EP0913630B1 - Brûleur pour la mise en oeuvre d'un générateur de chaleur - Google Patents

Brûleur pour la mise en oeuvre d'un générateur de chaleur Download PDF

Info

Publication number
EP0913630B1
EP0913630B1 EP97810818A EP97810818A EP0913630B1 EP 0913630 B1 EP0913630 B1 EP 0913630B1 EP 97810818 A EP97810818 A EP 97810818A EP 97810818 A EP97810818 A EP 97810818A EP 0913630 B1 EP0913630 B1 EP 0913630B1
Authority
EP
European Patent Office
Prior art keywords
flow
burner according
section
fuel
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810818A
Other languages
German (de)
English (en)
Other versions
EP0913630A1 (fr
Inventor
Thomas Ruck
Hans Peter Knöpfel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to EP97810818A priority Critical patent/EP0913630B1/fr
Priority to DE59709446T priority patent/DE59709446D1/de
Priority to US09/178,578 priority patent/US6059565A/en
Priority to JP10308561A priority patent/JPH11211026A/ja
Publication of EP0913630A1 publication Critical patent/EP0913630A1/fr
Application granted granted Critical
Publication of EP0913630B1 publication Critical patent/EP0913630B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14021Premixing burners with swirling or vortices creating means for fuel or air

