EP0994300B1 - Brûleur pour la conduite d'un générateur de chaleur - Google Patents

Brûleur pour la conduite d'un générateur de chaleur Download PDF

Info

Publication number
EP0994300B1
EP0994300B1 EP98811023A EP98811023A EP0994300B1 EP 0994300 B1 EP0994300 B1 EP 0994300B1 EP 98811023 A EP98811023 A EP 98811023A EP 98811023 A EP98811023 A EP 98811023A EP 0994300 B1 EP0994300 B1 EP 0994300B1
Authority
EP
European Patent Office
Prior art keywords
burner
flow
section
burner according
mixing tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98811023A
Other languages
German (de)
English (en)
Other versions
EP0994300A1 (fr
Inventor
Hans Peter Knöpfel
Thomas Ruck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to DE59810284T priority Critical patent/DE59810284D1/de
Priority to EP98811023A priority patent/EP0994300B1/fr
Priority to US09/417,846 priority patent/US6152726A/en
Publication of EP0994300A1 publication Critical patent/EP0994300A1/fr
Application granted granted Critical
Publication of EP0994300B1 publication Critical patent/EP0994300B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the invention relates to a burner for the operation of a heat generator according to Preamble of claim 1.
  • a burner is for example known from EP-A-0 797 051.
  • the upstream side consists of a swirl generator, the swirl flow formed therein being seamless is transferred to a mixing section.
  • Transitional channels exist, which are sectoral, corresponding to the number of tangential acting inflow channels or inflow slots of this swirl generator, form the end face of the mixing section and have a swirling shape in the direction of flow.
  • the outflow side of these transition channels has the remaining one Mix up a number of filming holes through which an amount of air passes flows into the mixing section, thereby increasing the flow velocity induce along the pipe wall.
  • a combustion chamber the transition between the mixing section and the combustion chamber is formed by a cross-sectional jump, in the plane of which there is a backflow zone or backflow bubble forms.
  • the swirl strength in the swirl generator is selected so that the bursting of the vortex does not happen within the mixing section, but further downstream takes place, as explained above, in the area of the cross-sectional jump.
  • the length of the Mixing section is dimensioned so that a sufficient premix quality for all types of fuel used are guaranteed.
  • the invention seeks to remedy this.
  • the invention as set out in the claims is characterized, the task is based on a burner at the beginning to propose precautions which strengthen the flame stability in order to achieve sustainable stable operation, especially in the transient load ranges, always taking into account the Another task, which pursues the goal, the pollutant emissions to minimize from such an operation and therefore the sub-area too special to increase lower partial loads.
  • the burner is expanded in such a way that in the area of the transition the mixing section to the downstream combustion chamber vortex generators provided, which are on the outside of the main flow of the burner during of the company produce so-called swirl braids.
  • pilot burners are operated with a low proportion of fuel, and in operative connection with the vortex generators is through a better one Mix the burner fuel with the surrounding hot gas Pre-mix combustion stability reached near the lean extinguishing limit. Becomes the pilot burner fuel into those generated by the vortex generators Vortex braids injected, so the mixing is significantly improved and the pollutant emissions are greatly reduced. Accordingly, by enlarging the The load range for deep pollutants becomes an extension to small loads achieved.
  • Fig. 1 shows the overall structure of a burner.
  • the head of this burner works a swirl generator 100, the design of which is shown in the following FIGS. 3-6 is shown and described in more detail.
  • It is a conical one trained swirl generator 100, the multiple of a tangential inside incoming combustion air flow 115 is applied.
  • Who are here forming flow becomes effective on the basis of a swirl generator 100 downstream
  • Transition geometry 200 seamlessly transferred into a mixing section, in such a way that there are no separation areas along this mixing section.
  • This mixing section 220 itself consists of the transition piece mentioned 200 and downstream thereof extended from a mixing tube 20.
