EP0704657A2 - Brûleur - Google Patents

Brûleur Download PDF

Info

Publication number
EP0704657A2
EP0704657A2 EP95810587A EP95810587A EP0704657A2 EP 0704657 A2 EP0704657 A2 EP 0704657A2 EP 95810587 A EP95810587 A EP 95810587A EP 95810587 A EP95810587 A EP 95810587A EP 0704657 A2 EP0704657 A2 EP 0704657A2
Authority
EP
European Patent Office
Prior art keywords
flow
burner according
section
swirl generator
mixing section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95810587A
Other languages
German (de)
English (en)
Other versions
EP0704657B1 (fr
EP0704657A3 (fr
Inventor
Thomas Ruck
Thomas Dr. Sattelmayer
Christian Dr. Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AG Germany
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0704657A2 publication Critical patent/EP0704657A2/fr
Publication of EP0704657A3 publication Critical patent/EP0704657A3/fr
Application granted granted Critical
Publication of EP0704657B1 publication Critical patent/EP0704657B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/40Inducing local whirls around flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2202/00Liquid fuel burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/10Flame flashback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/20Flame lift-off / stability

Definitions

  • the present invention relates to a burner according to the preamble of claim 1.
  • a cone-shaped burner known as a double-cone burner, consisting of several shells, is known for generating a closed swirl flow in the cone head, which becomes unstable due to the increasing swirl along the cone tip and changes into an annular swirl flow with backflow in the core.
  • Fuels such as gaseous fuels, are injected along the channels formed by the individual adjacent shells, also called air inlet slots, and mixed homogeneously with the air before the combustion starts by ignition at the stagnation point of the backflow zone or backflow bubble, which is used as a flame holder.
  • Liquid fuels are preferably injected via a central nozzle on the burner head and then evaporate in the cone cavity.
  • the invention seeks to remedy this.
  • the invention as characterized in the claims, is based on the object of proposing precautions for a burner of the type mentioned at the outset by which a perfect premixing of fuels of different types is achieved.
  • the proposed burner has a swirl generator on the head side and upstream of a mixing section, which can preferably be designed such that the basic aerodynamic principles of the so-called double-cone burner according to EP-A1-0 321 809 are used. In principle, however, the use of an axial or radial swirl generator is also possible.
  • the mixing section itself preferably consists of a tubular mixing element, hereinafter referred to as the mixing tube, which permits perfect premixing of fuels of various types.
  • the flow from the swirl generator is seamlessly introduced into the mixing tube: this is done by means of a transition geometry that consists of transition channels that are excluded in the initial phase of this mixing tube and that convert the flow into the subsequent effective flow cross-section of the mixing tube.
  • This lossless Initiation of flow between the swirl generator and the mixing tube initially prevents the immediate formation of a backflow zone at the outlet of the swirl generator.
  • the swirl strength in the swirl generator is selected via its geometry so that the swirl does not burst in the mixing tube, but further downstream at the combustion chamber inlet, the length of this mixing tube being dimensioned such that there is sufficient mixing quality for all types of fuel. If, for example, the swirl generator used is constructed according to the basic principles of the double-cone burner, the swirl strength results from the design of the corresponding cone angle, the air inlet slots and their number.
  • the axial speed profile has a pronounced maximum on the axis and thus prevents reignitions in this area.
  • the axial speed drops towards the wall.
  • various precautions are provided: For example, the entire speed level can be raised by using a mixing tube with a sufficiently small diameter.
  • Another possibility is to only increase the speed in the outer region of the mixing tube, in that a small part of the combustion air flows into the mixing tube via an annular gap or through filming holes downstream of the transition channels.
  • Part of the pressure loss that may be generated can be compensated for by attaching a diffuser to the end of the mixing tube.
  • the combustion chamber connects with a cross-sectional jump.
  • a central backflow zone is formed here, the properties of which are those of a flame holder.
  • transition channels mentioned for introducing the flow from the swirl generator into the mixing tube it can be said that the course of these transition channels turns out to be spiraling narrowing or widening, in accordance with the effective subsequent flow cross-section of the mixing tube.
  • Fig. 1 shows the overall structure of a burner.
  • a swirl generator 100 is effective, the design of which is shown and described in more detail in the following FIGS. 2-5.
  • This swirl generator 100 is a conical structure which is acted upon tangentially several times by a tangentially flowing combustion air flow 115.
  • the flow formed here is seamlessly transferred to a transition piece 200 using a transition geometry provided downstream of the swirl generator 100, in such a way that no separation areas can occur there.
  • the confiquration of this transition geometry is described in more detail in FIG. 6.
  • This transition piece 200 is extended on the outflow side of the transition geometry by a tube 20, both parts forming the actual mixing tube 220 of the burner.
  • the mixing tube 220 can consist of a single piece, that is to say then that the transition piece 200 and tube 20 are fused into a single coherent structure, the characteristics of each part being retained. If the transition piece 200 and the tube 20 are created from two parts, they are connected by a bushing ring 10, the same bushing ring 10 serving as an anchoring surface for the swirl generator 100 on the head side. Such a bushing ring 10 also has the advantage that different mixing tubes are used can be.
  • the actual combustion chamber 30 is located on the outflow side of the tube 20 and is here only symbolized by the flame tube.
  • the mixing tube 220 fulfills the condition that a defined mixing section is provided downstream of the swirl generator 100, in which a perfect premixing of fuels of different types is achieved.
  • This mixing section i.e. the mixing tube 220, furthermore enables loss-free flow guidance, so that no backflow zone can initially form even in operative connection with the transition geometry, so that the length of the mixing tube 220 can influence the quality of the mixture for all types of fuel.
  • this mixing tube 220 has yet another property, which consists in the fact that in the mixing tube 220 itself the axial speed profile has a pronounced maximum on the axis, so that the flame cannot be re-ignited from the combustion chamber. However, it is correct that with such a configuration this axial speed drops towards the wall.
  • the mixing tube 220 is provided with a number of regularly or irregularly distributed bores 21 of various cross-sections and directions in the flow and circumferential direction, through which an amount of air flows into the interior of the mixing tube 220 and one along the wall Increase in speed indicated.
  • Another possibility of achieving the same effect is that the flow cross section of the mixing tube 220 is narrowed on the downstream side of the transition channels 201, which form the transition geometry already mentioned, as a result of which the overall speed level within the mixing tube 220 is increased.
  • the outlet of the transition channels 201 corresponds to the narrowest flow cross-section of the mixing tube 220.
  • the said transition channels 201 therefore bridge the respective cross-sectional difference without adversely affecting the flow formed.
  • a diffuser (not shown in the figure) at the end of the mixing tube.
  • a combustion chamber 30 adjoins the end of the mixing tube 220, a cross-sectional jump occurring between the two flow cross sections. Only here does a central backflow zone 50 form, which has the properties of a flame holder. If a flow-like edge zone forms in this cross-sectional jump during operation, in which vortex detachments arise due to the prevailing negative pressure, this leads to an increased ring stabilization of the backflow zone 50.
  • the combustion chamber 30 has a number of openings 31 through which an air quantity flows directly into the cross-sectional jump flows, and there contributes the others below that the ring stabilization of the backflow zone 50 is strengthened.
