EP1262714A1 - Brûleur avec recirculation des gaz de combustion - Google Patents

Brûleur avec recirculation des gaz de combustion Download PDF

Info

Publication number
EP1262714A1
EP1262714A1 EP02405345A EP02405345A EP1262714A1 EP 1262714 A1 EP1262714 A1 EP 1262714A1 EP 02405345 A EP02405345 A EP 02405345A EP 02405345 A EP02405345 A EP 02405345A EP 1262714 A1 EP1262714 A1 EP 1262714A1
Authority
EP
European Patent Office
Prior art keywords
burner
fuel
combustion chamber
exhaust gas
interior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02405345A
Other languages
German (de)
English (en)
Inventor
Klaus DÖBBELING
Bettina Paikert
Christian Oliver Paschereit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Publication of EP1262714A1 publication Critical patent/EP1262714A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the present invention relates to a burner for a gas turbine or hot gas production for the combustion of liquid or gaseous fuel, as well as a method for its operation.
  • Most technical burners of this type use a swirl flow to create a backflow zone on the burner axis.
  • the Flame stabilization takes place aerodynamically in these burners, i. H. without any special Flame holder.
  • the backflow zones that occur when the vortex bursts open (vortex break down) or the outer recirculation zones are used. Name is Exhaust gases from these zones ignite the fresh fuel-air mixture.
  • the swirl body is made up of at least two double-curved sheets with tangential air intake are formed, the sheets being folded outwards in the direction of the outflow.
  • a backflow zone at the downstream end of the inner cone.
  • the geometry of the burner is chosen so that the vortex flow in the The center is low in twist and has an axial excess speed. The increase The swirl number in the axial direction then leads to the position of the vortex backflow zone being stable remains.
  • double-cone burners can be found, for example, in the prior art in EP 0 321 809 B1 and EP 0 433 790 B1. With these burners in the direction of flow opening cone shape, in which two partial cone bodies positioned on top of each other are present, the central axes of which are offset with respect to one another in the longitudinal direction, combustion air occurs due to the tangential entry slots formed as a result of the displacement the interior of the burner. At the same time the combustion air enters through these slots Added fuel, resulting in a cone-shaped fuel-combustion air cone trains, and in turn in the area of the burner mouth positions stable backflow zone.
  • burner staging in which individual burners are specifically switched off so that the remaining burners can be operated at full load.
  • this concept can be used quite successfully.
  • EP 0 866 267 A1 describes the mixture of fresh air with recirculated flue gas in the Inverted feed channels of a double-cone burner are arranged in mirror image atmospheric combustion known.
  • the combustion air enriched with the recirculated exhaust gas causes z. B. better evaporation of the central fuel nozzle supplied liquid fuel within that induced by the length of the premix burner Premix. It can thus advantageously reduce pollutant emissions be achieved, but for a stabilization of the burner during the start phase a blow-off device which is operatively connected to the plenum is disadvantageously necessary, by using them, the admission pressure in the plenum is reduced, the air mass flow through the Burner reduced and thus the air ratio is reduced.
  • the objective object of the invention is therefore to provide a burner for a gas turbine or a hot gas generation for the combustion of liquid or gaseous fuel, which burner mixes fuel with combustion air in a burner interior, is fed to a combustion chamber and burned in this combustion chamber, and a method to operate such a burner, which has a stable Part load operation enabled.
  • the present invention achieves the object by providing means that control the flame can stabilize in partial load operation.
  • the invention thus relates to a burner of the type mentioned, in which means are provided, which allow hot exhaust gas to stabilize in part-load operation the combustion chamber in the burner interior.
  • the essence of the invention is therefore that the hot exhaust gases from the combustion chamber to be used, the flow behavior in the burner interior and at the burner mouth especially in part-load operation, d. H. with a lean, low-performance driving style to stabilize.
  • the recycling of exhaust gases in this way permits the use of such gases Burners on machines (especially machines with variable inlet guide vane assemblies, VIGV) in a load range of 30-100%.
  • the Means around a return line which furthermore preferably hot exhaust gas on an axial Combustion chamber wall in the case of an external one next to the burner orifice in the combustion chamber Takes backflow zones and the burner interior in the area of one of the combustion chamber feeds away from the burner tip.