  • Mixing section 220 may consist of a single piece: In such a case, the transition piece 200 and the mixing tube 20 form a single one cohesive structure, the characteristics of each part remain. Become transition piece 200 and mixing tube 20 from two parts created, they are connected by a sleeve ring 10, the same Socket ring 10 on the head side as an on-site anchoring surface for the swirl generator 100 serves. Such a bushing ring 10 also has the advantage that different mixing tubes can be used. Outflow side of the Mixing tube 20 is the actual combustion chamber 30 of a combustion chamber, which is only symbolized here by a flame tube.
  • the mixing section 220 largely fulfills the task that downstream of the swirl generator 100 defined route is provided, in which a perfect premix with the fuels used can take place.
  • a lossless flow forms, so that here no backflow zone or backflow bubble initially arises, with what about the entire length of the mixing section 220 to the mixing quality of the injected Fuels influence can be exercised.
  • This mixing section 220 unfolds but still another property, which consists in the fact that in you Axial velocity profile has a pronounced maximum on the axis, so that the flame reignites from the combustion chamber into the interior of the burner not possible.
  • the mixing tube 20 in the flow and circumferential direction with a number of regularly or irregularly distributed bores 21 various cross sections and directions through which an amount of air flows into the interior of the mixing tube 20, and along the wall in the sense induce an increase in flow rate during filming.
  • This Bores 21 can also be designed in such a way that the inner wall of the mixing tube 20 at least additionally an effusion cooling established.
  • Transition channels 201 which have the transition geometry already mentioned form, undergoes a narrowing, reducing the overall speed level is raised within the mixing tube 20.
  • the figures run in the figure bores 21 through which air flows at an acute angle the burner axis 60.
  • the outlet corresponds to the transition channels 201 the narrowest flow cross-section of the mixing tube 20.
  • the transition channels mentioned 201 accordingly bridge the respective cross-sectional difference in the direction of flow without negatively influencing the flow formed.
  • a diffuser not shown in the figure, is provided.
  • a combustion chamber 30 combustion chamber
  • a burner front 70 Cross-sectional jump is present. Only here does a central one form Flame front with a backflow zone 50, which is opposite the flame front the properties of a disembodied flame holder unfolded. Forms within this cross-sectional jump during operation a flow Edge zone, in which vortex detachment due to the prevailing negative pressure arise, this leads to an increased ring stabilization of the backflow zone 50.
  • Fig. 2 shows a schematic view of the burner according to Fig. 1, here in particular the flushing of a centrally arranged fuel nozzle 103 and the effect of fuel injectors 170 is pointed out.
  • the mode of action the remaining main components of the burner, namely swirl generator 100 and transition piece 200 are closer under the following figures described.
  • the fuel nozzle 103 is spaced with a ring 190 encased in which a number of circumferentially bored holes 161 are placed, through which an amount of air 160 into an annular chamber 180 flows and carries out the flushing of the fuel lance there.
  • These holes 161 are slanted forward so that it is appropriate axial component arises on the burner axis 60.
  • FIG. 4 is used at the same time as FIG. 3.
  • 3 is referred to the other figures as necessary in the description of FIG.
  • the first part of the burner according to FIG. 1 forms the swirl generator shown in FIG. 3 100.
  • This consists of two hollow conical partial bodies 101, 102, which are nested in a staggered manner.
  • the number of conical Partial body can of course be larger than two, like the figures 5 and 6 show; this depends in each case, as will be explained in more detail below will depend on the operating mode of the entire burner. It is with certain Operating constellations are not excluded, one from a single spiral to provide existing swirl generator.
  • the offset of the respective central axis or longitudinal symmetry axes 101b, 102b (cf. FIG. 4) of the conical partial bodies 101, 102 creates each other in the adjacent wall, in mirror image Arrangement, each a tangential channel, i.e.
