are the sources of microtip electrons ("microtips").
  • a source of microtip electrons includes at least one cathode conductor on a substrate electrically insulating, an electrically insulating layer which covers this cathode conductor and at least one grid formed on this electrically insulating layer.
  • Holes are formed through the grid and the insulating layer above the cathode conductor.
  • micro-tips are formed in these holes and carried by the cathode conductor.
  • each micro-tip is substantially in the plane of the grid, this grid used to extract electrons from micro-tips.
  • the holes have very small dimensions (they have a diameter less than 2 ⁇ m).
  • These other known display devices include a cathodoluminescent anode placed opposite of an electron source comprising carbon layers diamond or diamond-like intended to emit electrons.
  • Diamond or diamond carbon emits electrons much more easily than materials conventionally used for the manufacture of micro-tips.
  • the minimum electric field from which one can obtain an electron emission can be twenty times lower that the minimum electric field corresponding to metals such as molybdenum.
  • the deposits obtained are continuous layers and not micro-tips.
  • the object of the present invention is to remedy to the previous drawbacks.
  • the process which is the subject of the invention can be implemented used with large surface substrates and allows thus obtaining electron sources (and therefore screens large area (several dozen inches diagonally).
  • the temperature at which deposits are formed main is close to room temperature, around 20 ° C for electrophoresis and around 40 ° C to 60 ° C for electrochemical deposition.
  • the main deposits are covered with a secondary deposit of a metal, for example by electrochemical deposition, in order to consolidate these micro-clusters.
  • the carbon particles diamond or diamond type have a size of around 1 ⁇ m or less than 1 ⁇ m (but of course less the size of the micro-tips).
  • These particles can be obtained at from natural or artificial diamond or by a method chosen from laser synthesis, deposition chemical vapor phase and physical phase deposition steam.
  • the holes formed through the grid layer and the electrically insulating layer can have a circular or rectangular shape.
  • the size of these holes can be chosen in an interval of approximately 1 ⁇ m to several tens of micrometers.
  • the size of the holes that we form to put implementing the process which is the subject of the invention can be significantly higher than that required for implementing a process for manufacturing a source classic with micro-tips (not covered).
  • the source object of the present invention emits more of electrons than a microtip source, due to the use, in the present invention, of deposits of diamond or diamond-like carbon particles that have higher emissivity than emitting materials of conventional electrons such as molybdenum.
  • this device has a more greater brightness than a conventional micro-tip device (not covered), for the same voltage of ordered.
  • this device using a source according to the invention requires a voltage of lower order than that required for such classic micro-tip device.
  • Deposits main can be made of carbon particles diamond or diamond type or can be made of such particles dispersed in a metal.
  • Each of these main deposits can be covered with a deposit secondary of a metal intended to consolidate these deposits main.
  • Holes 10 are formed through these grids 8 and the insulating layer 6 above the cathode conductors 4.
  • Micro-tips 12 are formed in the holes 10 and carried by the cathode conductors 4.
  • Each of these micro-tips 12 is covered with a deposit 13 of carbon particles diamond or diamond type.
  • cathode conductors 4 are parallel and the grids 8 are parallel to each other and perpendicular to the conductors cathodic 4.
  • the holes 10 and therefore the micro-tips 12 are found in the areas where these grids cross the cathode conductors.
  • micro-tips of such an area covered with deposits 13, which emit electrons when an appropriate electrical voltage is applied, by means not shown, between the conductor cathode 4 and grid 8 which correspond to this zoned.
  • a display device by cathodoluminescence is schematically represented in section in Figure 2.
  • This device includes the source of electrons 14 in Figure 1.
  • the device of Figure 2 also includes a cathodoluminescent anode 16 placed opposite the source 14 and separated from it by a space 18 in which we made the vacuum.
  • the cathodoluminescent anode 16 comprises a electrically insulating and transparent substrate 20 which is provided with an electrically conductive layer and transparent 22 forming an anode.
  • this layer 24 emits light that a user of the viewing device observes through the transparent substrate 20.
  • FIG. 1 A process in accordance with the invention, allowing the manufacture of the source of electrons of figure 1, referring to figure 3 which schematically illustrates this process.
  • the diameter D1 of holes (substantially circular) formed in the grid 8 and in the electrically insulating layer 6 can be advantageously greater than the diameter of the holes than contain micro-point electron sources described in documents (1) to (4).
  • this diameter D1 can take values on the order of 1 ⁇ m up to 50 ⁇ m.
  • Figure 4 schematically illustrates the makes the holes 10, instead of having a shape circular, may have a rectangular shape.
  • the width D2 of these holes 10 in the figure 4, rectangular, can be taken equal to diameter D1 mentioned above and can therefore be also significantly larger than the diameter of the holes micro-tip sources.
  • This powder can be obtained by deposit chemical vapor phase, from a mixture hydrogen and light hydrocarbons.
  • This chemical vapor deposition can be assisted by an electron beam or be assisted by a plasma generated by microwaves.
  • This powder can also be formed by a ultrasonic spraying process known as of "Pyrosol”, that is to say, more precisely by pyrolysis of an aerosol of a carbonaceous compound.
  • the powder can also be synthesized by physical vapor deposition ("physical vapor” deposition "), from carbon targets (graphite for example) and a plasma gas such as argon alone or mixed with hydrogen, hydrocarbons, without dopant or with a dopant like for example the diborane.
  • physical vapor deposition from carbon targets (graphite for example) and a plasma gas such as argon alone or mixed with hydrogen, hydrocarbons, without dopant or with a dopant like for example the diborane.
  • This powder can also be obtained by laser ablation.
  • diamonds can be prepared carbon compression, high pressure and high temperature, then make the powder from of these artificial diamonds.
  • these carbon powders diamond and these diamond-like carbon powders are chosen so as to have a micronic particle size or submicronic or nanometric but, of course, smaller than the size of the micro-tips.
  • micro-tips have a size of the order of 1 ⁇ m
  • a particle size is used submicron.
  • these carbon powders diamond or diamond type can be doped or not doped.
  • the deposition of the powder (particles of diamond or diamond type) leading to the formation of deposits 13, can be achieved by electrophoresis (cataphoresis or anaphoresis), possibly supplemented by a metallic deposit electrochemical consolidation, or by co-deposit electrochemical of metal and carbon diamond or diamond type.
  • micro-tips 12 In the case of anaphoresis filing, the structure provided with micro-tips 12 is placed in an appropriate solution 26 and each micro-tip 12 is brought to positive potential during this phase deposit.
  • drivers cathodics 4 are brought to this positive potential thanks to a suitable voltage source 28 whose terminal positive is connected to these cathode conductors 4 while the negative terminal of this source is connected to a platinum or steel counter electrode 32 stainless steel located in the bath at a distance from substrate about 1 to 5 cm.
  • the fine powder of carbon particles diamond or diamond type is suspended in solution 26 (before placing the structure in this solution).
  • the voltage supplied by the source 28 can go up to around 200 V.
  • micro-tips In the case of cataphoresis, a potential negative is applied to micro-tips.
  • this is the source 28 negative terminal which is connected to cathode conductors 4 while the positive terminal of the source 28 is connected to a counter-electrode 32 in platinum or stainless steel located in the bath a distance from the substrate of about 1 to 5 cm.
  • a metal for example chosen from Ni, Co, Ag, Au, Rh or Pt or, more generally, among the metals of transition, alloys thereof and metals precious.
  • This electrode 33 is for example in nickel and solution 30 contains for example 300 g / l nickel sulfate, 30 g / l nickel chloride, 30 g / l of boric acid and 0.6 g / l of lauryl sulfate sodium.
  • an electric current of 4 A / dm 2 is used .
  • deposits 13 by electrochemical co-deposit of metal and carbon diamond or diamond type.
  • An appropriate current source is used, for example of the order of 4 A / dm 2 , and the negative terminal of this source is applied to the cathode conductors and the positive terminal of this source to a nickel electrode placed in the bath.
  • Nickel is deposited on micro-tips 12 by bringing with it the diamond particles, hence the formation of deposits 13 of nickel and diamond on micro-tips 12.
  • tops of the micro-tips 12 covered with deposits 13 are found substantially in the plane of the grids and are not in contact with these grids.