  • the generation of a stable backflow zone 50 also requires a sufficiently high number of twists in a pipe. If this is initially undesirable, stable backflow zones can be created by supplying small, strongly swirled air flows at the pipe end, for example through tangential openings. It is assumed here that the amount of air required for this is about 5-20% of the total amount of air.
  • FIG. 3 is used at the same time as FIG. 2. Furthermore, in order not to make this FIG. 2 unnecessarily confusing, the guide plates 121a, 121b shown schematically according to FIG. 3 have only been hinted at in it. In the description of FIG. 2, reference is made below to the figures mentioned as required.
  • the first part of the burner according to FIG. 1 forms the swirl generator 100 shown in FIG. 2.
  • This consists of two hollow ones conical partial bodies 101, 102 which are nested in one another offset.
  • the number of conical partial bodies can of course be greater than two, as shown in FIGS. 4 and 5; This depends on the mode of operation of the entire burner, as will be explained in more detail below. In certain operating constellations, it is not excluded to provide a swirl generator consisting of a single spiral.
  • the offset of the respective central axis or longitudinal symmetry axes 201b, 202b of the conical partial bodies 101, 102 to one another creates a tangential channel, that is to say an air inlet slot 119, 120 (FIG.
  • the conical shape of the partial bodies 101, 102 shown in the flow direction has a specific fixed angle.
  • the partial bodies 101, 102 can have an increasing or decreasing cone inclination in the direction of flow, similar to a trumpet or. Tulip. The last two forms are not included in the drawing, since they can be easily understood by a person skilled in the art.
  • the two tapered partial bodies 101, 102 each have a cylindrical starting part 101a, 102a, which, similarly to the conical partial bodies 101, 102, also run offset from one another, so that the tangential air inlet slots 119, 120 are present over the entire length of the swirl generator 100.
  • a nozzle 103 is preferably accommodated for a liquid fuel 112, the injection 104 of which coincides approximately with the narrowest cross section of the conical cavity 114 formed by the conical partial bodies 101, 102.
  • the injection capacity and the type of this nozzle 103 depend on the given parameters of the respective burner.
  • the swirl generator 100 can be designed in a purely conical manner, that is to say without cylindrical starting parts 101a, 102a.
  • the tapered body 101, 102 furthermore each have a fuel line 108, 109, which are arranged along the tangential air inlet slots 119, 120 and are provided with injection openings 117, through which a gaseous fuel 113 is preferably injected into the combustion air 115 flowing through there, as shown by the arrows 116 want.
  • These fuel lines 108, 109 are preferably placed at the latest at the end of the tangential inflow, before entering the cone cavity 114, in order to obtain an optimal air / fuel mixture.
  • the fuel 112 brought in through the nozzle 103 is normally a liquid fuel, and it is readily possible to form a mixture with another medium. This fuel 112 is injected into the cone cavity 114 at an acute angle.
  • a cone-shaped fuel spray 105 is thus formed from the nozzle 103 and is enclosed by the rotating combustion air 115 flowing in tangentially.
  • the concentration of the injected fuel 112 is continuously reduced by the inflowing combustion air 115 to mix in the direction of evaporation.
  • a gaseous fuel 113 is introduced via the opening nozzles 117, the fuel / air mixture is formed directly at the end of the air inlet slots 119, 120.
  • the combustion air 115 is additionally preheated or, for example, enriched with a recirculated flue gas or exhaust gas, this provides lasting support the vaporization of the liquid fuel 112 before this mixture flows into the downstream stage.
  • liquid fuels should be supplied via lines 108, 109.
  • the conical partial bodies 101, 102 with respect to the cone angle and the width of the tangential air inlet slots 119, 120, strict limits must be observed per se so that the desired flow field of the combustion air 115 can be set at the outlet of the swirl generator 100.
  • a downsizing of the tangential air inlet slots 119, 120 favors the faster formation of a backflow zone already in the area of the swirl generator.
  • the axial speed within the swirl generator 100 can be changed by a corresponding supply, not shown, of an axial combustion air flow.
  • a corresponding swirl generation prevents the formation of flow separations within the mixing tube downstream of the swirl generator 100.
  • the design of the swirl generator 100 is furthermore excellently suitable for changing the size of the tangential air inlet slots 119, 120, with which a relatively large operational bandwidth can be recorded without changing the overall length of the swirl generator 100.
  • the partial bodies 101, 102 can also be displaced relative to one another in another plane, as a result of which an overlap thereof can even be provided. It is also possible to interleave the partial bodies 101, 102 in a spiral manner by counter-rotating movement. It is thus possible to vary the shape, size and configuration of the tangential air inlet slots 119, 120 as desired, with which the swirl generator 100 can be used universally without changing its overall length.
  • FIG. 3 now shows the geometric configuration of the guide plates 121a, 121b. They have a flow introduction function, which, depending on their length, extend the respective end of the tapered partial bodies 101, 102 in the direction of flow relative to the combustion air 115.
  • the channeling of the combustion air 115 into the cone cavity 114 can be optimized by opening or closing the guide plates 121a, 121b about a pivot point 123 located in the region of the entry of this channel into the cone cavity 114, in particular this is necessary if the original gap size of the tangential air inlet slots 119, 120 should be changed dynamically.
  • these dynamic arrangements can also be provided statically, by having a fixed component as required form the tapered partial bodies 101, 102.
  • the swirl generator 100 can also be operated without baffles, or other aids can be provided for this.
  • the swirl generator 100 is now composed of four partial bodies 130, 131, 132, 133.
  • the associated longitudinal symmetry axes for each partial body are marked with the letter a.
  • this configuration it should be said that, due to the lower swirl strength generated in this way and in cooperation with a correspondingly enlarged slot width, it is ideally suited to prevent the vortex flow from bursting in the mixing tube on the downstream side of the swirl generator, so that the mixing tube can best fulfill the role intended for it .
  • FIG. 5 differs from FIG. 4 in that the partial bodies 140, 141, 142, 143 have a blade profile shape which is provided to provide a certain flow. Otherwise the mode of operation of the swirl generator has remained the same.
  • the admixture of the fuel 116 in the combustion air flow 115 takes place from the inside of the blade profiles, i.e. the fuel line 108 is now integrated in the individual blades.
  • the longitudinal axes of symmetry to the individual partial bodies are identified by the letter a.
  • the transition geometry is constructed for a swirl generator 100 with four partial bodies, corresponding to FIG. 4 or 5. Accordingly, the transition geometry as a natural extension of the upstream partial body four transition channels 201, whereby the conical quarter surface of the partial body is extended until it the wall of the tube 20 or. of the mixing tube 220 cuts.
  • the same considerations also apply if the swirl generator works on a principle different from that described under FIG. 2. is constructed.
  • the surface of the individual transition channels 201 which runs downward in the flow direction has a shape which runs spirally in the flow direction and which describes a crescent-shaped course, corresponding to the fact that in the present case the flow cross section of the transition piece 200 widens conically in the flow direction.
  • the swirl angle of the transition channels 201 in the flow direction is selected such that the pipe flow then still has a sufficiently large distance up to the cross-sectional jump at the combustion chamber inlet in order to achieve a perfect premixing with the injected fuel. Furthermore, the above-mentioned measures also increase the axial speed on the mixing tube wall downstream of the swirl generator. The transition geometry and the measures in the area of the mixing tube bring about a significant increase in the axial speed profile towards the center of the mixing tube, so that the risk of early ignition is decisively counteracted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Air Supply (AREA)
EP95810587A 1994-10-01 1995-09-20 Brûleur Expired - Lifetime EP0704657B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4435266A DE4435266A1 (de) 1994-10-01 1994-10-01 Brenner
DE4435266 1994-10-01