  • this return is usually passive, that is, the flow of hot exhaust gas into the interior of the burner does not have to be driven.
  • Another embodiment of the invention is characterized in that the burner has at least one inner backflow zone. In such a burner leads Return of the hot exhaust gases to the fact that this inner, central return flow zone the axis of the burner is stabilized by these hot exhaust gases.
  • the burner is a Double cone burner with at least two partial cone bodies positioned on top of one another cone shape opening in the direction of flow to the combustion chamber, the central axes this partial cone body is offset with respect to one another in the longitudinal direction, in such a way that tangential entry slots to the burner interior form over the length of the burner, through which inlet slots combustion air with simultaneous injection of fuel into the burner interior with the formation of a conical, swirling fuel column occurs, and then the mixture with formation of an inner backflow zone in the Combustion chamber emerges and burns there.
  • the stabilization of the backflow zone on the burner axis can be used efficiently.
  • the inner, central backflow zone is particularly effectively stabilized if the hot exhaust gas in the burner interior centrally in the vortex core, that is essentially on the burner axis, and also preferably as close as possible to the burner tip, d. H. at the point of the double cone burner with the smallest diameter.
  • the return of the hot exhaust gases can even be actively designed so that in particular an internal backflow zone is completely or partially prevented in partial load operation.
  • means are also provided which allow fuel to be mixed into the hot, recirculated exhaust gas.
  • Fuel that a self-igniting mixture is fed into the interior of the burner.
  • Fuel injection, exhaust gas temperature and flow velocity are also preferred matched to one another in such a way that a spontaneous ignition in the combustion chamber of the fuel takes place.
  • the recycled hot exhaust air is not only mixed with fuel, but also with pilot air.
  • the pilot air can be mixed in according to the injection principle, i.e. into the exhaust air flow driving way. Through the additional introduction of pilot air into the Exhaust air duct can use the burner in partial load operation with little additional air optimally regulated actively.
  • the mostly cold pilot air can on one side Adjustment of the temperature of the recirculated exhaust air used on the other
  • the pilot air can also be used to control the exhaust air flow, i.e. H. the flow velocity, to increase or decrease.
  • the pilot air With the help of the pilot air the self-ignition, d. H. in particular the auto-ignition location of the mixture of hot Exactly adjust the exhaust gas and fuel in or in front of the burner interior in the combustion chamber, d. H. optimize for influencing the backflow zones.
  • the present invention further relates to a method for operating a burner, such as he is described above.
  • the exhaust gas recirculation is dependent on the current burner power level switched on and off, and particularly preferred the recirculation of hot exhaust gas used in part-load operation.
  • the pilot air flow is used to to control the formation of the inner backflow zone, or else around the Block recirculation of the exhaust air so that the swirl of the main air flow is sufficient to cause the vertebra to burst.
  • Fig. 1 shows a double-cone burner 1, formed from two partial cone bodies 6, the axes are offset from one another in such a way that there is a slot 7 between the partial cone bodies 6 forms.
  • Combustion air 9b enters tangentially into the burner interior 14 through this slot 7 on.
  • the burner interior 14 from the side of the burner tip 2, at which the diameter of the burner is minimal, axial combustion air 9a is supplied.
  • the Tangential combustion air 9b is mixed with fuel 8 so that it is in the burner interior 14 forms a conical, swirling cone from a fuel-air mixture.
  • the burner interior 14 also axially, d. H. at the burner tip 2 in particular more liquid Fuel is fed through a central nozzle.
  • FIG. 1 Also shown in FIG. 1 is a graph which shows the axial speed distribution 13 as a function of the x coordinate along the burner axis 12 in the region of the inner backflow zone 11 visualized. It can be seen that at a certain point before the Burner mouth the axial velocity of the gas crosses the zero point and becomes negative, d. H. that exactly the backflow zone 11 is created. At the burner acc. FIG. 1 are burners such as those used in European patent applications EP 0 321 809 B1 and EP 0 433 790 B1.
  • FIG. 2 now shows how hot exhaust gas 17 from the combustion chamber 3, in particular, according to the invention preferably from the outer backflow zones 10 on the axial combustion chamber wall 5, is fed to the burner interior 14 via a return line 15.
  • the central injection section 16 of the return line 15 is advantageously on the burner axis 12 arranged so that the hot exhaust gas 17 in the vortex core of the conical, in the interior of the burner 14 forming fuel-combustion air cone is injected.