Definitions

  • the invention relates to a burner for the operation of a heat generator according to Preamble of claim 1.
  • the upstream side consists of a swirl generator, the flow formed therein seamlessly in a mixing section is transferred. This is done using one at the beginning of the Mixing section flow geometry formed for this purpose, which consists of transition channels exists, which is sectoral, according to the number of those acting Partial body of the swirl generator, capture the end face of the mixing section and in Flow direction swirl. Downstream of these transition channels the mixing section has a number of filming holes, which one Ensure an increase in the flow velocity along the pipe wall. This is followed by a combustion chamber, the transition between the Mixing section and the combustion chamber formed by a cross-sectional jump in whose plane a backflow zone or backflow bubble forms.
  • the Twist strength in the swirl generator is selected so that the bursting of the Vortex does not occur within the mixing section, but further downstream, as Executed above, in the area of the cross-sectional jump.
  • the length of the mixing section is dimensioned in such a way that there is sufficient mix quality for everyone Types of fuel is guaranteed.
  • the invention seeks to remedy this.
  • the invention as set out in the claims is characterized, the task is based on a burner at the beginning to propose the above-mentioned type of precautions which affect the quality of the mixture Gas / air mixture can improve with constant gas pressure.
  • the burner is expanded in such a way that the upstream in the Swirl generators integrated gas injectors that flow through the air inlet channels Combustion air is passed through turbulence generators before entering the Range of the gas injectors mentioned.
  • These turbulence generators can can be simplified so far that they are individual spaced bars are different cross-section, which are arranged transversely in the air inlet channels are. If the lower edges of these vortex generators have a sufficient one Distance to the gas injectors, this creates vortices in this free space, by which it is achieved that the gas jet from the above Gas injectors in an area with lower air speed and higher turbulence is injected.
  • the main advantages of the object according to the invention are to be seen in that through the higher penetration depth of the gas jet, paired with that there turbulence due to the vortex drag mentioned the quality of the mixture of the gas / air mixture is significantly improved and the pollutant emissions can be significantly reduced from combustion.
  • the object according to the invention is also particularly suitable for others Burners, in particular also in the case of a burner according to EP-0 321 809 B1, this document being an integral part of the present Description forms.
  • Fig. 1 shows the overall structure of a burner.
  • a swirl generator 100 effective, the design of which is shown in more detail in the following FIGS. 2-8 is shown and described. It is a conical structure, the tangential multiple times from an incoming combustion air flow 115 is applied.
  • the swirl flow that is formed here is based on a downstream of the swirl generator 100 provided transition geometry seamless transferred a transition piece 200 such that there are none in this zone Detachment areas can form.
  • the configuration of this transition geometry is described in more detail in Fig. 9.
  • This transition piece 200 is on the outflow side the transition geometry extended by a mixing tube 20, wherein both parts form the actual mixing section 220.
  • the Mixing section 220 consist of a single piece, i.e.
  • the transition piece 200 and the mixing tube 20 are produced from two parts, so these are connected by a bushing ring 10, the same Socket ring 10 on the head side as anchoring surface for the swirl generator 100 serves.
  • Such a bushing ring 10 also has the advantage that different Mixing tubes can be used without changing the basic configuration to have to change. Downstream of the mixing tube 20 is the actual combustion chamber 30 of a combustion chamber, which is here only by a Flame tube is shown.
  • the mixing section 220 largely fulfills the task that a defined distance is provided downstream of the swirl generator 100 in which achieves a perfect premixing of different types of fuel can be.
  • This mixing section that is to say, the mixing tube 20
  • This Mixing section 220 has yet another property, which consists in that the axial velocity profile has a pronounced maximum in it has the axis so that the flame reignites from the combustion chamber not possible. However, it is correct that with such a configuration this Axial velocity drops towards the wall.
  • the mixing tube 20 in the flow and circumferential direction with a number of regularly or irregularly distributed bores 21 various cross sections and directions through which an amount of air flows into the interior of the mixing tube 20, and along the wall in the sense induce an increase in flow velocity during filming.
  • This Bores 21 can also be designed so that on the inner wall of the mixing tube 20 at least additionally sets an effusion cooling.
  • Another way of increasing the speed of the mixture within To achieve the mixing tube 20 is that its flow cross-section on the outflow side of the transition channels 201, which have already been mentioned Form transition geometry, undergoes a narrowing, causing the whole Speed level within the mixing tube 20 is raised. In in the figure, these bores 21 run at an acute angle the burner axis 60.