Publications (3)

Publication Number Publication Date
EP0704657A2 true EP0704657A2 (fr) 1996-04-03
EP0704657A3 EP0704657A3 (fr) 1997-07-30
EP0704657B1 EP0704657B1 (fr) 2001-11-07

Family

ID=6529801

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810587A Expired - Lifetime EP0704657B1 (fr) 1994-10-01 1995-09-20 Brûleur

Country Status (8)

Country Link
US (1) US5588826A (fr)
EP (1) EP0704657B1 (fr)
JP (1) JP3649785B2 (fr)
KR (1) KR960014753A (fr)
CN (1) CN1090728C (fr)
AT (1) ATE208480T1 (fr)
CA (1) CA2154941A1 (fr)
DE (2) DE4435266A1 (fr)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0797051A2 (fr) * 1996-03-20 1997-09-24 Abb Research Ltd. Brûleur pour un générateur de chaleur
EP0833104A2 (fr) 1996-09-25 1998-04-01 Abb Research Ltd. Brûleur pour le fonctionnement d'une chambre de combustion
EP0845639A1 (fr) 1996-11-29 1998-06-03 Abb Research Ltd. Chambre de combustion
EP0851172A2 (fr) 1996-12-23 1998-07-01 Abb Research Ltd. Brûleur pour la mise en oeuvre d'une chambre de combustion avec un combustible liquide ou gazeux
EP0780630A3 (fr) * 1995-12-21 1998-07-29 Abb Research Ltd. Brûleur pour un générateur de chaleur
EP0780629A3 (fr) * 1995-12-21 1998-08-19 ABB Research Ltd. Brûleur pour un générateur de chaleur
EP0833105A3 (fr) * 1996-09-30 1998-10-21 Abb Research Ltd. Brûleur à prémélange
EP0899508A1 (fr) * 1997-08-25 1999-03-03 Abb Research Ltd. Brûleur pour un dispositif à chaleur
EP0902233A1 (fr) 1997-09-15 1999-03-17 Abb Research Ltd. Buse de pulvérisation par pression combinée
EP0924461A1 (fr) 1997-12-22 1999-06-23 Abb Research Ltd. Buse de pulvérisation par pression à deux étages
EP0924460A1 (fr) 1997-12-22 1999-06-23 Abb Research Ltd. Buse de pulvérisation par pression à deux étages
US5954496A (en) * 1996-09-25 1999-09-21 Abb Research Ltd. Burner for operating a combustion chamber
US6106278A (en) * 1997-05-17 2000-08-22 Abb Research Ltd. Combustion chamber
US6192669B1 (en) 1997-03-20 2001-02-27 Asea Brown Boveri Ag Combustion chamber of a gas turbine
EP0892219B1 (fr) * 1997-07-15 2002-10-23 Alstom Procédé et dispositif pour minimiser les vibrations thermoacoustiques dans les chambres de combustion de turbines à gaz
DE10160907A1 (de) * 2001-12-12 2003-08-14 Alstom Switzerland Ltd Verfahren zur Verhinderung von Strömungsinstabilitäten in einem Brenner
EP1389713A1 (fr) 2002-08-12 2004-02-18 ALSTOM (Switzerland) Ltd Brûleur pilote annulaire pour sortie de brûleur à prémélange
DE19912701B4 (de) * 1999-03-20 2006-01-19 Alstom Brennkammerwand
DE19654009B4 (de) * 1996-12-21 2006-05-18 Alstom Vormischbrenner zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
US7082768B2 (en) 2001-12-20 2006-08-01 Alstom Technology Ltd Method for injecting a fuel-air mixture into a combustion chamber
US7241138B2 (en) 2001-12-24 2007-07-10 Alstom Technology Ltd. Burner with stepped fuel injection
WO2009019113A2 (fr) 2007-08-07 2009-02-12 Alstom Technology Ltd Brûleur pour une chambre de combustion d'un turbogroupe
WO2009019114A2 (fr) * 2007-08-07 2009-02-12 Alstom Technology Ltd Combustible pour une chambre de combustion d'un turbogroupe
US7491056B2 (en) 2004-11-03 2009-02-17 Alstom Technology Ltd. Premix burner
EP2068076A2 (fr) 2007-12-03 2009-06-10 Siemens Aktiengesellschaft Améliorations portant sur ou en relation avec des brûleurs pour un moteur à turbine à gaz
EP2090830A1 (fr) 2008-02-13 2009-08-19 ALSTOM Technology Ltd Agencement d'alimentation en carburant
US7780437B2 (en) 2004-10-11 2010-08-24 Stefano Bernero Premix burner
WO2010115980A2 (fr) 2009-04-11 2010-10-14 Alstom Technology Ltd. Chambre de combustion dotée d'un amortisseur de helmholtz
WO2011026732A1 (fr) 2009-09-03 2011-03-10 Alstom Technology Ltd. Groupe turbine à gaz
EP2299178A1 (fr) 2009-09-17 2011-03-23 Alstom Technology Ltd Procédé et système de combustion de turbine à gaz pour mélanger sans danger des carburants riches en H2 avec de l'air
US7972133B2 (en) 2006-03-27 2011-07-05 Alstom Technology Ltd. Burner for the operation of a heat generator and method of use
US8033821B2 (en) 2007-11-27 2011-10-11 Alstom Technology Ltd. Premix burner for a gas turbine
US8057224B2 (en) 2004-12-23 2011-11-15 Alstom Technology Ltd. Premix burner with mixing section
US8210797B2 (en) 2008-05-26 2012-07-03 Alstom Technology Ltd Gas turbine with a stator blade
US8272220B2 (en) 2008-02-20 2012-09-25 Alstom Technology Ltd Impingement cooling plate for a hot gas duct of a thermal machine
WO2012136787A1 (fr) 2011-04-08 2012-10-11 Alstom Technology Ltd Ensemble de turbines à gaz et procédé permettant de faire fonctionner celui-ci
US8413449B2 (en) 2008-02-20 2013-04-09 Alstom Technology Ltd Gas turbine having an improved cooling architecture
US8459985B2 (en) 2008-03-07 2013-06-11 Alstom Technology Ltd Method and burner arrangement for the production of hot gas, and use of said method
US8459934B2 (en) 2008-03-28 2013-06-11 Alstom Technology Ltd Varying cross-sectional area guide blade
US8468833B2 (en) 2008-03-07 2013-06-25 Alstom Technology Ltd Burner arrangement, and use of such a burner arrangement
WO2014001230A1 (fr) 2012-06-29 2014-01-03 Alstom Technology Ltd Procédé pour une opération de réduction de co de charge partielle pour une turbine à gaz séquentielle
EP2685161A1 (fr) 2012-07-10 2014-01-15 Alstom Technology Ltd Agencement de chambre de combustion, en particulier pour turbine à gaz
EP2685172A2 (fr) 2012-07-09 2014-01-15 Alstom Technology Ltd Système de combustion de turbine à gaz de type tubo-annulaire avec de la combustion pré-mélangé étagée
EP2700878A2 (fr) 2012-08-24 2014-02-26 Alstom Technology Ltd Procédé pour mélanger un air de dilution dans un système de combustion séquentielle d'une turbine à gaz
EP2700879A2 (fr) 2012-08-24 2014-02-26 Alstom Technology Ltd Procédé pour mélanger un air de dilution dans un système de combustion séquentielle d'une turbine à gaz
EP2703721A1 (fr) 2012-08-31 2014-03-05 Alstom Technology Ltd Brûleur à prémélange
EP2725300A1 (fr) 2012-10-24 2014-04-30 Alstom Technology Ltd Dispositif d'amortissement pour réduire les pulsations de chambres de combustion
US8783044B2 (en) 2007-12-29 2014-07-22 Alstom Technology Ltd Turbine stator nozzle cooling structure
US8801366B2 (en) 2008-03-28 2014-08-12 Alstom Technology Ltd. Stator blade for a gas turbine and gas turbine having same
EP2796789A1 (fr) 2013-04-26 2014-10-29 Alstom Technology Ltd Chambre de combustion à tubes pour un agencement de chambre de combustion annulaire dans une turbine à gaz
US20140318107A1 (en) * 2012-08-08 2014-10-30 Hino Motors, Ltd. Burner for exhaust purifying device
US8950192B2 (en) 2008-02-20 2015-02-10 Alstom Technology Ltd. Gas turbine
EP2863018A1 (fr) 2013-10-17 2015-04-22 Alstom Technology Ltd Structure de refroidissement pour un conduit de transition d'une turbine à gaz
EP2960436A1 (fr) 2014-06-27 2015-12-30 Alstom Technology Ltd Structure de refroidissement pour un conduit de transition d'une turbine à gaz
EP2993314A1 (fr) 2014-09-05 2016-03-09 Alstom Technology Ltd Dispositif et procédé pour le montage ou le démontage, le remplacement et l'entretien d'une chambre de combustion CAN
EP2993315A1 (fr) 2014-09-05 2016-03-09 Alstom Technology Ltd Appareil pour outil d'assemblage pour le montage ou le démontage, le remplacement et l'entretien de composant d'un moteur
EP2993404A1 (fr) 2014-09-08 2016-03-09 Alstom Technology Ltd Mélangeur de gaz ou d'air de dilution pour une chambre de combustion d'une turbine à gaz
EP3026347A1 (fr) 2014-11-25 2016-06-01 Alstom Technology Ltd Brûleur a corps non profilé annulaire
EP3037725A1 (fr) 2014-12-22 2016-06-29 Alstom Technology Ltd Mélangeur destiné à mélanger de l'air de dilution à l'écoulement de gaz chaud
EP3037728A1 (fr) 2014-12-22 2016-06-29 Alstom Technology Ltd Mélangeur axialement étagé avec injection d'air de dilution
EP3037726A1 (fr) 2014-12-22 2016-06-29 Alstom Technology Ltd Alimentations séparées de l'air de refroidissement et de dilution
US10208960B2 (en) 2007-11-27 2019-02-19 Ansaldo Energia Switzerland AG Method for operating a gas turbine installation and equipment for carrying out the method