Claims (11)

  1. Verfahren zur Herstellung einer Feldeffekt-Elektronenquelle mit folgenden Schritten:
    Herstellen einer Struktur mit einem elektrisch isolierenden Substrat (2), wenigstens einem Kathodenleiter (4) auf diesem Substrat, einer elektrisch isolierenden Schicht (6), die jeden Kathodenleiter bedeckt, und einer elektrisch leitenden Gitterschicht (25), die diese elektrisch isolierende Schicht bedeckt,
    Bilden von Löchern (10) durch die Gitterschicht und die elektrisch isolierende Schicht in Höhe jedes Kathodenleiters, und
    Bilden einer Mikrospitze (12) aus einem elektronenemittierenden metallischen Material in jedem Loch,
    dadurch gekennzeichnet,
    daß jede dieser Mikrospitzen (12) anschließend überzogen wird mit einer Hauptabscheidung (13) aus Partikeln aus Diamant- oder diamantartigem Kohlenstoff und die Hauptabscheidungen (13) gebildet werden durch Elektrophorese oder durch gemeinsames elektrochemisches Abscheiden von Metall und von Diamant- oder diamantartigem Kohlenstoff.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Hauptabscheidungen (13) anschließend mit einer sekundären Abscheidung (36) eines Metalls überzogen werden.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß diese sekundäre Abscheidung eine elektrochemische Abscheidung ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Partikel aus Diamant- oder diamantartigem Kohlenstoff eine Größe in der Größenordnung von 1µm oder weniger als 1µm aufweisen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Partikel aus natürlichem oder künstlichem Diamant hergestellt werden oder mittels einer Methode, ausgewählt zwischen der Lasersynthese, der chemischen Gasphasenabscheidung und der physikalischen Gasphasenabscheidung.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Löcher (10) eine kreisförmige oder rechteckige Form aufweisen.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Größe der Löcher (10) ausgewählt wird aus einem Intervall, das von ungefähr 1µm bis mehrere zehn Mikrometer geht.
  8. Feldeffekt-Elektronenquelle, umfassend:
    ein elektrisch isolierendes Substrat (2), wenigstens eine erste, die Rolle des Kathodenleiters spielende Elektrode (4),
    eine elektrisch isolierende Schicht (6), die diesen Kathodenleiter bedeckt,
    wenigstens eine zweite, die Rolle des Gitters spielende Elektrode (8), ausgebildet auf der elektrisch isolierenden Schicht, wobei Löcher (10) durch dieses Gitter und die elektrisch isolierende Schicht über dem Kathodenleiter ausgebildet sind, und
    Mikrospitzen (12) aus einem elektronenemittierenden Material, die in diesen Löchern ausgebildet sind und durch den Kathodenleiter getragen werden,
    dadurch gekennzeichnet,
    daß jede dieser Mikrospitzen mit einer Hauptabscheidung (13) aus Diamant- oder diamantartigem Kohlenstoff überzogen ist, gebildet nach dem Verfahren nach Anspruch 1.
  9. Quelle nach Anspruch 8, dadurch gekennzeichnet, daß die Hauptabscheidungen (13) aus Partikeln aus Diamant- oder diamantartigem Kohlenstoff gemacht sind, oder aus derartigen Partikeln, dispergiert in einem Metall, gemacht sind.
  10. Quelle nach Anspruch 2, dadurch gekennzeichnet, daß jede dieser Hauptabscheidungen (13) mit einer sekundären Abscheidung (36) aus einem Metall überzogen ist.
  11. Kathodolumineszenz-Anzeigevorrichtung, umfassend:
    eine Feldeffekt-Elektronenquelle (14), und
    eine Kathodolumineszenzanode (16) mit einer Schicht aus einem kathodolumineszenten Material (24),
    dadurch gekennzeichnet,
    daß die Quelle (14) einem der Ansprüche 8 bis 10 entspricht.
EP95402451A 1994-11-08 1995-11-03 Feldeffekt-Elektronenquelle und Verfahren zur Herstellung; Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz Expired - Lifetime EP0712147B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9413372A FR2726689B1 (fr) 1994-11-08 1994-11-08 Source d'electrons a effet de champ et procede de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence
FR9413372 1994-11-08

Publications (2)

Publication Number Publication Date
EP0712147A1 EP0712147A1 (de) 1996-05-15
EP0712147B1 true EP0712147B1 (de) 1999-06-30

Family

ID=9468612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95402451A Expired - Lifetime EP0712147B1 (de) 1994-11-08 1995-11-03 Feldeffekt-Elektronenquelle und Verfahren zur Herstellung; Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz

Country Status (5)

Country Link
US (1) US5836796A (de)
EP (1) EP0712147B1 (de)
JP (1) JPH08227655A (de)
DE (1) DE69510522T2 (de)
FR (1) FR2726689B1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853492A (en) * 1996-02-28 1998-12-29 Micron Display Technology, Inc. Wet chemical emitter tip treatment
KR100442982B1 (ko) * 1996-04-15 2004-09-18 마츠시타 덴끼 산교 가부시키가이샤 전계방출형전자원및그제조방법
ATE279782T1 (de) 1996-06-25 2004-10-15 Univ Vanderbilt Strukturen, anordnungen und vorrichtungen mit vakuum-feldemissions-mikrospitzen und verfahren zu deren herstellung
US5858478A (en) * 1997-12-02 1999-01-12 The Aerospace Corporation Magnetic field pulsed laser deposition of thin films
US5944573A (en) * 1997-12-10 1999-08-31 Bav Technologies, Ltd. Method for manufacture of field emission array
FR2778757B1 (fr) * 1998-05-12 2001-10-05 Commissariat Energie Atomique Systeme d'inscription d'informations sur un support sensible aux rayons x
JPH11329217A (ja) * 1998-05-15 1999-11-30 Sony Corp 電界放出型カソードの製造方法
JP2000021287A (ja) * 1998-06-30 2000-01-21 Sharp Corp 電界放出型電子源及びその製造方法
JP3595718B2 (ja) 1999-03-15 2004-12-02 株式会社東芝 表示素子およびその製造方法
US6935917B1 (en) * 1999-07-16 2005-08-30 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode and production method thereof
US6462467B1 (en) * 1999-08-11 2002-10-08 Sony Corporation Method for depositing a resistive material in a field emission cathode
US6342755B1 (en) * 1999-08-11 2002-01-29 Sony Corporation Field emission cathodes having an emitting layer comprised of electron emitting particles and insulating particles
US6384520B1 (en) * 1999-11-24 2002-05-07 Sony Corporation Cathode structure for planar emitter field emission displays
KR100480771B1 (ko) * 2000-01-05 2005-04-06 삼성에스디아이 주식회사 전계방출소자 및 그 제조방법
KR100464314B1 (ko) * 2000-01-05 2004-12-31 삼성에스디아이 주식회사 전계방출소자 및 그 제조방법
JP3737696B2 (ja) 2000-11-17 2006-01-18 株式会社東芝 横型の電界放出型冷陰極装置の製造方法
FR2843241A1 (fr) * 2002-07-31 2004-02-06 Framatome Connectors Int Dispositif de retention de contact ameliore
US8048789B2 (en) * 2005-04-26 2011-11-01 Northwestern University Mesoscale pyramids, arrays and methods of preparation
JP2007273270A (ja) * 2006-03-31 2007-10-18 Mitsubishi Electric Corp 電界放出型表示装置およびその製造方法
ATE529881T1 (de) * 2006-08-03 2011-11-15 Creepservice S A R L Verfahren zur beschichtung von substraten mit diamantähnlichen kohlenstoffschichten
US20100261058A1 (en) * 2009-04-13 2010-10-14 Applied Materials, Inc. Composite materials containing metallized carbon nanotubes and nanofibers
GB2482728A (en) * 2010-08-13 2012-02-15 Element Six Production Pty Ltd Polycrystalline superhard layer made by electrophoretic deposition
TWI435360B (zh) * 2011-10-17 2014-04-21 Au Optronics Corp 場發射顯示器及其顯示陣列基板的製造方法
CN107098342A (zh) * 2017-04-07 2017-08-29 河南黄河旋风股份有限公司 金刚石粉体分离装置和分离方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293593A (en) 1941-07-25 1942-08-18 Albert Shelby Hair treating apparatus
US4084942A (en) * 1975-08-27 1978-04-18 Villalobos Humberto Fernandez Ultrasharp diamond edges and points and method of making
FR2593953B1 (fr) 1986-01-24 1988-04-29 Commissariat Energie Atomique Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ
FR2623013A1 (fr) 1987-11-06 1989-05-12 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source
JPH0275902A (ja) * 1988-09-13 1990-03-15 Seiko Instr Inc ダイヤモンド探針及びその成形方法
FR2663462B1 (fr) 1990-06-13 1992-09-11 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
US5141460A (en) * 1991-08-20 1992-08-25 Jaskie James E Method of making a field emission electron source employing a diamond coating
US5129850A (en) * 1991-08-20 1992-07-14 Motorola, Inc. Method of making a molded field emission electron emitter employing a diamond coating
US5199918A (en) * 1991-11-07 1993-04-06 Microelectronics And Computer Technology Corporation Method of forming field emitter device with diamond emission tips
US5180951A (en) * 1992-02-05 1993-01-19 Motorola, Inc. Electron device electron source including a polycrystalline diamond
US5252833A (en) * 1992-02-05 1993-10-12 Motorola, Inc. Electron source for depletion mode electron emission apparatus
US5290610A (en) * 1992-02-13 1994-03-01 Motorola, Inc. Forming a diamond material layer on an electron emitter using hydrocarbon reactant gases ionized by emitted electrons
FR2687839B1 (fr) * 1992-02-26 1994-04-08 Commissariat A Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ utilisant cette source.
US5278475A (en) * 1992-06-01 1994-01-11 Motorola, Inc. Cathodoluminescent display apparatus and method for realization using diamond crystallites
JPH08507643A (ja) * 1993-03-11 1996-08-13 フェド.コーポレイション エミッタ先端構造体及び該エミッタ先端構造体を備える電界放出装置並びにその製造方法
KR100314830B1 (ko) * 1994-07-27 2002-02-28 김순택 전계방출표시장치의제조방법
US5623180A (en) * 1994-10-31 1997-04-22 Lucent Technologies Inc. Electron field emitters comprising particles cooled with low voltage emitting material
US5616368A (en) * 1995-01-31 1997-04-01 Lucent Technologies Inc. Field emission devices employing activated diamond particle emitters and methods for making same

