EP0909921B1 - Brûleur pour la mise en oeuvre d'un générateur de chaleur - Google Patents

Brûleur pour la mise en oeuvre d'un générateur de chaleur Download PDF

Info

Publication number
EP0909921B1
EP0909921B1 EP97810773A EP97810773A EP0909921B1 EP 0909921 B1 EP0909921 B1 EP 0909921B1 EP 97810773 A EP97810773 A EP 97810773A EP 97810773 A EP97810773 A EP 97810773A EP 0909921 B1 EP0909921 B1 EP 0909921B1
Authority
EP
European Patent Office
Prior art keywords
burner
burner according
downstream
fuel
swirl generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810773A
Other languages
German (de)
English (en)
Other versions
EP0909921A1 (fr
Inventor
Hans Peter Knöpfel
Thomas Ruck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom SA filed Critical Alstom SA
Priority to DE59709061T priority Critical patent/DE59709061D1/de
Priority to EP97810773A priority patent/EP0909921B1/fr
Priority to US09/169,140 priority patent/US5954495A/en
Publication of EP0909921A1 publication Critical patent/EP0909921A1/fr
Application granted granted Critical
Publication of EP0909921B1 publication Critical patent/EP0909921B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D23/00Assemblies of two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/14Special features of gas burners
    • F23D2900/14021Premixing burners with swirling or vortices creating means for fuel or air

