EP0751351B1 - Chambre de combustion - Google Patents

Chambre de combustion Download PDF

Info

Publication number
EP0751351B1
EP0751351B1 EP96810353A EP96810353A EP0751351B1 EP 0751351 B1 EP0751351 B1 EP 0751351B1 EP 96810353 A EP96810353 A EP 96810353A EP 96810353 A EP96810353 A EP 96810353A EP 0751351 B1 EP0751351 B1 EP 0751351B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
flow
chamber according
combustion
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96810353A
Other languages
German (de)
English (en)
Other versions
EP0751351A1 (fr
Inventor
Hans Peter Knöpfel
Peter Dr. Senior
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA filed Critical Alstom SA
Publication of EP0751351A1 publication Critical patent/EP0751351A1/fr
Application granted granted Critical
Publication of EP0751351B1 publication Critical patent/EP0751351B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the present invention relates to a combustion chamber according to Preamble of claim 1.
  • the invention seeks to remedy this.
  • the invention how it is characterized in the claims, the task lies based on a combustion chamber of the type mentioned the introduction of the cooling air into the combustion air flow minimized pressure losses with optimal mixing of the two To shape air flows.
  • the pressure drops when implementing the cooling air in the Combustion airflow is minimized by at least an injector system at the transition to the plenum itself disembodied diffuser is formed.
  • the main advantage of the invention is that that this is a compact configuration, which is the inflow of cooling air into the other airflow within the same framework as when using a relatively long, flow-optimized transition diffuser guaranteed.
  • the combustion chamber is more compact can be interpreted and that the admixture of the cooling air fluidic runs optimally, in such a way that on the Flame temperature can be applied in the sense that minimizing pollutant emissions, in particular as far as NOx emissions are concerned.
  • the invention develops in particular in gas turbines Annular combustion chambers have great advantages because of the proposed addition the cooling air does not require an extension of the plenum, with an obvious consequence of a shorter rotor shaft of the system this results.
  • Annular combustion chamber 1 acts, which is essentially the shape of a coherent annular or quasi-annular cylinder occupies.
  • a combustion chamber also from a number of axially, quasi-axially or helically arranged and individually closed combustion chambers consist.
  • this combustion chamber can also consist of one single pipe exist.
  • this combustion chamber the only combustion stage of a gas turbine or a combustion stage a sequentially fired plant.
  • the annular combustion chamber 1 consists of a plenum 7 on the head side, that ends up in the flow direction with a configuration of burners 100. About the distribution and organization burner 100 is shown in the following figures discussed in more detail.
  • the combustion chamber 122 Downstream of this burner 100 closes the actual combustion chamber 122 of the combustion chamber 1. In the hot gases generated in this room then act in the Usually a downstream turbine.
  • the combustion chamber 122 is included a double annular channel 2, 3 encased, through which a cooling air 4 flows in the counterflow direction.
  • this cooling air 4 in operative connection with an air quantity coming from outside 5 higher potential, hereinafter called accelerating air, the interaction of these two air flows 4, 5 over Injector systems 8, 9 takes place, which in the circumferential direction arranged opposite the inner and outer wall of the annular combustion chamber 1 are. On the design of these injector systems is discussed in more detail in Fig. 2.
  • FIG. 2 shows the structure of the individual injector systems 8, 9 seen. Furthermore, the arrangement goes from this FIG. 2 the burner 100 within the front wall 110 for subsequent connection Combustion chamber. This arrangement may apply case to be different, including the number of burners can vary. It also takes place within the burner network preferably a division into pilot burner and main burner instead, with this provision the transient load ranges can be approached optimally.
  • the cooling air 4 becomes on both sides of the burner 100 through individual self-contained injector systems 8, 9 directed, which have the shape of rectangular channels. In the circumferential direction the acceleration air of each channel 5 through holes 5a there at regular intervals introduced and causes the cooling air 4 within the very short length of the channels an optimal speed profile received before it flows into the plenary.
  • the geometric cross-sectional shape is Channels are not limited to the rectangular shape shown. Also the flow cross section and finally the number of these channels in the circumferential direction depends on the case Determine case, with the goal of optimizing each design the speed profile of the cooling air 4 within must be the shortest route.
  • FIG. 3 Cuts according to Figures 4-6 are those shown schematically in FIGS. 4-6.
  • Baffles 121a, 121b have only been hinted at. The following is the description of FIG. 3 as needed referred to the remaining figures 4-6.