  • the river of the recirculated exhaust gas typically ranges from 2 to 10%.
  • the recirculated exhaust gas 17 is additionally mixed with fuel (pilot fuel 21), can self-igniting depending on the exhaust gas temperature T, fuel concentration and residence time Form mixture.
  • a double-cone burner 1 as described above e.g. a burner of the type EV 17 of the applicant
  • a double-cone burner 1 as described above typically occur nominal speeds of 30 m / s, where Residence times of 2 to 7 ms result.
  • the typical result Temperatures of the recirculated hot exhaust gas 17 from 700 to 800 degrees Celsius auto-ignition times so short that auto-ignition occurs before the mixture leaves the burner.
  • Fig. 4 now shows a section through a double-cone burner, in which the recirculated hot exhaust gas 17 influences the vortex core so strongly that there is no internal backflow zone 11 trains more.
  • This strong influence can take place in that either a large flow of hot exhaust gas 17 is injected into the vortex core, or in particular by adding additional fuel 21 to the hot exhaust gas 17 becomes. To a certain extent, it is a burner with active exhaust gas recirculation. Again, about 2 - 10% of the exhaust gas is recycled.
  • Flow velocity and exhaust gas temperature can be precisely coordinated.
  • pilot air 20 can in principle admixed with the hot exhaust gas 17 at any point in the return line 15 become.
  • the injection preferably takes place for sufficient mixing of pilot air and exhaust air at least 10 pipe diameters upstream of the injection point.
  • the leadership the pilot air 20 can advantageously be designed according to the injector principle, d. H. so that the flow velocity of the hot exhaust gases 17 is driven with the pilot air 20 can be.
  • the guidance of the pilot air 20 can be designed such that the recirculated exhaust gas flow 17 can be blocked, and the swirl of the main air flow sufficient to cause the vertebra to burst open.
  • the pilot air 20 at this If the arrangement is switched off, the stabilization takes place again via the auto-ignition process.
  • the pilot airflow 20 allows using relatively little additional Air, on the one hand the temperature of the recirculated exhaust gas 17 and thus the auto-ignition time adjust, as well as to control the formation of the inner recirculation zone.
  • typical way are less than 10% of the total burner air via the return (pilot and exhaust air) fed.
  • burners of the applicant's AEV type in which downstream of the swirl generator in the form of the double cone, a mixing section is arranged in the form of a tube (see, for example, EP 0 780 629 A2).
  • these burners consist of a swirl generator for one Combustion air flow, which swirl generator in the form of a double cone or also in Form of an axial or radial swirl generator can be present, and from means for injection of a fuel in the combustion air flow.
  • a mixing section is arranged downstream of the swirl generator, which within a first section in the flow direction transition channels to Transfer of a flow formed in the swirl generator into a downstream of the transition channels has re-designed tube, the outlet plane of this tube to the combustion chamber with a tear-off edge to stabilize and enlarge a downstream one Backflow zone is formed.
  • These burners also form behind the tear-off edge a stable inner and outer return flow zones in the combustion chamber.
  • the return of the hot exhaust gases for stabilization in part-load operation also takes place here the combustion chamber, particularly preferably tapped next to the burner mouth, via a return line instead of the hot exhaust gases, possibly with the addition of pilot air and / or fuel preferably axially in the center of the burner tip, that is to say in this Inject trap into the center of the end of the swirl generator facing away from the combustion chamber.
  • the new method of exhaust gas recirculation can also be used with a burner, such as the one used is described in DE 19640198 A1.
  • the one in front of the mixing tube arranged swirl generator is cylindrical in such a burner, has but in its interior a conical inner body running in the direction of flow on.
  • the outer casing of the interior is arranged tangentially Air inlet channels broken through which a combustion air flow into the interior flows.
  • the fuel is arranged via a central one located at the tip of the inner body Fuel nozzle injected. Even with such a burner forms behind the The tear-off edge has a stable inner and outer return flow zones in the combustion chamber.
  • axially centered means that the injection preferably at the tip of the inner body tapering in the flow direction to the swirl center, i.e. in the region of the fuel injection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Gas Burners (AREA)
EP02405345A 2001-06-01 2002-04-26 Brûleur avec recirculation des gaz de combustion Withdrawn EP1262714A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH20011010 2001-06-01
CH10102001 2001-06-01

Publications (1)

Publication Number Publication Date
EP1262714A1 true EP1262714A1 (fr) 2002-12-04

Family

ID=4552455

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02405345A Withdrawn EP1262714A1 (fr) 2001-06-01 2002-04-26 Brûleur avec recirculation des gaz de combustion

Country Status (2)

Country Link
US (1) US6672863B2 (fr)
EP (1) EP1262714A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845307A1 (fr) * 2006-04-13 2007-10-17 Honeywell Technologies Sarl Brûleur à prémélange d'huile et son procédé de fonctionnement
DE102022101126A1 (de) 2022-01-19 2023-07-20 Vaillant Gmbh Anordnung von einem Brenner und einem UV-Sensor für eine Flammenüberwachung eines Heizgerätes, Brennkammer für ein Heizgerät und Heizgerät

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049205A1 (de) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Verfahren und Vorrichtung zur Brennstoffversorgung eines Vormischbrenners
US20070269755A2 (en) * 2006-01-05 2007-11-22 Petro-Chem Development Co., Inc. Systems, apparatus and method for flameless combustion absent catalyst or high temperature oxidants
CA2537685C (fr) * 2006-02-24 2013-05-14 9131-9277 Quebec Inc. Injecteur de combustible, bruleur et methode d'injection
WO2008049067A2 (fr) * 2006-10-18 2008-04-24 Lean Flame, Inc. Prémélangeur de gaz et de carburant à utiliser en combinaison avec un dispositif de conversion/libération d'énergie
EP2276559A4 (fr) 2008-03-28 2017-10-18 Exxonmobil Upstream Research Company Systèmes et procédés de production d énergie à faible taux d émission et de récupération d hydrocarbure
AU2009228283B2 (en) 2008-03-28 2015-02-05 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
EP3489491B1 (fr) 2008-10-14 2020-09-23 Exxonmobil Upstream Research Company Procédé et système pour contrôler les produits de combustion
AU2009352301B2 (en) 2009-09-13 2015-07-30 Lean Flame, Inc. Inlet premixer for combustion apparatus
MX341477B (es) 2009-11-12 2016-08-22 Exxonmobil Upstream Res Company * Sistemas y métodos de generación de potencia de baja emisión y recuperación de hidrocarburos.
WO2012003078A1 (fr) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Combustion stœchiométrique avec recirculation du gaz d'échappement et refroidisseur à contact direct
CN107575308A (zh) 2010-07-02 2018-01-12 埃克森美孚上游研究公司 低排放三循环动力产生系统和方法
EA029336B1 (ru) 2010-07-02 2018-03-30 Эксонмобил Апстрим Рисерч Компани Системы и способ производства энергии путем стехиометрического сгорания с обогащенным воздухом и рециркуляцией отработавшего газа
JP5913305B2 (ja) 2010-07-02 2016-04-27 エクソンモービル アップストリーム リサーチ カンパニー 低エミッション発電システム及び方法
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
US9810050B2 (en) 2011-12-20 2017-11-07 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
US9777637B2 (en) 2012-03-08 2017-10-03 General Electric Company Gas turbine fuel flow measurement using inert gas
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US9347375B2 (en) 2012-06-22 2016-05-24 General Electronic Company Hot EGR driven by turbomachinery
US20140075954A1 (en) * 2012-09-14 2014-03-20 General Electric Company Methods And Systems For Substance Profile Measurements In Gas Turbine Exhaust
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10138815B2 (en) 2012-11-02 2018-11-27 General Electric Company System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
RU2637609C2 (ru) * 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани Система и способ для камеры сгорания турбины
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
WO2014137648A1 (fr) 2013-03-08 2014-09-12 Exxonmobil Upstream Research Company Production d'énergie et récupération de méthane à partir d'hydrates de méthane
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
KR101931968B1 (ko) 2016-12-21 2018-12-24 두산중공업 주식회사 연도 가스 재순환 연소기를 포함하는 터빈.
AU2019308815A1 (en) * 2018-07-23 2021-03-04 8 Rivers Capital, Llc System and method for power generation with flameless combustion