Definitions

  • a large number of mixing elements are concentric with the mixing section provided which the formation of a mixture of combustion air and Serve fuel. This mixture forms from the respective mixing element then a pilot stage of the combustion chamber.
  • This burner guarantees compared to those from the previous state the technology a significant improvement in terms of strengthening flame stability, lower pollutant emissions, lower pulsations, complete Burnout, large operating area, good cross-ignition between the different Brennem, compact design, improved mixing, etc.
  • This burner has autonomous arrangements to drive the gas turbine safely, especially in its transient load ranges to be able to. The integration of such precautions in the burner lead to no additional pollutant emissions, which the operational and emissions advantages of the underlying burner could question.
  • the invention seeks to remedy this.
  • the invention the task is based on a burner at the beginning to propose precautions which strengthen the flame stability for stable operation, especially in the transient load ranges, ensure under the further task that the Pollutant emissions remain low.
  • the burner is expanded in such a way that in the area of its transition a ring-shaped system to provide for the downstream combustion chamber a fuel / air mixture is generally provided as Pilot stage acts.
  • Pilot stage acts Through a number of circumferential exit bores Appropriate pilot burners are created in the combustion chamber, which are operated in diffusion mode for stability reasons and directly in the combustion chamber.
  • the object according to the invention also ensures that the minimized Cooling amount can also be fed to the burning process.
  • Fig. 1 shows the overall structure of a burner.
  • a swirl generator 100 is effective, the design of which is shown and described in more detail in the following FIGS. 3-6.
  • This swirl generator 100 is a conical structure which is acted upon tangentially several times by a tangentially flowing combustion air flow 115.
  • the flow formed here is seamlessly transferred to a transition piece 200 using a transition geometry provided downstream of the swirl generator 100, in such a way that no separation areas can occur there.
  • the configuration of this transition geometry is described in more detail in FIG. 6.
  • This transition piece 200 is extended on the outflow side of the transition geometry by a mixing tube 20, both parts forming the actual mixing section 220.
  • these bores 21 run at an acute angle with respect to the burner axis 60.
  • the outlet of the transition channels 201 corresponds to the narrowest flow cross-section of the mixing tube 20.
  • the transition channels 201 mentioned therefore bridge the respective cross-sectional difference without adversely affecting the flow formed. If the selected precaution triggers an intolerable pressure loss when guiding the pipe flow 40 along the mixing pipe 20, this can be remedied by providing a diffuser (not shown in the figure) at the end of this mixing pipe.
  • a combustion chamber 30 combustion chamber then adjoins the end of the mixing tube 20, a cross-sectional jump formed by a burner front 70 being present between the two flow cross sections.
  • the transfer of the gaseous fuel 303 from the annular chamber 301 into the downstream annular chamber 308 is accomplished by a number of openings 309 arranged in the circumferential direction.
  • the passage geometry of these openings 309 is designed such that the gaseous fuel 303 flows into the downstream annular chamber 308 with a large mixing potential.
  • the other annular chamber 302 closes with a perforated plate 305, the bores 310 provided here being designed in such a way that the air volume 304 flowing through there impacts cooling on the base plate 307 of the downstream annular chamber 308.
  • This base plate has the function of a heat protection plate against the calorific load from the combustion chamber 30, so that this impingement cooling must be extremely efficient here.
  • this air mixes within this annular chamber 308 with the inflowing gaseous fuel 303 from the openings 309 of the upstream annular chamber 301 before this mixture through a number of bores 306 arranged on the combustion chamber side into the combustion chamber 30 flows out.
  • the mixture flowing out burns as a premixed diffusion flame with minimized pollutant emissions and therefore forms Bore 306 a pilot burner acting in the combustion chamber 30, which one guaranteed stable operation.
  • Fig. 2 shows a schematic view of the burner according to Fig. 1, here in particular the flushing of a centrally arranged fuel nozzle 103 and the effect of fuel injectors 170 is pointed out.
  • the mode of action the remaining main components of the burner, namely swirl generator 100 and transition piece 200 are closer under the following figures described.
  • the fuel nozzle 103 is spaced with a ring 190 encased in which a number of circumferentially bored holes 161 are placed, through which an amount of air 160 into an annular chamber 180 flows and removes the flow around the fuel lance.
  • These holes 161 are slanted forward so that it is appropriate axial component arises on the burner axis 60.
  • FIG. 4 is used at the same time as FIG. 3.
  • 3 is referred to the other figures as necessary in the description of FIG.
  • the first part of the burner according to FIG. 1 forms the swirl generator shown in FIG. 3 100.
  • This consists of two hollow conical partial bodies 101, 102, which are nested in a staggered manner.
