EP1504222B1 - Bruleur a premelange - Google Patents

Bruleur a premelange Download PDF

Info

Publication number
EP1504222B1
EP1504222B1 EP03732592A EP03732592A EP1504222B1 EP 1504222 B1 EP1504222 B1 EP 1504222B1 EP 03732592 A EP03732592 A EP 03732592A EP 03732592 A EP03732592 A EP 03732592A EP 1504222 B1 EP1504222 B1 EP 1504222B1
Authority
EP
European Patent Office
Prior art keywords
fuel
burner
outlet orifices
fuel outlet
combustion air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03732592A
Other languages
German (de)
English (en)
Other versions
EP1504222A1 (fr
Inventor
Timothy Dr. Griffin
Frank Reiss
Dieter Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1504222A1 publication Critical patent/EP1504222A1/fr
Application granted granted Critical
Publication of EP1504222B1 publication Critical patent/EP1504222B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]

Definitions

  • the present invention relates to a premix burner for operation in a combustion chamber, preferably in combustion chambers of gas turbines, according to the preamble of claim 1.
  • a preferred application for such a burner is in gas and steam turbine technology.
  • Feeds for the premix gas ie the gaseous fuel
  • these air inlet slots which have outlet openings for the premix gas distributed along the direction of the burner axis.
  • the gas is injected through the outlet openings or bores transversely to the air inlet gap. This injection leads in connection with in the Swirl space created swirl of the combustion air-fuel gas flow to a good mixing of the premix fuel with the combustion air. Good mixing in these premix burners is the prerequisite for low NO x values during the combustion process.
  • a burner for a heat generator known, which has an additional mixing section for further mixing of fuel and combustion air following the swirl generator.
  • This mixing section may, for example, be designed as a downstream piece of pipe, into which the flow emerging from the swirl generator is transferred without appreciable flow losses.
  • the degree of mixing can be further increased and thus the pollutant emissions can be reduced.
  • the WO 93/17279 shows another known premix burner, in which a cylindrical swirl generator is used with a conical inner body.
  • the premix gas is also injected via feeders with corresponding outlet openings in the swirl space, which are arranged along the axially extending air inlet slots.
  • the burner has in the conical inner body in addition to a central supply of fuel gas, which can be injected near the burner outlet for piloting into the swirl space.
  • the additional pilot stage is used to start the burner and an extension of the operating range.
  • pilot operation which Incidentally, belongs to the well-known prior art for other premix burner types
  • the fuel is introduced so - for example in the form of a gas jet injected along the burner axis - that he does not mix prior to combustion with the combustion air. It is thus produced a diffusion flame, which on the one hand leads to higher pollutant emissions, but on the other hand also has a much wider stable operating range.
  • a premix burner is known in which the fuel gas supply is mechanically decoupled from the swirl generator.
  • the swirl generator is in this case provided with a series of openings through which the swirl generator mechanically decoupled fuel lines for the gas pre-mixing into the interior of the swirl generator protrude and there supply the vaporized flow of combustion air gaseous fuel.
  • premix burners of the prior art are so-called spin-stabilized premix burners in which a fuel mass flow prior to combustion is distributed as homogeneously as possible in a mass flow of combustion air.
  • the combustion air flows in these burner types via tangential air inlet slots in the swirl generators.
  • the fuel especially natural gas, is typically injected along the air inlet slots.
  • Mbtu and Lbtu gases are also used for combustion.
  • Mbtu and Lbtu gases are also used for combustion.
  • These synthesis gases are produced by the gasification of coal or oil residues. They are characterized by the fact that they mainly consist of H 2 and CO.
  • inert gases such as N 2 or CO 2 .
  • Synthesis gas requires depending on a known in the art of known dilution of the synthesis gas about four times - in the case of undiluted synthesis gas to seven times or even higher - higher fuel volume flow compared to comparable natural gas burners, so that at the same Gasbelochung the burner significantly different Give impulse ratios.
  • a so-called backup fuel can be burned safely.
  • This requirement results (IGCC, I ntegrated G asification C ombined ycle- C) at the highly complex integrated Gassynthetmaschines- and power generation equipment from the demand for high availability.
  • the burner should function safely and reliably also in the mixed operation of synthesis gas and backup fuel, for example diesel oil, whereby the fuel mixture spectrum usable for burner operation in the mixed operation of a single burner must be maximized.
  • low emissions typically NO x ⁇ 25 vppm and CO ⁇ 5 vppm, should be ensured for the specified and used fuels.
  • the object of the present invention is to provide a premix burner, in which the disadvantages of the prior art do not occur and in particular when operating with synthesis gas or a fuel with low to medium fuel value improved mixing with the combustion air guaranteed.
  • the present burner consists in known manner of a swirl generator for a Verbrennungsluitstrom and means for injecting fuel into the combustion air stream.
  • Injection in this context means the introduction of fuel via an outlet opening, wherein preferably a directed fuel jet of any geometry is produced.
  • the swirl generator has combustion air inlet openings for the preferably tangentially entering the burner combustion air flow.