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210462A1 (fr) 1985-07-30 1987-02-04 BBC Brown Boveri AG Chambre de combustion double
EP0394800A1 (fr) * 1989-04-24 1990-10-31 Asea Brown Boveri Ag Brûleur à mélange préalable pour la génération de gaz chaud
EP0321809B1 (fr) 1987-12-21 1991-05-15 BBC Brown Boveri AG Procédé pour la combustion de combustible liquide dans un brûleur
EP0629817A2 (fr) * 1993-06-18 1994-12-21 Abb Research Ltd. Foyer
EP0433790B1 (fr) 1989-12-22 1995-03-08 Asea Brown Boveri Ag Brûleur
DE4411624A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Brennkammer mit Vormischbrennern
EP0780630A2 (fr) * 1995-12-21 1997-06-25 Abb Research Ltd. Brûleur pour un générateur de chaleur
EP0780629A2 (fr) 1995-12-21 1997-06-25 ABB Research Ltd. Brûleur pour un générateur de chaleur
DE19640198A1 (de) 1996-09-30 1998-04-02 Abb Research Ltd Vormischbrenner
EP0866267A1 (fr) 1997-03-18 1998-09-23 Abb Research Ltd. Procédé de fonctionnement d'une chaudière

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927958A (en) 1974-10-29 1975-12-23 Gen Motors Corp Recirculating combustion apparatus
CH680157A5 (fr) 1989-12-01 1992-06-30 Asea Brown Boveri
DE4422535A1 (de) 1994-06-28 1996-01-04 Abb Research Ltd Verfahren zum Betrieb einer Feuerungsanlage
DE4441235A1 (de) * 1994-11-19 1996-05-23 Abb Management Ag Brennkammer mit Mehrstufenverbrennung
DE4441641A1 (de) * 1994-11-23 1996-05-30 Abb Management Ag Brennkammer mit Vormischbrennern
DE19502796B4 (de) * 1995-01-30 2004-10-28 Alstom Brenner
DE19545309A1 (de) * 1995-12-05 1997-06-12 Asea Brown Boveri Vormischbrenner
DE19619873A1 (de) * 1996-05-17 1997-11-20 Abb Research Ltd Brenner
DE19736902A1 (de) * 1997-08-25 1999-03-04 Abb Research Ltd Brenner für einen Wärmeerzeuger
EP0913630B1 (fr) * 1997-10-31 2003-03-05 ALSTOM (Switzerland) Ltd Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0918190A1 (fr) * 1997-11-21 1999-05-26 Abb Research Ltd. Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0919768B1 (fr) * 1997-11-25 2003-02-05 Alstom Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP1048898B1 (fr) * 1998-11-18 2004-01-14 ALSTOM (Switzerland) Ltd Brûleur
EP1070914B1 (fr) * 1999-07-22 2003-12-03 ALSTOM (Switzerland) Ltd Brûleur à prémélange

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0210462A1 (fr) 1985-07-30 1987-02-04 BBC Brown Boveri AG Chambre de combustion double
EP0321809B1 (fr) 1987-12-21 1991-05-15 BBC Brown Boveri AG Procédé pour la combustion de combustible liquide dans un brûleur
EP0394800A1 (fr) * 1989-04-24 1990-10-31 Asea Brown Boveri Ag Brûleur à mélange préalable pour la génération de gaz chaud
EP0433790B1 (fr) 1989-12-22 1995-03-08 Asea Brown Boveri Ag Brûleur
EP0629817A2 (fr) * 1993-06-18 1994-12-21 Abb Research Ltd. Foyer
DE4411624A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Brennkammer mit Vormischbrennern
EP0780630A2 (fr) * 1995-12-21 1997-06-25 Abb Research Ltd. Brûleur pour un générateur de chaleur
EP0780629A2 (fr) 1995-12-21 1997-06-25 ABB Research Ltd. Brûleur pour un générateur de chaleur
DE19640198A1 (de) 1996-09-30 1998-04-02 Abb Research Ltd Vormischbrenner
EP0866267A1 (fr) 1997-03-18 1998-09-23 Abb Research Ltd. Procédé de fonctionnement d'une chaudière

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845307A1 (fr) * 2006-04-13 2007-10-17 Honeywell Technologies Sarl Brûleur à prémélange d'huile et son procédé de fonctionnement
DE102022101126A1 (de) 2022-01-19 2023-07-20 Vaillant Gmbh Anordnung von einem Brenner und einem UV-Sensor für eine Flammenüberwachung eines Heizgerätes, Brennkammer für ein Heizgerät und Heizgerät

Also Published As

Publication number Publication date
US20020187449A1 (en) 2002-12-12
US6672863B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
EP1262714A1 (fr) Brûleur avec recirculation des gaz de combustion
EP1199516B1 (fr) Brûleur
EP2116766B1 (fr) Brûleur avec lance à combustible
DE102006007087B4 (de) Gasturbinen-Brennkammer
EP2115353B1 (fr) Chambre de combustion pour une turbine à gaz
EP0274630B1 (fr) Agencement pour un brûleur
DE69719688T2 (de) Gasturbinenbrenner und Betriebsverfahren dafür
EP1436546B1 (fr) Brûleur à gaz de synthèse
DE10064259B4 (de) Brenner mit hoher Flammenstabilität
EP1828684A1 (fr) Bruleur de premelange dote d'un parcours de melange
EP0801268B1 (fr) Méthode d'exploitation d'une chambre de combustion pour turbine à gaz
EP2225488A1 (fr) Brûleur à prémélange pour une turbine à gaz
EP0481111B1 (fr) Chambre de combustion pour turbine à gaz
EP0931980B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0692675A2 (fr) Procédé et dispositif pour la mise en oeuvre d'un brûleur combiné à combustibles liquides et gazeux
DE10051221A1 (de) Brenner mit gestufter Brennstoff-Eindüsung
EP0394800A1 (fr) Brûleur à mélange préalable pour la génération de gaz chaud
DE4318405C2 (de) Brennkammeranordnung für eine Gasturbine
DE102005038662B4 (de) Brennkopf und Verfahren zur Verbrennung von Brennstoff
EP1510755B1 (fr) Brûleur avec lance et alimentation étagée en carburant
EP0742411B1 (fr) Alimentation en air pour une chambre de combustion à prémélange
EP0751351A1 (fr) Chambre de combustion
EP0909921A1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP2037173B1 (fr) Tête de brûleur et procédé de combustion à un étage de combustible dans une zone de combustion éloignée de la tête de brûleur
EP0740108A2 (fr) Brûleur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030519

AKX Designation fees paid

Designated state(s): DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071031