EP1436546B1 - Brûleur à gaz de synthèse - Google Patents
Brûleur à gaz de synthèse Download PDFInfo
- Publication number
- EP1436546B1 EP1436546B1 EP02765280.9A EP02765280A EP1436546B1 EP 1436546 B1 EP1436546 B1 EP 1436546B1 EP 02765280 A EP02765280 A EP 02765280A EP 1436546 B1 EP1436546 B1 EP 1436546B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- burner
- fuel
- outlet openings
- swirl generator
- burner according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000015572 biosynthetic process Effects 0.000 title claims description 50
- 238000003786 synthesis reaction Methods 0.000 title claims description 50
- 239000000446 fuel Substances 0.000 claims description 110
- 239000007789 gas Substances 0.000 claims description 96
- 238000002485 combustion reaction Methods 0.000 claims description 69
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 31
- 239000003345 natural gas Substances 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 2
- 239000000839 emulsion Substances 0.000 claims description 2
- 238000002347 injection Methods 0.000 description 34
- 239000007924 injection Substances 0.000 description 34
- 238000002156 mixing Methods 0.000 description 13
- 241001156002 Anthonomus pomorum Species 0.000 description 7
- 239000002283 diesel fuel Substances 0.000 description 6
- 239000002737 fuel gas Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002569 water oil cream Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D11/00—Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
- F23D11/36—Details, e.g. burner cooling means, noise reduction means
- F23D11/40—Mixing tubes or chambers; Burner heads
- F23D11/402—Mixing chambers downstream of the nozzle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D17/00—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
- F23D17/002—Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/36—Supply of different fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/07002—Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00002—Gas turbine combustors adapted for fuels having low heating value [LHV]
Definitions
- the present invention relates to a burner for operation in a combustion chamber, preferably in combustion chambers of gas turbines, consisting essentially of a swirl generator for a combustion air flow and means for introducing fuel into the combustion air flow, the swirl generator having combustion air inlet openings for the combustion air flow entering the burner and the means for introducing fuel into the combustion air stream comprises one or more fuel feeds having a group of first fuel outlets disposed distributed about the burner axis at a combustion chamber end of the burner.
- a preferred application for such a burner is in gas and steam turbine technology.
- From the EP 0 321 809 B1 is a consisting of several shells conical burner, a so-called. Double cone burner, according to the preamble of claim 1 known.
- the conical swirl generator composed of several shells, a closed swirl flow is generated in a swirl space, which becomes unstable due to the increasing swirl in the direction of the combustion chamber and merges into an annular swirl flow with backflow in the core.
- the shells of the swirl generator are such composed that tangential air inlet slots for combustion air are formed along the burner axis. Feeds for the premix gas, ie the gaseous fuel, are provided at the inflow edge of the conical shells at these air inlet slots, which have outlet openings for the premix gas distributed along the direction of the burner axis.
- the gas is injected through the outlet openings or bores transversely to the air inlet gap. This injection, in conjunction with the swirl generated in the swirl space of the combustion air-fuel gas flow to a good mixing of the fuel or premixed gas with the combustion air. Good mixing in these premix burners is the prerequisite for low NO x values during the combustion process.
- a burner for a heat generator known, which has an additional mixing section for further mixing of fuel and combustion air following the swirl generator.
- This mixing section may, for example, be designed as a downstream piece of pipe, into which the flow emerging from the swirl generator is transferred without appreciable flow losses.
- the degree of mixing can be further increased and thus the pollutant emissions can be reduced.
- the WO 93/17279 shows another known premix burner, in which a cylindrical swirl generator used with a conical inner body becomes.
- the premix gas is also injected via feeders with corresponding outlet openings in the swirl space, which are arranged along the axially extending air inlet slots.
- the burner has in the conical inner body in addition to a central supply of fuel gas, which can be injected near the burner outlet for piloting into the swirl space.
- the additional pilot stage is used to start the burner and an extension of the operating range.
- a premix burner is known in which the fuel gas supply is mechanically decoupled from the swirl generator.
- the swirl generator is in this case provided with a series of openings through which the swirl generator mechanically decoupled fuel lines for the gas pre-mixing into the interior of the swirl generator protrude and there supply the vaporized flow of combustion air gaseous fuel.
- premix burners of the prior art are so-called spin-stabilized premix burners in which a fuel mass flow prior to combustion is distributed as homogeneously as possible in a mass flow of combustion air.