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523094A1 (de) * 1995-06-26 1997-01-02 Abb Management Ag Brennkammer
DE19545309A1 (de) * 1995-12-05 1997-06-12 Asea Brown Boveri Vormischbrenner
KR100381719B1 (ko) * 1995-12-29 2003-08-14 고려화학 주식회사 수용성 방청도료 조성물
DE19549143A1 (de) * 1995-12-29 1997-07-03 Abb Research Ltd Gasturbinenringbrennkammer
KR100461575B1 (ko) * 1996-12-30 2005-06-27 고려화학 주식회사 아크릴에멀젼수지를이용한수계방청도료조성물
EP0903540B1 (fr) * 1997-09-19 2003-04-09 ALSTOM (Switzerland) Ltd Brûleur pour la mise en oeuvre d'un générateur de chaleur
DE59709446D1 (de) * 1997-10-31 2003-04-10 Alstom Switzerland Ltd Brenner für den Betrieb eines Wärmeerzeugers
EP0918190A1 (fr) * 1997-11-21 1999-05-26 Abb Research Ltd. Brûleur pour la mise en oeuvre d'un générateur de chaleur
DE19859829A1 (de) 1998-12-23 2000-06-29 Abb Alstom Power Ch Ag Brenner zum Betrieb eines Wärmeerzeugers
DE10049205A1 (de) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Verfahren und Vorrichtung zur Brennstoffversorgung eines Vormischbrenners
EP1439349A1 (fr) * 2003-01-14 2004-07-21 Alstom Technology Ltd Procédé de combustion et brûleur pour sa mise en oeuvre
EP1714081B1 (fr) * 2004-02-12 2008-04-09 Alstom Technology Ltd Systeme de bruleur de premelange pour faire fonctionner une chambre de combustion, et procede pour faire fonctionner une chambre de combustion
WO2006058843A1 (fr) * 2004-11-30 2006-06-08 Alstom Technology Ltd Procede et dispositif de combustion d'hydrogene dans un bruleur a premelange
EP2058590B1 (fr) * 2007-11-09 2016-03-23 Alstom Technology Ltd Procédé de fonctionnement d'un brûleur
CN101910723B (zh) * 2007-11-27 2013-07-24 阿尔斯通技术有限公司 用于在预混燃烧器中燃烧氢气的设备
EP2071156B1 (fr) * 2007-12-10 2013-11-06 Alstom Technology Ltd Système de distribution de carburant d'une turbine à gaz avec ensemble brûleur à plusieurs étages
EP2072899B1 (fr) * 2007-12-19 2016-03-30 Alstom Technology Ltd Procédé d'injection de carburant
WO2009103658A1 (fr) * 2008-02-20 2009-08-27 Alstom Technology Ltd Turbine à gaz à chambre de combustion annulaire
WO2009109448A1 (fr) * 2008-03-07 2009-09-11 Alstom Technology Ltd Ensemble brûleur et son utilisation
EP2268900A1 (fr) * 2008-03-28 2011-01-05 Alstom Technology Ltd Aube pour moteur thermique rotatif
WO2009121716A1 (fr) * 2008-03-31 2009-10-08 Alstom Technology Ltd Aube pour turbine à gaz
EP2299091A1 (fr) * 2009-09-07 2011-03-23 Alstom Technology Ltd Procédé de commutation de l' opération d'un brûleur d'une turbine à gaz de combustible liquide à combustible gazeux et vice versa.
KR101221335B1 (ko) * 2012-07-16 2013-01-11 금호환경 주식회사 무화염 연소 혼합장치 및 이 장치가 구비된 축열식 연소산화 시스템
EP2722591A1 (fr) * 2012-10-22 2014-04-23 Alstom Technology Ltd Brûleur à multiples cones pour une turbine à gaz
JP6602004B2 (ja) * 2014-09-29 2019-11-06 川崎重工業株式会社 燃料噴射器及びガスタービン
EP3062019B1 (fr) 2015-02-27 2018-11-21 Ansaldo Energia Switzerland AG Procédé et dispositif de stabilisation de flamme dans un brûleur d'un moteur à combustion stationnaire
CN107339698B (zh) * 2017-08-15 2023-05-12 安徽科达洁能股份有限公司 一种燃烧器
CN110454781B (zh) * 2019-08-20 2024-07-16 广东万和电气有限公司 一种分气盘及灶具燃烧器
US12050012B2 (en) 2020-03-31 2024-07-30 Siemens Energy Global GmbH & Co. KG Burner component of a burner, and burner of a gas turbine having a burner component of this type
CN113694631A (zh) * 2021-09-17 2021-11-26 盐城市锐砂环保科技有限公司 一种脉冲放大式滤芯清灰装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809A1 (fr) 1987-12-21 1989-06-28 BBC Brown Boveri AG Procédé pour la combustion de combustible liquide dans un brûleur