  • the means for injecting fuel into the combustion air stream comprise one or more first fuel feeds with first fuel exit openings. These fuel exit openings are perpendicular to the circumference of the burner in one or more planes Burner longitudinal axis, ie distributed to the axial direction.
  • the first fuel outlet openings are formed in the present burner such that an injection angle of the first fuel outlet openings varies relative to the axial and / or radial direction over the circumference of the burner.
  • at least some of the first fuel exit openings are arranged in one or more first groups of closely spaced fuel exit openings such that each of the first groups forms a fuel jet having a fuel jet relative to a fuel jet formed by a single fuel exit opening. generated large beam cross section. Each group then acts equivalent to a fuel outlet opening with a correspondingly larger opening diameter.
  • the present configuration of the fuel outlet openings with radial injection angles varying over the circumference of the burner achieves improved mixing of the injected fuel with the combustion air forming the swirling flow.
  • the different injection angles cause a different penetration depth of the fuel into the internal volume or the swirl flow of the burner. Of the Fuel can thus be distributed more uniformly over the combustion air. Furthermore, the different penetration depth of the fuel jets emerging from the fuel discharge openings leads to a lower disturbance of the swirl flow, since no coherent fuel wall can build up, as may be the case with high volume flows of the fuel and identically designed fuel outlet openings of the prior art.
  • the swirl flow arising in the burner can be additionally supported.
  • a single fuel jet of a large diameter is formed by the respective fuel outlet openings of a single group, the one Has higher penetration depth than the fuel jet of a single outlet opening.
  • the fuel outlet openings of the individual groups must each be sufficiently close to each other so that they form a common fuel jet, whereby each group acts equivalent to a fuel outlet opening with a correspondingly larger opening diameter. Due to the higher penetration depth of the common fuel jet, this embodiment also achieves a variation of the penetration depth of the fuel over the circumference of the burner, resulting in a better mixing of fuel and combustion air.
  • This alternative embodiment of the burner can be combined in any way with the design of the fuel outlet openings with different injection angles and opening diameters. The different injection angles can be achieved in a known manner by different orientation of the fuel outlet openings forming outlet channels in the fuel supply lines.
  • the opening diameter or injection angle along the burner circumference alternate between at least two values, so that in the circumferential direction of the burner alternately a larger and a smaller injection angle and a larger and a smaller opening diameter of the arranged in this direction fuel outlet openings are present.
  • the corresponding variation is preferably carried out by periodic repetition of the different opening diameter or injection angle in the circumferential direction of the burner.
  • a larger opening diameter is selected for a fuel outlet opening with a larger injection angle than for a fuel outlet opening with a smaller injection angle.
  • these injection angles become Fuel outlet openings selected such that intersect from the fuel outlet openings emerging fuel jets of different groups of outlet openings each at different points outside the central burner longitudinal axis in the internal volume of the burner.
  • the first fuel outlets are at a combustion chamber end of the burner, i. H. arranged at the burner outlet, distributed over the circumference of the burner.
  • the one or more first fuel feeds with the first fuel outlet openings are preferably mechanically decoupled from the swirl generator.
  • the geometry of the swirl generator as well as an optionally existing swirl space can be chosen in different ways in the present burner and in particular have the geometries known from the prior art. Due to the preferably distribution of the first fuel outlet openings exclusively at the combustion chamber end of the burner or swirl space over the burner circumference, a reignition of injected synthesis gas is reliably prevented. However, mixing with the combustion air emerging from the burner is sufficiently ensured. Synthesis gas with a high hydrogen content (45 vol%) can be burned undiluted (lower calorific value Hu ⁇ 14000 kJ / kg). Of course, the burner can also be operated with synthesis gas of a different hydrogen content, for example with H 2 ⁇ 33%. The burner thus enables safe and stable combustion of both undiluted and dilute syngas in this embodiment.
  • the one or more first fuel feeds with the associated first fuel outlet openings are preferably mechanically and thermally decoupled from the swirl generator or the burner bowls forming the swirl generator and significantly warmer during operation.
  • both components can independently and without mutual interference thermal expansions and in particular differential strains perform.
  • the thermal stresses between the comparatively cold first fuel feeds, hereinafter also referred to as gas channels, and the warmer burner shells are avoided or at least significantly reduced.
  • the injection region for the synthesis gas in the burner bowls is completely cut out.
  • the first gas channel is anchored directly in this section of the burner bowls.
  • the burner in addition to the first or the first fuel feeds, also has one or more second fuel feeds with a group of second fuel outlets on the swirl body arranged substantially along the direction of the burner axis.
  • a fuel lance arranged essentially on the burner axis can also be provided for the injection of liquid fuel or of pilot gas for diffusion combustion, which projects into the swirl space in the axial direction.
  • the arrangement and design of these additional fuel feeds can, for example.