  • the number of conical Partial body can of course be larger than two, like the figures 5 and 6 show; this depends in each case, as will be explained in more detail below will depend on the operating mode of the entire burner. It is with certain Operating constellations are not excluded, one from a single spiral to provide existing swirl generator.
  • the offset of the respective central axis or longitudinal symmetry axes 101b, 102b (cf. FIG. 4) of the conical partial bodies 101, 102 creates each other in the adjacent wall, in mirror image Arrangement, each a tangential channel, i.e.
  • the conical sub-bodies 101, 102 each have a fuel line 108, 109 which run along the tangential air inlet slots 119, 120 arranged and provided with injection openings 117, through which preferably a gaseous fuel 113 in the combustion air flowing through there 115 is injected, as the arrows 116 want to symbolize.
  • Fuel nozzle 103 brought fuel 112 is, as mentioned, normally a liquid fuel, whereby a mixture formation with a other medium, for example with a recirculated flue gas, without further is possible.
  • This fuel 112 is preferably very low acute angle injected into the cone cavity 114. From the fuel nozzle 103 A conical fuel spray 105 is thus formed, which flows in from the tangential one rotating combustion air 115 is enclosed and degraded.
  • the concentration of the injected fuel is then in the axial direction 112 continuously through the incoming combustion air 115 for mixing Degraded towards evaporation. If a gaseous fuel 113 Introduced via the opening nozzles 117, the fuel / air mixture is formed directly at the end of the air inlet slots 119, 120. Is the combustion air 115 additionally preheated, or for example with a recirculated Flue gas or exhaust gas enriched, so this sustainably supports the Evaporation of the liquid fuel 112 before this mixture in the downstream Stage flows, here in the transition piece 200 (see FIGS. 1 and 7). The same considerations also apply if liquid lines 108, 109 Fuels should be supplied.
  • the construction of the swirl generator 100 is furthermore particularly suitable, change the size of the tangential air inlet slots 119, 120, which is a relatively large one without changing the overall length of the swirl generator 100 operational bandwidth can be captured.
  • the partial bodies 101, 102 can also be moved relative to one another in another plane, which even an overlap of the same can be provided.
  • the sub-bodies 101, 102 by a counter-rotating movement spiral to nest into each other. So it is possible, the shape, the size and the configuration of the tangential air inlet slots 119, 120 arbitrarily vary, with which the swirl generator 100 is universal without changing its overall length can be used.
  • Baffles 121a, 121b have a flow initiation function which, according to their length, the respective end of the tapered Partial bodies 101, 102 in the flow direction with respect to the combustion air 115 extend.
  • Channeling the combustion air 115 into the cone cavity 114 can be opened or closed by one of the baffles 121a, 121b Area of entry of this channel into the cone cavity 114 placed fulcrum 123 can be optimized, especially if the original Gap size of the tangential air inlet slots 119, 120 changed dynamically should be, for example, to change the speed of the combustion air 115 to achieve.
  • these can be dynamic Precautions can also be provided statically by using baffles as needed form a fixed component with the tapered partial bodies 101, 102.
  • FIG. 6 differs from FIG. 5 in that the partial bodies 140 here 141, 142, 143 have a blade profile shape which is used to provide a certain Flow is provided. Otherwise, the mode of operation of the swirl generator stayed the same.
  • the admixture of fuel 116 in the combustion air flow 115 happens from inside the blade profiles, i.e. the fuel line 108 is now integrated in the individual blades.
  • the swirl angle of the transition channels 201 in the flow direction is selected so that that the pipe flow then up to the cross-sectional jump on Combustion chamber entry still has a sufficient distance to be perfect Premix with the injected fuel. Further increases the axial speed due to the above-mentioned measures on the mixing tube wall downstream of the swirl generator.
  • the transition geometry and the measures in the area of the mixing tube cause a significant increase the axial velocity profile towards the center of the mixing tube, see above that the danger of early ignition is decisively counteracted.
  • the flow cross section of the tube 20 receives one in this area Transition radius R, the size of which basically depends on the flow within of the tube 20 depends.
  • This radius R is chosen so that the Applies flow to the wall and so the swirl number increases sharply.
  • the size of the radius R can be defined so that it is> 10% of the inside diameter d of the tube is 20.
  • the backflow bladder 50 increases enormously.
  • This radius R runs to the exit plane of the tube 20, the angle ⁇ between the beginning and end of curvature is ⁇ 90 °.
  • the tear-off edge A runs inside the tube 20 and thus forms a tear-off step S opposite the front point of the tear-off edge A, whose depth> 3 mm is.
  • this can be parallel to the exit plane of the tube 20 running edge based on a curved course back to the exit level to be brought.
  • the angle ⁇ ' which is between the tangent of the tear-off edge A and perpendicular to the exit plane of the tube 20 is the same size like angle ⁇ .
  • Another Design of the tear-off edge for the same purpose can be done with the combustion chamber achieve toroidal notches. This publication is inclusive the scope of protection there regarding the tear-off edge is an integrating one Part of this description.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Claims (18)

  1. Brûleur pour faire fonctionner un générateur de chaleur, le brûleur étant constitué essentiellement d'un générateur (100) de tourbillons pour un courant d'air de combustion, de moyens (117) d'injection d'au moins un combustible dans le courant d'air de combustion, une zone (220) de mélange étant disposée en aval du générateur de tourbillons et comportant dans une première partie dans la direction du courant un certain nombre de canaux (201) de raccordement pour faire passer un courant formé dans ce générateur de tourbillons dans un tube (20) de mélange en aval de ces canaux de raccordement, un système (300) à brûleur pilote étant disposé dans la partie inférieure du tube (20) de mélange avec effet dans une chambre (30) de combustion montée en aval du tube (20) de mélange, ce système étant constitué d'au moins deux chambres (301, 302) de passage de fluide et d'une autre chambre (308) commune montée en aval, les fluides (303, 304) provenant des deux autres chambres (301, 302) pouvant être mélangés dans cette chambre (308) montée en aval et la chambre (308) montée en aval ayant des moyens de formation de brûleurs (306) pilotes agissant dans la chambre (30) de combustion et pouvant être alimentés par le mélange des deux fluides (303, 304).
  2. Brûleur suivant la revendication 1, caractérisé en ce que les chambres (301, 303) sont de forme annulaire et sont disposées l'une à côté de l'autre, en ce qu'il passe dans la première chambre (301) annulaire un combustible (303) gazeux et dans la deuxième chambre (302) annulaire une quantité (304) d'air, en ce qu'il est monté dans la deuxième chambre (302) annulaire des moyens (305) par lesquels l'air (304) qui y passe provoque un refroidissement par rebondissement sur une tôle (307) de protection vis-à-vis de la chaleur, disposée du côté de l'extrémité du système (300) à brûleur pilote.
  3. Brûleur suivant la revendication 2, caractérisé en ce que le moyen de formation du refroidissement par rebondissement est une plaque (305) perforée formant un fond dans la chambre (302) annulaire secondaire.
  4. Brûleur suivant la revendication 1, caractérisé en ce que les moyens sont constitués d'un anneau (190) disposé du côté de la tête du générateur (100)de tourbillons et coopérant avec une buse (103) pour du combustible, en ce que l'anneau (190) a un certain nombre de trous (161) disposés dans la direction périphérique et en ce qu'un combustible (170) peut être injecté dans une quantité (160) d'air passant parles trous (161).
  5. Brûleur suivant la revendication 4, caractérisé en ce que les trous (161) sont inclinés vers l'avant.
  6. Brûleur suivant la revendication 4, caractérisé en ce que la buse (103) pour le combustible est entourée d'une chambre (180) annulaire pour de l'air.
  7. Brûleur suivant la revendication 1, caractérisé en ce que le front du brûleur du tube (20) de mélange, tourné vers le chambre (30) de combustion en aval, est constitué en ayant un bord (A) de décollement.
  8. Brûleur en ce que le nombre des canaux (201) de raccordement dans la zone (220) de mélange correspond au nombre de courants partiels formés par le générateur (100) de tourbillons.
  9. Brûleur suivant la revendication 1, caractérisé en ce que le tube (20) de mélange en aval des canaux (201) de raccordement est muni, dans la direction du courant et dans la direction périphérique, de trous (21) d'injection d'un courant d'air à l'intérieur du tube (20) de mélange.
  10. Brûleur suivant la revendication 9, caractérisé en ce que les trous (21) font un angle aigu avec l'axe (60) de brûleur du tube (20) de mélange.
  11. Brûleur suivant la revendication 1, caractérisé en ce que la section transversale de passage du tube (20) de mélange est en aval des canaux (201) de raccordement plus petite, égale ou plus grande que la section transversale du courant (40) formé dans le générateur (100) de tourbillons.
  12. Brûleur suivant la revendication 1, caractérisé en ce qu'il est disposé une chambre (30) de combustion en aval de la zone (220) de mélange, en ce qu'il est prévu entre la zone (220) de mélange et la chambre (30) de combustion un saut de section transversale, qui induit la section transversale initiale du courant de la chambre de combustion et en ce qu'une zone (50) de reflux peut agir dans la région de ce saut de section transversale.
  13. Brûleur suivant la revendication 1, caractérisé en ce qu'il est prévu en amont du front (70) du brûleur un diffuseur et/ou une zone de venturi.
  14. Brûleur suivant la revendication 1, caractérisé en ce que le générateur (100) de tourbillons est constitué d'au moins deux sous-pièces (101, 102, 130, 131, 132, 133, 140, 141, 142, 143) creuses, coniques et emboítées l'une dans l'autre dans la direction du courant, en ce que les axes (101b, 102b ; 130a, 131a, 132a, 133a ; 140a, 141a, 142a, 143a) respectifs de symétrie longitudinale de ces sous-pièces s'étendent en étant décalés l'un par rapport à l'autre, de façon à ce que les parois voisines des sous-pièces forment dans leur étendue longitudinale des canaux (119, 120) tangentiels pour un courant (115) d'air de combustion et en ce qu'il est prévu au moins une buse (103) pour du combustible dans la chambre (114) intérieure formée par les sous-pièces.
  15. Brûleur suivant la revendication 14, caractérisé en ce que d'autres buses (117) pour du combustible sont disposées dans la région des canaux (119, 120) tangentiels dans leur étendue longitudinale.
  16. Brûleur suivant la revendication 14, caractérisé en ce que les sous-pièces (140, 141, 142, 143) ont en coupe transversale un profilage en forme d'aube.
  17. Brûleur suivant la revendication 14, caractérisé en ce que les sous-pièces ont dans la direction du courant un angle de cône qui est fixe ou une inclinaison de cône qui est croissante ou une inclinaison de cône qui est décroissante.
  18. Brûleur suivant la revendication 14, caractérisé en ce que les pièces partielles s'emboítent l'une dans l'autre en forme de spirale.
EP97810773A 1997-10-14 1997-10-14 Brûleur pour la mise en oeuvre d'un générateur de chaleur Expired - Lifetime EP0909921B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59709061T DE59709061D1 (de) 1997-10-14 1997-10-14 Brenner für den Betrieb eines Wärmeerzeugers
EP97810773A EP0909921B1 (fr) 1997-10-14 1997-10-14 Brûleur pour la mise en oeuvre d'un générateur de chaleur
US09/169,140 US5954495A (en) 1997-10-14 1998-10-09 Burner for operating a heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP97810773A EP0909921B1 (fr) 1997-10-14 1997-10-14 Brûleur pour la mise en oeuvre d'un générateur de chaleur

Publications (2)

Publication Number Publication Date
EP0909921A1 EP0909921A1 (fr) 1999-04-21
EP0909921B1 true EP0909921B1 (fr) 2003-01-02

Family

ID=8230430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810773A Expired - Lifetime EP0909921B1 (fr) 1997-10-14 1997-10-14 Brûleur pour la mise en oeuvre d'un générateur de chaleur

Country Status (3)

Country Link
US (1) US5954495A (fr)
EP (1) EP0909921B1 (fr)
DE (1) DE59709061D1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59807856D1 (de) * 1998-01-23 2003-05-15 Alstom Switzerland Ltd Brenner für den Betrieb eines Wärmeerzeugers
EP0987493B1 (fr) * 1998-09-16 2003-08-06 Abb Research Ltd. Brûleur pour générateur de chaleur
DE59810284D1 (de) * 1998-10-14 2004-01-08 Alstom Switzerland Ltd Brenner für den Betrieb eines Wärmeerzeugers
DE10061526A1 (de) * 2000-12-11 2002-06-20 Alstom Switzerland Ltd Vormischbrenneranordnung zum Betrieb einer Brennkammer
WO2003088508A2 (fr) * 2002-04-09 2003-10-23 Sapias, Inc. Plate-forme de gestion de biens
EP1389713A1 (fr) * 2002-08-12 2004-02-18 ALSTOM (Switzerland) Ltd Brûleur pilote annulaire pour sortie de brûleur à prémélange
US6623267B1 (en) * 2002-12-31 2003-09-23 Tibbs M. Golladay, Jr. Industrial burner
US20040202977A1 (en) * 2003-04-08 2004-10-14 Ken Walkup Low NOx burner
US7303388B2 (en) * 2004-07-01 2007-12-04 Air Products And Chemicals, Inc. Staged combustion system with ignition-assisted fuel lances
EP1828684A1 (fr) * 2004-12-23 2007-09-05 Alstom Technology Ltd Bruleur de premelange dote d'un parcours de melange
DE102008000050A1 (de) * 2007-08-07 2009-02-12 Alstom Technology Ltd. Brenner für eine Brennkammer einer Turbogruppe
EP2110601A1 (fr) * 2008-04-15 2009-10-21 Siemens Aktiengesellschaft Brûleur
EP2650612A1 (fr) * 2012-04-10 2013-10-16 Siemens Aktiengesellschaft Brûleur
US9400104B2 (en) 2012-09-28 2016-07-26 United Technologies Corporation Flow modifier for combustor fuel nozzle tip

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3033988C2 (de) * 1980-09-10 1986-04-17 Karl-Friedrich Dipl.-Ing. Dipl.-Wirtsch.-Ing. 4100 Duisburg Schmid Gasbrenner mit integrierter Brennerkopf-Luftkühlung
CN1017744B (zh) * 1988-12-26 1992-08-05 株式会社日立制作所 低氮氧化物锅炉
JPH0682084A (ja) * 1992-09-02 1994-03-22 Daikin Ind Ltd 空気調和装置の運転制御装置
IT1273369B (it) * 1994-03-04 1997-07-08 Nuovo Pignone Spa Sistema perfezionato combustione a basse emissioni inquinanti per turbine a gas
DE4411623A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Vormischbrenner
DE4416650A1 (de) * 1994-05-11 1995-11-16 Abb Management Ag Verbrennungsverfahren für atmosphärische Feuerungsanlagen
JPH0882419A (ja) * 1994-09-14 1996-03-26 Hitachi Ltd ガスタービン用燃焼器
DE19547912A1 (de) * 1995-12-21 1997-06-26 Abb Research Ltd Brenner für einen Wärmeerzeuger
DE19547913A1 (de) 1995-12-21 1997-06-26 Abb Research Ltd Brenner für einen Wärmeerzeuger
DE19610930A1 (de) * 1996-03-20 1997-09-25 Abb Research Ltd Brenner für einen Wärmeerzeuger

Also Published As

Publication number Publication date
US5954495A (en) 1999-09-21
EP0909921A1 (fr) 1999-04-21
DE59709061D1 (de) 2003-02-06

Similar Documents

Publication Publication Date Title
EP0704657B1 (fr) Brûleur
EP0780629B1 (fr) Brûleur pour un générateur de chaleur
EP0918191B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0918190A1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0899508B1 (fr) Brûleur pour un dispositif à chaleur
EP0780630B1 (fr) Brûleur pour un générateur de chaleur
EP0797051B1 (fr) Brûleur pour un générateur de chaleur
EP0718561B1 (fr) Brûleur
DE19757189B4 (de) Verfahren zum Betrieb eines Brenners eines Wärmeerzeugers
EP0694740A2 (fr) Chambre de combustion
EP0777081B1 (fr) Brûleur à prémélange
EP0931980B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0987493B1 (fr) Brûleur pour générateur de chaleur
EP0994300B1 (fr) Brûleur pour la conduite d'un générateur de chaleur
EP0909921B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0851172B1 (fr) Brûleur et méthode pour la mise en oeuvre d'une chambre de combustion avec un combustible liquide et/ou gazeux
EP0481111A1 (fr) Chambre de combustion pour turbine à gaz
EP0751351B1 (fr) Chambre de combustion
EP0903540B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0919768B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
DE19537636B4 (de) Kraftwerksanlage
EP0833104B1 (fr) Brûleur pour le fonctionnement d'une chambre de combustion
EP0913630B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0730121A2 (fr) Brûleur à prémélange
EP0899506A2 (fr) Dispositif de combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL SE

17P Request for examination filed

Effective date: 19990906

AKX Designation fees paid

Free format text: AT

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020429

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030102

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: 20030102:NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59709061

Country of ref document: DE

Date of ref document: 20030206

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030507

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031003

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110428 AND 20110504

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161028

Year of fee payment: 20

Ref country code: GB

Payment date: 20161013

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20161011

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59709061

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20171013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20171013