EP0931980B1 - Brûleur pour la mise en oeuvre d'un générateur de chaleur - Google Patents

Brûleur pour la mise en oeuvre d'un générateur de chaleur Download PDF

Info

Publication number
EP0931980B1
EP0931980B1 EP98810037A EP98810037A EP0931980B1 EP 0931980 B1 EP0931980 B1 EP 0931980B1 EP 98810037 A EP98810037 A EP 98810037A EP 98810037 A EP98810037 A EP 98810037A EP 0931980 B1 EP0931980 B1 EP 0931980B1
Authority
EP
European Patent Office
Prior art keywords
burner
burner according
flow
section
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98810037A
Other languages
German (de)
English (en)
Other versions
EP0931980A1 (fr
Inventor
Peter Dr. Jansohn
Dieter Köster
Thomas Ruck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to DE59807856T priority Critical patent/DE59807856D1/de
Priority to AT98810037T priority patent/ATE237101T1/de
Priority to EP98810037A priority patent/EP0931980B1/fr
Priority to US09/235,314 priority patent/US6186775B1/en
Publication of EP0931980A1 publication Critical patent/EP0931980A1/fr
Application granted granted Critical
Publication of EP0931980B1 publication Critical patent/EP0931980B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D23/00Assemblies of two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2207/00Ignition devices associated with burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2214/00Cooling