  • Such burner geometries can be realized with the inventive features for the formation and arrangement of the first fuel outlet openings.
  • a multifunctional burner which has a very wide variety of fuels burns stably.
  • heating values lower heating value Hu or Lower Heating Value LHV
  • Diesel oil can be used as a reserve fuel.
  • natural gas as additional fuel is also possible.
  • the injection of natural gas can optionally be carried out in the burner head through the burner lance and / or via the second fuel feeds, which are usually formed by the longitudinally attached to the air inlet slots on the swirl generator or swirl body gas channels, which, for example EP 321 809 are common. In this way, the burner can be operated with three different fuels.
  • the first fuel feeds continue to be structurally adapted to the fuel volume flow, which is up to 7 times larger, and in particular provide the necessary fuel Flow cross sections available. In this case, they have a multiple cross-section compared to the feeds for natural gas.
  • FIG. 1 shows by way of illustration different parameters in the design of fuel outlet openings, which play a role in the realization of the present burner.
  • a part of a burner is shown schematically in sectional view in partial illustration a), in which the Burner shell 1, a central burner longitudinal axis 2 and provided at the combustion chamber end of the burner front panel 3 can be seen.
  • fuel outlet openings 4 are arranged in this example, which have the opening diameter d and a uniform distance a to the front panel 3.
  • the fuel outlet openings 4 are formed as outlet channels, the channel axis 5 extends at a certain angle to the axial and radial directions of the burner.
  • the channel profile is illustrated in this figure by the lines led out laterally with the hatched cross-section indicated therein.
  • the Eindüsungsraum of the fuel is set in the interior of the burner.
  • the velocity vector c of the injection and its corresponding components in the axial direction (u) and in the radial direction (v) can be seen.
  • the injection angle relative to the axial direction is denoted by ⁇ , the angle relative to the solder on the burner wall or burner shell 1 with ⁇ . Typical values for the angle ⁇ are 20 °, 30 ° or 40 °.
  • part figure b) is still a plan view of a burner according to part of a) shown.
  • the velocity component w of the fuel jet injected through the fuel inlet opening 4 can not be recognized in partial image formation a).
  • This speed component has a Angle ⁇ relative to the radial direction of the burner.
  • the injection takes place in the same direction to the twist direction 6 of the combustion air entering the burner, as can be seen from the partial illustration.
  • the parameters illustrated in FIG. H the injection angle ⁇ relative to the axial direction, the injection angle ⁇ relative to the radial direction and the opening diameter d of the fuel outlet openings in the circumferential direction of the burner and / or varies along the fuel feeds, so that different groups of fuel outlet openings different injection angle ⁇ or ⁇ and / or have different opening diameters d.
  • the opening diameter d, the distance between the individual outlet openings, the pulse ratio between fuel and combustion air as well as the direction of injection have an influence on the penetration depth of the fuel jet into the burner or the swirl flow inside the burner.
  • This penetration depth is proportional to J a xd b x sin ⁇ , where a and b are positive exponents, J is the momentum ratio between fuel and combustion air and d is the diameter of the fuel exit ports.
  • an increase of the fuel injection pulse has a significant influence on the penetration depth.
  • the fuel pressure available in a fuel system is limited.
  • the opening diameter of the fuel outlet openings also has an influence on the penetration depth, but is also limited.
  • a too large orifice diameter may adversely affect the reliability of the fuel system during a part load operation as well as during a fuel oil operation. This applies in particular to the thermoacoustic stability of the overall system.
  • FIG. 2 shows by way of example a structure of a burner with first fuel feeds and fuel outlets, which may be formed according to the present invention.
  • first fuel outlet openings 4 are arranged radially at the burner outlet, ie at the end of the swirl space forming internal volume 12 of the burner distributed over the circumference of the burner in a row. Through this injection at the burner outlet, the combustion of the hydrogen-rich synthesis gas is also possible undiluted.
  • the figure shows here the burner shells 1, which form the swirl generator 7 in this example by their conical shell-shaped configuration.
  • a Gaszudite 13 is arranged, which surrounds the swirl generator 7 radially and forms the or the first fuel feeds 8 for the supply of synthesis gas.
  • the first fuel outlet openings 4 are arranged for the synthesis gas. These outlet openings 4 form outlet channels which predetermine the injection direction of the synthesis gas.
  • Injection angle ⁇ relative to the axial direction and / or the diameter d of these channels or openings 4 vary in the present burner, as can be seen, for example, from the following figures 4-6.
  • first fuel outlet openings 4 are arranged distributed uniformly next to each other over the circumference of the burner, which are designated by the Roman numerals I - XII.
  • the even-numbered outlet openings 4 in this case have an injection angle ⁇ relative to the axial direction of about 50 ° (60 ° to the burner shell), while the odd-numbered outlet openings 4 have a Eindüsungswinkel of about 40 ° to the axial direction (50 ° to the burner shell).
  • the comparatively cold fuel supply channels 8 for injecting the synthesis gas and the burner shells 1, which in principle are significantly warmer, are thermally and mechanically decoupled from each other in this example.
  • the thermal stresses are significantly reduced.
  • an opening or a circumferential gap 9 can still be seen on the swirl generator 7, which is necessary in order to allow a connection between the outlet openings 4 of the Gaszuseasonedelements 13 and the swirl space 12.
  • the injection area for the fuel in the burner bowls is completely cut out.
  • the gas supply element 13 is anchored directly in this section of the burner shells 1 and the swirl generator 7.
  • the swirl generator 7 itself is preferably formed from at least two subshells with tangential air inlet slots, as for example. EP 0 321 809 B1 is known.
  • FIG 3 shows the burner of Figure 2 again along the section line B-B.
  • the two partial shells of the swirl generator 7 with the tangential air inlet slots 14 and the fuel feeds 8 of the gas supply element 13 can be clearly seen.
  • the respective 12 fuel outlet openings 4 are indicated.
  • the burner is enclosed by a housing 15.
  • the gas supply element 13 may be formed on the one hand as an annular feed slot for forming a single fuel supply channel 8 or be divided into separate fuel supply channels. Of course, it is also possible to lead individual supply lines as fuel supply channels 8 to the outlet openings 4.
  • the fuel supply channels 8 are adapted for the supply of synthesis gas to the up to seven times larger fuel volume flow compared to conventional fuels and provide in particular the necessary large flow cross sections available.
  • additional gas injection channels may be arranged along the air inlet slots 14, as in the known burner geometries of the prior art, for example.
  • Conventional fuel can be injected into the internal volume 12 in addition or as an alternative to the synthesis gas via these further fuel supply channels.
  • FIG. 4 schematically shows the direction of injection of the fuel outlet openings 4 of a burner such as that of FIGS. 2 and 3 according to an exemplary embodiment of the present invention.
  • the partial view a one half of the burner can be seen in plan view with the fuel outlet openings 4 arranged distributed over the circumference.
  • All even-numbered fuel outlets (II / IV / VI / VIII / X / XII) have the injection angle of 50 °
  • An improved distribution can also be achieved by a variation of the opening diameter d of the individual fuel outlet openings 4.
  • they can alternate between two values in the same way as the injection angles of FIG. 4, so that every second outlet opening has the same opening diameter.
  • These different opening diameters also change the penetration depth of the fuel jet so that a better distribution and mixing of the fuel with the combustion air is achieved.
  • the variation of the opening diameter can be combined at any time with the variation of the injection angle. In this case, a larger opening diameter is preferably combined with a larger injection angle.
  • FIG. 5 shows a further embodiment of the injection in a burner according to the present invention.
  • This figure again shows schematically a half of a burner according to Figures 2 and 3 in plan view, in this example, nine outlet openings 4 can be seen.
  • three of these outlet openings 4 are arranged close to each other in this example, so that over the entire Scope of the burner are formed a total of 6 groups of outlet openings 4, three of which are shown in the figure.
  • the individual jets emerging from the outlet openings 4 of a group form an overall jet which, due to this combination, has a large jet diameter with a higher penetration depth.
  • this grouping can thus also increase the penetration depth of the fuel into the interior 12 of the burner or the swirl flow locally.
  • grouped outlet openings may have larger opening diameters than ungrouped outlet openings or the opening diameters of the outlet openings may vary from group to group.
  • Figure 6 shows another example of fuel injection in a burner according to the present invention.
  • the injection angle ⁇ relative to the radial direction of the burner varies over the burner circumference, so that the injection directions intersect at a point 16 far outside the burner longitudinal axis 2. If the fuel in this case injected in the same direction to the direction of the forming in the inner volume 12 swirl of the combustion air, there is a greater penetration depth than in the opposite direction injection. Also over this injection angle ⁇ thus a better distribution of the fuel within the swirl flow can be achieved.
  • the strength of this flow can be increased, so that the flame stabilization process can be supported.
  • FIG. 8 shows an example of a swirl generator 7 with a purely cylindrical swirl body 17 into which a conical inner body 18 is inserted.
  • the outlet openings 4 for synthesis gas are distributed over the circumference of the burner at the combustion chamber end of the swirl chamber 12.
  • the fuel supply channels 8 are not shown in this illustration.
  • further gas outlet openings may be provided for natural gas, including the necessary supply lines.
  • FIG. 8 Another example of a burner, in which the swirl generator 7 is designed as a swirl lattice, is set in rotation by the incoming combustion air 19, is shown schematically in FIG. Via the supply lines 20 leading to outlet openings in the region of the swirl generator 7, additional fuel for premix loading can be introduced into the combustion air 19.
  • the supply of a pilot fuel or a liquid fuel is realized via a centrally projecting into the inner volume 12 nozzle 21.
  • the outlet openings 4 are arranged distributed for the synthesis gas over the circumference of the burner at the combustion chamber end of the inner volume 12 and are acted upon via the fuel supply channels 8 with synthesis gas.
  • the same configurations of the outlet openings 4 can be realized as in the case of the burner shown in FIGS. 2 and 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

La présente invention concerne un brûleur à prémélange comprenant un générateur de tourbillons (7) pour un flux d'air de combustion et des moyens pour injecter du combustible dans ce flux d'air de combustion. Ce générateur de tourbillons (7) comporte un ou plusieurs orifices d'entrée d'air de combustion pour le flux d'air de combustion pénétrant dans le brûleur. Les moyens servant à injecter du combustible dans ce flux d'air de combustion comprennent une ou plusieurs premières alimentations en combustible (8) pourvues de premiers orifices de sortie de combustible (4), dont le diamètre et/ou l'angle d'injection par rapport au sens axial et/ou radial est conçu différemment. De façon alternative ou additionnelle, certains des premiers orifices de sortie de combustible (4) peuvent être agencés dans un ou plusieurs premiers groupes d'orifices de sortie de combustible (4) situés à proximité, de sorte que chacun des premiers groupes produit un jet de combustible de grande largeur. Le présent brûleur permet un meilleur mélange du combustible avec l'air de combustion, en particulier lorsque le combustible est injecté à l'extrémité du brûleur côté chambre de combustion.

Claims (21)

  1. Brûleur à prémélange, essentiellement constitué d'un tourbillonneur (7) pour un écoulement d'air de combustion et de moyens d'injection de combustible dans l'écoulement d'air de combustion, le tourbillonneur (7) présentant au moins une ouverture d'entrée d'air de combustion pour l'écoulement d'air de combustion qui pénètre dans le brûleur et les moyens d'injection de combustible dans l'écoulement d'air de combustion présentant au moins une première amenée (8) de combustible dotée de premières ouvertures (4) de sortie de combustible réparties à la périphérie du brûleur dans un plan perpendiculaire à l'axe longitudinal du brûleur, le brûleur présentant en outre une direction axiale définie par un axe longitudinal central ainsi qu'une direction radiale orientée vers l'axe longitudinal central,
    caractérisé en ce que les premières ouvertures (4) de sortie de combustible sont configurées de telle sorte que, lors de l'injection, l'angle d'injection des premières ouvertures (4) de sortie de combustible varie par rapport à la direction axiale et/ou la direction radiale le long de la périphérie du brûleur.
  2. Brûleur à prémélange, essentiellement constitué d'un tourbillonneur (7) pour un écoulement d'air de combustion et de moyens d'injection de combustible dans l'écoulement d'air de combustion, le tourbillonneur (7) présentant au moins une ouverture d'entrée d'air de combustion pour l'écoulement d'air de combustion qui pénètre dans le brûleur et les moyens d'injection de combustible dans l'écoulement d'air de combustion présentant au moins une première amenée (8) de combustible dotée de premières ouvertures (4) de sortie de combustible réparties à la périphérie du brûleur dans un plan perpendiculaire à l'axe longitudinal du brûleur, le brûleur présentant en outre une direction axiale définie par un axe longitudinal central ainsi qu'une direction radiale orientée vers l'axe longitudinal central,
    caractérisé en ce qu'au moins une des premières ouvertures (4) de sortie de combustible sont disposées en au moins un premier groupe d'ouvertures (4) de sortie de combustible situées à proximité les unes des autres, de telle sorte que chacun des premiers groupes crée un jet orienté de combustible de grande section transversale et dont la profondeur de pénétration est plus grande que celle du jet d'une ouverture de sortie individuelle.
  3. Brûleur selon la revendication 1, caractérisé en ce qu'au moins certaines des premières ouvertures (4) de sortie de combustible sont disposées en au moins un premier groupe d'ouvertures (4) de sortie de combustible situées à proximité étroite les unes des autres, de telle sorte que chacun des premiers groupes crée un jet orienté de combustible de grande section transversale et dont la profondeur de pénétration est plus grande que celle du jet d'une ouverture de sortie individuelle.
  4. Brûleur selon l'une des revendications 2 ou 3,
    caractérisé en ce qu'au moins certains des premiers groupes de premières ouvertures (4) de sortie de combustible se distinguent par différents diamètres d'ouverture de chacune des ouvertures de sortie de combustible.
  5. Brûleur selon l'une des revendications 2 à 4, caractérisé en ce que les premières ouvertures (4) de sortie de combustible qui restent et qui ne sont pas disposées dans le premier groupe ont une ouverture de plus petit diamètre que les premières ouvertures (4) de sortie de combustible disposées dans un ou plusieurs premiers groupes.