  • the burner 100 of FIG. 3 is a premix burner and exists of two hollow conical part-bodies 101, 102 which are nested staggered.
  • the dislocation the respective central axis or longitudinal symmetry axes 101b, 102b of the tapered partial bodies 101, 102 to one another creates on both sides, in a mirror image arrangement, each have a tangential air inlet slot or duct 119, 120 free (see Fig. 4-6), through which the combustion air 115 inside the burner 100, i.e. in the cone cavity 114 flows.
  • the cone shape of the partial body shown 101, 102 in the flow direction has a certain fixed Angle on.
  • the two tapered partial bodies 101, 102 each have a cylindrical Initial part 101a, 102a, which also, analogous to the tapered Partial bodies 101, 102, offset from one another, see above that the tangential air inlet slots 119, 120 over the entire length of the burner 100 are present.
  • a nozzle 103 In the area of cylindrical initial part, a nozzle 103 is accommodated, whose fuel injection 104 is approximately the narrowest cross section that formed by the tapered body 101, 102 Cone cavity 114 coincides.
  • the injection capacity and the type of this nozzle 103 depends on the given Parameters of the respective burner 100.
  • the burner can be purely conical, i.e. without a cylindrical one
  • Initial parts 101a, 102a with a single part body a single tangential air inlet slot, or out be executed more than two partial bodies.
  • the conical Sub-bodies 101, 102 also each have a fuel line 108, 109 on which along the tangential air inlet slots 119, 120 arranged and with injection openings 117 are provided, through which preferably a gaseous Fuel 113 in the combustion air flowing through there 115 is injected, as shown by the arrows 116 want.
  • These fuel lines 108, 109 are preferably at the latest at the end of the tangential inflow, before entering the cone cavity 114, placed, this to get an optimal air / fuel mixture.
  • the exit opening of the burner 100 is on the combustion chamber side 122 into a front wall 110 in which a number of holes 110a are present.
  • the latter bores 110a occur in function when needed, and ensure that dilution air or cooling air 110b the front part of the combustion chamber 122 is fed.
  • this air supply ensures flame stabilization at the output of burner 100.
  • This Flame stabilization becomes important when it comes to the compactness of the flame due to a radial flattening to support.
  • the fuel supplied through the nozzle 103 it is a liquid or gaseous Fuel 112, which at most with a recirculated exhaust gas can be enriched.
  • This fuel 112 will, in particular if it is a liquid, under a acute angle injected into the cone cavity 114. From the Nozzle 103 thus forms a conical fuel profile 105, the rotating combustion air flowing in tangentially 115 is enclosed.
  • the concentration of fuel 112 continuously through the incoming combustion air 115 for optimal mixing reduced. If the burner 100 with a gaseous Operated fuel 113, this is preferably done via Opening nozzles 117, the formation of this fuel / air mixture directly at the crossing of air inlet slots 119, 120 to the cone cavity 114 occurs.
  • the injection of fuel 112 through nozzle 103 performs the function a head stage; it usually comes at commissioning and for part-load operation. Of course, is about this head stage also a base load operation with a liquid Fuel possible.
  • the cross section On the one hand, at the end of the burner 100 the optimal, homogeneous fuel concentration the cross section, on the other hand the critical swirl number; the latter then leads in cooperation with the one scheduled there Cross-sectional expansion to a vortex run, at the same time for the formation of a backflow zone there 106. Ignition occurs at the top of this backflow zone 106. Only at this point can a stable flame front 107 arise. A flashback of the flame inside the burner 100, as is latently the case with known premixing sections is a remedy there with complicated flame holders is not to be feared here.
  • the once-fixed backflow zone 106 is on is stable in position because the swirl number increases in the direction of flow in the area of the cone shape of the burner 100.
  • the axial speed within the burner 100 leaves by a corresponding supply, not shown change the axial combustion air flow.
  • the construction of the burner 100 is furthermore particularly suitable for the Size of the tangential air inlet slots 119, 120 to change, without changing the length of the burner 100 a relatively large operational bandwidth can be recorded can. It is also easily possible to use the tapered Partial bodies 101, 102 to be nested in a spiral shape.
  • the geometric configuration of the Baffles 121a, 121b have a flow initiation function these, according to their length, the respective End of the tapered partial body 101, 102 in the direction of flow extend towards the combustion air 115.
  • the Channeling the combustion air 115 into the cone cavity 114 can by opening or closing the guide plates 121a, 121b by one in the area of the entry of this channel into the Cone cavity 114 placed pivot point 123 can be optimized, this is particularly necessary if the original gap size the tangential air inlet slots 119, 120 changed becomes.