Definitions

  • the invention relates to a burner for the operation of a heat generator according to Preamble of claim 1.
  • the upstream side consists of a swirl generator, the flow formed therein seamlessly in a mixing section is transferred. This is done using one at the beginning of the Mixing section flow geometry formed for this purpose, which consists of transition channels exists, which is sectoral, according to the number of those acting Partial body of the swirl generator, capture the end face of the mixing section and in Flow direction swirl. Downstream of these transition channels the mixing section has a number of filming holes, which one Ensure an increase in the flow velocity along the pipe wall. This is followed by a combustion chamber, the transition between the Mixing section and the combustion chamber formed by a cross-sectional jump in whose plane a backflow zone or backflow bubble forms.
  • the swirl strength in the swirl generator is selected so that the bursting of the vortex does not occur within the mixing section, but further downstream, as Executed above, in the area of the cross-sectional jump.
  • the length of the mixing section is dimensioned in such a way that there is sufficient mix quality for everyone Types of fuel is guaranteed.
  • the invention seeks to remedy this.
  • the invention as set out in the claims is characterized, the task is based on a burner at the beginning to propose precautions which strengthen the flame stability for stable operation, especially in the transient load ranges, ensure always under the further task that the Pollutant emissions should remain low while taking these precautions Measures are taken which relate to the ignition systems mentioned above to eliminate disadvantages.
  • the burner is expanded in such a way that in the area of its transition a ring-shaped system to provide for the downstream combustion chamber a fuel / air mixture is generally provided as Pilot stage acts.
  • Pilot stage acts Through a number of circumferential exit bores Appropriate pilot burners are created in the combustion chamber, which are operated in diffusion mode for stability reasons and directly in the combustion chamber.
  • This amount of air initially takes over the cooling of the by means of impingement cooling side facing away from the combustion chamber before it then mixes with the gas and then as a pre-mixed flame with minimized pollutant emissions piloting the combustion chamber is maintained.
  • This impingement cooling removes the hot gas from the surface of the pilot gas ring and largely isolated from the flame radiation from the combustion chamber, so that the thermal load in this area is significantly reduced.
  • the object according to the invention also ensures that the minimized Cooling amount can also be fed to the burning process.
  • the guided introduction of the cooling air mentioned is also used to in order to provide an ignition device integrated there for the respective pilot burner, with which this integrated ignition device for the pilot burner is part of the burner system, which is interchangeably mounted in the gas turbine.
  • an ignition device integrated there for the respective pilot burner with which this integrated ignition device for the pilot burner is part of the burner system, which is interchangeably mounted in the gas turbine.
  • several or All pilot burners are equipped with an igniter, which ensures optimal cross-ignition properties be achieved.
  • the ignition of the Pilot burner using a glow pencil or using a spark plug.
  • Fig. 1 shows the overall structure of a burner.
  • a swirl generator 100 is effective, the design of which is shown and described in more detail in the following FIGS. 3-6.
  • This swirl generator 100 is a conical structure which is acted upon tangentially several times by a tangentially flowing combustion air flow 115.
  • the flow formed here is seamlessly transferred to a transition piece 200 using a transition geometry provided downstream of the swirl generator 100, in such a way that no separation areas can occur there.
  • the configuration of this transition geometry is described in more detail in FIG. 6.
  • This transition piece 200 is extended on the outflow side of the transition geometry by a mixing tube 20, both parts forming the actual mixing section 220.
  • the mixing section 220 can consist of a single piece, that is to say then that the transition piece 200 and the mixing tube 20 merge into a single coherent structure, the characteristics of each part being retained. If the transition piece 200 and the mixing tube 20 are made of two parts, these are connected by a bushing ring 10, the same bushing ring 10 serving as an anchoring surface for the swirl generator 100 on the head side. Such a bushing ring 10 also has the advantage that different mixing tubes can be used. On the outflow side of the mixing tube 20 there is the actual combustion chamber 30 of a combustion chamber, which here is only symbolized by a flame tube.
  • the mixing section 220 largely fulfills the task of providing a defined section downstream of the swirl generator 100, in which a perfect premixing of fuels of different types can be achieved.
  • This mixing section i.e. the mixing pipe 20 in the foreground, furthermore enables loss-free flow guidance, so that no backflow zone or backflow bubble can initially form even in operative connection with the transition geometry, which means that the length of the mixing section 220 can influence the quality of the mixture for all types of fuel .
  • this mixing section 220 has yet another property, which consists in that the axial velocity profile itself has a pronounced maximum on the axis, so that the flame cannot be re-ignited from the combustion chamber. However, it is correct that with such a configuration this axial velocity drops towards the wall.
  • the mixing tube 20 is provided in the flow and circumferential direction with a number of regularly or irregularly distributed bores 21 of various cross-sections and directions through which an amount of air flows into the interior of the mixing tube 20 and along the wall in the In the sense of filming, induce an increase in the flow rate.
  • These bores 21 can also be designed such that at least one additional effusion cooling is established on the inner wall of the mixing tube 20.
  • Another possibility of increasing the speed of the mixture within the mixing tube 20 is to narrow its flow cross-section on the outflow side of the transition channels 201, which form the transition geometry already mentioned, as a result of which the overall speed level within the mixing tube 20 is increased.
  • these bores 21 run at an acute angle with respect to the burner axis 60.
  • the outlet of the transition channels 201 corresponds to the narrowest flow cross-section of the mixing tube 20.
  • the transition channels 201 mentioned therefore bridge the respective cross-sectional difference without adversely affecting the flow formed. If the selected precaution triggers an intolerable pressure loss when guiding the pipe flow 40 along the mixing pipe 20, this can be remedied by providing a diffuser (not shown in the figure) at the end of this mixing pipe.
  • a combustion chamber 30 combustion chamber then adjoins the end of the mixing tube 20, a cross-sectional jump formed by a burner front 70 being present between the two flow cross sections.
  • a pilot burner system 300 is provided concentrically with the mixing tube 20 in the area of its outlet. This consists of an inner annular chamber 301 into which a fuel, preferably a gaseous fuel 303, flows. In addition to this inner annular chamber 301, there is a second annular chamber 302 into which an air quantity 304 flows. Both ring chambers 301, 302 have individually designed through openings, such that the individual media 303, 304 flow into a common downstream ring chamber 308 due to their function.
  • the transfer of the gaseous fuel 303 from the annular chamber 301 into the downstream annular chamber 308 is accomplished by a number of openings 309 arranged in the circumferential direction.
  • the passage geometry of these openings 309 is designed such that the gaseous fuel 303 flows into the downstream annular chamber 308 with a large mixing potential.
  • the other annular chamber 302 closes with a perforated plate 305, the bores 310 provided here being designed in such a way that the air volume 304 flowing through there impacts cooling on the base plate 307 of the downstream annular chamber 308.
  • This base plate has the function of a heat protection plate against the calorific load from the combustion chamber 30, so that this impingement cooling must be extremely efficient here.
  • this air mixes within this annular chamber 308 with the gaseous fuel 303 flowing in from the openings 309 of the upstream annular chamber 301 before this mixture then flows out into the combustion chamber 30 through a number of bores 306 arranged on the combustion chamber side.
  • the mixture flowing out burns as a premixed diffusion flame with minimized pollutant emissions and accordingly forms a pilot burner acting in the combustion chamber 30 per bore 306, which ensures stable operation.
  • An ignition device becomes through the air-circulating ring chamber 302 311 passed through, which in the downstream annular chamber 308 Ignition of the mixture formed there. For one thing, it takes for this passage of the ignition device 311 no further constructive Measures, and on the other hand, this ignition device 311 is constantly by the air 304 flowing there is cooled anyway. This is very important because when using it temperature of approx. 1000 ° C can be reached with a glow plug. However, since there is only a low voltage for the operation proposed here, high current is required, the susceptibility of the ignition device is therefore eliminated against condensation water. Due to the arrangement of the glow plug, the use of a spark plug is also possible within of the burner, the respective ignition device 311 is thermally slightly loaded, which means that no additional cooling is required and leakages are also eliminated avoided.
  • Fig. 2 shows a schematic view of the burner according to Fig. 1, here in particular the flushing of a centrally arranged fuel nozzle 103 and the effect of fuel injectors 170 is pointed out.
  • the mode of action the remaining main components of the burner, namely swirl generator 100 and transition piece 200 are closer under the following figures described.
  • the fuel nozzle 103 is spaced with a ring 190 encased in which a number of circumferentially bored holes 161 are placed, through which an amount of air 160 into an annular chamber 180 flows and carries out the flushing of the fuel lance there.
  • These holes 161 are slanted forward so that it is appropriate axial component arises on the burner axis 60.
  • FIG. 4 is used at the same time as FIG. 3.
  • 3 is referred to the other figures as necessary in the description of FIG.
  • the first part of the burner according to FIG. 1 forms the swirl generator shown in FIG. 3 100.
  • This consists of two hollow conical partial bodies 101, 102, which are nested in a staggered manner.
  • the number of conical Partial body can of course be larger than two, like the figures 5 and 6 show; this depends in each case, as will be explained in more detail below will depend on the operating mode of the entire burner. It is with certain Operating constellations are not excluded, one from a single spiral to provide existing swirl generator.
  • the offset of the respective central axis or longitudinal symmetry axes 101b, 102b (cf. FIG. 4) of the conical partial bodies 101, 102 creates each other in the adjacent wall, in mirror image Arrangement, each a tangential channel, i.e.
  • the cone shape the partial body 101, 102 shown in the flow direction has a certain one fixed angle.
  • the partial bodies can 101, 102 an increasing or decreasing cone inclination in the flow direction have, similar to a trumpet. Tulip.
  • the latter two Shapes are not recorded in the drawing, as they are without for the specialist are further sensitive.
  • the two conical partial bodies 101, 102 have each have a cylindrical annular starting part 101a. In the area of this cylindrical Initially, the fuel nozzle 103 already mentioned under FIG.
  • the conical sub-bodies 101, 102 each have a fuel line 108, 109 which run along the tangential air inlet slots 119, 120 arranged and provided with injection openings 117, through which preferably a gaseous fuel 113 in the combustion air flowing through there 115 is injected, as the arrows 116 want to symbolize.
  • Fuel nozzle 103 brought fuel 112 is, as mentioned, normally a liquid fuel, whereby a mixture formation with a other medium, for example with a recirculated flue gas, without further is possible.
  • This fuel 112 is preferably very low acute angle injected into the cone cavity 114. From the fuel nozzle 103 A conical fuel spray 105 is thus formed, which flows in from the tangential one rotating combustion air 115 is enclosed and degraded.
  • the concentration of the injected fuel is then in the axial direction 112 continuously through the incoming combustion air 115 for mixing Degraded towards evaporation. If a gaseous fuel 113 Introduced via the opening nozzles 117, the fuel / air mixture is formed directly at the end of the air inlet slots 119, 120. Is the combustion air 115 additionally preheated, or for example with a recirculated Flue gas or exhaust gas enriched, so this sustainably supports the Evaporation of the liquid fuel 112 before this mixture in the downstream Stage flows, here in the transition piece 200 (see FIGS. 1 and 7). The same considerations also apply if liquid lines 108, 109 Fuels should be supplied.
  • the construction of the swirl generator 100 is furthermore particularly suitable, change the size of the tangential air inlet slots 119, 120, which is a relatively large one without changing the overall length of the swirl generator 100 operational bandwidth can be captured.
  • the partial bodies 101, 102 can also be moved relative to one another in another plane, which even an overlap of the same can be provided.
  • the sub-bodies 101, 102 by a counter-rotating movement spiral to nest into each other. So it is possible, the shape, the size and the configuration of the tangential air inlet slots 119, 120 arbitrarily vary, with which the swirl generator 100 is universal without changing its overall length can be used.
  • FIG. 4 shows, among other things, the geometric configuration of optional ones Baffles 121a, 121b. They have a flow introduction function. which, according to their length, the respective end of the tapered Partial bodies 101, 102 in the flow direction with respect to the combustion air 115 extend.
  • Channeling the combustion air 115 into the cone cavity 114 can be opened or closed by one of the baffles 121a, 121b Area of entry of this channel into the cone cavity 114 placed fulcrum 123 can be optimized, especially if the original Gap size of the tangential air inlet slots 119, 120 changed dynamically should be, for example, to change the speed of the combustion air 115 to achieve.
  • these can be dynamic Precautions can also be provided statically by using baffles as needed form a fixed component with the tapered partial bodies 101, 102.
  • the swirl generator 100 now consists of four partial bodies 130, 131, 132, 133 is constructed.
  • the associated longitudinal symmetry axes for each sub-body are marked with the letter a. To this Configuration is to be said that it is due to the lower generated with it Twist strength and in cooperation with a correspondingly enlarged Slot width is best suited, the bursting of the vortex flow on the downstream side to prevent the swirl generator in the mixing tube, thus causing the mixing tube to can fulfill the intended role.
  • FIG. 6 differs from FIG. 5 in that the partial bodies 140 here 141, 142, 143 have a blade profile shape which is used to provide a certain Flow is provided. Otherwise, the mode of operation of the swirl generator stayed the same.
  • the admixture of fuel 116 in the combustion air flow 115 happens from inside the blade profiles, i.e. the fuel line 108 is now integrated in the individual blades.
  • the transition geometry is corresponding for a swirl generator 100 with four partial bodies 5 or 6, built. Accordingly, the transition geometry as a natural extension of the upstream partial bodies, four transition channels 201 on, whereby the conical quarter area of said partial body is extended until it cuts the wall of the mixing tube.
  • the same considerations also apply if the swirl generator is based on a principle other than the one below Fig. 3 is constructed.
  • the down in the flow direction running surface of the individual transition channels 201 has a flow direction spiral shape, which has a crescent shape Course describes, corresponding to the fact that the flow cross-section is present of the transition piece 200 flared in the flow direction.
  • the swirl angle of the transition channels 201 in the flow direction is selected so that that the pipe flow then up to the cross-sectional jump on Combustion chamber entry still has a sufficient distance to be perfect Premix with the injected fuel. Further increases the axial speed due to the above-mentioned measures on the mixing tube wall downstream of the swirl generator.
  • the transition geometry and the measures in the area of the mixing tube cause a significant increase the axial velocity profile towards the center of the mixing tube, see above that the danger of early ignition is decisively counteracted.
  • the flow cross section of the tube 20 receives one in this area Transition radius R, the size of which basically depends on the flow within of the tube 20 depends.
  • This radius R is chosen so that the Applies flow to the wall and so the swirl number increases sharply.
  • the size of the radius R can be defined so that it is> 10% of the inside diameter d of the tube is 20.
  • the backflow bladder 50 increases enormously.
  • This radius R runs to the exit plane of the tube 20, the angle ⁇ between the beginning and end of curvature is ⁇ 90 °.
  • the tear-off edge A runs inside the tube 20 and thus forms a tear-off step S opposite the front point of the tear-off edge A, whose depth> 3 mm is.
  • this can be parallel to the exit plane of the tube 20 running edge based on a curved course back to the exit level to be brought.
  • the angle ⁇ ' which is between the tangent of the tear-off edge A and perpendicular to the exit plane of the tube 20 is the same size like angle ⁇ .
  • Another Design of the tear-off edge for the same purpose can be done with the combustion chamber achieve toroidal notches. This publication is inclusive the scope of protection there regarding the tear-off edge is an integrating one Part of this description.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Claims (20)

  1. Brûleur destiné à faire fonctionner un générateur de chaleur, le brûleur se composant essentiellement d'une chambre de turbulence (100) pour un écoulement d'air de combustion, de moyens pour l'injection d'au moins un combustible dans l'écoulement d'air de combustion, dans lequel, en aval de la chambre de turbulence se trouve une section de mélange (220) laquelle présente, à l'intérieur d'une première partie de la section dans le sens de l'écoulement, un certain nombre de canaux de transfert (201) servant à transférer un écoulement formé dans la chambre de turbulence dans un tube de mélange (20) raccordé en aval de ces canaux de transfert, caractérisé en ce que, dans la partie inférieure du tube de mélange (20), avec action dans une zone de combustion (30) placée en aval du tube de mélange (20), un système à brûleurs pilotes (300) est présent et en ce qu'au moins un dispositif d'allumage (311) est intégré dans le système à brûleurs pilotes (300).
  2. Brûleur selon la revendication 1, caractérisé en ce que le système à brûleurs pilotes (300) se compose d'au moins deux chambres d'amenée de fluide (301, 302) et d'une autre chambre commune raccordée en aval (308), en ce que, dans cette chambre raccordée en aval (308), les fluides (303, 304) provenant des deux autres chambres (301, 302) sont miscibles et que la chambre aval (308) présente un moyen de former des brûleurs pilotes (306) agissant dans la zone . de combustion (30) à partir du mélange des deux fluides (303, 304).
  3. Brûleur selon les revendications 1 et 2, caractérisé en ce que les chambres d'amenée des fluides (301, 303) sont réalisées sous forme annulaire et juxtaposées, en ce qu'un combustible gazeux (303) traverse la première chambre annulaire (301) et qu'un débit d'air (304) traverse la deuxième chambre annulaire (302), en ce que, dans la deuxième chambre annulaire (302), on a installé des moyens (305) par lesquels l'air y circulant (304) opère un refroidissement par impact sur une tôle pare-chaleur (307) disposée à l'extrémité du système à brûleurs pilotes (300) et en ce que le dispositif d'allumage (311) est introduit à travers la deuxième chambre annulaire (302).
  4. Brûleur selon la revendication 3, caractérisé en ce que le moyen d'opérer le refroidissement par impact est une plaque perforée (305) constituant le fond de la chambre annulaire (302) juxtaposée.
  5. Brûleur selon la revendication 1, caractérisé en ce que le moyen se compose, d'une bague (190) disposée côté tête de la chambre de turbulence (100) et en liaison active avec une buse d'injection de combustible (103), en ce que cette bague (190) présente un certain nombre d'orifices (161) disposés selon la circonférence et en ce qu'un combustible (170) peut être injecté dans le débit d'air (160) s'écoulant à travers les orifices (161).
  6. Brûleur selon la revendication 5, caractérisé en ce que les orifices (161) sont orientés en oblique vers l'avant.
  7. Brûleur selon la revendication 5, caractérisé en ce que la buse d'injection de combustible (103) est entourée d'une chambre d'air annulaire (180).
  8. Brûleur selon la revendication 1, caractérisé en ce que le front de brûleur du tube de mélange (20) présente une arête de décollement (A) vers la zone de combustion (30) raccordée en aval.
  9. Brûleur selon la revendication 1, caractérisé en ce que le nombre de canaux de transfert (201) dans la section de mélange (220) correspond au nombre de flux partiels formés dans la chambre de turbulence (100).
  10. Brûleur selon la revendication 1, caractérisé en ce que le tube de mélange (20) raccordé en aval des canaux de transfert (201) est pourvu, dans le sens de l'écoulement et selon la circonférence, d'orifices (21) pour l'injection d'un flux d'air à l'intérieur du tube de mélange (20).
  11. Brûleur selon la revendication 10, caractérisé en ce que les ouvertures (21) s'étendent sous un angle aigu par rapport à l'axe du brûleur (60), du tube de mélange (20).
  12. Brûleur selon la revendication 1, caractérisé en ce que la section transversale de passage du tube de mélange (20), en aval des canaux de transfert (201), est plus petite, égale ou plus grande que la section transversale de l'écoulement (40) formé dans la chambre de turbulence (100, 100a).
  13. Brûleur selon la revendication 1, caractérisé en ce qu'en aval de la section de mélange (220) est disposée une chambre de combustion (30), en ce qu'entre la section de mélange (220) et la chambre de combustion (30) s'opère un brusque ' changement de section transversale qui induit la section d'écoulement initiale de la chambre de combustion (30) et en ce que, dans la zone de ce brusque changement de section, une zone d'écoulement de retour (50) peut être active.
  14. Brûleur selon la revendication 1, caractérisé en ce qu'en amont du front du brûleur (70) se trouve un diffuseur et/ou une section à venturi.
  15. Brûleur selon la revendication 1, caractérisé en ce que la chambre de turbulence (100) se compose d'au moins deux corps' partiels creux, coniques, imbriqués l'un dans l'autre dans le sens de l'écoulement (101, 102 ; 130, 131, 132, 133 ; 140, 141, 142, 143), en ce que les axes de symétrie longitudinaux respectifs (101b, 102b ; 130a, 131a, 132a, 133a ; 140a, 141a, 142a, 143a) de ces corps partiels s'étendent avec un décalage des uns par rapport aux autres, de telle manière que les parois voisines des corps, dans leur extension longitudinale, forment des canaux tangentiels (119, 120) pour un écoulement de l'air de combustion (115) et que, dans l'espace intérieur (114) formé par les corps partiels au moins une buse d'injection de combustible (103) puisse être active.
  16. Brûleur selon la revendication 15, caractérisé en ce que, d'autres buses d'injection de combustible (117) sont disposées dans la zone des canaux tangentiels (119, 120), dans leur extension longitudinale.
  17. Brûleur selon la revendication 15, caractérisé en ce que les corps partiels (140, 141, 142, 143) présentent, en section transversale, un profil ayant la forme d'une aube.
  18. Brûleur selon la revendication 15, caractérisé en ce que les corps partiels présentent, dans le sens de l'écoulement, un angle d'ouverture de. cône fixe ou une inclinaison de cône croissante ou encore une inclinaison de cône décroissante.
  19. Brûleur selon la revendication 15, caractérisé en ce que les corps partiels sont imbriqués les uns dans les autres en forme de spirale.
  20. Brûleur selon la revendication 1, caractérisé en ce que le dispositif d'allumage (311) est un igniteur à incandescence ou une bougie d'allumage.
EP98810037A 1998-01-23 1998-01-23 Brûleur pour la mise en oeuvre d'un générateur de chaleur Expired - Lifetime EP0931980B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59807856T DE59807856D1 (de) 1998-01-23 1998-01-23 Brenner für den Betrieb eines Wärmeerzeugers
AT98810037T ATE237101T1 (de) 1998-01-23 1998-01-23 Brenner für den betrieb eines wärmeerzeugers
EP98810037A EP0931980B1 (fr) 1998-01-23 1998-01-23 Brûleur pour la mise en oeuvre d'un générateur de chaleur
US09/235,314 US6186775B1 (en) 1998-01-23 1999-01-22 Burner for operating a heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98810037A EP0931980B1 (fr) 1998-01-23 1998-01-23 Brûleur pour la mise en oeuvre d'un générateur de chaleur

Publications (2)

Publication Number Publication Date
EP0931980A1 EP0931980A1 (fr) 1999-07-28
EP0931980B1 true EP0931980B1 (fr) 2003-04-09

Family

ID=8235900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98810037A Expired - Lifetime EP0931980B1 (fr) 1998-01-23 1998-01-23 Brûleur pour la mise en oeuvre d'un générateur de chaleur

Country Status (4)

Country Link
US (1) US6186775B1 (fr)
EP (1) EP0931980B1 (fr)
AT (1) ATE237101T1 (fr)
DE (1) DE59807856D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435537B2 (en) 2010-11-30 2016-09-06 General Electric Company System and method for premixer wake and vortex filling for enhanced flame-holding resistance

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233161B4 (de) 2002-07-22 2012-01-05 Alstom Technology Ltd. Brenner und Pilotbrenner
EP1389713A1 (fr) * 2002-08-12 2004-02-18 ALSTOM (Switzerland) Ltd Brûleur pilote annulaire pour sortie de brûleur à prémélange
CN100538183C (zh) * 2004-01-20 2009-09-09 阿尔斯通技术有限公司 用于运行燃烧室的预混合式燃烧器装置以及用于运行燃烧室的方法
US7303388B2 (en) * 2004-07-01 2007-12-04 Air Products And Chemicals, Inc. Staged combustion system with ignition-assisted fuel lances
EP1817526B1 (fr) * 2004-11-30 2019-03-20 Ansaldo Energia Switzerland AG Procédé et dispositif de combustion d'hydrogène dans un brûleur a prémelange
JP3958767B2 (ja) * 2005-03-18 2007-08-15 川崎重工業株式会社 ガスタービン燃焼器およびその着火方法
US8511097B2 (en) 2005-03-18 2013-08-20 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor and ignition method of igniting fuel mixture in the same
WO2007110298A1 (fr) * 2006-03-27 2007-10-04 Alstom Technology Ltd Brûleur pour le fonctionnement d'un générateur de chaleur
US20120208133A1 (en) * 2011-02-15 2012-08-16 Thielvoldt Mike Multi-stage decorative burner
RU2485398C1 (ru) * 2011-10-20 2013-06-20 Общество с ограниченной ответственностью "Энерго Эстейт" Устройство для сжигания топлива и способ сжигания топлива
EP2650612A1 (fr) * 2012-04-10 2013-10-16 Siemens Aktiengesellschaft Brûleur
EP2685163B1 (fr) * 2012-07-10 2020-03-25 Ansaldo Energia Switzerland AG Brûleur de prémélange du type multi-cônes destiné à une turbine à gaz
US9285120B2 (en) 2012-10-06 2016-03-15 Coorstek, Inc. Igniter shield device and methods associated therewith
EP3155326A4 (fr) 2014-06-10 2018-01-24 Wet Enterprises, Inc., DBA Wet Design Dispositif de chauffage avec présentation de flamme
CN107741013B (zh) * 2017-10-24 2024-02-09 北京首钢国际工程技术有限公司 一种节能型燃烧混气炉
CN111780112B (zh) * 2020-07-14 2022-06-21 江苏迈阳环保有限公司 一种用于低氮燃烧器的喷射机构

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3973395A (en) * 1974-12-18 1976-08-10 United Technologies Corporation Low emission combustion chamber
US4170109A (en) * 1977-11-09 1979-10-09 United Technologies Corporation Thrust augmentor having swirled flows for combustion stabilization
US4170011A (en) * 1977-12-28 1979-10-02 The United States Of America As Represented By The Secretary Of The Air Force Precision antenna alignment procedure
DE2918416C2 (de) * 1979-05-08 1985-05-15 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Vergasungsölbrenner
US4311452A (en) * 1980-02-04 1982-01-19 Cea Of Canada, Ltd. High stability gas/electric pilot-ignitor
NL8702191A (nl) * 1987-09-15 1989-04-03 Flameco Eclipse Bv Gasbrander.
US4963089A (en) * 1989-08-24 1990-10-16 Eclipse, Inc. High turndown burner with integral pilot
CH684962A5 (de) * 1991-07-03 1995-02-15 Asea Brown Boveri Brenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder einer Feuerungsanlage.
DE4138433C2 (de) * 1991-11-22 1996-03-28 Aichelin Gmbh Brenner für Industrieöfen
DE4209220A1 (de) * 1992-03-21 1993-09-23 Deutsche Forsch Luft Raumfahrt Ablagerungsfreier brenner
IT1273369B (it) * 1994-03-04 1997-07-08 Nuovo Pignone Spa Sistema perfezionato combustione a basse emissioni inquinanti per turbine a gas
DE4439619A1 (de) * 1994-11-05 1996-05-09 Abb Research Ltd Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners
DE69617290T2 (de) * 1995-01-13 2002-06-13 European Gas Turbines Ltd., Lincoln Verbrennungsgerät für Gasturbinenmotor
DE19547913A1 (de) 1995-12-21 1997-06-26 Abb Research Ltd Brenner für einen Wärmeerzeuger
DE19610930A1 (de) * 1996-03-20 1997-09-25 Abb Research Ltd Brenner für einen Wärmeerzeuger
DE59709791D1 (de) * 1997-09-19 2003-05-15 Alstom Switzerland Ltd Brenner für den Betrieb eines Wärmeerzeugers
DE59709061D1 (de) * 1997-10-14 2003-02-06 Alstom Brenner für den Betrieb eines Wärmeerzeugers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435537B2 (en) 2010-11-30 2016-09-06 General Electric Company System and method for premixer wake and vortex filling for enhanced flame-holding resistance

Also Published As

Publication number Publication date
ATE237101T1 (de) 2003-04-15
EP0931980A1 (fr) 1999-07-28
US6186775B1 (en) 2001-02-13
DE59807856D1 (de) 2003-05-15

Similar Documents

Publication Publication Date Title
EP0780629B1 (fr) Brûleur pour un générateur de chaleur
EP0704657B1 (fr) Brûleur
EP0918191B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0931980B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0918190A1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0987493B1 (fr) Brûleur pour générateur de chaleur
EP0899508B1 (fr) Brûleur pour un dispositif à chaleur
DE19757189B4 (de) Verfahren zum Betrieb eines Brenners eines Wärmeerzeugers
EP0797051B1 (fr) Brûleur pour un générateur de chaleur
EP1262714A1 (fr) Brûleur avec recirculation des gaz de combustion
EP0780630B1 (fr) Brûleur pour un générateur de chaleur
EP0694740A2 (fr) Chambre de combustion
EP0718561B1 (fr) Brûleur
EP0994300B1 (fr) Brûleur pour la conduite d'un générateur de chaleur
EP0481111B1 (fr) Chambre de combustion pour turbine à gaz
EP0909921B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0751351A1 (fr) Chambre de combustion
EP0903540B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0919768B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
DE19537636B4 (de) Kraftwerksanlage
EP0483554A1 (fr) Procédé pour la réduction au minimum des émissions de NOx dans une combustion
EP0833104B1 (fr) Brûleur pour le fonctionnement d'une chambre de combustion
EP0913630B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0740108A2 (fr) Brûleur
EP0730121A2 (fr) Brûleur à prémélange

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991216

AKX Designation fees paid

Free format text: AT CH DE FR GB LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101221

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101215

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110131

Year of fee payment: 14

Ref country code: CH

Payment date: 20110103

Year of fee payment: 14

Ref country code: AT

Payment date: 20101215

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120123

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120123

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59807856

Country of ref document: DE

Effective date: 20120801

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 237101

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120123