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1778194A (en) * 1928-08-24 1930-10-14 Barque Royalty Inc Burner
US3220460A (en) * 1963-04-12 1965-11-30 Colt Ventilation & Heating Ltd Heat generators
US3691762A (en) * 1970-12-04 1972-09-19 Caterpillar Tractor Co Carbureted reactor combustion system for gas turbine engine
US3656692A (en) * 1971-01-05 1972-04-18 Texaco Inc Oil burner
US3859786A (en) * 1972-05-25 1975-01-14 Ford Motor Co Combustor
US3853273A (en) * 1973-10-01 1974-12-10 Gen Electric Axial swirler central injection carburetor
US3859787A (en) * 1974-02-04 1975-01-14 Gen Motors Corp Combustion apparatus
US4044553A (en) * 1976-08-16 1977-08-30 General Motors Corporation Variable geometry swirler
US4464108A (en) * 1980-11-21 1984-08-07 Donald Korenyi Combustion apparatus
US4561841A (en) * 1980-11-21 1985-12-31 Donald Korenyi Combustion apparatus
US5193995A (en) * 1987-12-21 1993-03-16 Asea Brown Boveri Ltd. Apparatus for premixing-type combustion of liquid fuel
CH680467A5 (fr) * 1989-12-22 1992-08-31 Asea Brown Boveri
JP2564513Y2 (ja) * 1991-03-23 1998-03-09 株式会社ガスター 旋回式燃焼器
US5307634A (en) * 1992-02-26 1994-05-03 United Technologies Corporation Premix gas nozzle
JPH06101815A (ja) * 1992-09-18 1994-04-12 Hitachi Ltd 予混合燃焼用バーナ及び燃焼器
JP2586388Y2 (ja) * 1992-11-11 1998-12-02 株式会社ガスター 旋回予混合装置
DE4316474A1 (de) * 1993-05-17 1994-11-24 Abb Management Ag Vormischbrenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321809A1 (fr) 1987-12-21 1989-06-28 BBC Brown Boveri AG Procédé pour la combustion de combustible liquide dans un brûleur