  • these can be dynamic arrangements can also be provided statically, as required Baffles are an integral part with the tapered partial bodies 101, 102 form.
  • the burner 100 can also can be operated without baffles, or others can Aids for this are provided.
  • FIG. 7 shows the overall structure of a further burner 300.
  • a swirl generator 100a is effective, the design of which largely that of the burner 100 according to FIG. 3 equivalent.
  • This swirl generator 100a also around a conical structure that is tangentially multiple from the tangentially flowing combustion air flow 115 is applied.
  • the current that forms here becomes based on a transition geometry provided downstream of the swirl generator 100a transitioned seamlessly into a transition piece 200, in such a way that no detachment areas occur there can.
  • the configuration of this transition geometry is described in more detail in FIG. 12.
  • This transition piece 200 is the outflow side of the transition geometry through a pipe 20 extended, both parts of the actual mixing tube 220 of the burner 300 form.
  • Transition piece 200 and tube 20 into one contiguous structures are fused, the characteristics of each part are preserved.
  • Transition piece 200 and tube 20 created from two parts are connected by a sleeve ring 50, the same socket ring 50 on the head side as anchoring surface for serves the swirl generator 100a.
  • a sleeve ring 50 has furthermore the advantage that different mixing tubes are used can be. Downstream of the tube 20 is located the actual combustion chamber 122, which is essentially corresponds to that of Fig. 1 and here only by a flame tube 30 is symbolized.
  • the mixing tube 220 met the condition that downstream of the swirl generator 100a a defined mixing section is provided, in which a perfect premix of different types of fuel is achieved.
  • This mixing section ie the mixing tube 220, enables furthermore a lossless flow guidance, so that is also in operative connection with the transition geometry cannot initially form a backflow zone, with which the Length of the mixing tube 220 to the mix quality for everyone Fuel types influence can be exerted.
  • This mixing tube 220 has yet another property, which is that in the mixing tube 220 itself the axial speed profile a pronounced maximum on the axis possesses, so that the flame reignites from the combustion chamber not possible. However, it is true that at such a configuration this axial speed Wall falls down.
  • the swirl generator 100a according to FIG. 8 corresponds to the physical one Design forth, as already mentioned, largely the burner 100 according to FIG. 3, this swirl generator 100a no longer has a front wall. Regarding the Differences that can be identified here are explained below Fig. 7 referenced.
  • FIGS. 4-6 relate to the explanations under FIGS. 4-6 directed.
  • FIG. 10 shows that the swirl generator 100a now made up of four partial bodies 130, 131, 132, 133 is.
  • the associated longitudinal symmetry axes for each partial body are marked with the letter a.
  • This configuration can be said that because of the generated lower twist strength and in cooperation with one suitably suitably enlarged slot width, the bursting of the vortex flow on the downstream side of the To prevent swirl generator 110a in the mixing tube 220, which the Mixing tube can best fulfill the role intended for it.
  • Fig. 11 differs from Fig. 10 in that here the partial body 140, 141, 142, 143 a blade profile shape have which to provide a certain flow is provided. Otherwise, the mode of operation of the swirl generator stayed the same.
  • the admixture of fuel 116 occurs in the combustion air flow 115 the inside of the blade profiles, i.e. the fuel line 108 is now integrated in the individual blades.
  • the transition geometry is for a swirl generator 100a with four partial bodies, corresponding to FIG. 10 or 11, built up. Accordingly, the transition geometry points as natural extension of the upstream parts four transition channels 201, creating the conical quarter surfaces the partial body mentioned is extended until it Wall of the tube 20 respectively. of the mixing tube 220 cut.
  • the same considerations also apply when the swirl generator from a different principle than that described under Fig. 8, is constructed.
  • the one running downward in the direction of flow The area of the individual transition channels 201 has a in the direction of flow in a spiral shape, which describes a crescent shape, corresponding to the The fact that the flow cross section of the Transition piece 200 flared in the direction of flow.
  • the swirl angle of the transition channels 201 in the flow direction is selected so that the pipe flow 40 to enough for the cross-sectional jump at the combustion chamber inlet large distance remains to make a perfect premix with the injected fuel. Further increases the axial speed is also affected by the above-mentioned measures on the mixing tube wall downstream of the swirl generator.
  • the transition geometry and the measures in the area of the mixing tube 220 cause a significant increase in Axial velocity profile to the center of this mixing tube down, so the risk of early ignition is crucial is counteracted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Air Supply (AREA)