  6. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'angle d'injection des premières ouvertures (4) de sortie de combustible par rapport à la direction axiale alterne entre au moins deux valeurs le long de la périphérie.
  7. Brûleur selon l'une des revendications précédentes, caractérisé en ce que le diamètre d'ouverture des premières ouvertures (4) de sortie de combustible alterne entre au moins deux valeurs le long de la périphérie.
  8. Brûleur selon l'une des revendications précédentes, caractérisé en ce que les premières ouvertures (4) de sortie de combustible qui présentent un plus grand angle d'injection par rapport à la direction axiale ont un plus grand diamètre d'ouverture que les premières ouvertures (4) de sortie de combustible qui ont un plus petit angle d'injection.
  9. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'angle d'injection par rapport à la direction radiale est sélectionné de telle sorte que les jets de combustible émis par les premières ouvertures (4) de sortie de combustible de différents deuxièmes groupes de premières ouvertures (4) de sortie de combustible se coupent en des points (16) différents situés à l'extérieur de l'axe longitudinal central (2) du brûleur.
  10. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la ou les premières amenées (8) de combustible sont découplées mécaniquement du tourbillonneur (7).
  11. Brûleur selon la revendication 10, caractérisé en ce que la ou les premières amenées (8) de combustible forment avec les premières ouvertures (4) de sortie de combustible un premier composant (13) qui entoure le tourbillonneur (7), le tourbillonneur (7) présentant à l'extrémité située du côté de la chambre de combustion des ouvertures (9) qui permettent aux premières ouvertures (4) de sortie d'accéder à un volume intérieur (12) du brûleur.
  12. Brûleur selon la revendication 11, caractérisé en ce que le premier composant (13) est relié au tourbillonneur (7) par des pattes de liaison (10, 11).
  13. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la première amenée (8) de combustible est configurée comme fente annulaire qui s'étend à la périphérie du tourbillonneur (7).
  14. Brûleur selon l'une des revendications 1 à 13, caractérisé en ce qu'au moins une deuxième amenée de combustible est disposée sur le tourbillonneur (7) avec un groupe de deuxièmes ouvertures de sortie de combustible disposées essentiellement le long de la direction axiale.
  15. Brûleur selon la revendication 14, caractérisé en ce que la ou les premières amenées (8) de combustible ont une section transversale qui permet un débit volumique plusieurs fois plus élevé que celui de la ou des deuxièmes amenées de combustible.
  16. Brûleur selon l'une des revendications 14 ou 15, caractérisé en ce qu'un corps intérieur (18) est disposé dans un volume intérieur (12) du brûleur, les deuxièmes ouvertures de sortie de combustible d'au moins une deuxième amenée de combustible étant réparties sur le corps intérieur (18) au moins essentiellement le long de la direction axiale.
  17. Brûleur selon l'une des revendications 14 à 16, caractérisé en ce que les deuxièmes ouvertures de sortie de combustible sont configurées de telle sorte que le diamètre d'ouverture des deuxièmes ouvertures de sortie de combustible et/ou l'angle d'injection des deuxièmes ouvertures de sortie de combustible par rapport à la direction axiale et/ou par rapport à la direction radiale varient le long des amenées de combustible et/ou le long de la périphérie du brûleur.
  18. Brûleur selon l'une des revendications 14 à 17, caractérisé en ce qu'au moins une partie des deuxièmes ouvertures de sortie de combustible sont disposées en au moins un troisième groupe d'ouvertures de sortie de combustible situées à proximité étroite l'une de l'autre, de telle sorte que chaque troisième groupe crée un jet de combustible de grande section transversale.
  19. Brûleur selon l'une des revendications 14 à 18, caractérisé en ce que des moyens de commande indépendante de l'apport de combustible de prémélange à une première amenée de combustible et à une deuxième amenée de combustible sont prévus.
  20. Brûleur selon l'une des revendications précédentes, caractérisé en ce que les ouvertures de sortie de combustible situées à l'extrémité du brûleur située du côté de la chambre de combustion sont réparties à la périphérie du brûleur.
  21. Turbine à gaz qui comprend au moins un brûleur selon l'une des revendications précédentes.
EP03732592A 2002-05-16 2003-05-14 Bruleur a premelange Expired - Fee Related EP1504222B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH8302002 2002-05-16
CH8302002 2002-05-16
PCT/EP2003/050163 WO2003098110A1 (fr) 2002-05-16 2003-05-14 Bruleur a premelange