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780630A3 (fr) * 1995-12-21 1998-07-29 Abb Research Ltd. Brûleur pour un générateur de chaleur
EP0780629A3 (fr) * 1995-12-21 1998-08-19 ABB Research Ltd. Brûleur pour un générateur de chaleur
EP0797051A3 (fr) * 1996-03-20 1998-05-20 Abb Research Ltd. Brûleur pour un générateur de chaleur
EP0797051A2 (fr) * 1996-03-20 1997-09-24 Abb Research Ltd. Brûleur pour un générateur de chaleur
US5954496A (en) * 1996-09-25 1999-09-21 Abb Research Ltd. Burner for operating a combustion chamber
EP0833104A2 (fr) 1996-09-25 1998-04-01 Abb Research Ltd. Brûleur pour le fonctionnement d'une chambre de combustion
EP0833104A3 (fr) * 1996-09-25 1998-07-29 Abb Research Ltd. Brûleur pour le fonctionnement d'une chambre de combustion
EP0833105A3 (fr) * 1996-09-30 1998-10-21 Abb Research Ltd. Brûleur à prémélange
EP0845639A1 (fr) 1996-11-29 1998-06-03 Abb Research Ltd. Chambre de combustion
US6050078A (en) * 1996-11-29 2000-04-18 Abb Research Ltd. Gas turbine combustion chamber with two stages and enhanced acoustic properties
DE19654009B4 (de) * 1996-12-21 2006-05-18 Alstom Vormischbrenner zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
EP0851172A2 (fr) 1996-12-23 1998-07-01 Abb Research Ltd. Brûleur pour la mise en oeuvre d'une chambre de combustion avec un combustible liquide ou gazeux
US5921770A (en) * 1996-12-23 1999-07-13 Abb Research Ltd. Burner for operating a combustion chamber with a liquid and/or gaseous fuel
EP0851172A3 (fr) * 1996-12-23 1999-06-09 Abb Research Ltd. Brûleur pour la mise en oeuvre d'une chambre de combustion avec un combustible liquide ou gazeux
US6192669B1 (en) 1997-03-20 2001-02-27 Asea Brown Boveri Ag Combustion chamber of a gas turbine
US6106278A (en) * 1997-05-17 2000-08-22 Abb Research Ltd. Combustion chamber
EP0892219B1 (fr) * 1997-07-15 2002-10-23 Alstom Procédé et dispositif pour minimiser les vibrations thermoacoustiques dans les chambres de combustion de turbines à gaz
US6102692A (en) * 1997-08-25 2000-08-15 Abb Alstom Power (Switzerland) Ltd Burner for a heat generator
EP0899508A1 (fr) * 1997-08-25 1999-03-03 Abb Research Ltd. Brûleur pour un dispositif à chaleur
US6378787B1 (en) 1997-09-15 2002-04-30 Alstom Combined pressure atomizing nozzle
EP0902233A1 (fr) 1997-09-15 1999-03-17 Abb Research Ltd. Buse de pulvérisation par pression combinée
EP0924461A1 (fr) 1997-12-22 1999-06-23 Abb Research Ltd. Buse de pulvérisation par pression à deux étages
US6036479A (en) * 1997-12-22 2000-03-14 Abb Research Ltd. Two-stage pressure atomizer nozzle
EP0924460A1 (fr) 1997-12-22 1999-06-23 Abb Research Ltd. Buse de pulvérisation par pression à deux étages
DE19912701B4 (de) * 1999-03-20 2006-01-19 Alstom Brennkammerwand
DE10160907A1 (de) * 2001-12-12 2003-08-14 Alstom Switzerland Ltd Verfahren zur Verhinderung von Strömungsinstabilitäten in einem Brenner
US7082768B2 (en) 2001-12-20 2006-08-01 Alstom Technology Ltd Method for injecting a fuel-air mixture into a combustion chamber
US7406827B2 (en) 2001-12-20 2008-08-05 Alstom Technology Ltd Apparatus for injecting a fuel-air mixture into a combustion chamber
US7241138B2 (en) 2001-12-24 2007-07-10 Alstom Technology Ltd. Burner with stepped fuel injection
EP1389713A1 (fr) 2002-08-12 2004-02-18 ALSTOM (Switzerland) Ltd Brûleur pilote annulaire pour sortie de brûleur à prémélange
US7140183B2 (en) 2002-08-12 2006-11-28 Alstom Technology Ltd. Premixed exit ring pilot burner
US7780437B2 (en) 2004-10-11 2010-08-24 Stefano Bernero Premix burner
US7491056B2 (en) 2004-11-03 2009-02-17 Alstom Technology Ltd. Premix burner
US8057224B2 (en) 2004-12-23 2011-11-15 Alstom Technology Ltd. Premix burner with mixing section
US7972133B2 (en) 2006-03-27 2011-07-05 Alstom Technology Ltd. Burner for the operation of a heat generator and method of use
WO2009019113A2 (fr) 2007-08-07 2009-02-12 Alstom Technology Ltd Brûleur pour une chambre de combustion d'un turbogroupe
WO2009019114A3 (fr) * 2007-08-07 2009-06-11 Alstom Technology Ltd Combustible pour une chambre de combustion d'un turbogroupe
WO2009019114A2 (fr) * 2007-08-07 2009-02-12 Alstom Technology Ltd Combustible pour une chambre de combustion d'un turbogroupe
US8069671B2 (en) 2007-08-07 2011-12-06 Alstom Technology Ltd. Burner fuel lance configuration and method of use
WO2009019113A3 (fr) * 2007-08-07 2009-06-11 Alstom Technology Ltd Brûleur pour une chambre de combustion d'un turbogroupe
US10208960B2 (en) 2007-11-27 2019-02-19 Ansaldo Energia Switzerland AG Method for operating a gas turbine installation and equipment for carrying out the method
US8033821B2 (en) 2007-11-27 2011-10-11 Alstom Technology Ltd. Premix burner for a gas turbine
EP2068076A2 (fr) 2007-12-03 2009-06-10 Siemens Aktiengesellschaft Améliorations portant sur ou en relation avec des brûleurs pour un moteur à turbine à gaz
US8783044B2 (en) 2007-12-29 2014-07-22 Alstom Technology Ltd Turbine stator nozzle cooling structure
EP2090830A1 (fr) 2008-02-13 2009-08-19 ALSTOM Technology Ltd Agencement d'alimentation en carburant
US8196409B2 (en) 2008-02-13 2012-06-12 Alstom Technology Ltd Gas turbine engine fuel supply arrangement using plural distinct fuels
US8272220B2 (en) 2008-02-20 2012-09-25 Alstom Technology Ltd Impingement cooling plate for a hot gas duct of a thermal machine
US8950192B2 (en) 2008-02-20 2015-02-10 Alstom Technology Ltd. Gas turbine
US8413449B2 (en) 2008-02-20 2013-04-09 Alstom Technology Ltd Gas turbine having an improved cooling architecture
US8459985B2 (en) 2008-03-07 2013-06-11 Alstom Technology Ltd Method and burner arrangement for the production of hot gas, and use of said method
US8468833B2 (en) 2008-03-07 2013-06-25 Alstom Technology Ltd Burner arrangement, and use of such a burner arrangement
US8801366B2 (en) 2008-03-28 2014-08-12 Alstom Technology Ltd. Stator blade for a gas turbine and gas turbine having same