- the combustion air flows in these burner types via tangential air inlet slots in the swirl generators.
- the fuel especially natural gas, is typically injected along the air inlet slots.
- Mbtu and Lbtu gases are produced by the gasification of coal or oil residues. They are characterized by the fact that they mainly consist of H 2 and CO. In addition, there is a lower proportion of inerts, such as N 2 or CO 2 .
- Synthesis gas requires depending on a known in the art of known dilution of the synthesis gas about four times - in the case of undiluted synthesis gas to seven times or even higher - higher fuel volume flow compared to comparable natural gas burners, so that at the same Gasbelochung the burner significantly different Give impulse ratios. Due to the high proportion of hydrogen in the synthesis gas and the associated low ignition temperature and high flame velocity of the hydrogen, there is a high propensity to react with the fuel, so that in particular the scrubzünd and the residence time of flammable fuel-air mixture must be examined near the burner.
- synthesis gases for a Depending on the process quality of the gasification and starting product, for example. Oil residues, the synthesis gas is composed differently. In order to achieve a premix and thus the typical low emissions during combustion under these conditions, these synthesis gases are usually diluted with the inert N 2 or steam before combustion. This also improves the stability of the combustion and in particular reduces the inherent risk of re-ignition due to the high H 2 content. The burner must thus be able to safely and stably burn syngas of different composition, in particular different dilution.
- a so-called. Backup fuel can be safely burned.
- This requirement results (IGCC, I ntegrated G asification C ombined ycle- C) at the highly complex integrated Gassynthetmaschines- and power generation equipment from the demand for high availability.
- the burner should function safely and reliably also in the mixed operation of synthesis gas and backup fuel, for example diesel oil, whereby the fuel mixture spectrum usable for burner operation in the mixed operation of a single burner must be maximized.
- low emissions NO x ⁇ 25 vppm, CO ⁇ 5 vppm
- a double-cone burner in which a group of fuel outlet openings for a synthesis gas at a combustion chamber-side end of the burner are arranged distributed around the burner axis on the swirl generator. These outlet openings are supplied via a separate fuel line and allow the operation of the burner with undiluted synthesis gas.
- the object of the present invention is to provide a burner that ensures safe and stable combustion both for undiluted and for diluted synthesis gas and has a long service life.
- the burner should in particular meet the requirements mentioned above and, in preferred developments, enable operation with a plurality of fuel types, even in mixed operation.
- the present burner consists in a known manner of a swirl generator for a combustion air flow and means for introducing fuel into the combustion air stream.
- the swirl generator has combustion air inlet openings for the preferably tangentially entering the burner combustion air flow.
- the means for introducing fuel into the combustion air stream comprise one or more first fuel feeds with a group of first fuel outlet openings, which is arranged distributed at a combustion chamber end of the burner, ie at the burner outlet, around the burner axis.
- the present burner is characterized in that the one or more first fuel feeds with the group of first fuel discharge openings are mechanically decoupled from the swirl generator.
- the one or more first fuel feeds with the associated first fuel outlet openings are mechanically and thermally decoupled from the swirl generator or the burner bowls forming the swirl generator and significantly warmer during operation.
- the thermal stresses between the comparatively cold first fuel feeds, hereinafter also referred to as gas channels, and the warmer burner shells are avoided or at least significantly reduced.
- the injection area for the synthesis gas in the burner bowls is completely cut out.
- the first gas channel is anchored directly in this section of the burner bowls.
- the burner in addition to the first or the first fuel feeds, also has one or more second fuel feeds with a group of second fuel outlets on the swirl body arranged substantially along the direction of the burner axis.
- a fuel lance arranged on the burner axis can also be provided for the injection of liquid fuel which projects into the swirl space in the axial direction.
- the arrangement and design of these additional fuel feeds can, for example.
- Such burner geometries can be formed with the features according to the invention for the combustion of synthesis gases, in particular for the combustion of Mbtu and Lbtu fuels.
- the preferred embodiment of the present burner with one or more other fuel feeds a multifunctional burner is obtained, the most diverse fuels safely and burns stably.
- the burner ensures in particular the stable and safe combustion of Mbtu synthesis gases with heating values (lower heating value Hu or Lower Heating Value LHV) of 3500 to 18000 kJ / kg, in particular 6000 to 15000 kJ / kg, preferably 6500 to 14500 kJ / kg or from 7000 to 14000 kg / kJ.