  • the cone shape the partial body 101, 102 shown in the flow direction has a certain one fixed angle.
  • the partial bodies can 101, 102 an increasing or decreasing cone inclination in the flow direction have, similar to a trumpet. Tulip.
  • the latter two Shapes are not recorded in the drawing, as they are without for the specialist are further sensitive.
  • the two conical partial bodies 101, 102 have each have a cylindrical annular starting part 101 a. In the area of this cylindrical Initially, the fuel nozzle 103 already mentioned under FIG.
  • the conical sub-bodies 101, 102 each have a fuel line 108, 109, which along the tangential air inlet slots 119, 120 are arranged and provided with injection openings 117 through which preferably a gaseous fuel 113 in the combustion air flowing through there 115 is injected, as the arrows 116 want to symbolize.
  • These fuel lines 108, 109 are preferably at the end of the latest tangential inflow, before entering the cone cavity 114, arranged this to get an optimal air / fuel mixture.
  • the one through the fuel nozzle 103 introduced fuel 112 is, as mentioned, in Normally around a liquid fuel, where a mixture formation with a other medium, for example with a recirculated flue gas, without further ado is possible.
  • This fuel 112 is preferably very pointed under one Angle injected into the cone cavity 114. Forms from the fuel nozzle 103 there is thus a conical fuel spray 105 which flows in from the tangential rotating combustion air 115 is enclosed and degraded.
  • the concentration of the injected fuel 112 then becomes axial continuously through the incoming combustion air 115 for mixing Degraded towards evaporation. If a gaseous fuel 113 over the Introduced opening nozzles 117, the fuel / air mixture is formed directly at the end of the air inlet slots 119, 120. Is the combustion air 115 additionally preheated, or for example with a recirculated Flue gas or exhaust gas enriched, this supports the evaporation sustainably of liquid fuel 112 before this mixture is downstream Stage flows, here in the transition piece 200 (see FIGS. 1 and 7). The same Considerations also apply when liquid lines 108, 109 Fuels should be supplied.
  • the construction of the swirl generator 100 is furthermore particularly suitable, change the size of the tangential air inlet slots 119, 120, which is a relatively large one without changing the overall length of the swirl generator 100 operational bandwidth can be captured.
  • the partial bodies 101, 102 can also be moved relative to one another in another plane, which even an overlap of the same can be provided.
  • the sub-bodies 101, 102 by a counter-rotating movement spiral to nest into each other. So it is possible, the shape, the size and to vary the configuration of the tangential air inlet slots 119, 120 as desired, which makes the swirl generator 100 universal without changing its overall length can be used.
  • Baffles 121a, 121b have a flow initiation function which, according to their length, the respective end of the tapered Partial bodies 101, 102 in the flow direction with respect to the combustion air 115 extend.
  • Channeling the combustion air 115 into the cone cavity 114 can be opened or closed by one of the baffles 121a, 121b Area of entry of this channel into the cone cavity 114 placed fulcrum 123 can be optimized, especially if the original Gap size of the tangential air inlet slots 119, 120 changed dynamically should be, for example, to change the speed of the combustion air 115 to achieve.
  • these can be dynamic Precautions can also be provided statically by using baffles as needed form a fixed component with the tapered partial bodies 101, 102.
  • the swirl generator 100 now consists of four partial bodies 130, 131, 132, 133 is constructed.
  • the associated longitudinal symmetry axes for each sub-body are marked with the letter a. To this Configuration is to be said that it is due to the lower generated with it Twist strength and in cooperation with a correspondingly enlarged Slot width is best suited, the bursting of the vortex flow on the downstream side to prevent the swirl generator in the mixing tube, thus causing the mixing tube to can fulfill the intended role.
  • FIG. 6 differs from FIG. 5 in that the partial bodies 140 here 141, 142, 143 have a blade profile shape which is used to provide a certain Flow is provided. Otherwise, the mode of operation of the swirl generator stayed the same.
  • the admixture of fuel 116 in the combustion air flow 115 happens from inside the blade profiles, i.e. the fuel line 108 is now integrated in the individual blades.
  • the transition geometry is corresponding for a swirl generator 100 with four partial bodies 5 or 6, built. Accordingly, the transition geometry as a natural extension of the upstream partial bodies, four transition channels 201 on, whereby the conical quarter area of said partial body is extended until it cuts the wall of the mixing tube.
  • the same considerations also apply if the swirl generator is based on a principle other than the one below Fig. 3 is constructed.
  • the down in the flow direction running surface of the individual transition channels 201 has a flow direction spiral shape, which has a crescent shape Course describes, corresponding to the fact that the flow cross-section is present of the transition piece 200 flared in the flow direction.
  • the swirl angle of the transition channels 201 in the flow direction is so chosen that the pipe flow then up to the cross-sectional jump on Combustion chamber entry still has a sufficient distance to be perfect Premix with the injected fuel. Further increases the axial speed due to the above-mentioned measures on the mixing tube wall downstream of the swirl generator.
  • the transition geometry and the measures in the area of the mixing tube cause a significant increase the axial velocity profile towards the center of the mixing tube, see above that the danger of early ignition is decisively counteracted.
  • the flow cross-section of the tube 20 receives a transition radius in this area R, the size of which basically depends on the flow within the Tube 20 depends.
  • This radius R is chosen so that the flow turns on puts on the wall and so the swirl number increases sharply.
  • This radius R runs up to Exit plane of the tube 20, the angle ⁇ between the beginning and end of the Curvature is ⁇ 90 °.
  • FIG. 10 shows an overall picture of the end part of the mixing tube 20, in which the pilot burner system and the vortex generators are housed, whereby this part is designed to be applicable, such as the mounting holes suggest.
  • End and combustion chamber side of this part are inside the tear-off edge (see FIG. 8) distributed in the circumferential direction a number of Incisions 402 are provided, which in conjunction with the gas flow within of the mixing tube act as vortex generators.
  • These cuts are what theirs Size, number in the circumferential direction and their course concerns, in various ways trained, depending on how big, how strong and how directed the resulting Vortex braids (see Fig. 9, item 401) should fail so that the desired Goal can be achieved.
  • the mixing becomes significant with qualitatively trained peg braids improved and pollutant emissions greatly reduced.
  • the im Area of the vortex generators 402 forming flame front and backflow zone (See Fig. 1) are paired with this injection of the fuel the vortex braids forming there (see Fig. 9, item 401) and in operative connection with the tear-off edge (see FIG. 8), strongly stabilized, this stabilization to close to the lean extinguishing limit.
  • the design of the vortex generators is not limited to the version shown here. Instead of cuts the desired turbulence can also be achieved by setting up suitable forms in the Achieve the end area of the mixing tube.
  • FIG. 11 and 12 show the incisions 402 acting as vortex generators different views.
  • the incisions shown here run along the Behind the tear-off edge with increasing incision depth, and form approximately a truncated cone-shaped path. The course of this path is opposite the center axis of the mixing tube is applied obliquely to obliquely-radial, as seen from Fig. 12 emerges. The course of these cuts depends on the quality of the peg braids to be formed.
  • Direction 303 of fuel injection through the nozzles 301 depends on the piloting effect to be achieved; preferably this fuel injection is compared to the main flow in the Mixing tube held tangential, as shown in Fig. 12, the degree the tangential fuel injection is designed on a case-by-case basis.
  • the feed of the pilot burner system 300 with fuel can be through an internal feed line achieve through the mixing tube, or fuel from the outside into the chamber 302 promotes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Claims (17)