Publications (2)

Publication Number Publication Date
EP1504222A1 EP1504222A1 (fr) 2005-02-09
EP1504222B1 true EP1504222B1 (fr) 2007-07-11

Family

ID=29426140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03732592A Expired - Fee Related EP1504222B1 (fr) 2002-05-16 2003-05-14 Bruleur a premelange

Country Status (5)

Country Link
US (1) US7013648B2 (fr)
EP (1) EP1504222B1 (fr)
AU (1) AU2003238524A1 (fr)
DE (1) DE50307654D1 (fr)
WO (1) WO2003098110A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049203A1 (de) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Verfahren zur Brennstoffeinleitung in einen Vormischbrenner
EP1568942A1 (fr) * 2004-02-24 2005-08-31 Siemens Aktiengesellschaft Brûleur à prémélange et procédé pour brûler un gaz pauvre
ES2356355T3 (es) * 2005-04-12 2011-04-07 Zilkha Biomass Energy Llc Sistema integrado de energía de biomasa.
DE102005062079A1 (de) * 2005-12-22 2007-07-12 Rolls-Royce Deutschland Ltd & Co Kg Magervormischbrenner mit einer Zerstäuberlippe
JP2009531641A (ja) * 2006-03-30 2009-09-03 アルストム テクノロジー リミテッド バーナ装置
US7870736B2 (en) * 2006-06-01 2011-01-18 Virginia Tech Intellectual Properties, Inc. Premixing injector for gas turbine engines
ZA200902204B (en) * 2006-09-29 2010-07-28 Zilkha Biomass Energy Llc Integrated biomass energy system
US7874139B2 (en) * 2006-10-13 2011-01-25 Siemens Energy, Inc. IGCC design and operation for maximum plant output and minimum heat rate
RU2459147C2 (ru) * 2007-07-20 2012-08-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Нагреватель беспламенного горения
DE102007043626A1 (de) 2007-09-13 2009-03-19 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenmagerbrenner mit Kraftstoffdüse mit kontrollierter Kraftstoffinhomogenität
EP2042807A1 (fr) * 2007-09-25 2009-04-01 Siemens Aktiengesellschaft Etage de prémélange pour brûleur de turbine à gaz
US8113000B2 (en) * 2008-09-15 2012-02-14 Siemens Energy, Inc. Flashback resistant pre-mixer assembly
US8256226B2 (en) * 2009-04-23 2012-09-04 General Electric Company Radial lean direct injection burner
US8387393B2 (en) * 2009-06-23 2013-03-05 Siemens Energy, Inc. Flashback resistant fuel injection system
CH701905A1 (de) 2009-09-17 2011-03-31 Alstom Technology Ltd Verfahren zum Verbrennen wasserstoffreicher, gasförmiger Brennstoffe in einem Brenner sowie Brenner zur Durchführung des Verfahrens.
EP2299178B1 (fr) 2009-09-17 2015-11-04 Alstom Technology Ltd Procédé et système de combustion de turbine à gaz pour mélanger sans danger des carburants riches en H2 avec de l'air
CH703655A1 (de) 2010-08-27 2012-02-29 Alstom Technology Ltd Vormischbrenner für eine gasturbine.
EP2685160B1 (fr) * 2012-07-10 2018-02-21 Ansaldo Energia Switzerland AG Brûleur de prémélange du type multi-cônes destiné à une turbine à gaz
EP2722591A1 (fr) * 2012-10-22 2014-04-23 Alstom Technology Ltd Brûleur à multiples cones pour une turbine à gaz
US20150107256A1 (en) * 2013-10-17 2015-04-23 Pratt & Whitney Canada Corp. Combustor for gas turbine engine
US10094560B1 (en) * 2014-07-17 2018-10-09 Leidos, Inc. Solid and black waste mitigation system and process
US20170198902A1 (en) * 2016-01-08 2017-07-13 Zeeco, Inc. LOW NOx BURNER APPARATUS AND METHOD
DE102020106842A1 (de) * 2020-03-12 2021-09-16 Rolls-Royce Deutschland Ltd & Co Kg Düse mit Strahlerzeugerkanal für in eine Brennkammer eines Triebwerks einzuspritzenden Kraftstoff

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2618928A (en) * 1944-05-19 1952-11-25 Power Jets Res & Dev Ltd Combustion apparatus with vaned fuel injector means
US4474014A (en) * 1981-09-17 1984-10-02 United Technologies Corporation Partially unshrouded swirler for combustion chambers
CH674561A5 (fr) 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
GB9112324D0 (en) * 1991-06-07 1991-07-24 Rolls Royce Plc Gas turbine engine combustor
US5307634A (en) 1992-02-26 1994-05-03 United Technologies Corporation Premix gas nozzle
DE4304213A1 (de) * 1993-02-12 1994-08-18 Abb Research Ltd Brenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage
DE19516798A1 (de) * 1995-05-08 1996-11-14 Abb Management Ag Vormischbrenner mit axialer oder radialer Luftzuströmung
DE19543701A1 (de) * 1995-11-23 1997-05-28 Abb Research Ltd Vormischbrenner
DE19545036A1 (de) * 1995-12-02 1997-06-05 Abb Research Ltd Vormischbrenner
DE19547913A1 (de) 1995-12-21 1997-06-26 Abb Research Ltd Brenner für einen Wärmeerzeuger
US5680766A (en) * 1996-01-02 1997-10-28 General Electric Company Dual fuel mixer for gas turbine combustor
DE19654009B4 (de) * 1996-12-21 2006-05-18 Alstom Vormischbrenner zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
US6176087B1 (en) * 1997-12-15 2001-01-23 United Technologies Corporation Bluff body premixing fuel injector and method for premixing fuel and air
EP0981019A1 (fr) * 1998-08-20 2000-02-23 Asea Brown Boveri AG Procédé et brûleur pour la combustion des combustibles liquides
US6162049A (en) * 1999-03-05 2000-12-19 Gas Research Institute Premixed ionization modulated extendable burner
EP1070915B1 (fr) 1999-07-22 2004-05-19 ALSTOM Technology Ltd Brûleur à prémélange
DE19934498C2 (de) 1999-07-22 2001-11-29 Siemens Ag Schaltungsanordnung und Verfahren zum Erkennen von einer Unterbrechung einer Lichtwellenleiterstrecke
JP4625609B2 (ja) * 2000-06-15 2011-02-02 アルストム テクノロジー リミテッド バーナーの運転方法と段階的予混合ガス噴射バーナー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2003098110A1 (fr) 2003-11-27
DE50307654D1 (de) 2007-08-23
US7013648B2 (en) 2006-03-21
AU2003238524A1 (en) 2003-12-02
EP1504222A1 (fr) 2005-02-09
US20050115244A1 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
EP1504222B1 (fr) Bruleur a premelange
EP1436546B1 (fr) Brûleur à gaz de synthèse
EP2116766B1 (fr) Brûleur avec lance à combustible
DE4426351B4 (de) Brennkammer für eine Gasturbine
DE60128513T2 (de) Verfahren und Vorrichtung zur Verminderung der Emissionen in einer Brennkammer mit einer Wirbelmischvorrichtung
DE60007946T2 (de) Eine Brennkammer
EP0902233B1 (fr) Buse de pulvérisation par pression combinée
EP1864056B1 (fr) Bruleur de premelange destine a une chambre de combustion de turbine a gaz
DE60215351T2 (de) Vormischungskammer für turbinenverbrennungskammer
WO2009068425A1 (fr) Brûleur à prémélange pour une turbine à gaz
DE102008037480A1 (de) Mager vorgemischte Dual-Fuel-Ringrohrbrennkammer mit Radial-Mehrring-Stufendüse
DE3432971A1 (de) Verfahren zum liefern von kraftstoff fuer einen gasturbinen-combustor
EP0733861A2 (fr) Chambre de combustion à combustion étagée
EP1292795A1 (fr) Procede pour l'exploitation d'un bruleur et bruleur a injection etagee de gaz premelange
DE102010017778A1 (de) Vorrichtung zur Brennstoffeinspritzung bei einer Turbine
EP1734306B1 (fr) Brûleur pour combustion à prémélange
DE4411623A1 (de) Vormischbrenner
WO2006040269A1 (fr) Bruleur destine a la combustion d'un gaz combustible a faible pouvoir calorifique et procede pour faire fonctionner un bruleur
EP1344002B1 (fr) Bruleur a introduction etagee du carburant
EP2513562A1 (fr) Brûleur pour une turbine
EP1754937B1 (fr) Tête de brûleur et procédé pour brûler du combustible
EP3421885B1 (fr) Chambre de combustion d'une turbine à gaz, turbine à gaz et son procédé de fonctionnement
DE102004006665A1 (de) Einspritzelement in Koaxialbauweise mit zwei Brennzonen
EP1559955B1 (fr) Bruleur
DE112010003677B4 (de) Verfahren zum verbrennen wasserstoffreicher, gasförmiger brennstoffe in einem brenner sowie brenner zur durchführung des verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50307654

Country of ref document: DE

Date of ref document: 20070823

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070903

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160527

Year of fee payment: 14

Ref country code: DE

Payment date: 20160527

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50307654

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50307654

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50307654

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307654

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50307654

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50307654

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170514

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201