- heating values lower heating value Hu or Lower Heating Value LHV
- liquid fuel for example diesel oil
- natural gas as additional fuel is also possible.
- the injection of natural gas can optionally be carried out in the burner head through the burner lance and / or via the second fuel feeds, which are usually formed by the longitudinally attached to the air inlet slots on the swirl generator or swirl body gas channels, which, for example EP 321 809 are common. In this way, the burner can be operated with three different fuels.
- the injection of the synthesis gas, ie the Lbtu / Mbtu fuel takes place via the first outlet openings radially at the burner outlet.
- These outlet openings are small outlet channels whose channel axis ⁇ determines the axial injection angle.
- Diameter D and injection angle ⁇ of these outlet openings or channels are special parameters which, depending on the boundary conditions, For example, the specific gas composition, emissions, etc., may be suitably selected by those skilled in the art.
- the injection angle can be selected so that the channel axes of all outlet openings intersect at a point on the burner axis downstream of the burner or swirl space.
- the injection angles can also be selected such that the channel axes of subgroups of the outlet openings intersect at different points. In this way, any distribution of the injected fuel at the burner outlet can be achieved. In this case, an injection angle relative to the burner radius can be varied.
- the fuel feeds for the combustion of the synthesis gas are adapted to the up to 7 times larger fuel volume flow in the design and provide in particular the necessary flow cross sections available. In this case, they have a multiple cross-section compared to the feeds for natural gas.
- FIG. 1 shows very schematically a premix burner, as he, for example, from the EP 321 809 A1 is known.
- the burner is composed of a burner head 10 and an adjoining swirl generator 1 which forms a swirl space 11.
- the conical swirl generator 1 in such a burner consists of a plurality of burner shells, between which tangential inlet slots for combustion air 9 are formed.
- the incoming combustion air 9 is indicated in the figure by the long arrows.
- gas feeds 24 for the supply of a fuel, in particular natural gas 26 can be provided via the tangential inlet slots into the swirl space 11 along the tangential entry slots. This is indicated in the figure by the short arrows.
- a burner lance 14 extends into the swirl chamber 11, at the end of a nozzle 16 for injecting liquid fuel 13, for.
- As oil and / or water 12 is provided.
- the combustion air 9 entering via the tangential air inlet slots at the swirl generator 1 mixes in the swirl chamber 11 with the injected fuel.
- the closed swirl flow produced in this case becomes unstable due to the increasing swirl at the end of the swirl space 11 due to the sudden cross-sectional widening during the transition into the combustion chamber and merges into an annular swirl flow with backflow in the core. This area forms the beginning of the reaction zone 17 in the combustion chamber.
- FIG. 2 shows in a first embodiment in a sectional view of the combustion chamber side region of a burner according to the invention for operation with synthesis gas.
- the injection of the Lbtu / Mbtu fuel is carried out by a diameter D and Eindüsungswinkel ⁇ expediently to be selected Gasbelaufung 18 radially at the burner outlet, ie at the end of the swirl chamber 11.
- Diameter D and injection angle ⁇ of the radial gas injection are special parameters that are suitably selected by the person skilled in the art depending on the boundary conditions (special gas composition, emissions,).
- the figure shows the burner shells of the swirl body 1, which surround the swirl space 11. Outside this swirl body, a gas supply element 2 is arranged, which surrounds the swirl body 1 radially and forms the first or the first fuel supply channels 19 for the supply of the synthesis gas. At the combustion chamber end of this Gaszufriedelements 2 are first Outlets 18 formed for the synthesis gas. These outlet openings 18 form outlet channels which predetermine the injection direction of the synthesis gas.
- the injection angle ⁇ and the diameter D of these channels or openings 18 are suitably selected by the skilled person depending on the requirements.
- the outlet openings 18 are arranged in a row around the burner axis 25, so that a homogeneous homogeneous injection of the synthesis gas is achieved.
- the comparatively cold fuel supply channels 19 for injecting the synthesis gas and the burner shells of the swirl generator 1, which in principle are significantly warmer, are thermally and mechanically decoupled from one another. As a result, the thermal stresses are significantly reduced.
- the connection between the Gaszufriedelement 2 and the swirl generator 1 takes place in this example via provided on both components tabs 3 and 4, which are interconnected. In this way, minimal thermal stresses are achieved.