  1. Brûleur pour faire fonctionner un générateur de chaleur, dans lequel le brûleur se compose essentiellement d'un générateur de tourbillon (100) pour un courant d'air de combustion, de moyens pour l'injection d'au moins un combustible dans le courant d'air de combustion, une section de mélange (220) étant disposée en aval du générateur de tourbillon, laquelle présente, à l'intérieur d'une première partie de section dans le sens de l'écoulement un certain nombre de canaux de transition (201) pour le transfert d'un écoulement formé dans le générateur de tourbillon dans un tube de mélange (20) monté derrière en aval de ces canaux de transition, un système de brûleur pilote (300) étant disposé dans la région inférieure du tube de mélange (20), caractérisé en ce que le système de brûleur pilote (300) est en liaison coopérante avec des générateurs de tourbillon (400) disposés du côté terminal du tube de mélange (20).
  2. Brûleur selon la revendication 1, caractérisé en ce qu'un combustible (303) peut être injecté depuis le système de brûleur pilote (300) dans le tourbillonnement (401) formé par les générateurs de tourbillon (400).
  3. Brûleur selon la revendication 2, caractérisé en ce que le combustible (303) peut être injecté tangentiellement par rapport à l'écoulement principal dans le tube de mélange (20).
  4. Brûleur selon la revendication 1, caractérisé en ce que les générateurs de tourbillon (400) se composent d'une pluralité d'entailles (402) prévues du côté terminal et dans la direction périphérique du tube de mélange (20).
  5. Brûleur selon la revendication 3, caractérisé en ce que les entailles (402) s'étendent obliquement à radialement obliquement par rapport à la section transversale d'écoulement du tube de mélange (20).
  6. Brûleur selon la revendication 1, caractérisé en ce que le front du brûleur du tube de mélange (20) est réalisé avec un bord de rupture (A) vers l'espace de combustion monté derrière (30).
  7. Brûleur selon la revendication 1, caractérisé en ce que le nombre des canaux de transition (201) dans la section de mélange (220) correspond au nombre des courants partiels formés par le générateur de tourbillon (100).
  8. Brûleur selon la revendication 1, caractérisé en ce que le tube de mélange (20) monté derrière les canaux de transition (201) dans le sens de l'écoulement et dans la direction périphérique est pourvu d'ouvertures (21) pour l'injection d'un courant d'air à l'intérieur du tube de mélange (20) .
  9. Brûleur selon la revendication 10, caractérisé en ce que les ouvertures (21) s'étendent suivant un angle aigu par rapport à l'axe du brûleur (60) du tube de mélange (20).
  10. Brûleur selon la revendication 1, caractérisé en ce que la section transversale d'écoulement du tube de mélange (20) en aval des canaux de transition (201) est plus petite, égale ou plus grande que la section transversale de l'écoulement (40) formé dans le générateur de tourbillon (100, 100a).
  11. Brûleur selon la revendication 1, caractérisé en ce qu'une chambre de combustion (30) est disposée en aval de la section de mélange (220), en ce qu'il existe, entre la section de mélange (220) et la chambre de combustion (30) un saut de section transversale qui induit la section transversale d'écoulement d'origine de la chambre de combustion (30), et en ce que dans la région de ce saut de section transversale, une zone de reflux (50) peut être active.
  12. Brûleur selon la revendication 1, caractérisé en ce qu'en amont du front de brûleur, on prévoit un diffuseur et/ou une section de Venturi.
  13. Brûleur selon la revendication 1, caractérisé en ce que le générateur de tourbillon (100) se compose d'au moins deux corps partiels creux, de forme conique, emboítés l'un dans l'autre dans le sens de l'écoulement (101, 102 ; 130, 131, 132, 133 ; 140, 141, 142, 143), en ce que les axes de symétrique longitudinaux respectifs (101b, 102b ; 130a, 131a, 132a, 133a ; 140a, 141a, 142a, 143a) de ces corps partiels s'étendent de manière décalée les uns par rapport aux autres de telle sorte que les parois voisines des corps partiels forment dans leur étendue longitudinale des canaux tangentiels (119, 120) pour un courant d'air de combustion (115), et en ce qu'au moins une buse de combustible (103) peut être active dans l'espace interne (114) formé par les corps partiels.
  14. Brûleur selon la revendication 13, caractérisé en ce que dans la région des canaux tangentiels (119, 120) sont disposées, dans leur étendue longitudinale, d'autres buses de combustible (117).
  15. Brûleur selon la revendication 13, caractérisé en ce que les corps partiels (140, 141, 142, 143) présentent, en section transversale, un profilage en forme d'aube.
  16. Brûleur selon la revendication 13, caractérisé en ce que les corps partiels présentent, dans le sens de l'écoulement, un angle de conicité fixe ou 'une inclinaison conique croissante ou une inclinaison conique décroissante.
  17. Brûleur selon la revendication 13, caractérisé en ce que les corps partiels sont emboítés les uns dans les autres en forme de spirale.
EP98811023A 1998-10-14 1998-10-14 Brûleur pour la conduite d'un générateur de chaleur Expired - Lifetime EP0994300B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59810284T DE59810284D1 (de) 1998-10-14 1998-10-14 Brenner für den Betrieb eines Wärmeerzeugers
EP98811023A EP0994300B1 (fr) 1998-10-14 1998-10-14 Brûleur pour la conduite d'un générateur de chaleur
US09/417,846 US6152726A (en) 1998-10-14 1999-10-14 Burner for operating a heat generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98811023A EP0994300B1 (fr) 1998-10-14 1998-10-14 Brûleur pour la conduite d'un générateur de chaleur