US8459934B2 (en) 2008-03-28 2013-06-11 Alstom Technology Ltd Varying cross-sectional area guide blade
US8210797B2 (en) 2008-05-26 2012-07-03 Alstom Technology Ltd Gas turbine with a stator blade
WO2010115980A2 (fr) 2009-04-11 2010-10-14 Alstom Technology Ltd. Chambre de combustion dotée d'un amortisseur de helmholtz
US8875483B2 (en) 2009-09-03 2014-11-04 Alstom Technology Ltd Gas turbine generator set
WO2011026732A1 (fr) 2009-09-03 2011-03-10 Alstom Technology Ltd. Groupe turbine à gaz
US10208958B2 (en) 2009-09-17 2019-02-19 Ansaldo Energia Switzerland AG Method and gas turbine combustion system for safely mixing H2-rich fuels with air
WO2011032839A1 (fr) 2009-09-17 2011-03-24 Alstom Technology Ltd Procédé et système de combustion de turbine à gaz pour mélanger de manière sûre des combustibles riches en h2 avec de l'air
EP2299178A1 (fr) 2009-09-17 2011-03-23 Alstom Technology Ltd Procédé et système de combustion de turbine à gaz pour mélanger sans danger des carburants riches en H2 avec de l'air
US10774740B2 (en) 2011-04-08 2020-09-15 Ansaldo Energia Switzerland AG Gas turbine assembly and corresponding operating method
WO2012136787A1 (fr) 2011-04-08 2012-10-11 Alstom Technology Ltd Ensemble de turbines à gaz et procédé permettant de faire fonctionner celui-ci
US10907549B2 (en) 2012-06-29 2021-02-02 Ansaldo Energia Switzerland AG Method for a part load CO reduction operation for a sequential gas turbine
WO2014001230A1 (fr) 2012-06-29 2014-01-03 Alstom Technology Ltd Procédé pour une opération de réduction de co de charge partielle pour une turbine à gaz séquentielle
EP2685172A3 (fr) * 2012-07-09 2014-04-16 Alstom Technology Ltd Système de combustion de turbine à gaz de type tubo-annulaire avec de la combustion pré-mélangé étagée
EP2685172A2 (fr) 2012-07-09 2014-01-15 Alstom Technology Ltd Système de combustion de turbine à gaz de type tubo-annulaire avec de la combustion pré-mélangé étagée
US9810152B2 (en) 2012-07-09 2017-11-07 Ansaldo Energia Switzerland AG Gas turbine combustion system
US9933163B2 (en) 2012-07-10 2018-04-03 Ansaldo Energia Switzerland AG Combustor arrangement with slidable multi-cone premix burner
EP2685161A1 (fr) 2012-07-10 2014-01-15 Alstom Technology Ltd Agencement de chambre de combustion, en particulier pour turbine à gaz
RU2573090C2 (ru) * 2012-07-10 2016-01-20 Альстом Текнолоджи Лтд. Узел камеры сгорания, в частности для газовой турбины
US9476333B2 (en) * 2012-08-08 2016-10-25 Hino Motors, Ltd. Burner for exhaust purifying device
US20140318107A1 (en) * 2012-08-08 2014-10-30 Hino Motors, Ltd. Burner for exhaust purifying device
US9551491B2 (en) 2012-08-24 2017-01-24 General Electric Technology Gmbh Method for mixing a dilution air in a sequential combustion system of a gas turbine
EP2700878A2 (fr) 2012-08-24 2014-02-26 Alstom Technology Ltd Procédé pour mélanger un air de dilution dans un système de combustion séquentielle d'une turbine à gaz
EP2700879A2 (fr) 2012-08-24 2014-02-26 Alstom Technology Ltd Procédé pour mélanger un air de dilution dans un système de combustion séquentielle d'une turbine à gaz
US9400105B2 (en) 2012-08-31 2016-07-26 General Electric Technology Gmbh Premix burner
EP2703721A1 (fr) 2012-08-31 2014-03-05 Alstom Technology Ltd Brûleur à prémélange
US10718520B2 (en) 2012-10-24 2020-07-21 Ansaldo Energia Switzerland AG Damper arrangement for reducing combustion-chamber pulsation
EP2725300A1 (fr) 2012-10-24 2014-04-30 Alstom Technology Ltd Dispositif d'amortissement pour réduire les pulsations de chambres de combustion
US10422535B2 (en) 2013-04-26 2019-09-24 Ansaldo Energia Switzerland AG Can combustor for a can-annular combustor arrangement in a gas turbine
EP2796789A1 (fr) 2013-04-26 2014-10-29 Alstom Technology Ltd Chambre de combustion à tubes pour un agencement de chambre de combustion annulaire dans une turbine à gaz
EP2863018A1 (fr) 2013-10-17 2015-04-22 Alstom Technology Ltd Structure de refroidissement pour un conduit de transition d'une turbine à gaz
US10443500B2 (en) 2013-10-17 2019-10-15 Ansaldo Energia Switzerland AG Combustor cooling structure
US9879605B2 (en) 2014-06-27 2018-01-30 Ansaldo Energia Switzerland AG Combustor cooling structure
EP2960436A1 (fr) 2014-06-27 2015-12-30 Alstom Technology Ltd Structure de refroidissement pour un conduit de transition d'une turbine à gaz
EP2993315A1 (fr) 2014-09-05 2016-03-09 Alstom Technology Ltd Appareil pour outil d'assemblage pour le montage ou le démontage, le remplacement et l'entretien de composant d'un moteur
US10174637B2 (en) 2014-09-05 2019-01-08 Ansaldo Energia Switzerland AG Device and method for mounting or dismantling, replacement and maintenance of a can-combustor
CN105397463A (zh) * 2014-09-05 2016-03-16 阿尔斯通技术有限公司 安装或拆除、替换和维护发动机的构件的组装工具的设备
EP2993314A1 (fr) 2014-09-05 2016-03-09 Alstom Technology Ltd Dispositif et procédé pour le montage ou le démontage, le remplacement et l'entretien d'une chambre de combustion CAN
EP2993404A1 (fr) 2014-09-08 2016-03-09 Alstom Technology Ltd Mélangeur de gaz ou d'air de dilution pour une chambre de combustion d'une turbine à gaz
EP3026347A1 (fr) 2014-11-25 2016-06-01 Alstom Technology Ltd Brûleur a corps non profilé annulaire
US10323574B2 (en) 2014-12-22 2019-06-18 Ansaldo Energia Switzerland AG Mixer for admixing a dilution air to the hot gas flow
EP3037726A1 (fr) 2014-12-22 2016-06-29 Alstom Technology Ltd Alimentations séparées de l'air de refroidissement et de dilution
US10443849B2 (en) 2014-12-22 2019-10-15 Ansaldo Energia Switzerland AG Separate feedings of cooling and dilution air
US10247420B2 (en) 2014-12-22 2019-04-02 Ansaldo Energia Switzerland AG Axially staged mixer with dilution air injection
EP3037725A1 (fr) 2014-12-22 2016-06-29 Alstom Technology Ltd Mélangeur destiné à mélanger de l'air de dilution à l'écoulement de gaz chaud
EP3037728A1 (fr) 2014-12-22 2016-06-29 Alstom Technology Ltd Mélangeur axialement étagé avec injection d'air de dilution