  • the outlet corresponds to the transition channels 201 the narrowest flow cross-section of the mixing tube 20.
  • the transition channels mentioned 201 accordingly bridge the respective cross-sectional difference, without negatively influencing the flow formed. If the chosen precaution when guiding the pipe flow 40 along the mixing pipe 20 triggers an intolerable pressure loss, this can be remedied be created by not at the end of this mixing tube in the figure shown diffuser is provided.
  • a combustion chamber combustion chamber 30
  • a cross-sectional jump formed by a burner front 70 is available. Only here does a central flame front form with a Backflow zone 50, which has the properties of a flame front disembodied flame holder.
  • Fig. 2 shows a schematic view of the burner according to Fig. 1, here in particular the flushing of a centrally arranged fuel nozzle 103 and the effect of fuel injectors 170 is pointed out.
  • the mode of action the remaining main components of the burner, namely swirl generator 100 and transition piece 200 are closer under the following figures described.
  • the fuel nozzle 103 is spaced with a ring 190 encased in which a number of circumferentially bored holes 161 are placed, through which an amount of air 160 into an annular chamber 180 flows and carries out the flushing of the fuel lance there.
  • These holes 161 are slanted forward so that it is appropriate axial component arises on the burner axis 60.
  • FIG. 4 is used at the same time as FIG. 3.
  • 3 will refer to the remaining figures as needed in the description of FIG taken.
  • the first part of the burner according to FIG. 1 forms the swirl generator shown in FIG. 3 100.
  • This consists of two hollow conical partial bodies 101, 102, which are nested in a staggered manner.
  • the number of conical Partial body can of course be larger than two, like the figures 6 and 7 show; this depends in each case, as will be explained in more detail below will depend on the operating mode of the entire burner. It is with certain Operating constellations are not excluded, one from a single spiral to provide existing swirl generator.
  • the offset of the respective central axis or longitudinal symmetry axes 101b, 102b (cf. FIG. 4) of the conical partial bodies 101, 102 creates each other in the adjacent wall, in mirror image Arrangement, each a tangential channel, i.e.
  • the cone shape the partial body 101, 102 shown in the flow direction has a certain one fixed angle.
  • the partial bodies can 101, 102 an increasing or decreasing cone inclination in the flow direction have, similar to a trumpet. Tulip. The latter two Shapes are not recorded in the drawing, as they are without for the specialist are further sensitive.
  • the two conical partial bodies 101, 102 have each have a cylindrical annular starting part 101a.
  • the fuel nozzle 103 already mentioned under FIG. 2 is housed, which is preferably operated with a liquid fuel 112 becomes.
  • the injection 104 of this fuel 112 coincides with the narrowest Cross-section of the conical cavity formed by the conical partial bodies 101, 102 114 together.
  • the injection capacity and the type of this fuel nozzle 103 depends on the specified parameters of the respective burner.
  • the conical sub-bodies 101, 102 each have a fuel line 108, 109 which run along the tangential air inlet slots 119, 120 arranged and provided with injection openings 117, through which preferably a gaseous fuel 113 in the combustion air flowing through there 115 is injected, as the arrows 116 want to symbolize.
  • Fuel nozzle 103 brought fuel 112 is, as mentioned, normally a liquid fuel, whereby a mixture formation with a other medium, for example with a recirculated flue gas, without further is possible.
  • This fuel 112 is preferably very low acute angle injected into the cone cavity 114. From the fuel nozzle 103 A conical fuel spray 105 is thus formed, which flows in from the tangential one rotating combustion air 115 is enclosed and degraded.
  • the concentration of the injected fuel is then in the axial direction 112 continuously through the incoming combustion air 115 for mixing Degraded towards evaporation. If a gaseous fuel 113 Introduced via the opening nozzles 117, the fuel / air mixture is formed directly at the end of the air inlet slots 119, 120. Is the combustion air 115 additionally preheated, or for example with a recirculated Flue gas or exhaust gas enriched, so this sustainably supports the Evaporation of the liquid fuel 112 before this mixture in the downstream Stage flows, here in the transition piece 200 (see FIGS. 1 and 8). The same considerations also apply if liquid lines 108, 109 Fuels should be supplied.
  • the construction of the swirl generator 100 is furthermore particularly suitable, change the size of the tangential air inlet slots 119, 120, which is a relatively large one without changing the overall length of the swirl generator 100 operational bandwidth can be captured.
  • the partial bodies 101, 102 can also be moved relative to one another in another plane, which even an overlap of the same can be provided.
  • the sub-bodies 101, 102 by a counter-rotating movement spiral to nest into each other. So it is possible, the shape, the size and the configuration of the tangential air inlet slots 119, 120 arbitrarily vary, with which the swirl generator 100 is universal without changing its overall length can be used.
  • Baffles 121a, 121b have a flow initiation function which, according to their length, the respective end of the tapered Partial bodies 101, 102 in the flow direction with respect to the combustion air 115 extend.
  • Channeling the combustion air 115 into the cone cavity 114 can be opened or closed by one of the baffles 121a, 121b Area of entry of this channel into the cone cavity 114 placed fulcrum 123 can be optimized, especially if the original Gap size of the tangential air inlet slots 119, 120 changed dynamically should be, for example, to change the speed of the combustion air 115 to achieve.
  • these can be dynamic Precautions can also be provided statically by using baffles as needed form a fixed component with the tapered partial bodies 101, 102.
  • FIG. 5 is a detail from FIG. 4 in the area of the inflow of the combustion air 115 into the cone cavity 114.
  • Turbulence generators 300 Upstream of the gas injectors 116, which are located at the transition of the air inlet ducts 120, 121 to the cone cavity 114, Turbulence generators 300 are arranged, which ensure that the downstream side The same, turbulence in the area of the inflowing fuel 116 arises. This ensures that on the one hand a greater depth of penetration of the Gas jet comes about, and on the other hand, due to the fact that on the back of the vortex trails forming turbulence generators 300 (cf. FIG. 6) the quality of the mixture of the two media, fuel 116 / combustion air 115 essential is improved, which is sustainable on minimizing pollutant emissions effect.
  • FIG. 6 shows the arrangement of such vortex generators 300 on the one hand and on the other hand the vortex trails forming on the back, which are optimal Allow mixture state.
  • the vortex generators 300 shown here are individual bars, which are spaced apart along the air inlet channels (See Fig. 4, item 119, 120) transversely to the direction of flow of the combustion air 115 are arranged.
  • these vortex generators also have a different cross section, the formation of said Vortex drag always represents the final purpose of such vortex generators.
  • the distance between the underside of the vortex generators 300 and the injection of the Fuel 116 must be designed so that the vortices related on which fuel jets are optimally positioned.
  • FIG. 7 shows, compared to FIG. 4, that the swirl generator 100 now consists of four partial bodies 130, 131, 132, 133 is constructed.
  • the associated longitudinal symmetry axes for each sub-body are marked with the letter a.
  • a To this Configuration is to be said that it is due to the lower generated with it Twist strength and in cooperation with a correspondingly enlarged Slot width is best suited, the bursting of the vortex flow on the downstream side to prevent the swirl generator in the mixing tube, thus causing the mixing tube to can fulfill the intended role.
  • FIG. 8 differs from FIG. 7 in that the partial bodies 140 here 141, 142, 143 have a blade profile shape which is used to provide a certain Flow is provided. Otherwise, the mode of operation of the swirl generator stayed the same.
  • the admixture of fuel 116 in the combustion air flow 115 happens from inside the blade profiles, i.e. the fuel line 108 is now integrated in the individual blades.
  • the transition geometry is corresponding for a swirl generator 100 with four partial bodies 7 or 8, built. Accordingly, the transition geometry as a natural extension of the upstream partial bodies, four transition channels 201 on, whereby the conical quarter area of said partial body is extended until it cuts the wall of the mixing tube.
  • the same considerations also apply if the swirl generator is based on a principle other than the one below Fig. 3 is constructed.
  • the down in the flow direction running surface of the individual transition channels 201 has a flow direction spiral shape, which has a crescent shape Course describes, corresponding to the fact that the flow cross-section is present of the transition piece 200 flared in the flow direction.
  • the swirl angle of the transition channels 201 in the flow direction is selected so that that the pipe flow then up to the cross-sectional jump on Combustion chamber entry still has a sufficient distance to be perfect Premix with the injected fuel. Further increases the axial speed due to the above-mentioned measures on the mixing tube wall downstream of the swirl generator.
  • the transition geometry and the measures in the area of the mixing tube cause a significant increase the axial velocity profile towards the center of the mixing tube, see above that the danger of early ignition is decisively counteracted.
  • the flow cross section of the tube 20 receives one in this area Transition radius R, the size of which basically depends on the flow within of the tube 20 depends.
  • This radius R is chosen so that the Applies flow to the wall and so the swirl number increases sharply.
  • the size of the radius R can be defined so that it is> 10% of the inside diameter d of the tube is 20.
  • the backflow bladder 50 increases enormously.
  • This radius R runs to the exit plane of the tube 20, the angle ⁇ between the beginning and end of curvature is ⁇ 90 °.
  • the tear-off edge A runs inside the tube 20 and thus forms a tear-off step S opposite the front point of the tear-off edge A, whose depth> 3 mm is.
  • this can be parallel to the exit plane of the tube 20 running edge based on a curved course back to the exit level to be brought.
  • the angle ⁇ ' which is between the tangent of the tear-off edge A and perpendicular to the exit plane of the tube 20 is the same as large as angle ⁇ .
  • Another Design of the tear-off edge for the same purpose can be done with the combustion chamber achieve toroidal notches. This publication is inclusive the scope of protection there regarding the tear-off edge is an integrating one Part of this description.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Gas Burners (AREA)

Claims (17)

  1. Brûleur destiné à faire fonctionner un générateur de chaleur, le brûleur se composant essentiellement d'une chambre de turbulence (100) pour un écoulement d'air de combustion (115), de moyens pour l'injection (103, 117) d'au moins un combustible (112, 113) dans l'écoulement d'air de combustion (115) et, en aval de la chambre de turbulence (100) se trouvant une section de mélange (220) laquelle présente, à l'intérieur d'une première partie de la section dans le sens de l'écoulement, un certain nombre de canaux de transfert (201) servant à transférer un écoulement formé dans la chambre de turbulence (100) dans un tube de mélange (20) raccordé en aval de ces canaux de transfert (201),
    caractérisé en ce qu'en
    amont des moyens d'injection (117) du combustible (113), se trouvent des générateurs de turbulence (300) sous la forme de barres écartées les unes des autres et disposées transversalement par rapport à l'écoulement d'air de combustion (115).
  2. Brûleur selon la revendication 1, caractérisé en ce que les barres forment, sur leur côté arrière, des traínées tourbillonnaires dans l'écoulement de l'air de combustion (115) dans le sens dudit écoulement, lesquelles traínées sont en liaison active avec les moyens d'injection (117) du combustible (116).
  3. Brûleur selon la revendication 1, caractérisé en ce que la chambre de turbulence (100) se compose d'au moins deux corps partiels creux, coniques, imbriqués l'un dans l'autre dans le sens de l'écoulement (101, 102; 130, 131, 132, 133; 140, 141, 142, 143), en ce que les axes de symétrie longitudinaux respectifs (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) de ces corps partiels sont décalés les uns des autres, de telle manière que les parois voisines des corps, dans leur extension longitudinale, forment des canaux tangentiels (119, 120) pour un écoulement de l'air de combustion (115) et que, dans l'espace intérieur (114) formé par les corps partiels au moins une buse d'injection de combustible (103) puisse être active.
  4. Brûleur selon la revendication 3, caractérisé en ce que, d'autres buses d'injection de combustible (117) sont disposées dans la zone des canaux tangentiels (119, 120), dans leur extension longitudinale.
  5. Brûleur selon la revendication 3, caractérisé en ce que les corps partiels (140, 141, 142, 143) présentent, en section transversale, un profil ayant la forme d'une aube.
  6. Brûleur selon la revendication 3, caractérisé en ce que les corps partiels présentent, dans le sens de l'écoulement, un angle d'ouverture de cône fixe ou un angle d'ouverture de cône croissant ou encore un angle d'ouverture de cône décroissant.
  7. Brûleur selon la revendication 3, caractérisé en ce que les corps partiels sont imbriqués les uns dans les autres en forme de spirale.
  8. Brûleur selon la revendication 3, caractérisé en ce que la buse d'injection (103) disposée côté tête est entourée d'une bague concentrique (190), en ce que cette bague (190) présente un certain nombre d'orifices (161) disposés dans le sens de la circonférence et en ce que, dans un débit d'air (160) s'écoulant par les orifices (161), un combustible peut être injecté.
  9. Brûleur selon la revendication 8, caractérisé en ce que les orifices (161) sont disposés en oblique vers l'avant.
  10. Brûleur selon la revendication 8, caractérisé en ce que la buse d'injection de combustible (103) est entourée d'une chambre d'air annulaire (180).
  11. Brûleur selon la revendication 1, caractérisé en ce que le nombre de canaux de transfert (201) dans la section de mélange (220) correspond au nombre de flux partiels formés dans la chambre de turbulence (100).
  12. Brûleur selon la revendication 1, caractérisé en ce que le tube de mélange (20) raccordé en aval des canaux de transfert (201) est pourvu, dans le sens de l'écoulement et selon la circonférence, d'orifices (21) pour l'injection d'un flux d'air à l'intérieur du tube de mélange (20).
  13. Brûleur selon la revendication 12, caractérisé en ce que les orifices (21) sont disposés sous un angle aigu par rapport à l'axe du brûleur (60) du tube de mélange (20).
  14. Brûleur selon la revendication 1, caractérisé en ce que la section transversale de passage du tube de mélange (20), en aval des canaux de transfert (201), est plus petite, égale ou plus grande que la section transversale de l'écoulement (40) formé dans la chambre de turbulence (100, 100a).
  15. Brûleur selon la revendication 1, caractérisé en ce qu'en aval de la section de mélange (220) est disposée une zone de combustion (30), en ce qu'entre la section de mélange (220) et la zone de combustion (30) s'opère un brusque changement de section transversale qui induit la section d'écoulement initiale de la zone de combustion (30) et en ce que, dans la zone de ce brusque changement de section, une zone d'écoulement de retour (50) peut être active.
  16. Brûleur selon la revendication 15, caractérisé en ce qu'en amont de la zone d'écoulement de retour (50) se trouve un diffuseur et/ou une section à venturi.
  17. Brûleur selon la revendication 1, caractérisé en ce que le tube de mélange (20), côté zone de combustion (30) présente une arête de décollement (A).
EP97810818A 1997-10-31 1997-10-31 Brûleur pour la mise en oeuvre d'un générateur de chaleur Expired - Lifetime EP0913630B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP97810818A EP0913630B1 (fr) 1997-10-31 1997-10-31 Brûleur pour la mise en oeuvre d'un générateur de chaleur
DE59709446T DE59709446D1 (de) 1997-10-31 1997-10-31 Brenner für den Betrieb eines Wärmeerzeugers
US09/178,578 US6059565A (en) 1997-10-31 1998-10-26 Burner for operating a heat generator
JP10308561A JPH11211026A (ja) 1997-10-31 1998-10-29 熱発生器を運転するためのバーナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97810818A EP0913630B1 (fr) 1997-10-31 1997-10-31 Brûleur pour la mise en oeuvre d'un générateur de chaleur

Publications (2)

Publication Number Publication Date
EP0913630A1 EP0913630A1 (fr) 1999-05-06
EP0913630B1 true EP0913630B1 (fr) 2003-03-05

Family

ID=8230452

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810818A Expired - Lifetime EP0913630B1 (fr) 1997-10-31 1997-10-31 Brûleur pour la mise en oeuvre d'un générateur de chaleur

Country Status (4)

Country Link
US (1) US6059565A (fr)
EP (1) EP0913630B1 (fr)
JP (1) JPH11211026A (fr)
DE (1) DE59709446D1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10051221A1 (de) * 2000-10-16 2002-07-11 Alstom Switzerland Ltd Brenner mit gestufter Brennstoff-Eindüsung
EP1262714A1 (fr) * 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Brûleur avec recirculation des gaz de combustion
WO2006058843A1 (fr) * 2004-11-30 2006-06-08 Alstom Technology Ltd Procede et dispositif de combustion d'hydrogene dans un bruleur a premelange
EP2260238B1 (fr) * 2008-03-07 2015-12-23 Alstom Technology Ltd Procédé de fonctionnement d'un brûleur à prémélange
WO2009109454A1 (fr) 2008-03-07 2009-09-11 Alstom Technology Ltd Procédé et ensemble brûleur servant à produire du gaz chaud et utilisation dudit procédé
JP5453322B2 (ja) 2008-03-07 2014-03-26 アルストム テクノロジー リミテッド バーナ装置並びにバーナ装置の使用
TW201437563A (zh) * 2013-03-22 2014-10-01 Shang-Yuan Huang 節能燃氣系統

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674561A5 (fr) 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
US5193995A (en) * 1987-12-21 1993-03-16 Asea Brown Boveri Ltd. Apparatus for premixing-type combustion of liquid fuel
DE59104727D1 (de) * 1991-12-23 1995-03-30 Asea Brown Boveri Vorrichtung für die Vermischung zweier gasförmiger Komponenten und Brenner, in welchem diese Vorrichtung eingesetzt wird.
JPH06193816A (ja) * 1992-08-24 1994-07-15 Tokyo Gas Co Ltd 燃焼室装置
CH687831A5 (de) * 1993-04-08 1997-02-28 Asea Brown Boveri Vormischbrenner.
US5667376A (en) * 1993-04-12 1997-09-16 North American Manufacturing Company Ultra low NOX burner
DE4435266A1 (de) * 1994-10-01 1996-04-04 Abb Management Ag Brenner
DE4439619A1 (de) * 1994-11-05 1996-05-09 Abb Research Ltd Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners
US5647215A (en) * 1995-11-07 1997-07-15 Westinghouse Electric Corporation Gas turbine combustor with turbulence enhanced mixing fuel injectors
DE19547913A1 (de) 1995-12-21 1997-06-26 Abb Research Ltd Brenner für einen Wärmeerzeuger
DE19547912A1 (de) * 1995-12-21 1997-06-26 Abb Research Ltd Brenner für einen Wärmeerzeuger

Also Published As

Publication number Publication date
JPH11211026A (ja) 1999-08-06
EP0913630A1 (fr) 1999-05-06
US6059565A (en) 2000-05-09
DE59709446D1 (de) 2003-04-10

Similar Documents

Publication Publication Date Title
EP0780629B1 (fr) Brûleur pour un générateur de chaleur
EP0704657B1 (fr) Brûleur
EP0918191B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0780630B1 (fr) Brûleur pour un générateur de chaleur
EP0918190A1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0899508B1 (fr) Brûleur pour un dispositif à chaleur
EP0797051B1 (fr) Brûleur pour un générateur de chaleur
EP0777081B1 (fr) Brûleur à prémélange
EP0718561B1 (fr) Brûleur
DE19757189B4 (de) Verfahren zum Betrieb eines Brenners eines Wärmeerzeugers
EP0994300B1 (fr) Brûleur pour la conduite d'un générateur de chaleur
EP0916894B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0987493B1 (fr) Brûleur pour générateur de chaleur
EP0931980B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0851172B1 (fr) Brûleur et méthode pour la mise en oeuvre d'une chambre de combustion avec un combustible liquide et/ou gazeux
EP0909921B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0751351B1 (fr) Chambre de combustion
EP0903540B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0919768B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0913630B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0833104B1 (fr) Brûleur pour le fonctionnement d'une chambre de combustion
DE19537636B4 (de) Kraftwerksanlage
DE19914666B4 (de) Brenner für einen Wärmeerzeuger
DE10042315A1 (de) Brenner für einen Wärmeerzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19991021

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20010919

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59709446

Country of ref document: DE

Date of ref document: 20030410

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030506

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59709446

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59709446

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709446

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709446

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709446

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20120918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59709446

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709446

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709446

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161020

Year of fee payment: 20

Ref country code: FR

Payment date: 20161020

Year of fee payment: 20

Ref country code: GB

Payment date: 20161020

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Effective date: 20170914

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59709446

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709446

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59709446

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20171030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20171030