Publications (2)

Publication Number Publication Date
EP0994300A1 EP0994300A1 (fr) 2000-04-19
EP0994300B1 true EP0994300B1 (fr) 2003-11-26

Family

ID=8236383

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98811023A Expired - Lifetime EP0994300B1 (fr) 1998-10-14 1998-10-14 Brûleur pour la conduite d'un générateur de chaleur

Country Status (3)

Country Link
US (1) US6152726A (fr)
EP (1) EP0994300B1 (fr)
DE (1) DE59810284D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8646275B2 (en) 2007-09-13 2014-02-11 Rolls-Royce Deutschland Ltd & Co Kg Gas-turbine lean combustor with fuel nozzle with controlled fuel inhomogeneity

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1313547B1 (it) 1999-09-23 2002-07-24 Nuovo Pignone Spa Camera di premiscelamento per turbine a gas
DE10128063A1 (de) * 2001-06-09 2003-01-23 Alstom Switzerland Ltd Brennersystem
EP1389713A1 (fr) * 2002-08-12 2004-02-18 ALSTOM (Switzerland) Ltd Brûleur pilote annulaire pour sortie de brûleur à prémélange
DE10340826A1 (de) * 2003-09-04 2005-03-31 Rolls-Royce Deutschland Ltd & Co Kg Homogene Gemischbildung durch verdrallte Einspritzung des Kraftstoffs
DE10348604A1 (de) 2003-10-20 2005-07-28 Rolls-Royce Deutschland Ltd & Co Kg Kraftstoffeinspritzdüse mit filmartiger Kraftstoffplatzierung
WO2006058843A1 (fr) * 2004-11-30 2006-06-08 Alstom Technology Ltd Procede et dispositif de combustion d'hydrogene dans un bruleur a premelange
WO2006069861A1 (fr) * 2004-12-23 2006-07-06 Alstom Technology Ltd Bruleur de premelange dote d'un parcours de melange
EP1999410B1 (fr) 2006-03-27 2015-12-02 Alstom Technology Ltd Bruleur pour le fonctionnement d'un generateur de chaleur
NO325990B1 (no) * 2006-06-23 2008-09-01 Rolf B Rummelhoff Etterbrenner for gass fra gassifiseringsanlegg for trebrensel
EP1975506A1 (fr) * 2007-03-30 2008-10-01 Siemens Aktiengesellschaft Pré-chambre de combustion
EP2058590B1 (fr) * 2007-11-09 2016-03-23 Alstom Technology Ltd Procédé de fonctionnement d'un brûleur
JP5574969B2 (ja) * 2007-11-27 2014-08-20 アルストム テクノロジー リミテッド 予混合バーナ内で水素を燃焼させるための方法および装置
EP2257736B1 (fr) 2008-03-07 2015-11-25 Alstom Technology Ltd Procédé de production de gaz chaud
JP5453322B2 (ja) 2008-03-07 2014-03-26 アルストム テクノロジー リミテッド バーナ装置並びにバーナ装置の使用
EP2650612A1 (fr) 2012-04-10 2013-10-16 Siemens Aktiengesellschaft Brûleur