Also Published As

Publication number Publication date
EP0704657B1 (fr) 2001-11-07
JPH08114307A (ja) 1996-05-07
CN1131737A (zh) 1996-09-25
KR960014753A (ko) 1996-05-22
JP3649785B2 (ja) 2005-05-18
DE59509802D1 (de) 2001-12-13
ATE208480T1 (de) 2001-11-15
US5588826A (en) 1996-12-31
EP0704657A3 (fr) 1997-07-30
DE4435266A1 (de) 1996-04-04
CN1090728C (zh) 2002-09-11
CA2154941A1 (fr) 1996-04-02

Similar Documents

Publication Publication Date Title
EP0704657B1 (fr) Brûleur
EP0780629B1 (fr) Brûleur pour un générateur de chaleur
EP0321809B1 (fr) Procédé pour la combustion de combustible liquide dans un brûleur
EP0918191B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0899508B1 (fr) Brûleur pour un dispositif à chaleur
EP0780630B1 (fr) Brûleur pour un générateur de chaleur
EP0833105B1 (fr) Brûleur à prémélange
EP0918190A1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0777081B1 (fr) Brûleur à prémélange
EP0797051B1 (fr) Brûleur pour un générateur de chaleur
DE19757189B4 (de) Verfahren zum Betrieb eines Brenners eines Wärmeerzeugers
EP0718561B1 (fr) Brûleur
EP0994300B1 (fr) Brûleur pour la conduite d'un générateur de chaleur
EP0916894B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0931980B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0909921B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0903540B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0751351A1 (fr) Chambre de combustion
EP0919768B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
DE19537636B4 (de) Kraftwerksanlage
EP0833104B1 (fr) Brûleur pour le fonctionnement d'une chambre de combustion
EP0694730A2 (fr) Bruleur
DE19515082B4 (de) Vormischbrenner
EP0913630B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
DE19914666B4 (de) Brenner für einen Wärmeerzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI NL SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PAIKERT, BETTINA, DR.

Inventor name: KNOEPFEL, HANS PETER

Inventor name: HAUMANN, JUERGEN, DR.

Inventor name: DOEBBELING, KLAUS, DR.

Inventor name: STEINBACH, CHRISTIAN, DR.

Inventor name: SATTELMAYER, THOMAS, DR.

Inventor name: RUCK, THOMAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB MANAGEMENT AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19980122

17Q First examination report despatched

Effective date: 19991103

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011107

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20011107

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011107

REF Corresponds to:

Ref document number: 208480

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM

REF Corresponds to:

Ref document number: 59509802

Country of ref document: DE

Date of ref document: 20011213

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALSTOM

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020131

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59509802

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R081

Ref document number: 59509802

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20120621

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140922

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140919

Year of fee payment: 20

Ref country code: SE

Payment date: 20140918

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59509802

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150919

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG