EP0931980B1 - Burner for operating a heat generator - Google Patents

Burner for operating a heat generator Download PDF

Info

Publication number
EP0931980B1
EP0931980B1 EP98810037A EP98810037A EP0931980B1 EP 0931980 B1 EP0931980 B1 EP 0931980B1 EP 98810037 A EP98810037 A EP 98810037A EP 98810037 A EP98810037 A EP 98810037A EP 0931980 B1 EP0931980 B1 EP 0931980B1
Authority
EP
European Patent Office
Prior art keywords
burner
burner according
flow
section
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98810037A
Other languages
German (de)
French (fr)
Other versions
EP0931980A1 (en
Inventor
Peter Dr. Jansohn
Dieter Köster
Thomas Ruck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Priority to AT98810037T priority Critical patent/ATE237101T1/en
Priority to EP98810037A priority patent/EP0931980B1/en
Priority to DE59807856T priority patent/DE59807856D1/en
Priority to US09/235,314 priority patent/US6186775B1/en
Publication of EP0931980A1 publication Critical patent/EP0931980A1/en
Application granted granted Critical
Publication of EP0931980B1 publication Critical patent/EP0931980B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D23/00Assemblies of two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2207/00Ignition devices associated with burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2214/00Cooling

Definitions

  • the invention relates to a burner for the operation of a heat generator according to Preamble of claim 1.
  • the upstream side consists of a swirl generator, the flow formed therein seamlessly in a mixing section is transferred. This is done using one at the beginning of the Mixing section flow geometry formed for this purpose, which consists of transition channels exists, which is sectoral, according to the number of those acting Partial body of the swirl generator, capture the end face of the mixing section and in Flow direction swirl. Downstream of these transition channels the mixing section has a number of filming holes, which one Ensure an increase in the flow velocity along the pipe wall. This is followed by a combustion chamber, the transition between the Mixing section and the combustion chamber formed by a cross-sectional jump in whose plane a backflow zone or backflow bubble forms.
  • the swirl strength in the swirl generator is selected so that the bursting of the vortex does not occur within the mixing section, but further downstream, as Executed above, in the area of the cross-sectional jump.
  • the length of the mixing section is dimensioned in such a way that there is sufficient mix quality for everyone Types of fuel is guaranteed.
  • the invention seeks to remedy this.
  • the invention as set out in the claims is characterized, the task is based on a burner at the beginning to propose precautions which strengthen the flame stability for stable operation, especially in the transient load ranges, ensure always under the further task that the Pollutant emissions should remain low while taking these precautions Measures are taken which relate to the ignition systems mentioned above to eliminate disadvantages.
  • the burner is expanded in such a way that in the area of its transition a ring-shaped system to provide for the downstream combustion chamber a fuel / air mixture is generally provided as Pilot stage acts.
  • Pilot stage acts Through a number of circumferential exit bores Appropriate pilot burners are created in the combustion chamber, which are operated in diffusion mode for stability reasons and directly in the combustion chamber.
  • This amount of air initially takes over the cooling of the by means of impingement cooling side facing away from the combustion chamber before it then mixes with the gas and then as a pre-mixed flame with minimized pollutant emissions piloting the combustion chamber is maintained.
  • This impingement cooling removes the hot gas from the surface of the pilot gas ring and largely isolated from the flame radiation from the combustion chamber, so that the thermal load in this area is significantly reduced.
  • the object according to the invention also ensures that the minimized Cooling amount can also be fed to the burning process.
  • the guided introduction of the cooling air mentioned is also used to in order to provide an ignition device integrated there for the respective pilot burner, with which this integrated ignition device for the pilot burner is part of the burner system, which is interchangeably mounted in the gas turbine.
  • an ignition device integrated there for the respective pilot burner with which this integrated ignition device for the pilot burner is part of the burner system, which is interchangeably mounted in the gas turbine.
  • several or All pilot burners are equipped with an igniter, which ensures optimal cross-ignition properties be achieved.
  • the ignition of the Pilot burner using a glow pencil or using a spark plug.
  • Fig. 1 shows the overall structure of a burner.
  • a swirl generator 100 is effective, the design of which is shown and described in more detail in the following FIGS. 3-6.
  • This swirl generator 100 is a conical structure which is acted upon tangentially several times by a tangentially flowing combustion air flow 115.
  • the flow formed here is seamlessly transferred to a transition piece 200 using a transition geometry provided downstream of the swirl generator 100, in such a way that no separation areas can occur there.
  • the configuration of this transition geometry is described in more detail in FIG. 6.
  • This transition piece 200 is extended on the outflow side of the transition geometry by a mixing tube 20, both parts forming the actual mixing section 220.
  • the mixing section 220 can consist of a single piece, that is to say then that the transition piece 200 and the mixing tube 20 merge into a single coherent structure, the characteristics of each part being retained. If the transition piece 200 and the mixing tube 20 are made of two parts, these are connected by a bushing ring 10, the same bushing ring 10 serving as an anchoring surface for the swirl generator 100 on the head side. Such a bushing ring 10 also has the advantage that different mixing tubes can be used. On the outflow side of the mixing tube 20 there is the actual combustion chamber 30 of a combustion chamber, which here is only symbolized by a flame tube.
  • the mixing section 220 largely fulfills the task of providing a defined section downstream of the swirl generator 100, in which a perfect premixing of fuels of different types can be achieved.
  • This mixing section i.e. the mixing pipe 20 in the foreground, furthermore enables loss-free flow guidance, so that no backflow zone or backflow bubble can initially form even in operative connection with the transition geometry, which means that the length of the mixing section 220 can influence the quality of the mixture for all types of fuel .
  • this mixing section 220 has yet another property, which consists in that the axial velocity profile itself has a pronounced maximum on the axis, so that the flame cannot be re-ignited from the combustion chamber. However, it is correct that with such a configuration this axial velocity drops towards the wall.
  • the mixing tube 20 is provided in the flow and circumferential direction with a number of regularly or irregularly distributed bores 21 of various cross-sections and directions through which an amount of air flows into the interior of the mixing tube 20 and along the wall in the In the sense of filming, induce an increase in the flow rate.
  • These bores 21 can also be designed such that at least one additional effusion cooling is established on the inner wall of the mixing tube 20.
  • Another possibility of increasing the speed of the mixture within the mixing tube 20 is to narrow its flow cross-section on the outflow side of the transition channels 201, which form the transition geometry already mentioned, as a result of which the overall speed level within the mixing tube 20 is increased.
  • these bores 21 run at an acute angle with respect to the burner axis 60.
  • the outlet of the transition channels 201 corresponds to the narrowest flow cross-section of the mixing tube 20.
  • the transition channels 201 mentioned therefore bridge the respective cross-sectional difference without adversely affecting the flow formed. If the selected precaution triggers an intolerable pressure loss when guiding the pipe flow 40 along the mixing pipe 20, this can be remedied by providing a diffuser (not shown in the figure) at the end of this mixing pipe.
  • a combustion chamber 30 combustion chamber then adjoins the end of the mixing tube 20, a cross-sectional jump formed by a burner front 70 being present between the two flow cross sections.
  • a pilot burner system 300 is provided concentrically with the mixing tube 20 in the area of its outlet. This consists of an inner annular chamber 301 into which a fuel, preferably a gaseous fuel 303, flows. In addition to this inner annular chamber 301, there is a second annular chamber 302 into which an air quantity 304 flows. Both ring chambers 301, 302 have individually designed through openings, such that the individual media 303, 304 flow into a common downstream ring chamber 308 due to their function.
  • the transfer of the gaseous fuel 303 from the annular chamber 301 into the downstream annular chamber 308 is accomplished by a number of openings 309 arranged in the circumferential direction.
  • the passage geometry of these openings 309 is designed such that the gaseous fuel 303 flows into the downstream annular chamber 308 with a large mixing potential.
  • the other annular chamber 302 closes with a perforated plate 305, the bores 310 provided here being designed in such a way that the air volume 304 flowing through there impacts cooling on the base plate 307 of the downstream annular chamber 308.
  • This base plate has the function of a heat protection plate against the calorific load from the combustion chamber 30, so that this impingement cooling must be extremely efficient here.
  • this air mixes within this annular chamber 308 with the gaseous fuel 303 flowing in from the openings 309 of the upstream annular chamber 301 before this mixture then flows out into the combustion chamber 30 through a number of bores 306 arranged on the combustion chamber side.
  • the mixture flowing out burns as a premixed diffusion flame with minimized pollutant emissions and accordingly forms a pilot burner acting in the combustion chamber 30 per bore 306, which ensures stable operation.
  • An ignition device becomes through the air-circulating ring chamber 302 311 passed through, which in the downstream annular chamber 308 Ignition of the mixture formed there. For one thing, it takes for this passage of the ignition device 311 no further constructive Measures, and on the other hand, this ignition device 311 is constantly by the air 304 flowing there is cooled anyway. This is very important because when using it temperature of approx. 1000 ° C can be reached with a glow plug. However, since there is only a low voltage for the operation proposed here, high current is required, the susceptibility of the ignition device is therefore eliminated against condensation water. Due to the arrangement of the glow plug, the use of a spark plug is also possible within of the burner, the respective ignition device 311 is thermally slightly loaded, which means that no additional cooling is required and leakages are also eliminated avoided.
  • Fig. 2 shows a schematic view of the burner according to Fig. 1, here in particular the flushing of a centrally arranged fuel nozzle 103 and the effect of fuel injectors 170 is pointed out.
  • the mode of action the remaining main components of the burner, namely swirl generator 100 and transition piece 200 are closer under the following figures described.
  • the fuel nozzle 103 is spaced with a ring 190 encased in which a number of circumferentially bored holes 161 are placed, through which an amount of air 160 into an annular chamber 180 flows and carries out the flushing of the fuel lance there.
  • These holes 161 are slanted forward so that it is appropriate axial component arises on the burner axis 60.
  • FIG. 4 is used at the same time as FIG. 3.
  • 3 is referred to the other figures as necessary in the description of FIG.
  • the first part of the burner according to FIG. 1 forms the swirl generator shown in FIG. 3 100.
  • This consists of two hollow conical partial bodies 101, 102, which are nested in a staggered manner.
  • the number of conical Partial body can of course be larger than two, like the figures 5 and 6 show; this depends in each case, as will be explained in more detail below will depend on the operating mode of the entire burner. It is with certain Operating constellations are not excluded, one from a single spiral to provide existing swirl generator.
  • the offset of the respective central axis or longitudinal symmetry axes 101b, 102b (cf. FIG. 4) of the conical partial bodies 101, 102 creates each other in the adjacent wall, in mirror image Arrangement, each a tangential channel, i.e.
  • the cone shape the partial body 101, 102 shown in the flow direction has a certain one fixed angle.
  • the partial bodies can 101, 102 an increasing or decreasing cone inclination in the flow direction have, similar to a trumpet. Tulip.
  • the latter two Shapes are not recorded in the drawing, as they are without for the specialist are further sensitive.
  • the two conical partial bodies 101, 102 have each have a cylindrical annular starting part 101a. In the area of this cylindrical Initially, the fuel nozzle 103 already mentioned under FIG.
  • the conical sub-bodies 101, 102 each have a fuel line 108, 109 which run along the tangential air inlet slots 119, 120 arranged and provided with injection openings 117, through which preferably a gaseous fuel 113 in the combustion air flowing through there 115 is injected, as the arrows 116 want to symbolize.
  • Fuel nozzle 103 brought fuel 112 is, as mentioned, normally a liquid fuel, whereby a mixture formation with a other medium, for example with a recirculated flue gas, without further is possible.
  • This fuel 112 is preferably very low acute angle injected into the cone cavity 114. From the fuel nozzle 103 A conical fuel spray 105 is thus formed, which flows in from the tangential one rotating combustion air 115 is enclosed and degraded.
  • the concentration of the injected fuel is then in the axial direction 112 continuously through the incoming combustion air 115 for mixing Degraded towards evaporation. If a gaseous fuel 113 Introduced via the opening nozzles 117, the fuel / air mixture is formed directly at the end of the air inlet slots 119, 120. Is the combustion air 115 additionally preheated, or for example with a recirculated Flue gas or exhaust gas enriched, so this sustainably supports the Evaporation of the liquid fuel 112 before this mixture in the downstream Stage flows, here in the transition piece 200 (see FIGS. 1 and 7). The same considerations also apply if liquid lines 108, 109 Fuels should be supplied.
  • the construction of the swirl generator 100 is furthermore particularly suitable, change the size of the tangential air inlet slots 119, 120, which is a relatively large one without changing the overall length of the swirl generator 100 operational bandwidth can be captured.
  • the partial bodies 101, 102 can also be moved relative to one another in another plane, which even an overlap of the same can be provided.
  • the sub-bodies 101, 102 by a counter-rotating movement spiral to nest into each other. So it is possible, the shape, the size and the configuration of the tangential air inlet slots 119, 120 arbitrarily vary, with which the swirl generator 100 is universal without changing its overall length can be used.
  • FIG. 4 shows, among other things, the geometric configuration of optional ones Baffles 121a, 121b. They have a flow introduction function. which, according to their length, the respective end of the tapered Partial bodies 101, 102 in the flow direction with respect to the combustion air 115 extend.
  • Channeling the combustion air 115 into the cone cavity 114 can be opened or closed by one of the baffles 121a, 121b Area of entry of this channel into the cone cavity 114 placed fulcrum 123 can be optimized, especially if the original Gap size of the tangential air inlet slots 119, 120 changed dynamically should be, for example, to change the speed of the combustion air 115 to achieve.
  • these can be dynamic Precautions can also be provided statically by using baffles as needed form a fixed component with the tapered partial bodies 101, 102.
  • the swirl generator 100 now consists of four partial bodies 130, 131, 132, 133 is constructed.
  • the associated longitudinal symmetry axes for each sub-body are marked with the letter a. To this Configuration is to be said that it is due to the lower generated with it Twist strength and in cooperation with a correspondingly enlarged Slot width is best suited, the bursting of the vortex flow on the downstream side to prevent the swirl generator in the mixing tube, thus causing the mixing tube to can fulfill the intended role.
  • FIG. 6 differs from FIG. 5 in that the partial bodies 140 here 141, 142, 143 have a blade profile shape which is used to provide a certain Flow is provided. Otherwise, the mode of operation of the swirl generator stayed the same.
  • the admixture of fuel 116 in the combustion air flow 115 happens from inside the blade profiles, i.e. the fuel line 108 is now integrated in the individual blades.
  • the transition geometry is corresponding for a swirl generator 100 with four partial bodies 5 or 6, built. Accordingly, the transition geometry as a natural extension of the upstream partial bodies, four transition channels 201 on, whereby the conical quarter area of said partial body is extended until it cuts the wall of the mixing tube.
  • the same considerations also apply if the swirl generator is based on a principle other than the one below Fig. 3 is constructed.
  • the down in the flow direction running surface of the individual transition channels 201 has a flow direction spiral shape, which has a crescent shape Course describes, corresponding to the fact that the flow cross-section is present of the transition piece 200 flared in the flow direction.
  • the swirl angle of the transition channels 201 in the flow direction is selected so that that the pipe flow then up to the cross-sectional jump on Combustion chamber entry still has a sufficient distance to be perfect Premix with the injected fuel. Further increases the axial speed due to the above-mentioned measures on the mixing tube wall downstream of the swirl generator.
  • the transition geometry and the measures in the area of the mixing tube cause a significant increase the axial velocity profile towards the center of the mixing tube, see above that the danger of early ignition is decisively counteracted.
  • the flow cross section of the tube 20 receives one in this area Transition radius R, the size of which basically depends on the flow within of the tube 20 depends.
  • This radius R is chosen so that the Applies flow to the wall and so the swirl number increases sharply.
  • the size of the radius R can be defined so that it is> 10% of the inside diameter d of the tube is 20.
  • the backflow bladder 50 increases enormously.
  • This radius R runs to the exit plane of the tube 20, the angle ⁇ between the beginning and end of curvature is ⁇ 90 °.
  • the tear-off edge A runs inside the tube 20 and thus forms a tear-off step S opposite the front point of the tear-off edge A, whose depth> 3 mm is.
  • this can be parallel to the exit plane of the tube 20 running edge based on a curved course back to the exit level to be brought.
  • the angle ⁇ ' which is between the tangent of the tear-off edge A and perpendicular to the exit plane of the tube 20 is the same size like angle ⁇ .
  • Another Design of the tear-off edge for the same purpose can be done with the combustion chamber achieve toroidal notches. This publication is inclusive the scope of protection there regarding the tear-off edge is an integrating one Part of this description.

Abstract

The burner consists essentially of a spin generator (100) for the combustion air flow and an arrangement for feeding at least one fuel into the combustion air flow with a mixing path (20) upstream of the spin generator. The mixing path has a number of transition channels in a first path section for passing a flow generated in the spin generator into a mixing tube downstream of the transition channels. A cooled pilot burner system (300) in the lower region of the mixing tube acts upon the combustion chamber after the mixing tube. The pilot burner system has at least one integral igniter (311).

Description

Technisches GebietTechnical field

Die Erfindung betrifft einen Brenner für den Betrieb eines Wärmeerzeugers gemäss Oberbegriff des Anspruchs 1.The invention relates to a burner for the operation of a heat generator according to Preamble of claim 1.

Stand der TechnikState of the art

Aus EP-0 797 051 A2 ist ein Brenner bekanntgeworden, der anströmungsseitig aus einem Drallerzeuger besteht, wobei die hierin gebildete Strömung nahtlos in eine Mischstrecke übergeführt wird. Dies geschieht anhand einer am Anfang der Mischstrecke zu diesem Zweck gebildeten Strömungssgeometrie, welche aus Uebergangskanälen besteht, die sektoriell, entsprechend der Zahl der wirkenden Teilkörper des Drallerzeugers, die Stirnfläche der Mischstrecke erfassen und in Strömungsrichtung drallförmig verlaufen. Abströmungsseitig dieser Uebergangskanäle weist die Mischstrecke eine Anzahl Filmlegungsbohrungen auf, welche eine Erhöhung der Strömungsgeschwindigkeit entlang der Rohrwand gewährleisten. Anschliessend folgt eine Brennkammer, wobei der Uebergang zwischen der Mischstrecke und der Brennkammer durch einen Querschnittssprung gebildet wird, in dessen Ebene sich eine Rückströmzone oder Rückströmblase bildet. From EP-0 797 051 A2 a burner has become known, the upstream side consists of a swirl generator, the flow formed therein seamlessly in a mixing section is transferred. This is done using one at the beginning of the Mixing section flow geometry formed for this purpose, which consists of transition channels exists, which is sectoral, according to the number of those acting Partial body of the swirl generator, capture the end face of the mixing section and in Flow direction swirl. Downstream of these transition channels the mixing section has a number of filming holes, which one Ensure an increase in the flow velocity along the pipe wall. This is followed by a combustion chamber, the transition between the Mixing section and the combustion chamber formed by a cross-sectional jump in whose plane a backflow zone or backflow bubble forms.

Die Drallstärke im Drallerzeuger wird denmach so gewählt, dass das Aufplatzen des Wirbels nicht innerhalb der Mischstrecke, sondern weiter stromab erfolgt, wie oben ausgeführt, im Bereich des Querschnittssprunges. Die Länge der Mischstrecke ist so dimensioniert, dass eine ausreichende Mischungsgüte für alle Brennstoffarten gewährleistet ist.The swirl strength in the swirl generator is selected so that the bursting of the vortex does not occur within the mixing section, but further downstream, as Executed above, in the area of the cross-sectional jump. The length of the mixing section is dimensioned in such a way that there is sufficient mix quality for everyone Types of fuel is guaranteed.

Obschon dieser Brenner gegenüber denjenigen aus dem vorangegangenen Stand der Technik eine signifikante Verbesserung hinsichtlich Stärkung der Flammenstabilität, tieferer Schadstoff-Emissionen, geringerer Pulsationen, vollständigen Ausbrandes, grossen Betriebsbereichs, guter Querzündung zwischen den verschiedenen Brennern, kompakter Bauweise, verbesserter Mischung, etc., gewährleistet, zeigt es sich, dass dieser Brenner keine autonome Vorkehrungen aufweist, um die Gasturbine insbesondere in ihren transienten Lastbereichen sicher fahren zu können. Beispielsweise im Teillastbereich muss der Brenner mit einer Stützflamme unterstützt werden. Dabei muss die Integrierung von solchen Vorkehrungen in den Brenner zu keinen zusätzlichen Schadstoff-Emissionen führen, welche die betrieblichen und emissionsmässigen Vorteile des zugrundegelegten Brenners in Frage stellen könnten.
Hinzu kommt, dass herkömmlicherweise diese Brenner in Gasturbinen mittels eines speziellen Zünders gezündet werden. Diese Zünder funktioneren meist mit Hochspannung, die den Zündfunken liefert, der entweder bei grosser Leistung direkt als Zündquelle dient oder eine Zündfackel entzündet. Diese Zünder bedingen eine separate Durchführung und Abdichtung des Zünders und seiner Leitungen durch die Gehäuse der Gasturbine bis in die Brennkammer. Die bestehenden Zündersysteme haben aber folgende Nachteile:

  • a) Kostenaufwendige separate Durchführung und Abdichtung des Zünders und seiner Leitungen durch die Gehäuse der Gasturbine bis in die Brennkammer,
  • b) Querzündung innerhalb der Brennkammer aufgrund der geringen Zünderzahl (meist aus Kostengründen nur 1 Zünder);
  • c) Thermische Belastung des Zünders durch die Positionierung in der Brennkammer, die z.B. Kühlung des Zünders erfordert, weshalb es durch mögliche Undichheiten zu Leckagen kommt;
  • d) Hohe Anfälligkeit gegen Kondenswasser, wobei Kurzschlüsse den Zündfunken ableiten.
  • Although this burner guarantees a significant improvement in terms of strengthening flame stability, lower pollutant emissions, lower pulsations, complete burnout, large operating range, good cross-ignition between the various burners, compact design, improved mixture, etc. compared to those from the prior art , it turns out that this burner has no autonomous precautions to be able to drive the gas turbine safely, particularly in its transient load ranges. For example, in the partial load range, the burner must be supported with a support flame. The integration of such precautions in the burner does not have to lead to additional pollutant emissions which could jeopardize the operational and emissions advantages of the burner used.
    In addition, these burners are traditionally ignited in gas turbines by means of a special igniter. These igniters usually function with high voltage, which supplies the ignition spark, which either serves as a source of ignition at high power or ignites an ignition torch. These igniters require a separate passage and sealing of the igniter and its lines through the housing of the gas turbine into the combustion chamber. The existing detonator systems have the following disadvantages:
  • a) Costly separate implementation and sealing of the igniter and its lines through the housing of the gas turbine into the combustion chamber,
  • b) cross-ignition within the combustion chamber due to the small number of igniters (usually only 1 igniter for cost reasons);
  • c) Thermal stress on the igniter due to the positioning in the combustion chamber, which, for example, requires cooling of the igniter, which is why leaks occur due to possible leaks;
  • d) High susceptibility to condensation water, with short circuits diverting the ignition spark.
  • Darstellung der ErfindungPresentation of the invention

    Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Brenner der eingangs genannten Art Vorkehrungen vorzuschlagen, welche eine Stärkung der Flammenstabilität für einen stabilen Betrieb, insbesondere in den transienten Lastbereichen, gewährleisten, immer unter der weiteren Aufgabenstellung, dass die Schadstoff-Emissionen tief bleiben, gleichzeitig sollen bei diesen Vorkehrungen Massnahmen ergriffen werden, welche betreffend Zündsysteme die obengenannten nachteile zu beheben vermögen.The invention seeks to remedy this. The invention as set out in the claims is characterized, the task is based on a burner at the beginning to propose precautions which strengthen the flame stability for stable operation, especially in the transient load ranges, ensure always under the further task that the Pollutant emissions should remain low while taking these precautions Measures are taken which relate to the ignition systems mentioned above to eliminate disadvantages.

    Zu diesem Zweck wird der Brenner derart erweitert, dass im Bereich seines Ueberganges zum nachgeschalteten Brennraum ein ringförmiges System zur Bereitstellung eines Brennstoff/Luft-Gemisches vorgesehen wird, das allgemein als Pilotstufe fungiert. Durch eine Anzahl in Umfangsrichtung vorgehener Austrittsbohrungen in den Brennraum werden entsprechende Pilotbrenner geschaffen, welche aus Stabilitätsgründen im Diffusionsbetrieb betrieben werden und direkt in den Brennraum wirken.For this purpose, the burner is expanded in such a way that in the area of its transition a ring-shaped system to provide for the downstream combustion chamber a fuel / air mixture is generally provided as Pilot stage acts. Through a number of circumferential exit bores Appropriate pilot burners are created in the combustion chamber, which are operated in diffusion mode for stability reasons and directly in the combustion chamber.

    Die wesentlichen Vorteile des erfindungsgemässen Gegenstandes sind darin zu sehen, dass diese einzelnen Pilotbrenner mit einem geringen Gasanteil betrieben werden, so dass sich das dort eingebrachte Gas mit einem verhältnismässig kleinen Luftanteil vermischt und als vorgemischte Flamme mit minimierten Schadstoff-Emissionen brennt.The main advantages of the subject matter according to the invention are therein see that these individual pilot burners are operated with a low gas content be so that the gas introduced there with a relatively small Air content mixed and as a premixed flame with minimized pollutant emissions burning.

    Diese Luftmenge übernimmt zunächst anhand einer Prallkühlung die Kühlung der brennkammerabgewandten Seite, bevor sie sich dann mit dem Gas vermischt und anschliessend als vorgemischte Flamme mit minimierten Schadstoff-Emissionen die Pilotierung des Brennraumes aufrechterhält.This amount of air initially takes over the cooling of the by means of impingement cooling side facing away from the combustion chamber before it then mixes with the gas and then as a pre-mixed flame with minimized pollutant emissions piloting the combustion chamber is maintained.

    Durch diese Prallkühlung ist die Oberfläche des Pilotgasringes vom heissen Gas und von der Flammenstrahlung aus dem Brennraum weitgehend isoliert, so dass die thermische Belastung in diesem Bereich wesentlich verringert wird.This impingement cooling removes the hot gas from the surface of the pilot gas ring and largely isolated from the flame radiation from the combustion chamber, so that the thermal load in this area is significantly reduced.

    Auch bei 100% Pilotbetrieb brennen die einzelnen Pilotbrenner, aus Stabilitätsgründen im Diffusionsbetrieb, da hier der Anteil der Kühllluft gegenüber dem Gas sehr klein ist.Even with 100% pilot operation, the individual pilot burners burn, for reasons of stability in diffusion mode, since here the proportion of the cooling air compared to the gas is very small.

    Mit dem erfindungsgemässen Gegenstand wird auch erreicht, dass die minimierte Kühlmenge ebenfalls dem Brennprozess zugeführt werden kann.The object according to the invention also ensures that the minimized Cooling amount can also be fed to the burning process.

    Die geleitete Heranführung der genannten Kühlluft wird gleichzeitig dazu verwendet, um eine dort integrierte Zündvorrichtung für den jeweiligen Pilotbrenner vorzusehen, womit diese integrierte Zündvorrichtung für den Pilotbrenner Bestandteil des Brennersystems wird, das auswechselbar in der Gasturbine montiert ist. Durch die Integration der Zündvorrichtung in den Brenner können mehrere oder alle Pilotbrenner mit einem Zünder ausgestattet werden, wodurch optimale Querzündungseigenschaften erzielt werden. Vorzugsweise geschieht die Zündung des Pilotbrenners mittels eines Glühzünstiftes oder mittels einer Zündkerze.The guided introduction of the cooling air mentioned is also used to in order to provide an ignition device integrated there for the respective pilot burner, with which this integrated ignition device for the pilot burner is part of the burner system, which is interchangeably mounted in the gas turbine. By integrating the ignition device in the burner, several or All pilot burners are equipped with an igniter, which ensures optimal cross-ignition properties be achieved. Preferably the ignition of the Pilot burner using a glow pencil or using a spark plug.

    Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenlösung sind in den weiteren Ansprüchen gekennzeichnet. Advantageous and expedient developments of the task solution according to the invention are characterized in the further claims.

    Im folgenden werden anhand der Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung unwesentlichen Merkmale sind fortgelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.Exemplary embodiments of the invention are described below with reference to the drawings explained in more detail. All of which are insignificant for the immediate understanding of the invention Features have been left out. The same elements are in the different Figures with the same reference numerals. The flow direction the media is indicated by arrows.

    Kurze Bezeichnung der ZeichnungenBrief description of the drawings

    Es zeigt:

    Fig. 1
    einen als Vormischbrenner ausgelegten Brenner mit einer Mischstrecke stromab eines Drallerzeugers sowie mit Pilotbrennern,
    Fig. 2
    eine schematische Darstellung des Brenners gemäss Fig. 1 mit Disposition der zusätzlichen Brennstoff-Injektoren,
    Fig. 3
    einen aus mehreren Schalen bestehenden Drallerzeuger in perspektivischer Darstellung, entsprechend aufgeschnitten,
    Fig. 4
    einen Querschnitt durch einen zweischaligen Drallerzeuger,
    Fig. 5
    einen Querschnitt durch einen vierschaligen Drallerzeuger,
    Fig. 6
    eine Ansicht durch einen Drallerzeuger, dessen Schalen schaufelförmig profiliert sind,
    Fig. 7
    eine Ausgestaltung der Uebergangsgeometrie zwischen Drallerzeuger und Mischstrecke und
    Fig. 8
    eine Abrisskante zur räumlichen Stabilisierung der Rückströmzone.
    It shows:
    Fig. 1
    a burner designed as a premix burner with a mixing section downstream of a swirl generator and with pilot burners,
    Fig. 2
    2 shows a schematic representation of the burner according to FIG. 1 with disposition of the additional fuel injectors,
    Fig. 3
    a swirl generator consisting of several shells in a perspective view, cut open accordingly,
    Fig. 4
    a cross section through a double-shell swirl generator,
    Fig. 5
    a cross section through a four-shell swirl generator,
    Fig. 6
    2 shows a view through a swirl generator, the shells of which are profiled in a shovel shape,
    Fig. 7
    an embodiment of the transition geometry between swirl generator and mixing section and
    Fig. 8
    a tear-off edge for spatial stabilization of the backflow zone.

    Wege zur Ausführung der Erfindung, gewerbliche VerwendbarkeitWAYS OF IMPLEMENTING THE INVENTION, INDUSTRIAL APPLICABILITY

    Fig. 1 zeigt den Gesamtaufbau eines Brenners. Anfänglich ist ein Drallerzeuger 100 wirksam, dessen Ausgestaltung in den nachfolgenden Fig. 3-6 noch näher gezeigt und beschrieben wird. Es handelt sich bei diesem Drallerzeuger 100 um ein kegelförmiges Gebilde, das tangential mehrfach von einem tangential einströmenden Verbrennungsluftstromes 115 beaufschlagt wird. Die sich hierein bildende Strömung wird anhand einer stromab des Drallerzeugers 100 vorgesehenen Uebergangsgeometrie nahtlos in ein Uebergangsstück 200 übergeleitet, dergestalt, dass dort keine Ablösungsgebiete auftreten können. Die Konfiguration dieser Uebergangsgeometrie wird unter Fig. 6 näher beschrieben. Dieses Uebergangsstück 200 ist abströmungsseitig der Uebergangsgeometrie durch ein Mischrohr 20 verlängert, wobei beide Teile die eigentliche Mischstrecke 220 bilden. Selbstverständlich kann die Mischstrecke 220 aus einem einzigen Stück bestehen, d.h. dann, dass das Uebergangsstück 200 und das Mischrohr 20 zu einem einzigen zusammenhängenden Gebilde verschmelzen, wobei die Charakteristiken eines jeden Teils erhalten bleiben. Werden Uebergangsstück 200 und Mischrohr 20 aus zwei Teilen erstellt, so sind diese durch einen Buchsenring 10 verbunden, wobei der gleiche Buchsenring 10 kopfseitig als Verankerungsfläche für den Drallerzeuger 100 dient. Ein solcher Buchsenring 10 hat darüber hinaus den Vorteil, dass verschiedene Mischrohre eingesetzt werden können. Abströmungsseitig des Mischrohres 20 befindet sich der eigentliche Brennraum 30 einer Brennkammer, welche hier lediglich durch ein Flammrohr versinnbildlicht ist. Die Mischstrecke 220 erfüllt weitgehend die Aufgabe, dass stromab des Drallerzeugers 100 eine definierte Strecke bereitgestellt wird, in welcher eine perfekte Vormischung von Brennstoffen verschiedener Art erzielt werden kann. Diese Mischstrecke, also vordergründig das Mischrohr 20, ermöglicht des weiteren eine verlustfreie Strömungsführung, so dass sich auch in Wirkverbindung mit der Uebergangsgeometrie zunächst keine Rückströmzone oder Rückströmblase bilden kann, womit über die Länge der Mischstrecke 220 auf die Mischungsgüte für alle Brennstoffarten Einfluss ausgeübt werden kann. Diese Mischstrecke 220 hat aber noch eine andere Eigenschaft, welche darin besteht, dass in ihr selbst das Axialgeschwindigkeits-Profil ein ausgeprägtes Maximum auf der Achse besitzt, so dass eine Rückzündung der Flamme aus der Brennkammer nicht möglich ist. Allerdings ist es richtig, dass bei einer solchen Konfiguration diese Axialgeschwindigkeit zur Wand hin abfällt. Um Rückzündung auch in diesem Bereich zu unterbinden, wird das Mischrohr 20 in Strömungs- und Umfangsrichtung mit einer Anzahl regelmässig oder unregelmässig verteilter Bohrungen 21 verschiedenster Querschnitte und Richtungen versehen, durch welche eine Luftmenge in das Innere des Mischrohres 20 strömt, und entlang der Wand im Sinne einer Filmlegung eine Erhöhung der Durchfluss-Geschwindigkeit induzieren. Diese Bohrungen 21 können auch so ausgelegt werden, dass sich an der Innenwand des Mischrohres 20 mindestens zusätzlich noch eine Effusionskühlung einstellt. Eine andere Möglichkeit eine Erhöhung der Geschwindigkeit des Gemisches innerhalb des Mischrohres 20 zu erzielen, besteht darin, dass dessen Durchflussquerschnitt abströmungsseitig der Uebergangskanäle 201, welche die bereits genannten Uebergangsgeometrie bilden, eine Verengung erfährt, wodurch das gesamte Geschwindigkeitsniveau innerhalb des Mischrohres 20 angehoben wird. In der Figur verlaufen diese Bohrungen 21 unter einem spitzen Winkel gegenüber der Brennerachse 60. Des weiteren entspricht der Auslauf der Uebergangskanäle 201 dem engsten Durchflussquerschnitt des Mischrohres 20. Die genannten Uebergangskanäle 201 überbrükken demnach den jeweiligen Querschnittsunterschied, ohne dabei die gebildete Strömung negativ zu beeinflussen. Wenn die gewählte Vorkehrung bei der Führung der Rohrströmung 40 entlang des Mischrohres 20 einen nicht tolerierbaren Druckverlust auslöst, so kann hiergegen Abhilfe geschaffen werden, indem am Ende dieses Mischrohres ein in der Figur nicht gezeigter Diffusor vorgesehen wird. Am Ende des Mischrohres 20 schliesst sich sodann eine Brennkammer 30 (Brennraum) an, wobei zwischen den beiden Durchflussquerschnitten ein durch eine Brennerfront 70 gebildeter Querschnittssprung vorhanden ist. Erst hier bildet sich eine zentrale Flammenfront mit einer Rückströmzone 50, welche gegenüber der Flammenfront die Eigenschaften eines körperlosen Flammenhalters aufweist. Bildet sich innerhalb dieses Querschnittssprunges während des Betriebes eine strömungsmässige Randzone, in welcher durch den dort vorherrschenden Unterdruck Wirbelablösungen entstehen, so führt dies zu einer verstärkten Ringstabilisation der Rückströmzone 50. Danebst darf nicht unerwähnt bleiben, dass die Erzeugung einer stabilen Rückströmzone 50 auch eine ausreichend hohe Drallzahl in einem Rohr erfordert. Ist eine solche zunächst unerwünscht, so können stabile Rückströmzonen durch die Zufuhr kleiner stark verdrallter Luftströmungen am Rohrende, beispielsweise durch tangentiale Oeffnungen, erzeugt werden. Dabei geht man hier davon aus, dass die hierzu benötigte Luftmenge in etwa 5-20% der Gesamtluftmenge beträgt. Was die Ausgestaltung der Brennerfront 70 am Ende des Mischrohres 20 zur Stabilisierung der Rückströmzone oder Rückströmblase 50 betrifft, wird auf die Beschreibung unter Fig. 8 verwiesen.
    Konzentrisch zum Mischrohr 20, im Bereich seines Auslaufes, wird ein Pilotbrennersystem 300 vorgesehen. Dieses besteht aus einer inneren Ringkammer 301, in welche ein Brennstoff, vorzugsweise ein gasförmiger Brennstoff 303 einströmt. Nebengeordnet zu dieser inneren Ringkammer 301 ist eine zweite Ringkammer 302 disponiert, in welche eine Luftmenge 304 einströmt. Beide Ringkammem 301, 302 weisen individuell gestaltete Durchgangsöffnungen auf, dergestalt, dass die einzelnen Medien 303, 304 funktionsbedingt in eine gemeinsame nachgeschaltete Ringkammer 308 strömen. Die Ueberleitung des gasförmigen Brennstoffes 303 von der Ringkammer 301 in die nachgeschaltete Ringkammer 308 wird durch eine Anzahl in Umfangsrichtung angeordneter Oeffnungen 309 bewerkstelligt. Die Durchgangsgeometrie dieser Oeffnungen 309 ist so gestaltet, dass der gasförmige Brennstoff 303 mit einem grossen Vermischungspotential in die nachgeschaltete Ringkammer 308 einströmt. Die andere Ringkammer 302 schliesst mit einer gelochten Platte 305 ab, wobei die hier vorgesehenen Bohrungen 310 so gestaltet sind, dass die dort durchströmende Luftmenge 304 eine Prallkühlung auf die Bodenplatte 307 der nachgeschalteten Ringkammer 308. Diese Bodenplatte hat die Funktion eines Hitzeschutzbleches gegenüber der kalorischen Belastung aus dem Brennraum 30, so dass diese Prallkühlung hier äusserst effizient ausfallen muss. Diese Luft vermischt sich nach vollzogener Kühlung innerhalb dieser Ringkammer 308 mit dem hinzuströmenden gasförmigen Brennstoff 303 aus den Oeffnungen 309 der stromauf angeordneten Ringkammer 301, bevor dieses Gemisch dann durch eine Anzahl brennraumseitig angeordneter Bohrungen 306 in den Brennraum 30 abströmt. Das hier ausströmende Gemisch brennt als vorgemischte Diffusionsflamme mit minimierten Schadstoff-Emissionenen und bildet sonach je Bohrung 306 einen in den Brennraum 30 wirkenden Pilotbrenner, welcher einen stabilen Betrieb gewährleistet.
    Fig. 1 shows the overall structure of a burner. Initially, a swirl generator 100 is effective, the design of which is shown and described in more detail in the following FIGS. 3-6. This swirl generator 100 is a conical structure which is acted upon tangentially several times by a tangentially flowing combustion air flow 115. The flow formed here is seamlessly transferred to a transition piece 200 using a transition geometry provided downstream of the swirl generator 100, in such a way that no separation areas can occur there. The configuration of this transition geometry is described in more detail in FIG. 6. This transition piece 200 is extended on the outflow side of the transition geometry by a mixing tube 20, both parts forming the actual mixing section 220. Of course, the mixing section 220 can consist of a single piece, that is to say then that the transition piece 200 and the mixing tube 20 merge into a single coherent structure, the characteristics of each part being retained. If the transition piece 200 and the mixing tube 20 are made of two parts, these are connected by a bushing ring 10, the same bushing ring 10 serving as an anchoring surface for the swirl generator 100 on the head side. Such a bushing ring 10 also has the advantage that different mixing tubes can be used. On the outflow side of the mixing tube 20 there is the actual combustion chamber 30 of a combustion chamber, which here is only symbolized by a flame tube. The mixing section 220 largely fulfills the task of providing a defined section downstream of the swirl generator 100, in which a perfect premixing of fuels of different types can be achieved. This mixing section, i.e. the mixing pipe 20 in the foreground, furthermore enables loss-free flow guidance, so that no backflow zone or backflow bubble can initially form even in operative connection with the transition geometry, which means that the length of the mixing section 220 can influence the quality of the mixture for all types of fuel , However, this mixing section 220 has yet another property, which consists in that the axial velocity profile itself has a pronounced maximum on the axis, so that the flame cannot be re-ignited from the combustion chamber. However, it is correct that with such a configuration this axial velocity drops towards the wall. To prevent re-ignition in this area, the mixing tube 20 is provided in the flow and circumferential direction with a number of regularly or irregularly distributed bores 21 of various cross-sections and directions through which an amount of air flows into the interior of the mixing tube 20 and along the wall in the In the sense of filming, induce an increase in the flow rate. These bores 21 can also be designed such that at least one additional effusion cooling is established on the inner wall of the mixing tube 20. Another possibility of increasing the speed of the mixture within the mixing tube 20 is to narrow its flow cross-section on the outflow side of the transition channels 201, which form the transition geometry already mentioned, as a result of which the overall speed level within the mixing tube 20 is increased. In the figure, these bores 21 run at an acute angle with respect to the burner axis 60. Furthermore, the outlet of the transition channels 201 corresponds to the narrowest flow cross-section of the mixing tube 20. The transition channels 201 mentioned therefore bridge the respective cross-sectional difference without adversely affecting the flow formed. If the selected precaution triggers an intolerable pressure loss when guiding the pipe flow 40 along the mixing pipe 20, this can be remedied by providing a diffuser (not shown in the figure) at the end of this mixing pipe. A combustion chamber 30 (combustion chamber) then adjoins the end of the mixing tube 20, a cross-sectional jump formed by a burner front 70 being present between the two flow cross sections. Only here does a central flame front form with a backflow zone 50 which has the properties of a disembodied flame holder compared to the flame front. If a flow-like edge zone forms in this cross-sectional jump during operation, in which vortex detachments occur due to the prevailing negative pressure, this leads to increased ring stabilization of the return flow zone 50. It should also be mentioned that the generation of a stable return flow zone 50 is also sufficiently high Twist number in a pipe required. If this is initially undesirable, stable backflow zones can be created by supplying small, strongly swirled air flows at the pipe end, for example by means of tangential openings. It is assumed here that the amount of air required for this is about 5-20% of the total amount of air. With regard to the design of the burner front 70 at the end of the mixing tube 20 for stabilizing the backflow zone or backflow bladder 50, reference is made to the description under FIG. 8.
    A pilot burner system 300 is provided concentrically with the mixing tube 20 in the area of its outlet. This consists of an inner annular chamber 301 into which a fuel, preferably a gaseous fuel 303, flows. In addition to this inner annular chamber 301, there is a second annular chamber 302 into which an air quantity 304 flows. Both ring chambers 301, 302 have individually designed through openings, such that the individual media 303, 304 flow into a common downstream ring chamber 308 due to their function. The transfer of the gaseous fuel 303 from the annular chamber 301 into the downstream annular chamber 308 is accomplished by a number of openings 309 arranged in the circumferential direction. The passage geometry of these openings 309 is designed such that the gaseous fuel 303 flows into the downstream annular chamber 308 with a large mixing potential. The other annular chamber 302 closes with a perforated plate 305, the bores 310 provided here being designed in such a way that the air volume 304 flowing through there impacts cooling on the base plate 307 of the downstream annular chamber 308. This base plate has the function of a heat protection plate against the calorific load from the combustion chamber 30, so that this impingement cooling must be extremely efficient here. After cooling, this air mixes within this annular chamber 308 with the gaseous fuel 303 flowing in from the openings 309 of the upstream annular chamber 301 before this mixture then flows out into the combustion chamber 30 through a number of bores 306 arranged on the combustion chamber side. The mixture flowing out burns as a premixed diffusion flame with minimized pollutant emissions and accordingly forms a pilot burner acting in the combustion chamber 30 per bore 306, which ensures stable operation.

    Durch die luftdurchströmte nebengeordnete Ringkammer 302 wird eine Zündvorrichtung 311 durchgeleitet, welche in der nachgeschalteten Ringkammer 308 die Zündung des sich dort bildenden Gemisches bewerkstelligt. Zum einen braucht es für diese Durchleitung der Zündvorrichtung 311 keine weiteren konstruktiven Massnahmen, und zum anderen wird diese Zündvorrichtung 311 ständig durch die dort ohnehin strömende Luft 304 gekühlt. Dies ist sehr wichtig, da beim Einsatz eines Glühzündstiftes an der Spitze Temperaturen von ca. 1000°C erreicht werden. Da aber für den hier vorgeschlagene Betrieb nur eine geringe Spannung, dafür hoher Strom erforderlich ist, entfällt mithin die Anfälligkeit der Zündvorrichtung gegen Kondenwasseraussscheidungen. Durch die Anordnung des Glühzündstiftes, wobei der Einsatz einer Zündkerze ebenfalls möglich ist, innerhalb des Brenners ist die jeweilige Zündvorrichtung 311 thermisch gering belastet, womit keiner zusätzlichen Kühlung bedarf und Leckagen werden dadurch auch vermieden. An ignition device becomes through the air-circulating ring chamber 302 311 passed through, which in the downstream annular chamber 308 Ignition of the mixture formed there. For one thing, it takes for this passage of the ignition device 311 no further constructive Measures, and on the other hand, this ignition device 311 is constantly by the air 304 flowing there is cooled anyway. This is very important because when using it temperature of approx. 1000 ° C can be reached with a glow plug. However, since there is only a low voltage for the operation proposed here, high current is required, the susceptibility of the ignition device is therefore eliminated against condensation water. Due to the arrangement of the glow plug, the use of a spark plug is also possible within of the burner, the respective ignition device 311 is thermally slightly loaded, which means that no additional cooling is required and leakages are also eliminated avoided.

    Fig. 2 zeigt eine schematische Ansicht des Brenners gemäss Fig. 1, wobei hier insbesondere auf die Umspülung einer zentral angeordneten Brennstoffdüse 103 und auf die Wirkung von Brennstoff-Injektoren 170 hingewiesen wird. Die Wirkungsweise der restlichen Hauptbestandteile des Brenners, nämlich Drallerzeuger 100 und Uebergangsstück 200 werden unter den nachfolgenden Figuren näher beschrieben. Die Brennstoffdüse 103 wird mit einem beabstandeten Ring 190 ummantelt, in welchem eine Anzahl in Umfangsrichtung disponierter Bohrungen 161 gelegt sind, durch welche eine Luftmenge 160 in eine ringförmige Kammer 180 strömt und dort die Umspülung der Brennstofflanze vornimmt. Diese Bohrungen 161 sind schräg nach vorne angelegt, dergestalt, dass eine angemessene axiale Komponente auf der Brennerachse 60 entsteht. In Wirkverbindung mit diesen Bohrungen 161 sind zusätzliche Brennstoff-Injektoren 170 vorgesehen, welche eine bestimmte Menge vorzugsweise eines gasförmigen Brennstoffes in die jeweilige Luftmenge 160 eingeben, dergestalt, dass sich im Mischrohr 20 eine gleichmässige Brennstoffkonzentration 150 über den Strömungsquerschnitt einstellt, wie die Darstellung in der Figur versinnbildlichen will. Genau diese gleichmässige Brennstoffkonzentration 150, insbesondere die starke Konzentration auf der Brennerachse 60 sorgt dafür, dass sich eine Stabilisierung der Flammenfront am Ausgangs des Brenners einstellt, womit aufkommende Brennkammerpulsationen vermieden werden.Fig. 2 shows a schematic view of the burner according to Fig. 1, here in particular the flushing of a centrally arranged fuel nozzle 103 and the effect of fuel injectors 170 is pointed out. The mode of action the remaining main components of the burner, namely swirl generator 100 and transition piece 200 are closer under the following figures described. The fuel nozzle 103 is spaced with a ring 190 encased in which a number of circumferentially bored holes 161 are placed, through which an amount of air 160 into an annular chamber 180 flows and carries out the flushing of the fuel lance there. These holes 161 are slanted forward so that it is appropriate axial component arises on the burner axis 60. In active connection with these Additional fuel injectors 170 are provided in holes 161 a certain amount, preferably a gaseous fuel, into the Enter the respective amount of air 160 in such a way that a sets uniform fuel concentration 150 over the flow cross-section, as the representation in the figure symbolizes. Exactly this even Fuel concentration 150, especially the strong concentration the burner axis 60 ensures that the flame front is stabilized at the output of the burner, which causes combustion chamber pulsations be avoided.

    Um den Aufbau des Drallerzeugers 100 besser zu verstehen, ist es von Vorteil, wenn gleichzeitig zu Fig. 3 mindestens Fig. 4 herangezogen wird. Im folgenden wird bei der Beschreibung von Fig. 3 nach Bedarf auf die übrigen Figuren hingewiesen.In order to better understand the structure of the swirl generator 100, it is advantageous to if at least FIG. 4 is used at the same time as FIG. 3. Hereinafter 3 is referred to the other figures as necessary in the description of FIG.

    Der erste Teil des Brenners nach Fig. 1 bildet den nach Fig. 3 gezeigten Drallerzeuger 100. Dieser besteht aus zwei hohlen kegelförmigen Teilkörpem 101, 102, die versetzt zueinander ineinandergeschachtelt sind. Die Anzahl der kegelförmigen Teilkörper kann selbstverständlich grösser als zwei sein, wie die Figuren 5 und 6 zeigen; dies hängt jeweils, wie weiter unten noch näher zur Erläuterung kommen wird, von der Betriebsart des ganzen Brenners ab. Es ist bei bestimmten Betriebskonstellationen nicht ausgeschlossen, einen aus einer einzigen Spirale bestehenden Drallerzeuger vorzusehen. Die Versetzung der jeweiligen Mittelachse oder Längssymmetrieachsen 101b, 102b (Vgl. Fig. 4) der kegeligen Teilkörper 101, 102 zueinander schafft bei der benachbarten Wandung, in spiegelbildlicher Anordnung, jeweils einen tangentialen Kanal, d.h. einen Lufteintrittsschlitz 119, 120 (Vgl. Fig. 4), durch welche die Verbrennungsluft 115 in Innenraum des Drallerzeugers 100, d.h. in den Kegelhohlraum 114 desselben strömt. Die Kegelform der gezeigten Teilkörper 101, 102 in Strömungsrichtung weist einen bestimmten festen Winkel auf. Selbstverständlich, je nach Betriebseinsatz, können die Teilkörper 101, 102 in Strömungsrichtung eine zunehmende oder abnehmende Kegelneigung aufweisen, ähnlich einer Trompete resp. Tulpe. Die beiden letztgenannten Formen sind zeichnerisch nicht erfasst, da sie für den Fachmann ohne weiteres nachempfindbar sind. Die beiden kegeligen Teilkörper 101, 102 weisen je einen zylindrischen ringförmigen Anfangsteil 101a auf. Im Bereich dieses zylindrischen Anfangsteils ist die bereits unter Fig. 2 erwähnte Brennstoffdüse 103 untergebracht, welche vorzugsweise mit einem flüssigen Brennstoff 112 betrieben wird. Die Eindüsung 104 dieses Brennstoffes 112 fällt in etwa mit dem engsten Querschnitt des durch die kegeligen Teilkörper 101, 102 gebildeten Kegelhohlraumes 114 zusammen. Die Eindüsungskapazität und die Art dieser Brennstoffdüse 103 richtet sich nach den vorgegebenen Parametern des jeweiligen Brenners. Die kegeligen Teilkörper 101, 102 weisen des weiteren je eine Brennstoffleitung 108, 109 auf, welche entlang der tangentialen Lufteintrittsschlitze 119, 120 angeordnet und mit Eindüsungsöffnungen 117 versehen sind, durch welche vorzugsweise ein gasförmiger Brennstoff 113 in die dort durchströmende Verbrennungsluft 115 eingedüst wird, wie dies die Pfeile 116 versinnbildlichen wollen. Diese Brennstoffleitungen 108, 109 sind vorzugsweise spätestens am Ende der tangentialen Einströmung, vor Eintritt in den Kegelhohlraum 114, angeordnet, dies um eine optimale Luft/Brennstoff-Mischung zu erhalten. Bei dem durch die Brennstoffdüse 103 herangeführten Brennstoff 112 handelt es sich, wie erwähnt, im Normalfall um einen flüssigen Brennstoff, wobei eine Gemischbildung mit einem anderen Medium, beispielsweise mit einem rückgeführten Rauchgas, ohne weiteres möglich ist. Dieser Brennstoff 112 wird unter einem vorzugsweise sehr spitzen Winkel in den Kegelhohlraum 114 eingedüst. Aus der Brennstoffdüse 103 bildet sich sonach ein kegeliges Brennstoffspray 105, das von der tangential einströmenden rotierenden Verbrennungsluft 115 umschlossen und abgebaut wird. In axialer Richtung wird sodann die Konzentration des eingedüsten Brennstoffes 112 fortlaufend durch die einströmenden Verbrennungsluft 115 zu einer Vermischung Richtung Verdampfung abgebaut. Wird ein gasförmiger Brennstoff 113 über die Oeffnungsdüsen 117 eingebracht, geschieht die Bildung des Brennstoff/Luft-Gemisches direkt am Ende der Lufteintrittsschlitze 119, 120. Ist die Verbrennungsluft 115 zusätzlich vorgeheizt, oder beispielsweise mit einem rückgeführten Rauchgas oder Abgas angereichert, so unterstützt dies nachhaltig die Verdampfung des flüssigen Brennstoffes 112, bevor dieses Gemisch in die nachgeschaltete Stufe strömt, hier in das Uebergangsstück 200 (Vgl. Fig. 1 und 7). Die gleichen Ueberlegungen gelten auch, wenn über die Leitungen 108, 109 flüssige Brennstoffe zugeführt werden sollten. Bei der Gestaltung der kegeligen Teilkörper 101, 102 hinsichtlich des Kegelwinkels und der Breite der tangentialen Lufteintrittsschlitze 119, 120 sind an sich enge Grenzen einzuhalten, damit sich das gewünschte Strömungsfeld der Verbrennungsluft 115 am Ausgang des Drallerzeugers 100 einstellen kann. Allgemein ist zu sagen, dass eine Verkleinerung der tangentialen Lufteintrittsschlitze 119, 120 die schnellere Bildung einer Rückströmzone bereits im Bereich des Drallerzeugers begünstigt. Die Axialgeschwindigkeit innerhalb des Drallerzeugers 100 lässt sich durch eine entsprechende unter Fig. 2 (Pos. 160) näher beschriebene Zuführung einer Luftmenge erhöhen bzw. stabilisieren. Eine entsprechende Drallerzeugung in Wirkverbindung mit dem nachgeschalteten Uebergangsstück 200 (Vgl. Fig. 1 und 7) verhindert die Bildung von Strömungsablösungen innerhalb des dem Drallerzeuger 100 nachgeschalteten Mischrohr. Die Konstruktion des Drallerzeugers 100 eignet sich des weiteren vorzüglich, die Grösse der tangentialen Lufteintrittsschlitze 119, 120 zu verändern, womit ohne Veränderung der Baulänge des Drallerzeugers 100 eine relativ grosse betriebliche Bandbreite erfasst werden kann. Selbstverständlich sind die Teilkörper 101, 102 auch in einer anderen Ebene zueinander verschiebbar, wodurch sogar eine Ueberlappung derselben vorgesehen werden kann. Es ist des weiteren möglich, die Teilkörper 101, 102 durch eine gegenläufig drehende Bewegung spiralartig ineinander zu verschachteln. Somit ist es möglich, die Form, die Grösse und die Konfiguration der tangentialen Lufteintrittsschlitze 119, 120 beliebig zu variieren, womit der Drallerzeuger 100 ohne Veränderung seiner Baulänge universell einsetzbar ist.The first part of the burner according to FIG. 1 forms the swirl generator shown in FIG. 3 100. This consists of two hollow conical partial bodies 101, 102, which are nested in a staggered manner. The number of conical Partial body can of course be larger than two, like the figures 5 and 6 show; this depends in each case, as will be explained in more detail below will depend on the operating mode of the entire burner. It is with certain Operating constellations are not excluded, one from a single spiral to provide existing swirl generator. The offset of the respective central axis or longitudinal symmetry axes 101b, 102b (cf. FIG. 4) of the conical partial bodies 101, 102 creates each other in the adjacent wall, in mirror image Arrangement, each a tangential channel, i.e. an air inlet slot 119, 120 (see FIG. 4), through which the combustion air 115 in the interior of the swirl generator 100, i.e. flows into the cone cavity 114 of the same. The cone shape the partial body 101, 102 shown in the flow direction has a certain one fixed angle. Of course, depending on the operational use, the partial bodies can 101, 102 an increasing or decreasing cone inclination in the flow direction have, similar to a trumpet. Tulip. The latter two Shapes are not recorded in the drawing, as they are without for the specialist are further sensitive. The two conical partial bodies 101, 102 have each have a cylindrical annular starting part 101a. In the area of this cylindrical Initially, the fuel nozzle 103 already mentioned under FIG. 2 is housed, which is preferably operated with a liquid fuel 112 becomes. The injection 104 of this fuel 112 coincides with the narrowest Cross-section of the conical cavity formed by the conical partial bodies 101, 102 114 together. The injection capacity and the type of this fuel nozzle 103 depends on the specified parameters of the respective burner. The conical sub-bodies 101, 102 each have a fuel line 108, 109 which run along the tangential air inlet slots 119, 120 arranged and provided with injection openings 117, through which preferably a gaseous fuel 113 in the combustion air flowing through there 115 is injected, as the arrows 116 want to symbolize. These fuel lines 108, 109 are preferably at the end of the latest tangential inflow, before entering the cone cavity 114, arranged this to get an optimal air / fuel mixture. With the by Fuel nozzle 103 brought fuel 112 is, as mentioned, normally a liquid fuel, whereby a mixture formation with a other medium, for example with a recirculated flue gas, without further is possible. This fuel 112 is preferably very low acute angle injected into the cone cavity 114. From the fuel nozzle 103 A conical fuel spray 105 is thus formed, which flows in from the tangential one rotating combustion air 115 is enclosed and degraded. The concentration of the injected fuel is then in the axial direction 112 continuously through the incoming combustion air 115 for mixing Degraded towards evaporation. If a gaseous fuel 113 Introduced via the opening nozzles 117, the fuel / air mixture is formed directly at the end of the air inlet slots 119, 120. Is the combustion air 115 additionally preheated, or for example with a recirculated Flue gas or exhaust gas enriched, so this sustainably supports the Evaporation of the liquid fuel 112 before this mixture in the downstream Stage flows, here in the transition piece 200 (see FIGS. 1 and 7). The The same considerations also apply if liquid lines 108, 109 Fuels should be supplied. When designing the tapered partial body 101, 102 with regard to the cone angle and the width of the tangential air inlet slots 119, 120 are strict limits to be observed so that the desired Flow field of the combustion air 115 at the exit of the swirl generator 100 can set. Generally speaking, a downsizing of the tangential air inlet slots 119, 120 the faster formation of a backflow zone already favored in the area of the swirl generator. The axial speed Within the swirl generator 100, a corresponding one shown in FIG (Item 160) Increase or stabilize the supply of an air quantity described in more detail. A corresponding swirl generation in operative connection with the downstream one Transition piece 200 (see FIGS. 1 and 7) prevents the formation of Flow separations within the swirl generator 100 downstream Mixing tube. The construction of the swirl generator 100 is furthermore particularly suitable, change the size of the tangential air inlet slots 119, 120, which is a relatively large one without changing the overall length of the swirl generator 100 operational bandwidth can be captured. Of course, the partial bodies 101, 102 can also be moved relative to one another in another plane, which even an overlap of the same can be provided. It is further possible, the sub-bodies 101, 102 by a counter-rotating movement spiral to nest into each other. So it is possible, the shape, the size and the configuration of the tangential air inlet slots 119, 120 arbitrarily vary, with which the swirl generator 100 is universal without changing its overall length can be used.

    Aus Fig. 4 geht unter anderen die geometrische Konfiguration von wahlweise vorzusehenden Leitbleche 121a, 121b hervor. Sie haben Strömungseinleitungsfunktion. wobei diese, entsprechend ihrer Länge, das jeweilige Ende der kegeligen Teilkörper 101, 102 in Anströmungsrichtung gegenüber der Verbrennungsluft 115 verlängern. Die Kanalisierung der Verbrennungsluft 115 in den Kegelhohlraum 114 kann durch Oeffnen bzw. Schliessen der Leitbleche 121a, 121b um einen im Bereich des Eintritts dieses Kanals in den Kegelhohlraum 114 plazierten Drehpunkt 123 optimiert werden, insbesondere ist dies vonnöten, wenn die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 119, 120 dynamisch verändert werden soll, beispielsweise um eine Aenderung der geschwindigkeit der Verbrennungsluft 115 zu erreichen. Selbstverständlich können diese dynamische Vorkehrungen auch statisch vorgesehen werden, indem bedarfsmässige Leitbleche einen festen Bestandteil mit den kegeligen Teilkörpern 101, 102 bilden.4 shows, among other things, the geometric configuration of optional ones Baffles 121a, 121b. They have a flow introduction function. which, according to their length, the respective end of the tapered Partial bodies 101, 102 in the flow direction with respect to the combustion air 115 extend. Channeling the combustion air 115 into the cone cavity 114 can be opened or closed by one of the baffles 121a, 121b Area of entry of this channel into the cone cavity 114 placed fulcrum 123 can be optimized, especially if the original Gap size of the tangential air inlet slots 119, 120 changed dynamically should be, for example, to change the speed of the combustion air 115 to achieve. Of course, these can be dynamic Precautions can also be provided statically by using baffles as needed form a fixed component with the tapered partial bodies 101, 102.

    Fig. 5 zeigt gegenüber Fig. 4, dass der Drallerzeuger 100 nunmehr aus vier Teilkörpern 130, 131, 132, 133 aufgebaut ist. Die dazugehörigen Längssymmetrieachsen zu jedem Teilkörper sind mit der Buchstabe a gekennzeichnet. Zu dieser Konfiguration ist zu sagen, dass sie sich aufgrund der damit erzeugten, geringeren Drallstärke und im Zusammenwirken mit einer entsprechend vergrösserten Schlitzbreite bestens eignet, das Aufplatzen der Wirbelströmung abströmungsseitig des Drallerzeugers im Mischrohr zu verhindern, womit das Mischrohr die ihm zugedachte Rolle bestens erfüllen kann.5 shows that the swirl generator 100 now consists of four partial bodies 130, 131, 132, 133 is constructed. The associated longitudinal symmetry axes for each sub-body are marked with the letter a. To this Configuration is to be said that it is due to the lower generated with it Twist strength and in cooperation with a correspondingly enlarged Slot width is best suited, the bursting of the vortex flow on the downstream side to prevent the swirl generator in the mixing tube, thus causing the mixing tube to can fulfill the intended role.

    Fig. 6 unterscheidet sich gegenüber Fig. 5 insoweit, als hier die Teilkörper 140, 141, 142, 143 eine Schaufelprofilform haben, welche zur Bereitstellung einer gewissen Strömung vorgesehen wird. Ansonsten ist die Betreibungsart des Drallerzeugers die gleiche geblieben. Die Zumischung des Brennstoffes 116 in den Verbrennungsluftstromes 115 geschieht aus dem Innern der Schaufelprofile heraus, d.h. die Brennstoffleitung 108 ist nunmehr in die einzelnen Schaufeln integriert. Auch hier sind die Längssymmetrieachsen zu den einzelnen Teilkörpern mit der Buchstabe a gekennzeichnet.FIG. 6 differs from FIG. 5 in that the partial bodies 140 here 141, 142, 143 have a blade profile shape which is used to provide a certain Flow is provided. Otherwise, the mode of operation of the swirl generator stayed the same. The admixture of fuel 116 in the combustion air flow 115 happens from inside the blade profiles, i.e. the fuel line 108 is now integrated in the individual blades. Here, too, are the longitudinal axes of symmetry to the individual partial bodies with the Letter a marked.

    Fig. 7 zeigt das Uebergangsstück 200 in dreidimensionaler Ansicht. Die Uebergangsgeometrie ist für einen Drallerzeuger 100 mit vier Teilkörpern, entsprechend der Fig. 5 oder 6, aufgebaut. Dementsprechend weist die Uebergangsgeometrie als natürliche Verlängerung der stromauf wirkenden Teilkörper vier Uebergangskanäle 201 auf, wodurch die Kegelviertelfläche der genannten Teilkörper verlängert wird, bis sie die Wand des Mischrohres schneidet. Die gleichen Ueberlegungen gelten auch, wenn der Drallerzeuger aus einem anderen Prinzip, als den unter Fig. 3 beschriebenen, aufgebaut ist. Die nach unten in Strömungsrichtung verlaufende Fläche der einzelnen Uebergangskanäle 201 weist eine in Strömungsrichtung spiralförmig verlaufende Form auf, welche einen sichelförmigen Verlauf beschreibt, entsprechend der Tatsache, dass sich vorliegend der Durchflussquerschnitt des Uebergangsstückes 200 in Strömungsrichtung konisch erweitert. Der Drallwinkel der Uebergangskanäle 201 in Strömungsrichtung ist so gewählt, dass der Rohrströmung anschliessend bis zum Querschnittssprung am Brennkammereintritt noch eine genügend grosse Strecke verbleibt, um eine perfekte Vormischung mit dem eingedüsten Brennstoff zu bewerkstelligen. Ferner erhöht sich durch die oben genannten Massnahmen auch die Axialgeschwindigkeit an der Mischrohrwand stromab des Drallerzeugers. Die Uebergangsgeometrie und die Massnahmen im Bereich des Mischrohres bewirken eine deutliche Steigerung des Axialgeschwindigkeitsprofils zum Mittelpunkt des Mischrohres hin, so dass der Gefahr einer Frühzündung entscheidend entgegengewirkt wird.7 shows the transition piece 200 in a three-dimensional view. The transition geometry is corresponding for a swirl generator 100 with four partial bodies 5 or 6, built. Accordingly, the transition geometry as a natural extension of the upstream partial bodies, four transition channels 201 on, whereby the conical quarter area of said partial body is extended until it cuts the wall of the mixing tube. The same considerations also apply if the swirl generator is based on a principle other than the one below Fig. 3 is constructed. The down in the flow direction running surface of the individual transition channels 201 has a flow direction spiral shape, which has a crescent shape Course describes, corresponding to the fact that the flow cross-section is present of the transition piece 200 flared in the flow direction. The swirl angle of the transition channels 201 in the flow direction is selected so that that the pipe flow then up to the cross-sectional jump on Combustion chamber entry still has a sufficient distance to be perfect Premix with the injected fuel. Further increases the axial speed due to the above-mentioned measures on the mixing tube wall downstream of the swirl generator. The transition geometry and the measures in the area of the mixing tube cause a significant increase the axial velocity profile towards the center of the mixing tube, see above that the danger of early ignition is decisively counteracted.

    Fig. 8 zeigt die bereits angesprochene Abrisskante, welche am Brenneraustritt gebildet ist. Der Durchflussquerschnitt des Rohres 20 erhält in diesem Bereich einen Uebergangsradius R, dessen Grösse grundsätzlich von der Strömung innerhalb des Rohres 20 abhängt. Dieser Radius R wird so gewählt, dass sich die Strömung an die Wand anlegt und so die Drallzahl stark ansteigen lässt. Quantitativ lässt sich die Grösse des Radius R so definieren, dass dieser > 10% des Innendurchmessers d des Rohres 20 beträgt. Gegenüber einer Strömung ohne Radius vergrössert sich nun die Rückströmblase 50 gewaltig. Dieser Radius R verläuft bis zur Austrittsebene des Rohres 20, wobei der Winkel β zwischen Anfang und Ende der Krümmung < 90° beträgt. Entlang des einen Schenkels des Winkels β verläuft die Abrisskante A ins Innere des Rohres 20 und bildet somit eine Abrissstufe S gegenüber dem vorderen Punkt der Abrisskante A, deren Tiefe > 3 mm beträgt. Selbstverständlich kann die hier parall zur Austrittsebene des Rohres 20 verlaufende Kante anhand eines gekrümmten Verlaufs wieder auf Stufe Austrittsebene gebracht werden. Der Winkel β', der sich zwischen Tangente der Abrisskante A und Senkrechte zur Austrittsebene des Rohres 20 ausbreitet, ist gleich gross wie Winkel β. Die Vorteile dieser Ausbildung dieser Abrisskante gehen aus EP-0 780 629 A2 unter Dem Kapitel "Darstellung der Erfindung" hervor. Eine weitere Ausgestaltung der Abrisskante zum selben Zweck lässt sich mit brennkammerseitigen torusähnlichen Einkerbungen erreichen. Diese Druckschrift ist einschliessend des dortigen Schutzumfanges was die Abrisskante betrifft ein integrierender Bestandteil vorliegender Beschreibung.8 shows the tear-off edge already mentioned, which emerges at the burner outlet is formed. The flow cross section of the tube 20 receives one in this area Transition radius R, the size of which basically depends on the flow within of the tube 20 depends. This radius R is chosen so that the Applies flow to the wall and so the swirl number increases sharply. Quantitatively the size of the radius R can be defined so that it is> 10% of the inside diameter d of the tube is 20. Opposite a flow without a radius Now the backflow bladder 50 increases enormously. This radius R runs to the exit plane of the tube 20, the angle β between the beginning and end of curvature is <90 °. Along one leg of the angle β the tear-off edge A runs inside the tube 20 and thus forms a tear-off step S opposite the front point of the tear-off edge A, whose depth> 3 mm is. Of course, this can be parallel to the exit plane of the tube 20 running edge based on a curved course back to the exit level to be brought. The angle β ', which is between the tangent of the tear-off edge A and perpendicular to the exit plane of the tube 20 is the same size like angle β. The advantages of this formation of this tear-off edge come from EP-0 780 629 A2 under the chapter "Presentation of the invention". Another Design of the tear-off edge for the same purpose can be done with the combustion chamber achieve toroidal notches. This publication is inclusive the scope of protection there regarding the tear-off edge is an integrating one Part of this description.

    BezugszeichenlisteLIST OF REFERENCE NUMBERS

    1010
    Buchsenringjack ring
    2020
    Mischrohr, Teil der Mischstrecke 220Mixing tube, part of the mixing section 220
    2121
    Bohrungen, OeffnungenHoles, openings
    3030
    Brennkammer, BrennraumCombustion chamber, combustion chamber
    4040
    Strömung, Rohrströmung im Mischrohr, HauptströmungFlow, pipe flow in the mixing pipe, main flow
    5050
    Rückströmzone, RückströmblaseBackflow zone, backflow bubble
    6060
    BrennerachseBrenner
    100100
    Drallerzeugerswirl generator
    101, 102101, 102
    Kegelförmige TeilkörperPartial conical body
    101 a101 a
    Ringförmiger AnfangsteilAnnular initial part
    101b, 102b101b, 102b
    LängssymmetrieachsenLongitudinal axes of symmetry
    103103
    Brennstoffdüsefuel nozzle
    104104
    Brennstoffeindüsungfuel injection
    105105
    Brennstoffspray (Brennstoffeindüsungsprofil)Fuel spray (fuel injection profile)
    108, 109108, 109
    Brennstoffleitungenfuel lines
    112112
    Flüssiger BrennstoffLiquid fuel
    113113
    Gasförmiger BrennstoffGaseous fuel
    114114
    KegethohlraumKegethohlraum
    115115
    Verbrennungsluft (Verbrennungsluftstrom)Combustion air (combustion air flow)
    116116
    Brennstoff-Eindüsung aus den Leitungen 108, 109Fuel injection from lines 108, 109
    117117
    Brennstoffdüsenfuel nozzles
    119, 120119, 120
    Tangentiale LufteintrittsschlitzeTangential air inlet slots
    121a, 121b121a, 121b
    Leitblechebaffles
    123123
    Drehpunkt der LeitblechePivot point of the guide plates
    130, 131, 132, 133130, 131, 132, 133
    Teilkörperpartial body
    131a, 131a, 132a, 133a131a, 131a, 132a, 133a
    LängssymmetrieachsenLongitudinal axes of symmetry
    140, 141, 142, 143140, 141, 142, 143
    Schaufelprofilförmige TeilkörperVane-shaped partial body
    140a, 141a, 142a, 143a140a, 141a, 142a, 143a
    LängssymmetrieachsenLongitudinal axes of symmetry
    150150
    Brennstoffkonzentration fuel concentration
    160160
    Luftmenge, MischluftAir volume, mixed air
    161161
    Bohrungen, OeffnungenHoles, openings
    170170
    Brennstoff-InjektorenFuel injectors
    180180
    Ringförmige LuftkammerAnnular air chamber
    190190
    Ringring
    200200
    Uebergangsstück, Teil der Mischstrecke 220Transition piece, part of the mixing section 220
    201201
    UebergangskanäleTransition passages
    220220
    Mischstreckemixing section
    300300
    PilotbrennersystemPilot burner system
    301301
    Innere RingkammerInner ring chamber
    302302
    Nebengeordnete RingkammerSecondary ring chamber
    303303
    Gasförmiger BrennstoffGaseous fuel
    304304
    Luftmengeair flow
    305305
    Gelochte PlattePerforated plate
    306306
    Bohrungen in den Brennraum, PilotbrennerDrilling in the combustion chamber, pilot burner
    307307
    HitzeschutzblechHeat Shield
    308308
    Nachgeschaltete RingkammerDownstream ring chamber
    309309
    Oeffnungen der inneren RingkammerOpenings of the inner ring chamber
    310310
    Löcher für Prallkühlung des HitzeschutzblechesHoles for impingement cooling of the heat protection plate
    311311
    Zündvorrichtungdetonator

    Claims (20)

    1. Burner for operating a heat generator, the burner essentially comprising a swirl generator (100) for a combustion-air flow and means for injecting at least one fuel into the combustion-air flow, a mixing section (220) being arranged downstream of the swirl generator and having, inside a first part of the section in the direction of flow, a number of transition passages (201) for passing a flow formed in the swirl generator into a mixing tube (20) arranged downstream of these transition passages, characterized in that a cooled pilot-burner system (300) is arranged in the lower region of the mixing tube (20) in such a way as to act in a combustion space (30) arranged downstream of the mixing tube (20), and in that at least one ignition device (311) is integrated in the pilot-burner system (300).
    2. Burner according to Claim 1, characterized in that the pilot-burner system (300) comprises at least two media-carrying chambers (301, 302) and a further common chamber (308) arranged downstream, in that the media (303, 304) from the other two chambers (301, 302) can be mixed in this chamber (308) arranged downstream, and in that the chamber (308) arranged downstream has means for forming pilot burners (306) which act in the combustion space (30) and can be operated by the mixture of the two media (303, 304).
    3. Burner according to Claims 1 and 2, characterized in that the media-carrying chambers (301, 303) are of annular and juxtaposed design, in that a gaseous fuel (303) flows through the first annular chamber (301) and an air quantity (304) flows through the second annular chamber (302), in that fitted in the second annular chamber (302) are means (305) which enable the air (304) flowing there to bring about impingement cooling on a heat-shield plate (307) arranged at the end of the pilot-burner system (300), and in that the ignition device (311) is directed into position through the second annular chamber (302).
    4. Burner according to Claim 3, characterized in that the means for forming the impingement cooling is a perforated plate (305) forming a base in the juxtaposed annular chamber (302).
    5. Burner according to Claim 1, characterized in that the means comprise a ring (190) arranged on the head side of the swirl generator (100) and in interaction with a fuel nozzle (103), in that this ring (190) has a number of bores (161) arranged in the peripheral direction, and in that a fuel (170) can be injected into an air quantity (160) flowing through the bores (161).
    6. Burner according to Claim 5, characterized in that the bores (161) are directed so as to slant forwards.
    7. Burner according to Claim 5, characterized in that the fuel nozzle (103) is surrounded by an annular air chamber (180).
    8. Burner according to Claim 1, characterized in that the burner front of the mixing tube (20) towards the combustion space (30) arranged downstream is formed with a breakaway edge (A).
    9. Burner according to Claim 1, characterized in that the number of transition passages (201) in the mixing section (220) corresponds to the number of partial flows formed by the swirl generator (100).
    10. Burner according to Claim 1, characterized in that the mixing tube (20) arranged downstream of the transition passages (201) is provided with openings (21) in the direction of flow and in the peripheral direction for injecting an air flow into the interior of the mixing tube (20).
    11. Burner according to Claim 10, characterized in that the openings (21) run at an acute angle relative to the burner axis (60) of the mixing tube (20).
    12. Burner according to Claim 1, characterized in that the cross section of flow of the mixing tube (20) downstream of the transition passages (201) is less than, equal to or greater than the cross section of the flow (40) formed in the swirl generator (100, 100a).
    13. Burner according to Claim 1, characterized in that a combustion chamber (30) is arranged downstream of the mixing section (220), in that there is a jump in cross section between the mixing section (220) and the combustion chamber (30), which jump in cross section induces the initial cross section of flow of the combustion chamber (30), and in that a backflow zone (50) can take effect in the region of this jump in cross section.
    14. Burner according to Claim 1, characterized in that there is a diffuser and/or a venturi section upstream of the burner front (70).
    15. Burner according to Claim 1, characterized in that the swirl generator (100) consists of at least two hollow, conical sectional bodies (101, 102; 130, 131, 132, 133; 140, 141, 142, 143) which are nested one inside the other in the direction of flow, in that the respective longitudinal symmetry axes (101b, 102b; 130a, 131a, 132a, 133a; 140a, 141a, 142a, 143a) of these sectional bodies run mutually offset in such a way that the adjacent walls of the sectional bodies form ducts (119, 120), tangential in their longitudinal extent, for a combustion-air flow (115), and in that at least one fuel nozzle (103 [lacuna] can take effect in the interior space (114) formed by the sectional bodies.
    16. Burner according to claim 15, characterized in that further fuel nozzles (117) are arranged in the region of the tangential ducts (119, 120) in their longitudinal extent.
    17. Burner according to Claim 15, characterized in that the sectional bodies (140, 141, 142, 143) have a blade-shaped profile in cross section.
    18. Burner according to Claim 15, characterized in that the sectional bodies have a fixed cone angle, increasing conicity, or decreasing conicity in the direction of flow.
    19. Burner according to Claim 15, characterized in that the sectional bodies are nested spirally one inside the other.
    20. Burner according to Claim 1, characterized in that the ignition device (311) is an incandescent ignition pin or a spark plug.
    EP98810037A 1998-01-23 1998-01-23 Burner for operating a heat generator Expired - Lifetime EP0931980B1 (en)

    Priority Applications (4)

    Application Number Priority Date Filing Date Title
    AT98810037T ATE237101T1 (en) 1998-01-23 1998-01-23 BURNER FOR OPERATION OF A HEAT GENERATOR
    EP98810037A EP0931980B1 (en) 1998-01-23 1998-01-23 Burner for operating a heat generator
    DE59807856T DE59807856D1 (en) 1998-01-23 1998-01-23 Burner for operating a heat generator
    US09/235,314 US6186775B1 (en) 1998-01-23 1999-01-22 Burner for operating a heat generator

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP98810037A EP0931980B1 (en) 1998-01-23 1998-01-23 Burner for operating a heat generator

    Publications (2)

    Publication Number Publication Date
    EP0931980A1 EP0931980A1 (en) 1999-07-28
    EP0931980B1 true EP0931980B1 (en) 2003-04-09

    Family

    ID=8235900

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98810037A Expired - Lifetime EP0931980B1 (en) 1998-01-23 1998-01-23 Burner for operating a heat generator

    Country Status (4)

    Country Link
    US (1) US6186775B1 (en)
    EP (1) EP0931980B1 (en)
    AT (1) ATE237101T1 (en)
    DE (1) DE59807856D1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US9435537B2 (en) 2010-11-30 2016-09-06 General Electric Company System and method for premixer wake and vortex filling for enhanced flame-holding resistance

    Families Citing this family (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10233161B4 (en) * 2002-07-22 2012-01-05 Alstom Technology Ltd. Burner and pilot burner
    EP1389713A1 (en) 2002-08-12 2004-02-18 ALSTOM (Switzerland) Ltd Premixed exit ring pilot burner
    ATE414874T1 (en) * 2004-01-20 2008-12-15 Alstom Technology Ltd PREMIX BURNER ARRANGEMENT AND METHOD FOR OPERATING A COMBUSTION CHAMBER
    US7303388B2 (en) * 2004-07-01 2007-12-04 Air Products And Chemicals, Inc. Staged combustion system with ignition-assisted fuel lances
    WO2006058843A1 (en) * 2004-11-30 2006-06-08 Alstom Technology Ltd Method and device for burning hydrogen in a premix burner
    US8511097B2 (en) 2005-03-18 2013-08-20 Kawasaki Jukogyo Kabushiki Kaisha Gas turbine combustor and ignition method of igniting fuel mixture in the same
    JP3958767B2 (en) * 2005-03-18 2007-08-15 川崎重工業株式会社 Gas turbine combustor and ignition method thereof
    EP1999410B1 (en) * 2006-03-27 2015-12-02 Alstom Technology Ltd Burner for the operation of a heat generator
    US20120208133A1 (en) * 2011-02-15 2012-08-16 Thielvoldt Mike Multi-stage decorative burner
    RU2485398C1 (en) * 2011-10-20 2013-06-20 Общество с ограниченной ответственностью "Энерго Эстейт" Device for fuel burning and method of fuel burning
    EP2650612A1 (en) * 2012-04-10 2013-10-16 Siemens Aktiengesellschaft Burner
    EP2685163B1 (en) * 2012-07-10 2020-03-25 Ansaldo Energia Switzerland AG Premix burner of the multi-cone type for a gas turbine
    US9285120B2 (en) 2012-10-06 2016-03-15 Coorstek, Inc. Igniter shield device and methods associated therewith
    US10101036B2 (en) 2014-06-10 2018-10-16 Wet Heater with flame display
    CN107741013B (en) * 2017-10-24 2024-02-09 北京首钢国际工程技术有限公司 Energy-saving combustion gas mixing furnace
    CN111780112B (en) * 2020-07-14 2022-06-21 江苏迈阳环保有限公司 Injection mechanism for low-nitrogen combustor

    Family Cites Families (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3973395A (en) * 1974-12-18 1976-08-10 United Technologies Corporation Low emission combustion chamber
    US4170109A (en) * 1977-11-09 1979-10-09 United Technologies Corporation Thrust augmentor having swirled flows for combustion stabilization
    US4170011A (en) * 1977-12-28 1979-10-02 The United States Of America As Represented By The Secretary Of The Air Force Precision antenna alignment procedure
    DE2918416C2 (en) * 1979-05-08 1985-05-15 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Gasification oil burner
    US4311452A (en) * 1980-02-04 1982-01-19 Cea Of Canada, Ltd. High stability gas/electric pilot-ignitor
    NL8702191A (en) * 1987-09-15 1989-04-03 Flameco Eclipse Bv GAS BURNER.
    US4963089A (en) * 1989-08-24 1990-10-16 Eclipse, Inc. High turndown burner with integral pilot
    CH684962A5 (en) * 1991-07-03 1995-02-15 Asea Brown Boveri Burner for operating an internal combustion engine, a combustor of a gas turbine group or a firing.
    DE4138433C2 (en) * 1991-11-22 1996-03-28 Aichelin Gmbh Burners for industrial furnaces
    DE4209220A1 (en) * 1992-03-21 1993-09-23 Deutsche Forsch Luft Raumfahrt DEPOSITION-FREE BURNER
    IT1273369B (en) * 1994-03-04 1997-07-08 Nuovo Pignone Spa IMPROVED LOW EMISSION COMBUSTION SYSTEM FOR GAS TURBINES
    DE4439619A1 (en) * 1994-11-05 1996-05-09 Abb Research Ltd Method and device for operating a premix burner
    DE69617290T2 (en) * 1995-01-13 2002-06-13 Europ Gas Turbines Ltd Combustion device for gas turbine engine
    DE19547913A1 (en) 1995-12-21 1997-06-26 Abb Research Ltd Burners for a heat generator
    DE19610930A1 (en) * 1996-03-20 1997-09-25 Abb Research Ltd Burners for a heat generator
    EP0903540B1 (en) * 1997-09-19 2003-04-09 ALSTOM (Switzerland) Ltd Burner for operating a heat generator
    EP0909921B1 (en) * 1997-10-14 2003-01-02 Alstom Burner for operating a heat generator

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US9435537B2 (en) 2010-11-30 2016-09-06 General Electric Company System and method for premixer wake and vortex filling for enhanced flame-holding resistance

    Also Published As

    Publication number Publication date
    EP0931980A1 (en) 1999-07-28
    US6186775B1 (en) 2001-02-13
    DE59807856D1 (en) 2003-05-15
    ATE237101T1 (en) 2003-04-15

    Similar Documents

    Publication Publication Date Title
    EP0780629B1 (en) Burner for a heat generator
    EP0704657B1 (en) Burner
    EP0918191B1 (en) Burner for the operation of a heat generator
    EP0931980B1 (en) Burner for operating a heat generator
    EP0918190A1 (en) Burner for the operation of a heat generator
    EP0987493B1 (en) Burner for a heat generator
    DE19757189B4 (en) Method for operating a burner of a heat generator
    EP0899508B1 (en) Burner for a heat producing device
    EP0797051B1 (en) Burner for a heat generator
    EP1262714A1 (en) Burner with exhausts recirculation
    EP0780630B1 (en) Burner for a heat generator
    EP0694740A2 (en) Combustion chamber
    EP0718561B1 (en) Combustor
    EP0994300B1 (en) Burner for operating a heat generator
    EP0481111B1 (en) Gas-turbine combustion chamber
    EP0909921B1 (en) Burner for operating a heat generator
    EP0751351A1 (en) Combustion chamber
    EP0903540B1 (en) Burner for operating a heat generator
    EP0919768B1 (en) Burner for the operation of a heat generator
    DE19537636B4 (en) Power plant
    EP0483554A1 (en) Method for minimising the NOx emissions from a combustion
    EP0913630B1 (en) Burner for the operation of a heat generator
    EP0833104B1 (en) Burner for operating a combustion chamber
    EP0740108A2 (en) Burner
    EP0730121A2 (en) Premix burner

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT CH DE FR GB LI

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19991216

    AKX Designation fees paid

    Free format text: AT CH DE FR GB LI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALSTOM (SWITZERLAND) LTD

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): AT CH DE FR GB LI

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040112

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20101221

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20101215

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20110131

    Year of fee payment: 14

    Ref country code: CH

    Payment date: 20110103

    Year of fee payment: 14

    Ref country code: AT

    Payment date: 20101215

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20120123

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20120928

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120131

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120801

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120123

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120131

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59807856

    Country of ref document: DE

    Effective date: 20120801

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 237101

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20120123

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120123