- An air flow 8, which is furthermore shown in the figure, tends to stabilize the flames and, before exiting, produces a swirl-cooling effect at the burner front. In the figure, the opening or the circumferential gap 7 of the swirl generator 1 can still be seen, which is necessary to allow a connection between the outlet openings 18 of the gas supply element 2 and the swirl space 11.
- FIG. 3 shows one according to FIG. 2 trained burner again in three-dimensional sectional view.
- the swirl generator 1 formed from a plurality of burner bowls is also to recognize this enclosing Gaszu Foodelement 2.
- This GaszuGermanelement 2 may form an annular feed slot as a fuel supply channel 19 or be divided into separate fuel supply channels 19.
- the fuel supply channels 19 for the synthesis gas are adapted for the combustion of the synthesis gas to up to 7 times larger fuel flow in the design, and in particular the necessary large flow cross-sections available, as from FIG. 3 can be seen.
- the injection range for the fuel i. H. the synthesis gas
- the gas supply element 2 is anchored directly in this section of the burner shells of the swirl generator 1.
- the injection of the synthesis gas is indicated in the figure by the reference numeral 20.
- additional gas injection channels 24 may be provided along the swirl generator 1, in the same manner as in, for example, in FIG. 1 can be seen, for example, with which natural gas 26 upstream of the injection point of the synthesis gas into the swirl chamber 11 can be initiated.
- the injection of oil or an oil-water emulsion is schematically indicated at the combustion head end of the swirl chamber 11, as well as the inflow of combustion air 9 via the tangential inlet slots.
- FIG. 4 shows an example of the installation of a burner according to the Figures 2 and 3 from the two subcomponents, the gas feed element 2 and the swirl generator 1.
- the gas supply element 2 with the integrated one or more fuel supply channels 19 for synthesis gas and the combustion chamber side around the burner axis, 25 arranged outlet openings 18 is preferably prepared together with the swirl generator 1 as a casting and then separated.
- the assembly is carried out by the swirl generator 1 is axially inserted into the gas supply element 2, so that the outlet openings 18 of the Gaszu slaughteriatas 2 come to rest in corresponding openings 7 of the swirl generator 1.
- an element 6 of the swirl generator 1 is held in the sliding seat in a counterpart 5 of the gas supply element 2, so that differential thermal expansion between swirl generator 1 in the gas supply element 2 in the region of the burner head can be freely compensated.
- the connecting straps 3 of the gas supply element 2 and the connecting straps 4 of the swirl generator 1 are connected to one another in a suitable manner, for example welded, and form the only fixed support of the swirl generator 1 in the gas supply element 2.
- the outlet opening region of the gas supply element 2 is free in the Openings 7 of the swirl generator 1 movable.
- FIG. 5 shows various examples of differently selected injection directions of the first outlet openings 18 at the end of the swirl space 11 for the synthesis gas.
- FIG. 5a shows a highly simplified representation of a plan view of the burner outlet and the injection axes of the synthesis gas injection 20 of the individual outlet openings 18, which intersect at an intersection point 21 on the burner axis.
- FIG. 5b shows a further embodiment in the same view, in which the exit axes of the synthesis gas injection 20 different groups of outlet openings 18 intersect at different points of intersection 21, which are distributed over the outlet cross-section of the burner. It goes without saying that the distribution of these points of intersection 21 can be chosen arbitrarily in order to adapt the injection to the respective conditions. On the one hand, this concerns the position of the points of intersection 21 and, of course, also their number.
- intersections 21 at different distances from the exit plane of the burner, or at the same distance, as in the FIGS. 5c and 5d is shown schematically.
- FIG. 6 shows an example of a swirl generator 1 with a purely cylindrical swirl body 23 in which a conical inner body 22 is inserted.
- the supply of the pilot fuel can in this case take place directly up to the tip of the conical inner body 22.
- the outlet openings 18 for the synthesis gas are distributed around the burner axis 25 at the combustion chamber end of the swirl chamber 11.
- the fuel supply channels 19 are not shown in this illustration.
- further gas outlet openings for natural gas, including the necessary supply lines 24 may be provided.
- a mixing tube can be connected to the swirl generator 1 to produce an additional mixing section, as is known from the prior art.
- FIG. 7 shows an example of a burner in which the swirl generator 1 is formed as a swirl lattice, is offset by the incoming combustion air 9 in spin.
- An additional fuel for premix loading into the combustion air 9 can be introduced via the feed lines 24 leading to outlet openings in the region of the swirl generator 1.
- the supply of the pilot fuel 15 is centrally via a in the Inner volume 11 projecting nozzle 16 realized.
- the outlet openings 18 for the synthesis gas are arranged distributed around the burner axis 25 at the combustion chamber end of the inner volume 11 and are acted upon via the fuel supply channels 19 with synthesis gas.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
Claims (18)
- Brûleur, se composant essentiellement d'un générateur de turbulence (1) pour un courant d'air de combustion et de moyens pour l'introduction de combustible dans le courant d'air de combustion, dans lequel le générateur de turbulence (1) présente une ou plusieurs ouverture(s) d'entrée d'air de combustion pour le courant d'air de combustion pénétrant dans le brûleur et les moyens pour l'introduction de combustible dans le courant d'air de combustion comprennent une ou plusieurs première(s) arrivée(s) de combustible (19) avec un groupe de premières ouvertures de sortie de combustible (18), qui sont disposées de façon répartie autour de l'axe du brûleur (25) à une extrémité du brûleur côté chambre de combustion, caractérisé en ce qu'un élément de fourniture de gaz (2) est disposé à l'extérieur de ce corps de turbulence, qui entoure le générateur de turbulence (1) et forme la ou les première(s) arrivée(s) de combustible (19), et en ce que ladite une ou lesdites plusieurs première(s) arrivée(s) de combustible (19) avec le groupe de premières ouvertures de sortie de combustible (18) sont découplées mécaniquement du générateur de turbulence (1).
- Brûleur selon la revendication 1, caractérisé en ce que le groupe de premières ouvertures de sortie de combustible (18) sont disposées de façon répartie en une rangée autour de l'axe du brûleur (25).
- Brûleur selon la revendication 1 ou 2, caractérisé en ce que des canaux de sortie formés par les premières ouvertures de sortie de combustible (18) sont disposés sous un angle tel que les axes des canaux se coupent en un point (21) en aval du brûleur sur l'axe du brûleur (25).
- Brûleur selon la revendication 1 ou 2, caractérisé en ce que des canaux de sortie formés par les premières ouvertures de sortie (18) sont disposés sous un angle tel, par rapport à l'axe du brûleur (25), que les axes des canaux de différents sous-groupes des premières ouvertures de sortie (18) se coupent en des points différents (21) en aval du brûleur.
- Brûleur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le générateur de turbulence (1) et ladite une ou lesdites plusieurs première(s) arrivée(s) de combustible (19) avec le groupe de premières ouvertures de sortie de combustible (18) sont fabriquées en une seule pièce sous la forme d'un composant, de préférence par moulage, et sont séparées dans la suite de la fabrication.
- Brûleur selon la revendication 5, caractérisé en ce que ladite une ou lesdites plusieurs première(s) arrivée(s) de combustible (19) forment avec le groupe de premières ouvertures de sortie de combustible (18), un premier composant (2), qui est glissé sur le générateur de turbulence (1), dans lequel le générateur de turbulence (1) présente, à l'extrémité côté chambre de combustion, des ouvertures (7) pour l'accès des premières ouvertures de sortie de combustible (18) à un volume intérieur (11) du brûleur.
- Brûleur selon la revendication 6, caractérisé en ce que le premier composant (2) est relié au générateur de turbulence (1) par des pattes de liaison (3, 4).
- Brûleur selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la première arrivée de combustible (19) est réalisée en forme de fente annulaire autour du générateur de turbulence (1).
- Brûleur selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'une lance à combustible (14), qui pénètre à l'intérieur du brûleur, est disposée sur l'axe du brûleur (25).
- Brûleur selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il est prévu au générateur de turbulence (1) une ou plusieurs arrivée(s) de combustible (24) avec un groupe de deuxièmes ouvertures de sortie de combustible disposées essentiellement le long d'une direction de l'axe du brûleur (25).
- Brûleur selon la revendication 10, caractérisé en ce que ladite une ou lesdites plusieurs arrivée(s) de combustible (19) est/sont configurée(s) avec une section transversale, qui permet un flux volumique plusieurs fois plus élevé que ladite une ou lesdites plusieurs deuxième(s) arrivée(s) de combustible (24).
- Brûleur selon l'une des revendications 10 ou 11, caractérisé en ce qu'un corps intérieur (22) est disposé dans un volume intérieur (11) du brûleur, dans lequel les deuxièmes ouvertures de sortie de combustible d'au moins une deuxième arrivée de combustible (24) sont disposées de façon répartie sur le corps intérieur (22) essentiellement le long d'une direction de l'axe du brûleur (25).
- Brûleur selon l'une quelconque des revendications 10 à 12, caractérisé en ce qu'il est prévu des moyens pour la commande indépendante de l'arrivée du prémélange de combustible à ladite ou auxdites première(s) (19) et à ladite ou auxdites deuxième(s) (24) arrivée(s) de combustible.
- Brûleur selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le générateur de turbulence (1) est réalisé en forme de grille de turbulence.
- Brûleur selon l'une quelconque des revendications 1 à 13, caractérisé en ce que les ouvertures d'entrée d'air de combustion (4) sont des fentes d'entrée tangentielles s'étendant essentiellement en direction de l'axe du brûleur (3).
- Brûleur selon la revendication 15, caractérisé en ce qu'une deuxième arrivée de combustible (24) avec un groupe de deuxièmes ouvertures de sortie de combustible est disposée le long de chaque fente d'entrée.
- Procédé de conduite d'un brûleur selon la revendication 10, caractérisé en ce que l'on introduit du gaz de synthèse par la/les première(s) arrivée(s) de combustible (19) et du gaz naturel (26) par la/les deuxième(s) arrivée(s) de combustible (24).
- Procédé de conduite d'un brûleur selon la revendication 9, caractérisé en ce que l'on introduit du gaz de synthèse par la/les premières arrivée(s) de combustible (19) et un combustible liquide, le cas échéant sous forme d'émulsion combustible-eau (15), par la lance à combustible (14).
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10152700 | 2001-10-19 | ||
DE10152700 | 2001-10-19 | ||
CH2852002 | 2002-02-19 | ||
CH285022002 | 2002-02-19 | ||
PCT/IB2002/004061 WO2003036167A1 (fr) | 2001-10-19 | 2002-10-02 | Bruleur a gaz de synthese |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1436546A1 EP1436546A1 (fr) | 2004-07-14 |
EP1436546B1 true EP1436546B1 (fr) | 2016-09-14 |
Family
ID=25732510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02765280.9A Expired - Lifetime EP1436546B1 (fr) | 2001-10-19 | 2002-10-02 | Brûleur à gaz de synthèse |
Country Status (5)
Country | Link |
---|---|
US (1) | US7003957B2 (fr) |
EP (1) | EP1436546B1 (fr) |
JP (1) | JP2005528571A (fr) |
CN (1) | CN1263983C (fr) |
WO (1) | WO2003036167A1 (fr) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10049203A1 (de) * | 2000-10-05 | 2002-05-23 | Alstom Switzerland Ltd | Verfahren zur Brennstoffeinleitung in einen Vormischbrenner |
ATE483138T1 (de) * | 2004-01-21 | 2010-10-15 | Siemens Ag | Brenner mit gekühltem bauteil, gasturbine sowie verfahren zur kühlung des bauteils |
EP1568942A1 (fr) | 2004-02-24 | 2005-08-31 | Siemens Aktiengesellschaft | Brûleur à prémélange et procédé pour brûler un gaz pauvre |
EP1645805A1 (fr) * | 2004-10-11 | 2006-04-12 | Siemens Aktiengesellschaft | brûleur pour combustible fluide et procédé pour uriliser un tel brûleur |
WO2006069861A1 (fr) * | 2004-12-23 | 2006-07-06 | Alstom Technology Ltd | Bruleur de premelange dote d'un parcours de melange |
DE502006007733D1 (de) | 2005-03-09 | 2010-10-07 | Alstom Technology Ltd | Vormischbrenner zum erzeugen eines zündfähigen brennstoff-luftgemisches |
US7513098B2 (en) * | 2005-06-29 | 2009-04-07 | Siemens Energy, Inc. | Swirler assembly and combinations of same in gas turbine engine combustors |
US8506660B2 (en) * | 2007-09-12 | 2013-08-13 | General Electric Company | Nozzles for use with gasifiers and methods of assembling the same |
EP2058590B1 (fr) * | 2007-11-09 | 2016-03-23 | Alstom Technology Ltd | Procédé de fonctionnement d'un brûleur |
JP5574969B2 (ja) * | 2007-11-27 | 2014-08-20 | アルストム テクノロジー リミテッド | 予混合バーナ内で水素を燃焼させるための方法および装置 |
US7784282B2 (en) * | 2008-08-13 | 2010-08-31 | General Electric Company | Fuel injector and method of assembling the same |
US8413446B2 (en) * | 2008-12-10 | 2013-04-09 | Caterpillar Inc. | Fuel injector arrangement having porous premixing chamber |
US8667800B2 (en) * | 2009-05-13 | 2014-03-11 | Delavan Inc. | Flameless combustion systems for gas turbine engines |
EP2423591B1 (fr) * | 2010-08-24 | 2018-10-31 | Ansaldo Energia IP UK Limited | Procédé de fonctionnement d'une chambre de combustion |
US9920696B2 (en) * | 2011-08-09 | 2018-03-20 | Ansaldo Energia Ip Uk Limited | Method for operating a gas turbine and gas turbine unit useful for carrying out the method |
EP2685160B1 (fr) * | 2012-07-10 | 2018-02-21 | Ansaldo Energia Switzerland AG | Brûleur de prémélange du type multi-cônes destiné à une turbine à gaz |
FR3011911B1 (fr) | 2013-10-14 | 2015-11-20 | Cogebio | Bruleur de gaz pauvre |
CA2931355A1 (fr) | 2013-11-25 | 2015-05-28 | Entech - Renewable Energy Solutions Pty.Ltd. | Appareil destine a assurer l'amorcage et la combustion d'un gaz de synthese |
CN103672901A (zh) * | 2013-12-13 | 2014-03-26 | 曾静娴 | 可燃气体交叉直喷燃烧方法及设备 |
EP3320268B1 (fr) * | 2015-07-06 | 2020-04-29 | Siemens Aktiengesellschaft | Brûleur pour turbine à gaz et procédé d'exploitation du brûleur |
EP3364105B1 (fr) | 2017-02-16 | 2019-11-27 | Vysoké ucení Technické v Brne | Brûleur pour combustibles à faible pouvoir calorifique |
CN109519919B (zh) * | 2018-09-25 | 2024-05-07 | 天津大学 | 甲醇燃烧机用防开裂陶瓷火焰旋流器 |
KR102382634B1 (ko) * | 2020-12-22 | 2022-04-01 | 두산중공업 주식회사 | 연소기용 노즐, 연소기 및 이를 포함하는 가스 터빈 |
US11808455B2 (en) * | 2021-11-24 | 2023-11-07 | Rtx Corporation | Gas turbine engine combustor with integral fuel conduit(s) |
EP4202308B1 (fr) * | 2021-12-21 | 2024-08-28 | Ansaldo Energia Switzerland AG | Turbine à gaz de centrale électrique avec brûleur de prémélange adapté pour être alimenté avec des combustibles communs et très réactifs et son procédé de fonctionnement |
CN114963236A (zh) * | 2022-06-23 | 2022-08-30 | 中国航发贵阳发动机设计研究所 | 一种径向进气涡流器的安装结构 |
US11846249B1 (en) | 2022-09-02 | 2023-12-19 | Rtx Corporation | Gas turbine engine with integral bypass duct |
FR3143723A1 (fr) * | 2022-12-20 | 2024-06-21 | Office National D'etudes Et De Recherches Aerospatiales | Dispositif de combustion à hydrogène |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2515843A (en) * | 1945-08-30 | 1950-07-18 | Shell Dev | Air register for burners |
CH674561A5 (fr) * | 1987-12-21 | 1990-06-15 | Bbc Brown Boveri & Cie | |
US5150570A (en) * | 1989-12-21 | 1992-09-29 | Sundstrand Corporation | Unitized fuel manifold and injector for a turbine engine |
US5177955A (en) * | 1991-02-07 | 1993-01-12 | Sundstrand Corp. | Dual zone single manifold fuel injection system |
US5307634A (en) | 1992-02-26 | 1994-05-03 | United Technologies Corporation | Premix gas nozzle |
DE4304213A1 (de) | 1993-02-12 | 1994-08-18 | Abb Research Ltd | Brenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage |
DE19547913A1 (de) * | 1995-12-21 | 1997-06-26 | Abb Research Ltd | Brenner für einen Wärmeerzeuger |
US5778676A (en) * | 1996-01-02 | 1998-07-14 | General Electric Company | Dual fuel mixer for gas turbine combustor |
US5983642A (en) * | 1997-10-13 | 1999-11-16 | Siemens Westinghouse Power Corporation | Combustor with two stage primary fuel tube with concentric members and flow regulating |
DE19839085C2 (de) * | 1998-08-27 | 2000-06-08 | Siemens Ag | Brenneranordnung mit primärem und sekundärem Pilotbrenner |
DE19855034A1 (de) | 1998-11-28 | 2000-05-31 | Abb Patent Gmbh | Verfahren zum Beschicken eines Brenners für Gasturbinen mit Pilotgas |