Also Published As

Publication number Publication date
FR2726689A1 (fr) 1996-05-10
JPH08227655A (ja) 1996-09-03
DE69510522T2 (de) 2000-03-16
EP0712147A1 (de) 1996-05-15
US5836796A (en) 1998-11-17
DE69510522D1 (de) 1999-08-05
FR2726689B1 (fr) 1996-11-29

Similar Documents

Publication Publication Date Title
EP0712147B1 (de) Feldeffekt-Elektronenquelle und Verfahren zur Herstellung; Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz
EP0712146B1 (de) Feldeffekt-Elektronenquelle und Herstellungsverfahren dazu, Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz
EP1614765B1 (de) Niedertemperaturwachstum orientierter Kohlenstoff-Nanoröhrchen
EP0717877B1 (de) Herstellung von elektronen-emittierenden vorrichtungen mit hoher emitter-packungsdichte
US6462467B1 (en) Method for depositing a resistive material in a field emission cathode
KR101000827B1 (ko) 전자방출소자 및 그것을 이용한 전자원 및 화상표시장치 및정보 표시 재생장치
US7741764B1 (en) DLC emitter devices and associated methods
JP2001527690A (ja) 炭素などの原料で被覆された電子エミッタの構造と製造
FR2723255A1 (fr) Dispositif d'affichage a emission de champ et procede pour fabriquer de tels dispositifs
EP0708473B1 (de) Verfahren zur Herstellung einer Mikrospitzen-Elektronenquelle
EP0802559B1 (de) Flacher Bildschirm mit Wasserstoffquelle
EP0856868B1 (de) Feldemissionselektronenquelle und Bildschirm mit solcher Feldemissionselektronenquelle
EP0943153A1 (de) Ein durch einen mikrospitzen-träger beobachtbares, mit einer mikrospitzen-elektronenquelle versehenes bildschirm und verfahren zur herstellung dieser quelle
US6593683B1 (en) Cold cathode and methods for producing the same
JPH06131968A (ja) 電界放出型電子源およびアレイ状基板
EP1932806B1 (de) Herstellungsverfahren von Kohlenstoff-Nanokanälen mit Metallseelen
KR20010049452A (ko) 수직 배향된 탄소 나노튜브를 이용한 전계방출 표시소자및 그 제조 방법
FR2719155A1 (fr) Procédé de réalisation de sources d'électrons à micropointes et source d'électrons à micropointes obtenue par ce procédé.
FR2757999A1 (fr) Procede d'auto-alignement utilisable en micro-electronique et application a la realisation d'une grille de focalisation pour ecran plat a micropointes
EP1971703A2 (de) Katalytisches und gerichtetes wachstum von individuellen kohlenstoffnanoröhren und anwendung davon für kalte elektronenquellen
WO2002006559A1 (fr) Procede de fabrication de couches de carbone aptes a emettre des electrons, par depot chimique en phase vapeur
Boscolo et al. Tests on diamond films as current amplifiers for photocathodes
KR20010049451A (ko) 수직 배향된 탄소 나노튜브를 이용한 전계방출 표시소자및 그 제조 방법
FR2779243A1 (fr) Procede de realisation par photolithographie d'ouvertures auto-alignees sur une structure, en particulier pour ecran plat a micropointes
EP0038742A1 (de) Herstellungsverfahren einer imprägnierten Kathode mit integriertem Gitter, nach diesem Verfahren hergestellte Kathode und mit einer solchen Kathode versehene Elektronenröhre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19961022

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981008

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69510522

Country of ref document: DE

Date of ref document: 19990805

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990903

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041104

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051103