EP0712147A1 - Feldeffekt-Elektronenquelle und Verfahren zur Herstellung; Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz - Google Patents

Feldeffekt-Elektronenquelle und Verfahren zur Herstellung; Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz Download PDF

Info

Publication number
EP0712147A1
EP0712147A1 EP95402451A EP95402451A EP0712147A1 EP 0712147 A1 EP0712147 A1 EP 0712147A1 EP 95402451 A EP95402451 A EP 95402451A EP 95402451 A EP95402451 A EP 95402451A EP 0712147 A1 EP0712147 A1 EP 0712147A1
Authority
EP
European Patent Office
Prior art keywords
diamond
source
electrically insulating
insulating layer
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95402451A
Other languages
English (en)
French (fr)
Other versions
EP0712147B1 (de
Inventor
Joel Danroc
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0712147A1 publication Critical patent/EP0712147A1/de
Application granted granted Critical
Publication of EP0712147B1 publication Critical patent/EP0712147B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/021Electron guns using a field emission, photo emission, or secondary emission electron source
    • H01J3/022Electron guns using a field emission, photo emission, or secondary emission electron source with microengineered cathode, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30426Coatings on the emitter surface, e.g. with low work function materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30457Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels

Definitions

  • the present invention relates to a method of manufacturing a field effect electron source.
  • the present invention applies in particular to the field of flat display devices also called “flat screens”, as well as to the manufacture of pressure measurement gauges.
  • a microtip electron source comprises at least one cathode conductor on an electrically insulating substrate, an electrically insulating layer which covers this cathode conductor and at least one grid formed on this electrically insulating layer.
  • Holes are formed through the grid and the insulating layer above the cathode conductor.
  • micro-tips are formed in these holes and carried by the cathode conductor.
  • each micro-tip is located substantially in the plane of the grid, this grid being used to extract electrons from the micro-tips.
  • the holes have very small dimensions (they have a diameter of less than 2 ⁇ m).
  • These other known display devices comprise a cathodoluminescent anode placed facing an electron source comprising layers of diamond or diamond-like carbon intended to emit electrons.
  • These layers are obtained by laser ablation or by chemical vapor deposition.
  • Diamond or diamond carbon emits electrons much more easily than the materials conventionally used for the manufacture of microtips.
  • the minimum electric field from which an electron emission can be obtained can be twenty times weaker than the minimum electric field corresponding to metals such as molybdenum, for example.
  • the deposits obtained are continuous layers and not micro-tips.
  • the resulting display devices are, as seen above, of the "diode" type, which poses a problem as regards their addressing.
  • the object of the present invention is to remedy the above drawbacks.
  • the process which is the subject of the invention can be implemented with large surface substrates and thus makes it possible to obtain electron sources (and therefore display screens) of large surface area (several tens of inches diagonally).
  • the temperature at which the main deposits are formed is close to ambient temperature, of the order of 20 ° C for electrophoresis and of the order of 40 ° C to 60 ° C for electrochemical deposition.
  • the main deposits are covered with a secondary deposit of a metal, for example by electrochemical deposition, in order to consolidate these micro-clusters.
  • the diamond or diamond-like carbon particles have a size of the order of 1 ⁇ m or less than 1 ⁇ m (but of course less than the size of the microtips).
  • These particles can be obtained from natural or artificial diamond or by a method chosen from laser synthesis, deposition chemical vapor phase and physical vapor deposition.
  • the holes formed through the grid layer and the electrically insulating layer may have a circular or rectangular shape.
  • the size of these holes can be chosen in a range ranging from approximately 1 ⁇ m to several tens of micrometers.
  • the size of the holes that are formed to implement the process which is the subject of the invention can be much larger than that which is necessary for the implementation of a process for manufacturing a conventional source with microtips (not covered).
  • the source object of the present invention emits more electrons than a microtip source, due to the use, in the present invention, of deposits of diamond carbon particles or of diamond type which have a higher emissivity than conventional electron emitting materials such as molybdenum.
  • this device has a greater brightness than a conventional device with microtips (not covered), for a same control voltage.
  • this device using a source according to the invention requires a control voltage lower than that which is necessary for such a conventional device with microtips.
  • the main deposits can be made of diamond or diamond-like carbon particles or can be made of such particles dispersed in a metal.
  • each of these main deposits can be covered with a secondary deposit of a metal intended to consolidate these main deposits.
  • Holes 10 are formed through these grids 8 and the insulating layer 6 above the cathode conductors 4.
  • Micro-tips 12 are formed in the holes 10 and carried by the cathode conductors 4.
  • Each of these micro-tips 12 is covered with a deposit 13 of diamond or diamond-like carbon particles.
  • cathode conductors 4 are parallel and that the grids 8 are parallel to each other and perpendicular to the cathode conductors 4.
  • the holes 10 and therefore the microtips 12 are located in the areas where these grids cross the cathode conductors.
  • micro-tips of such an area covered with deposits 13, which emit electrons when an appropriate electrical voltage is applied, by means not shown, between the conductor cathode 4 and grid 8 which correspond to this zone.
  • a cathodoluminescence display device is schematically represented in section in FIG. 2.
  • This device comprises the electron source 14 of FIG. 1.
  • the device of FIG. 2 also comprises a cathodoluminescent anode 16 placed opposite the source 14 and separated from the latter by a space 18 in which a vacuum has been created.
  • the cathodoluminescent anode 16 comprises an electrically insulating and transparent substrate 20 which is provided with an electrically conductive and transparent layer 22 forming an anode.
  • this layer 24 emits light which a user of the display device observes through the transparent substrate 20.
  • FIG. 3 schematically illustrates this method.
  • the diameter D1 of the holes (substantially circular) formed in the grid 8 and in the electrically insulating layer 6 may advantageously be greater than the diameter of the holes that the microtip electron sources described in the documents (1 ) to (4).
  • this diameter D1 can take values of the order of 1 ⁇ m up to 50 ⁇ m.
  • FIG. 4 schematically illustrates the fact that the holes 10, instead of having a circular shape, can have a rectangular shape.
  • the width D2 of these holes 10 in FIG. 4, of rectangular shape can be taken equal to the diameter D1 mentioned above and can therefore also be significantly greater than the diameter of the holes of the microtip sources.
  • a diamond or diamond type carbon powder is used.
  • This powder can be obtained by chemical vapor deposition from a mixture of hydrogen and light hydrocarbons.
  • This chemical vapor deposition can be assisted by an electron beam or be assisted by a plasma generated by microwaves.
  • This powder can also be formed by an ultrasonic spraying process known under the name of "Pyrosol”, that is to say, more precisely by pyrolysis of an aerosol of a carbonaceous compound.
  • This powder can also be synthesized by means of a laser, that is to say, more precisely, by chemical vapor deposition as previously but assisted by laser.
  • physical vapor deposition from carbon targets (graphite for example) and a plasma gas such as argon alone or mixed with hydrogen, hydrocarbons, without dopant or with a dopant such as for example diborane.
  • This powder can also be obtained by laser ablation.
  • artificial diamonds can be prepared by compacting carbon, at high pressure and high temperature, and then making the powder from these artificial diamonds.
  • these diamond carbon powders and these diamond type carbon powders are chosen so as to have a micron or submicron or nanometric particle size but, of course, less than the size of the microtips.
  • micro-tips have a size of the order of 1 ⁇ m
  • a submicron particle size is used.
  • these diamond or diamond carbon powders can be doped or undoped.
  • Boron can for example be used as a dopant.
  • the deposition of the powder (diamond or diamond-like carbon particles) leading to the formation of the deposits 13 can be carried out by electrophoresis (cataphoresis or anaphoresis), optionally supplemented by an electrochemical metallic deposition for consolidation, or by electrochemical co-deposition metal and carbon diamond or diamond type.
  • micro-tips 12 In the case of deposition by anaphoresis, the structure provided with micro-tips 12 is placed in an appropriate solution 26 and each micro-tip 12 is brought to a positive potential during this deposition phase.
  • the cathode conductors 4 are brought to this positive potential by means of an appropriate voltage source 28, the positive terminal of which is connected to these cathode conductors 4 while the negative terminal of this source is connected to a platinum counter electrode 32 or stainless steel located in the bath at a distance from the substrate of about 1 to 5 cm.
  • the fine powder of diamond or diamond-like carbon particles is suspended in solution 26 (before placing the structure in this solution).
  • the voltage supplied by the source 28 can range up to around 200 V.
  • the negative terminal of the source 28 which is connected to the cathode conductors 4 while the positive terminal of the source 28 is connected to a counter-electrode 32 of platinum or stainless steel located in the bath at a distance from the substrate of about 1 to 5 cm.
  • a voltage of up to about 200 V is then used.
  • FIG. 5 This is schematically illustrated in FIG. 5 where we see the structure which is provided with microtips 12, covered with deposits 13, and which is immersed in a solution 30 allowing such an electrochemical deposit.
  • a suitable electrical voltage is then applied between the cathode conductors 4 and an electrode 33 placed in this solution, by means of a voltage source 34.
  • This electrode 33 is for example made of nickel and the solution 30 contains for example 300 g / l of nickel sulphate, 30 g / l of nickel chloride, 30 g / l of boric acid and 0.6 g / l of lauryl sodium sulfate.
  • an electric current of 4 A / dm is used.
  • FIG. 5 shows the metal deposit 36 which is formed on each deposit 13 after this electrochemical deposition operation.
  • the deposits 13 can also be formed by electrochemical co-deposition of metal and of diamond or diamond-like carbon.
  • An appropriate current source is used, for example of the order of 4 A / dm, and the negative terminal of this source is applied to the cathode conductors and the positive terminal of this source to a nickel electrode placed in the bath .
  • the nickel is deposited on the micro-tips 12, carrying with it the diamond particles, hence the formation of the deposits 13 of nickel and diamond on the micro-tips 12.
  • a powder of particles of silicon carbide or titanium carbide, of micron or submicron size can be used for the implementation of a process according to the invention, and use the same methods as above (electrophoresis, possibly supplemented by an electrochemical metallic deposition of consolidation, or electrochemical co-deposition of metal and such particles), to form the deposits 13.
  • the tops of the microtips 12 covered with deposits 13 are located substantially in the plane of the grids and are not in contact with these grids.
  • deposits 13 are selective: these deposits are formed only on the microtips, no deposit forming on the non-polarized parts of the structure comprising the microtips.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
EP95402451A 1994-11-08 1995-11-03 Feldeffekt-Elektronenquelle und Verfahren zur Herstellung; Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz Expired - Lifetime EP0712147B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9413372A FR2726689B1 (fr) 1994-11-08 1994-11-08 Source d'electrons a effet de champ et procede de fabrication de cette source, application aux dispositifs de visualisation par cathodoluminescence
FR9413372 1994-11-08

Publications (2)

Publication Number Publication Date
EP0712147A1 true EP0712147A1 (de) 1996-05-15
EP0712147B1 EP0712147B1 (de) 1999-06-30

Family

ID=9468612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95402451A Expired - Lifetime EP0712147B1 (de) 1994-11-08 1995-11-03 Feldeffekt-Elektronenquelle und Verfahren zur Herstellung; Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz

Country Status (5)

Country Link
US (1) US5836796A (de)
EP (1) EP0712147B1 (de)
JP (1) JPH08227655A (de)
DE (1) DE69510522T2 (de)
FR (1) FR2726689B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0802555A2 (de) * 1996-04-15 1997-10-22 Matsushita Electric Industrial Co., Ltd. Feldemissionselektronenquelle und seine Herstellungsverfahren
EP0957503A2 (de) * 1998-05-15 1999-11-17 Sony Corporation Verfahren zur Herstellung einer Feldemissionskathode

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853492A (en) * 1996-02-28 1998-12-29 Micron Display Technology, Inc. Wet chemical emitter tip treatment
US6132278A (en) * 1996-06-25 2000-10-17 Vanderbilt University Mold method for forming vacuum field emitters and method for forming diamond emitters
US5858478A (en) * 1997-12-02 1999-01-12 The Aerospace Corporation Magnetic field pulsed laser deposition of thin films
US5944573A (en) * 1997-12-10 1999-08-31 Bav Technologies, Ltd. Method for manufacture of field emission array
FR2778757B1 (fr) * 1998-05-12 2001-10-05 Commissariat Energie Atomique Systeme d'inscription d'informations sur un support sensible aux rayons x
JP2000021287A (ja) * 1998-06-30 2000-01-21 Sharp Corp 電界放出型電子源及びその製造方法
JP3595718B2 (ja) 1999-03-15 2004-12-02 株式会社東芝 表示素子およびその製造方法
US6935917B1 (en) * 1999-07-16 2005-08-30 Mitsubishi Denki Kabushiki Kaisha Discharge surface treating electrode and production method thereof
US6342755B1 (en) * 1999-08-11 2002-01-29 Sony Corporation Field emission cathodes having an emitting layer comprised of electron emitting particles and insulating particles
US6462467B1 (en) * 1999-08-11 2002-10-08 Sony Corporation Method for depositing a resistive material in a field emission cathode
US6384520B1 (en) * 1999-11-24 2002-05-07 Sony Corporation Cathode structure for planar emitter field emission displays
KR100480771B1 (ko) * 2000-01-05 2005-04-06 삼성에스디아이 주식회사 전계방출소자 및 그 제조방법
KR100464314B1 (ko) * 2000-01-05 2004-12-31 삼성에스디아이 주식회사 전계방출소자 및 그 제조방법
JP3737696B2 (ja) 2000-11-17 2006-01-18 株式会社東芝 横型の電界放出型冷陰極装置の製造方法
FR2843241A1 (fr) * 2002-07-31 2004-02-06 Framatome Connectors Int Dispositif de retention de contact ameliore
US8048789B2 (en) * 2005-04-26 2011-11-01 Northwestern University Mesoscale pyramids, arrays and methods of preparation
JP2007273270A (ja) * 2006-03-31 2007-10-18 Mitsubishi Electric Corp 電界放出型表示装置およびその製造方法
ATE529881T1 (de) * 2006-08-03 2011-11-15 Creepservice S A R L Verfahren zur beschichtung von substraten mit diamantähnlichen kohlenstoffschichten
US20100261071A1 (en) * 2009-04-13 2010-10-14 Applied Materials, Inc. Metallized fibers for electrochemical energy storage
GB2482728A (en) * 2010-08-13 2012-02-15 Element Six Production Pty Ltd Polycrystalline superhard layer made by electrophoretic deposition
TWI435360B (zh) * 2011-10-17 2014-04-21 Au Optronics Corp 場發射顯示器及其顯示陣列基板的製造方法
CN107098342A (zh) * 2017-04-07 2017-08-29 河南黄河旋风股份有限公司 金刚石粉体分离装置和分离方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293593A (en) 1941-07-25 1942-08-18 Albert Shelby Hair treating apparatus
FR2593953A1 (fr) 1986-01-24 1987-08-07 Commissariat Energie Atomique Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ
FR2623013A1 (fr) 1987-11-06 1989-05-12 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source
US5010249A (en) * 1988-09-13 1991-04-23 Seiko Instruments Inc. Diamond probe and forming method thereof
EP0461990A1 (de) 1990-06-13 1991-12-18 Commissariat A L'energie Atomique Elektronenquelle mit Mikropunktkathoden
FR2687839A1 (fr) 1992-02-26 1993-08-27 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ utilisant cette source.
US5290610A (en) * 1992-02-13 1994-03-01 Motorola, Inc. Forming a diamond material layer on an electron emitter using hydrocarbon reactant gases ionized by emitted electrons
WO1994020975A1 (en) * 1993-03-11 1994-09-15 Fed Corporation Emitter tip structure and field emission device comprising same, and method of making same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084942A (en) * 1975-08-27 1978-04-18 Villalobos Humberto Fernandez Ultrasharp diamond edges and points and method of making
US5129850A (en) * 1991-08-20 1992-07-14 Motorola, Inc. Method of making a molded field emission electron emitter employing a diamond coating
US5141460A (en) * 1991-08-20 1992-08-25 Jaskie James E Method of making a field emission electron source employing a diamond coating
US5199918A (en) * 1991-11-07 1993-04-06 Microelectronics And Computer Technology Corporation Method of forming field emitter device with diamond emission tips
US5252833A (en) * 1992-02-05 1993-10-12 Motorola, Inc. Electron source for depletion mode electron emission apparatus
US5180951A (en) * 1992-02-05 1993-01-19 Motorola, Inc. Electron device electron source including a polycrystalline diamond
US5278475A (en) * 1992-06-01 1994-01-11 Motorola, Inc. Cathodoluminescent display apparatus and method for realization using diamond crystallites
KR100314830B1 (ko) * 1994-07-27 2002-02-28 김순택 전계방출표시장치의제조방법
US5623180A (en) * 1994-10-31 1997-04-22 Lucent Technologies Inc. Electron field emitters comprising particles cooled with low voltage emitting material
US5616368A (en) * 1995-01-31 1997-04-01 Lucent Technologies Inc. Field emission devices employing activated diamond particle emitters and methods for making same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2293593A (en) 1941-07-25 1942-08-18 Albert Shelby Hair treating apparatus
FR2593953A1 (fr) 1986-01-24 1987-08-07 Commissariat Energie Atomique Procede de fabrication d'un dispositif de visualisation par cathodoluminescence excitee par emission de champ
EP0234989A1 (de) 1986-01-24 1987-09-02 Commissariat A L'energie Atomique Herstellungsverfahren einer feldeffektangeregten Kathodenlumineszenz-Wiedergabevorrichtung
US4857161A (en) 1986-01-24 1989-08-15 Commissariat A L'energie Atomique Process for the production of a display means by cathodoluminescence excited by field emission
US4940916B1 (en) 1987-11-06 1996-11-26 Commissariat Energie Atomique Electron source with micropoint emissive cathodes and display means by cathodoluminescence excited by field emission using said source
FR2623013A1 (fr) 1987-11-06 1989-05-12 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ,utilisant cette source
EP0316214A1 (de) 1987-11-06 1989-05-17 Commissariat A L'energie Atomique Elektronenquelle mit Mikrospitzen-Emissionskathoden und diese Quelle benutzende Bildwiedergabe-Anordnung, die auf durch Feldemission angeregter Kathodolumineszenz beruht
US4940916A (en) 1987-11-06 1990-07-10 Commissariat A L'energie Atomique Electron source with micropoint emissive cathodes and display means by cathodoluminescence excited by field emission using said source
US5010249A (en) * 1988-09-13 1991-04-23 Seiko Instruments Inc. Diamond probe and forming method thereof
EP0461990A1 (de) 1990-06-13 1991-12-18 Commissariat A L'energie Atomique Elektronenquelle mit Mikropunktkathoden
US5194780A (en) 1990-06-13 1993-03-16 Commissariat A L'energie Atomique Electron source with microtip emissive cathodes
FR2663462A1 (fr) 1990-06-13 1991-12-20 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes.
US5290610A (en) * 1992-02-13 1994-03-01 Motorola, Inc. Forming a diamond material layer on an electron emitter using hydrocarbon reactant gases ionized by emitted electrons
FR2687839A1 (fr) 1992-02-26 1993-08-27 Commissariat Energie Atomique Source d'electrons a cathodes emissives a micropointes et dispositif de visualisation par cathodoluminescence excitee par emission de champ utilisant cette source.
EP0558393A1 (de) 1992-02-26 1993-09-01 Commissariat A L'energie Atomique Elektronenquelle mit Mikropunktkathoden und Anzeigevorrichtung mit Kathodolumineszenz erregt durch Feldemission unter Anwendung dieser Quelle
WO1994020975A1 (en) * 1993-03-11 1994-09-15 Fed Corporation Emitter tip structure and field emission device comprising same, and method of making same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0802555A2 (de) * 1996-04-15 1997-10-22 Matsushita Electric Industrial Co., Ltd. Feldemissionselektronenquelle und seine Herstellungsverfahren
EP0802555A3 (de) * 1996-04-15 1998-05-27 Matsushita Electric Industrial Co., Ltd. Feldemissionselektronenquelle und seine Herstellungsverfahren
US5897790A (en) * 1996-04-15 1999-04-27 Matsushita Electric Industrial Co., Ltd. Field-emission electron source and method of manufacturing the same
US5925891A (en) * 1996-04-15 1999-07-20 Matsushita Electric Industrial Co., Ltd. Field-emission electron source
EP0938122A2 (de) * 1996-04-15 1999-08-25 Matsushita Electric Industrial Co., Ltd. Feldemissionselektronenquelle und seine Herstellungsverfahren
EP0938122A3 (de) * 1996-04-15 2000-12-13 Matsushita Electric Industrial Co., Ltd. Feldemissionselektronenquelle und seine Herstellungsverfahren
EP0957503A2 (de) * 1998-05-15 1999-11-17 Sony Corporation Verfahren zur Herstellung einer Feldemissionskathode
EP0957503A3 (de) * 1998-05-15 2002-10-23 Sony Corporation Verfahren zur Herstellung einer Feldemissionskathode

Also Published As

Publication number Publication date
EP0712147B1 (de) 1999-06-30
FR2726689B1 (fr) 1996-11-29
FR2726689A1 (fr) 1996-05-10
DE69510522T2 (de) 2000-03-16
JPH08227655A (ja) 1996-09-03
US5836796A (en) 1998-11-17
DE69510522D1 (de) 1999-08-05

Similar Documents

Publication Publication Date Title
EP0712147B1 (de) Feldeffekt-Elektronenquelle und Verfahren zur Herstellung; Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz
EP0712146B1 (de) Feldeffekt-Elektronenquelle und Herstellungsverfahren dazu, Anwendung in Anzeigevorrichtungen mit Kathodolumineszenz
EP1614765B1 (de) Niedertemperaturwachstum orientierter Kohlenstoff-Nanoröhrchen
JP3699114B2 (ja) パッキング密度の高い電子放出デバイスの構造
US6462467B1 (en) Method for depositing a resistive material in a field emission cathode
US7741764B1 (en) DLC emitter devices and associated methods
WO1995002256A1 (en) Structure and method for enhancing electron emission from carbon-containing cathode
US20060261719A1 (en) Field emitter device
EP0708473B1 (de) Verfahren zur Herstellung einer Mikrospitzen-Elektronenquelle
EP0697710B1 (de) Herstellungsverfahren einer Mikrospitzen-Elektronenquelle
EP0802559B1 (de) Flacher Bildschirm mit Wasserstoffquelle
EP0689222B1 (de) Herstellungsverfahren einer Mikrospitzelektronenquelle
US6593683B1 (en) Cold cathode and methods for producing the same
EP0943153A1 (de) Ein durch einen mikrospitzen-träger beobachtbares, mit einer mikrospitzen-elektronenquelle versehenes bildschirm und verfahren zur herstellung dieser quelle
Myers et al. Characterization of amorphous carbon coated silicon field emitters
JPH06131968A (ja) 電界放出型電子源およびアレイ状基板
EP1690277A2 (de) Feldemissionseinrichtung
EP0038742B1 (de) Herstellungsverfahren einer imprägnierten Kathode mit integriertem Gitter, nach diesem Verfahren hergestellte Kathode und mit einer solchen Kathode versehene Elektronenröhre
FR2757999A1 (fr) Procede d'auto-alignement utilisable en micro-electronique et application a la realisation d'une grille de focalisation pour ecran plat a micropointes
Boscolo et al. Tests on diamond films as current amplifiers for photocathodes
FR2721751A1 (fr) Procédé d'élaboration de micropointes à composition contrôlée sur de grandes surfaces.
FR2779243A1 (fr) Procede de realisation par photolithographie d'ouvertures auto-alignees sur une structure, en particulier pour ecran plat a micropointes
CH603005A5 (en) Cold electron emitter using stainless steel comb
FR2629264A1 (fr) Procede de fabrication d'emetteurs a pointes a emission de champ, et son application a la realisation de reseaux d'emetteurs
KR20070031831A (ko) 전계 방출원 디바이스

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19961022

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981008

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REF Corresponds to:

Ref document number: 69510522

Country of ref document: DE

Date of ref document: 19990805

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990903

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20031121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041104

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051103

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051103