Claims (19)

  1. Chambre de combustion (1), composée essentiellement d'un plénum (7) destiné à recevoir au moins un courant d'air comprimé, d'au moins un brûleur (100) placé à l'intérieur du plénum (7), d'un espace de combustion (122) faisant suite au plénum, et d'un canal (2, 3) enveloppant l'espace de combustion, débouchant dans le plénum et conduisant de l'air de refroidissement, caractérisée en ce que, dans la région de l'embouchure du canal (2, 3) conduisant l'air de refroidissement dans le plénum (7), sont disposés des systèmes d'injecteur (8, 9) qui se composent chaque fois d'un canal de passage comme prolongement du canal conduisant l'air de refroidissement (2, 3) et d'un nombre d'ouvertures (5a) disposées dans le sens périphérique du canal de passage, et en ce que les ouvertures (5a) sont alimentées avec un air d'accélération (5).
  2. Chambre de combustion suivant la revendication 1, caractérisée en ce que la chambre de combustion (1) est une chambre de combustion annulaire.
  3. Chambre de combustion suivant les revendications 1 et 2, caractérisée en ce que les systèmes d'injecteur (8, 9) sont disposés en anneau autour des parois de l'espace de combustion (122).
  4. Chambre de combustion suivant la revendication 1, caractérisée en ce que les systèmes d'injecteur (8, 9) pénètrent dans le plénum (7).
  5. Chambre de combustion suivant la revendication 1, caractérisée en ce que le brûleur (100) se compose d'au moins deux corps partiels (101, 102) coniques creux, emboítés l'un dans l'autre dans le sens de l'écoulement, dont les axes de symétrie respectifs (101b, 102b) sont décalés l'un par rapport à l'autre, en ce que les parois voisines des corps partiels (101, 102) forment dans le sens de leur longueur des canaux tangentiels (119, 120) pour un courant d'air de combustion (115), en ce qu'au moins un injecteur de combustible (103) est présent dans l'espace conique creux (114) formé par les corps partiels (101, 102).
  6. Chambre de combustion suivant la revendication 5, caractérisée en ce que d'autres injecteurs de combustible (117) sont disposés dans la région des canaux tangentiels (119, 120) suivant leur longueur.
  7. Chambre de combustion suivant la revendication 5, caractérisée en ce que les corps partiels (101, 102) s'évasent en cône, avec un angle fixe ou présentent une conicité croissante, ou une conicité décroissante, dans le sens de l'écoulement.
  8. Chambre de combustion suivant la revendication 1, caractérisée en ce que le brûleur (300) se compose d'un générateur de tourbillon (100a) et d'une zone de mélange (220) disposée en aval du générateur de tourbillon, et en ce que la zone de mélange (220) présente, en aval du générateur de tourbillon (100a) à l'intérieur d'une première zone partielle (200) des canaux de transition (201) orientés dans le sens de l'écoulement pour la transmission d'un écoulement (40) formé dans le générateur de tourbillon (100a) dans la section transversale de passage (20) de la zone de mélange (220) installée à la suite des canaux de transition (201).
  9. Chambre de combustion suivant la revendication 8, caractérisée en ce que le générateur de tourbillon (100a) se compose d'au moins deux corps partiels (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) coniques creux, emboítés l'un dans l'autre dans le sens de l'écoulement, en ce que les axes de symétrie longitudinaux respectifs (101b, 102b; 131a, 132a, 133a, 134a; 140a, 141a, 142a, 143a) des corps partiels sont décalés l'un par rapport à l'autre, de telle manière que les parois voisines des corps partiels forment des canaux tangentiels (119, 120) selon leur longueur pour un courant d'air de combustion (115), et en ce qu'au moins un injecteur de combustible (103) est disposé dans l'espace conique creux (114) formé par les corps partiels.
  10. Chambre de combustion suivant la revendication 9, caractérisée en ce que d'autres injecteurs de combustible (117) sont disposés dans la région des canaux tangentiels (119, 120) selon leur longueur.
  11. Chambre de combustion suivant la revendication 9, caractérisée en ce que les corps partiels (140, 141, 142, 143) présentent en section transversale un profilage en forme d'aubes.
  12. Chambre de combustion suivant la revendication 8, caractérisée en ce que la zone de mélange (220) est configurée en un élément de mélange tubulaire.
  13. Chambre de combustion suivant les revendications 8 et 9, caractérisée en ce que le nombre des canaux de transition (201) dans la zone de mélange (220) correspond au nombre des corps partiels (101, 102; 131, 132, 133, 134; 140, 141, 142, 143) du générateur de tourbillon (100a).
  14. Chambre de combustion suivant la revendication 8, caractérisée en ce que la zone de mélange (220) est pourvue, en aval des canaux de transition (201) dans le sens de l'écoulement et dans le sens périphérique, d'ouvertures sous forme d'ouvertures de pose de film (21) pour l'injection d'un courant d'air.
  15. Chambre de combustion suivant la revendication 8, caractérisée en ce que la zone de mélange (220) est pourvue, en aval des canaux de transition (201), d'ouvertures tangentielles pour l'injection d'un courant d'air.
  16. Chambre de combustion suivant la revendication 8, caractérisée en ce que la section transversale de passage (20) de la zone de mélange (220) en aval des canaux de transition (201) est plus petite, égale ou plus grande que la section transversale de l'écoulement (40) formé dans le générateur de tourbillon (100a).
  17. Chambre de combustion suivant la revendication 8, caractérisée en ce que les canaux de transition (201) comprennent par secteurs la face frontale de la zone de mélange (220) et sont orientés en tourbillon dans le sens de l'écoulement.
  18. Chambre de combustion suivant la revendication 8, caractérisée en ce qu'un diffuseur est présent à l'extrémité de la zone de mélange (220).
  19. Chambre de combustion suivant l'une des revendications 5 ou 8, caractérisée en ce qu'un espace de combustion (122) est disposé en aval du brûleur (100, 300), en ce qu'un saut de section transversale est présent entre le brûleur (100, 300) et l'espace de combustion (122), et en ce qu'une zone de reflux (106) est présente dans la région de saut de section transversale.
EP96810353A 1995-06-26 1996-05-31 Chambre de combustion Expired - Lifetime EP0751351B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19523094A DE19523094A1 (de) 1995-06-26 1995-06-26 Brennkammer
DE19523094 1995-06-26