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2365945A (en) * 1942-03-07 1944-12-26 Nat Airoil Burner Company Inc Flame retention nozzle
US2675068A (en) * 1951-03-16 1954-04-13 Le Roy R Gollus Gas fueled pilot burner tip or head
US2647568A (en) * 1951-03-30 1953-08-04 Peabody Engineering Corp Burner throat
US3111979A (en) * 1960-03-07 1963-11-26 Lennox Ind Inc Dual fuel burner construction
US3302596A (en) * 1966-01-21 1967-02-07 Little Inc A Combustion device
US4175920A (en) * 1975-07-31 1979-11-27 Exxon Research & Engineering Co. Multiple fuel supply system for staged air burners
US5259755A (en) * 1992-07-31 1993-11-09 Hauck Manufacturing Company Combination burner with boost gas injection
IT1255613B (it) * 1992-09-24 1995-11-09 Eniricerche Spa Sistema di combustione a basse emissioni inquinanti per turbine a gas
DE69519858T2 (de) * 1994-06-24 2001-06-21 United Technologies Corp., Hartford Voreinspritzung für gasturbinenanlagen
US5813232A (en) * 1995-06-05 1998-09-29 Allison Engine Company, Inc. Dry low emission combustor for gas turbine engines
DE19547913A1 (de) 1995-12-21 1997-06-26 Abb Research Ltd Brenner für einen Wärmeerzeuger
DE19610930A1 (de) * 1996-03-20 1997-09-25 Abb Research Ltd Brenner für einen Wärmeerzeuger
DE19614001A1 (de) * 1996-04-09 1997-10-16 Abb Research Ltd Brennkammer
EP0909921B1 (fr) * 1997-10-14 2003-01-02 Alstom Brûleur pour la mise en oeuvre d'un générateur de chaleur
US6007325A (en) * 1998-02-09 1999-12-28 Gas Research Institute Ultra low emissions burner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8646275B2 (en) 2007-09-13 2014-02-11 Rolls-Royce Deutschland Ltd & Co Kg Gas-turbine lean combustor with fuel nozzle with controlled fuel inhomogeneity

Also Published As

Publication number Publication date
EP0994300A1 (fr) 2000-04-19
US6152726A (en) 2000-11-28
DE59810284D1 (de) 2004-01-08

Similar Documents

Publication Publication Date Title
EP0704657B1 (fr) Brûleur
EP0780629B1 (fr) Brûleur pour un générateur de chaleur
EP0918191B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0780630B1 (fr) Brûleur pour un générateur de chaleur
EP0918190A1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0899508B1 (fr) Brûleur pour un dispositif à chaleur
EP0797051B1 (fr) Brûleur pour un générateur de chaleur
EP0994300B1 (fr) Brûleur pour la conduite d'un générateur de chaleur
EP0718561B1 (fr) Brûleur
DE19757189B4 (de) Verfahren zum Betrieb eines Brenners eines Wärmeerzeugers
EP0777081B1 (fr) Brûleur à prémélange
EP0694740A2 (fr) Chambre de combustion
EP0987493B1 (fr) Brûleur pour générateur de chaleur
EP0931980B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0916894B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0909921B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0851172A2 (fr) Brûleur pour la mise en oeuvre d'une chambre de combustion avec un combustible liquide ou gazeux
EP0751351B1 (fr) Chambre de combustion
EP0903540B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0919768B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
DE19537636B4 (de) Kraftwerksanlage
EP0833104B1 (fr) Brûleur pour le fonctionnement d'une chambre de combustion
EP0913630B1 (fr) Brûleur pour la mise en oeuvre d'un générateur de chaleur
EP0899506A2 (fr) Dispositif de combustion
DE19914666A1 (de) Brenner für einen Wärmeerzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000927

AKX Designation fees paid

Free format text: DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59810284

Country of ref document: DE

Date of ref document: 20040108

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALSTOM TECHNOLOGY LTD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040211

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040827

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59810284

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810284

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810284

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161110

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Effective date: 20170914

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59810284

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59810284

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20171024

Year of fee payment: 20

Ref country code: DE

Payment date: 20171019

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171019

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59810284

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20181013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20181013