EP1070915B1 (fr) * | 1999-07-22 | 2004-05-19 | ALSTOM Technology Ltd | Brûleur à prémélange |
DE19934498C2 (de) * | 1999-07-22 | 2001-11-29 | Siemens Ag | Schaltungsanordnung und Verfahren zum Erkennen von einer Unterbrechung einer Lichtwellenleiterstrecke |
DE20009525U1 (de) * | 2000-05-26 | 2000-09-21 | ERC Emissions-Reduzierungs-Concepte GmbH, 22844 Norderstedt | Injektorbrenner |
-
2002
- 2002-10-02 WO PCT/IB2002/004061 patent/WO2003036167A1/fr active Application Filing
- 2002-10-02 CN CNB02820767XA patent/CN1263983C/zh not_active Expired - Lifetime
- 2002-10-02 JP JP2003538635A patent/JP2005528571A/ja not_active Withdrawn
- 2002-10-02 EP EP02765280.9A patent/EP1436546B1/fr not_active Expired - Lifetime
-
2004
- 2004-04-19 US US10/826,326 patent/US7003957B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005528571A (ja) | 2005-09-22 |
CN1571905A (zh) | 2005-01-26 |
US7003957B2 (en) | 2006-02-28 |
WO2003036167A1 (fr) | 2003-05-01 |
CN1263983C (zh) | 2006-07-12 |
US20040226297A1 (en) | 2004-11-18 |
EP1436546A1 (fr) | 2004-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1436546B1 (fr) | Brûleur à gaz de synthèse | |
EP1504222B1 (fr) | Bruleur a premelange | |
EP2116766B1 (fr) | Brûleur avec lance à combustible | |
DE69111614T2 (de) | Gasturbinenbrennkammer und deren arbeitsweise. | |
EP1812756B1 (fr) | Procede pour mettre en marche un bruleur | |
DE60007946T2 (de) | Eine Brennkammer | |
EP1754002B1 (fr) | Brûleur étagé à prémélange comprenant in injecteur de carburant liquide | |
EP1734306B1 (fr) | Brûleur pour combustion à prémélange | |
DE102008037480A1 (de) | Mager vorgemischte Dual-Fuel-Ringrohrbrennkammer mit Radial-Mehrring-Stufendüse | |
EP1262714A1 (fr) | Brûleur avec recirculation des gaz de combustion | |
EP2225488A1 (fr) | Brûleur à prémélange pour une turbine à gaz | |
EP0274630A1 (fr) | Agencement pour un brûleur | |
EP1292795A1 (fr) | Procede pour l'exploitation d'un bruleur et bruleur a injection etagee de gaz premelange | |
WO2005080878A1 (fr) | Bruleur de premelange et procede pour realiser la combustion d'un gaz de combustion faiblement calorifique | |
EP1344002B1 (fr) | Bruleur a introduction etagee du carburant | |
EP0931980B1 (fr) | Brûleur pour la mise en oeuvre d'un générateur de chaleur | |
EP1754937B1 (fr) | Tête de brûleur et procédé pour brûler du combustible | |
DE4318405C2 (de) | Brennkammeranordnung für eine Gasturbine | |
EP1510755B1 (fr) | Brûleur avec lance et alimentation étagée en carburant | |
WO2019020350A1 (fr) | Brûleur de turbine à gaz à jets de flamme prémélangés | |
EP1559955B1 (fr) | Bruleur | |
DE102020118325A1 (de) | Verfahren zur gestuften verbrennung eines brennstoffes und brennkopf | |
EP2422136B1 (fr) | Brûleur à prémélange | |
DE102022103746A1 (de) | Brennersystem zur Erzeugung von Heißgas | |
DE102021123513A1 (de) | Brenner und Verfahren zu dessen Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040413 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
17Q | First examination report despatched |
Effective date: 20090423 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160419 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50216178 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50216178 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170615 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210922 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20210922 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210921 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50216178 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20221001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20221001 |