Publications (2)

Publication Number Publication Date
EP0751351A1 EP0751351A1 (fr) 1997-01-02
EP0751351B1 true EP0751351B1 (fr) 2002-10-16

Family

ID=7765231

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810353A Expired - Lifetime EP0751351B1 (fr) 1995-06-26 1996-05-31 Chambre de combustion

Country Status (4)

Country Link
US (1) US5832732A (fr)
EP (1) EP0751351B1 (fr)
JP (1) JP4001952B2 (fr)
DE (2) DE19523094A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19720786A1 (de) 1997-05-17 1998-11-19 Abb Research Ltd Brennkammer
WO1999006767A1 (fr) * 1997-07-31 1999-02-11 Siemens Aktiengesellschaft Brûleur
DE19737997A1 (de) * 1997-08-30 1999-03-04 Asea Brown Boveri Plenum
EP0918190A1 (fr) * 1997-11-21 1999-05-26 Abb Research Ltd. Brûleur pour la mise en oeuvre d'un générateur de chaleur
AUPP895999A0 (en) * 1999-03-01 1999-03-25 Bowin Technology Pty Limited Gas fired burner apparatus
GB9929601D0 (en) * 1999-12-16 2000-02-09 Rolls Royce Plc A combustion chamber
DE10049205A1 (de) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Verfahren und Vorrichtung zur Brennstoffversorgung eines Vormischbrenners
US6360776B1 (en) 2000-11-01 2002-03-26 Rolls-Royce Corporation Apparatus for premixing in a gas turbine engine
US7624722B2 (en) * 2007-12-31 2009-12-01 Cummins, Inc Apparatus and system for efficiently recirculating an exhaust gas in a combustion engine
WO2009109452A1 (fr) * 2008-03-07 2009-09-11 Alstom Technology Ltd Ensemble brûleur et son utilisation
WO2009109454A1 (fr) * 2008-03-07 2009-09-11 Alstom Technology Ltd Procédé et ensemble brûleur servant à produire du gaz chaud et utilisation dudit procédé
DE102010014037A1 (de) 2009-04-02 2010-11-04 Cummins Filtration IP, Inc., Minneapolis Reduktionsmittelzersetzungssystem
FR2945854B1 (fr) * 2009-05-19 2015-08-07 Snecma Vrille melangeuse pour un injecteur de carburant dans une chambre de combustion d'une turbine a gaz et dispositif de combustion correspondant
EP2685163B1 (fr) * 2012-07-10 2020-03-25 Ansaldo Energia Switzerland AG Brûleur de prémélange du type multi-cônes destiné à une turbine à gaz

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2621477A (en) * 1948-06-03 1952-12-16 Power Jets Res & Dev Ltd Combustion apparatus having valve controlled passages for preheating the fuel-air mixture
US3691762A (en) * 1970-12-04 1972-09-19 Caterpillar Tractor Co Carbureted reactor combustion system for gas turbine engine
US3751991A (en) * 1971-05-21 1973-08-14 Technovator Inc Particulate solid material inspection system
US3859786A (en) * 1972-05-25 1975-01-14 Ford Motor Co Combustor
US4098075A (en) * 1976-06-01 1978-07-04 United Technologies Corporation Radial inflow combustor
GB1571213A (en) * 1977-01-28 1980-07-09 Kainov G Combustion chamber for gas turbine engine
US4561841A (en) * 1980-11-21 1985-12-31 Donald Korenyi Combustion apparatus
US4651534A (en) * 1984-11-13 1987-03-24 Kongsberg Vapenfabrikk Gas turbine engine combustor
USH1008H (en) * 1985-05-28 1992-01-07 The United States Of America As Represented By The Secretary Of The Navy Dump combustor with noncoherent flow
JPH0816531B2 (ja) * 1987-04-03 1996-02-21 株式会社日立製作所 ガスタ−ビン燃焼器
WO1988008503A1 (fr) * 1987-04-30 1988-11-03 May Michael G Procede et agencement de combustion de combustible
US4875339A (en) * 1987-11-27 1989-10-24 General Electric Company Combustion chamber liner insert
US4887432A (en) * 1988-10-07 1989-12-19 Westinghouse Electric Corp. Gas turbine combustion chamber with air scoops
CH678100A5 (fr) * 1989-03-10 1991-07-31 Oertli Waermetechnik Ag
CH680816A5 (fr) * 1989-04-27 1992-11-13 Asea Brown Boveri
CH680084A5 (fr) * 1989-06-06 1992-06-15 Asea Brown Boveri
DE4232442A1 (de) * 1992-09-28 1994-03-31 Asea Brown Boveri Gasturbinenbrennkammer
US5490388A (en) * 1992-09-28 1996-02-13 Asea Brown Boveri Ltd. Gas turbine combustion chamber having a diffuser
DE59208715D1 (de) * 1992-11-09 1997-08-21 Asea Brown Boveri Gasturbinen-Brennkammer
DE4320212A1 (de) * 1993-06-18 1994-12-22 Abb Research Ltd Feuerungsanlage
DE4411624A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Brennkammer mit Vormischbrennern
DE4415315A1 (de) * 1994-05-02 1995-11-09 Abb Management Ag Kraftwerksanlage
DE4435266A1 (de) * 1994-10-01 1996-04-04 Abb Management Ag Brenner
DE4439619A1 (de) * 1994-11-05 1996-05-09 Abb Research Ltd Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners

Also Published As

Publication number Publication date
DE19523094A1 (de) 1997-01-02
EP0751351A1 (fr) 1997-01-02
JP4001952B2 (ja) 2007-10-31
JPH0914635A (ja) 1997-01-17
DE59609792D1 (de) 2002-11-21
US5832732A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
EP0704657B1 (fr) Brûleur
EP0780629B1 (fr) Brûleur pour un générateur de chaleur
EP1141628B1 (fr) Bruleur pour generateur de chaleur
EP0718561B1 (fr) Brûleur
DE4426351B4 (de) Brennkammer für eine Gasturbine
EP0899508B1 (fr) Brûleur pour un dispositif à chaleur
EP0918191B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
DE19502796B4 (de) Brenner
EP0780630B1 (fr) Brûleur pour un générateur de chaleur
EP0777081B1 (fr) Brûleur à prémélange
EP0751351B1 (fr) Chambre de combustion
EP0797051B1 (fr) Brûleur pour un générateur de chaleur
EP0918190A1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0994300B1 (fr) Brûleur pour la conduite d'un générateur de chaleur
EP0987493B1 (fr) Brûleur pour générateur de chaleur
EP0851172B1 (fr) Brûleur et méthode pour la mise en oeuvre d'une chambre de combustion avec un combustible liquide et/ou gazeux
EP0909921B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0931980A1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
DE19537636B4 (de) Kraftwerksanlage
EP0694730B1 (fr) Bruleur
EP0903540B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0833104B1 (fr) Brûleur pour le fonctionnement d'une chambre de combustion
EP0913630B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0740108A2 (fr) Brûleur
EP0899506A2 (fr) Dispositif de combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19970530

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17Q First examination report despatched

Effective date: 20020102

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59609792

Country of ref document: DE

Date of ref document: 20021121

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALSTOM (SWITZERLAND) LTD

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030228

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

ET Fr: translation filed
NLS Nl: assignments of ep-patents

Owner name: ALSTOM (SWITZERLAND) LTD

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030717

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20120709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59609792

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59609792

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59609792

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59609792

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20120918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150521

Year of fee payment: 20

Ref country code: GB

Payment date: 20150521

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150521

Year of fee payment: 20

Ref country code: NL

Payment date: 20150520

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59609792

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20160530

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59609792

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59609792

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH