EP0663470B1 - Verfahren zur Herstellung eines Oberbaus für Eisenbahngleise - Google Patents

Verfahren zur Herstellung eines Oberbaus für Eisenbahngleise Download PDF

Info

Publication number
EP0663470B1
EP0663470B1 EP94120161A EP94120161A EP0663470B1 EP 0663470 B1 EP0663470 B1 EP 0663470B1 EP 94120161 A EP94120161 A EP 94120161A EP 94120161 A EP94120161 A EP 94120161A EP 0663470 B1 EP0663470 B1 EP 0663470B1
Authority
EP
European Patent Office
Prior art keywords
concrete
track
bed
broken stones
trough
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94120161A
Other languages
English (en)
French (fr)
Other versions
EP0663470A1 (de
Inventor
Dipl. Ing. Gerd Barnahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heitkamp Rail GmbH
Original Assignee
Bauunternehmung E Heitkamp GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19944401260 external-priority patent/DE4401260C1/de
Application filed by Bauunternehmung E Heitkamp GmbH filed Critical Bauunternehmung E Heitkamp GmbH
Publication of EP0663470A1 publication Critical patent/EP0663470A1/de
Application granted granted Critical
Publication of EP0663470B1 publication Critical patent/EP0663470B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B29/00Laying, rebuilding, or taking-up tracks; Tools or machines therefor
    • E01B29/005Making of concrete parts of the track in situ
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B1/00Ballastway; Other means for supporting the sleepers or the track; Drainage of the ballastway
    • E01B1/001Track with ballast
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B1/00Ballastway; Other means for supporting the sleepers or the track; Drainage of the ballastway
    • E01B1/002Ballastless track, e.g. concrete slab trackway, or with asphalt layers
    • E01B1/007Ballastless track, e.g. concrete slab trackway, or with asphalt layers with interlocking means to withstand horizontal forces
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B1/00Ballastway; Other means for supporting the sleepers or the track; Drainage of the ballastway
    • E01B1/008Drainage of track
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B1/00Ballastway; Other means for supporting the sleepers or the track; Drainage of the ballastway
    • E01B1/002Ballastless track, e.g. concrete slab trackway, or with asphalt layers
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2204/00Characteristics of the track and its foundations
    • E01B2204/01Elastic layers other than rail-pads, e.g. sleeper-shoes, bituconcrete
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2204/00Characteristics of the track and its foundations
    • E01B2204/03Injecting, mixing or spraying additives into or onto ballast or underground
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2204/00Characteristics of the track and its foundations
    • E01B2204/07Drainage
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2204/00Characteristics of the track and its foundations
    • E01B2204/10Making longitudinal or transverse sleepers or slabs in situ or embedding them
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B2204/00Characteristics of the track and its foundations
    • E01B2204/13Dowels for slabs, sleepers or rail-fixings

Definitions

  • the invention relates to a method for producing a superstructure for railway tracks, in particular for lines for high speeds and loads, with a concrete trough laid in the track direction with a U-shaped cross section and a ballast bed and track grating arranged therein.
  • a known method of this type according to DE 41 00 881 A1 discloses prefabricated parts which can be lined up in the track direction and can be laid in a curve, which form the concrete trough, in which the track grating is arranged on a resilient ballast bed.
  • the resilient ballast bed is compacted with plastic at least on its surface.
  • An expensive synthetic resin or a multi-component adhesive is proposed as plastic.
  • This superstructure is associated with the disadvantage of a homogeneity which changes as a result of slurries, and with a bond between the ballast bed and the inner surface of the concrete trough, which considerably hampers repair work.
  • the method of manufacture of this superstructure is essentially based on the construction principle of the "Rheda / Sengeberg" type.
  • a Prefabricated track grate consisting of rails, prestressed concrete sleepers and reinforcement, aligned with the help of spindles on a previously prepared concrete support plate and concreted in.
  • the rail deflection required to distribute the traffic load over several sleepers is achieved by means of an elastic rail fastening.
  • a method for the production of a superstructure of the type mentioned in which the concrete trough consists of prefabricated reinforced concrete parts of approximately 2 m in length, in which a concrete insole as a support and thereafter for absorbing transverse forces after the use of an internal formwork from pre-cast reinforced concrete parts in-situ concrete is used to stiffen the side walls.
  • This time-consuming production does not only require at least four individual parts for the concrete trough, but also a very precise surface of the concrete inner shell as a support for the track grate.
  • the ballast bed which is resilient due to its cavities, requires regular maintenance, especially at high speeds and loads, since the position of the track grate and / or the homogeneity of the ballast bed changes due to slurries.
  • the overlying dust of the ballast bed affects the eddy current brakes of high-speed trains when braking.
  • the invention has for its object to provide a method for producing a superstructure for railway tracks of the type mentioned, which can be installed and repaired with the conventional superstructure equipment, in which all work can be carried out without using a second track are, which allows a preload by rolling traffic and guarantees a final completion within a relatively short period of time.
  • the concrete trough consisting of reinforced in-situ concrete is provided below the tracks with a respective threshold support projecting from the level of the sole surface of the concrete trough and that after the alignment of the track grate, the cavities in the compacted crushed stone with a mortar suspension to form a rigid Ballast bed are filled. Due to the threshold supports protruding from the bottom surface of the concrete trough, the track grate can be placed very precisely on a defined base surface and the route can be traveled on the same track section with the conventional superstructure equipment in the form of measuring, straightening and adjusting wagons as well as the usual tamping machines, without a parallel one Neighboring tracks are required.
  • ballast is compacted to such an extent that driving on it does not result in any changes in the track position and that a preload due to rolling traffic is possible.
  • ballast masses are advantageously profiled, that is to say the ballast is distributed in such a way that it is flush with the upper edge of the threshold, if this is desired.
  • a minimum concrete quality of B 25 is advantageously used for the concrete trough.
  • the sleeper support has a defined bearing surface and protrudes at least 20 mm above the level of the sole surface of the concrete trough. This means that it can be handled comfortably with conventional superstructure equipment during ballast.
  • the concrete trough is advantageously provided on its underside for anchoring with the substructure with dowel teeth.
  • the side walls of the concrete trough are at the level of the sole surface with openings that can be closed by plugs for drainage during the Gravel provided. Before filling the cavities in the ballast bed by filling in a mortar suspension, these openings must be closed by the plugs.
  • Dowel-like sealing plugs made of an elastomeric material are suitable for this.
  • the concrete trough is provided with expansion joints that run transversely to the direction of the track and are sealed watertight with a sealant.
  • the sealant advantageously consists of an elastomeric and polymeric joint tape, as is common in construction technology.
  • this release agent is intended to be a hydraulic connection between the mortar suspension and the Prevent the inside surface of the concrete pan.
  • This release agent will advantageously be formed from a permanent contact of the mortar suspension on the inner surface of the concrete trough, for example from a bitumen, or from a thin PE film that allows a force transmission of the ballast to the inner surface of the concrete trough, which, however, also makes contact the mortar suspension with the inner surface of the concrete pan prevented.
  • the section in question within the concrete trough which consists of a layer of ballast bound by mortar suspension and the track grate, can be completely removed after cutting with a diamond saw or a similar separating device and replaced with a new track grate with new gravel and a new mortar suspension filling will.
  • the route can be used again by train traffic with a minimum height of 10 cm below the prestressed concrete sleepers.
  • the earth's body can re-compact under railway conditions.
  • the ballast bed can be corrected again by correcting it. Only then is the ballast filled with the mortar suspension. This ensures that the adjustment options of the rail fastening are not fully utilized at an early stage. Only after waiting for the settlement time can then in relative short construction time of only a few hours with, for example, a quickly hardening grout, the cavities of the ballast bed are poured or filled in the manner already described.
  • the level of the mortar suspension is generally level, both for such repair work and for a new installation. For this reason, the mortar suspension must be introduced in sections into the ballast bed in the case of track systems with a high cant to ensure even filling of the cavities.
  • the mortar suspension retains a setting agent which prolongs its setting process, so that operations - aligning the track grating and compacting the ballast - can be carried out in a timely manner before the setting process of the mortar suspension begins.
  • the ballast bed is provided with reinforcement according to an advantageous development of the invention.
  • This reinforcement advantageously consists of several rows of steel bars that are laid in the direction of the track and run parallel to one another and penetrate the sleepers in recesses or through openings.
  • the steel bars are endless welded together and arranged so that they cannot be damaged by the tamping machine.
  • a concrete trough 2 is arranged in the track direction according to arrow 3a, which is known in its U-shaped cross-sectional shape from the "Rheda" system.
  • the concrete trough made of reinforced in-situ concrete with a minimum concrete quality of B 25 below the tracks 3 is provided with a threshold support 5 protruding from the level 4a of the surface of the concrete base 4.
  • This sleeper support 5 has a defined bearing surface 5a, which projects at least 20 mm beyond the level 4a of the sole surface of the concrete trough 2.
  • the general reference number 6 is placed on the grid, which consists of the rails 3, the prestressed concrete sleepers 7 and the rail fastening 8.
  • a separating agent 10 which does not prevent the ballast bed 9a from being clamped or clawed (see FIG. 3) with this inner surface 2a is arranged on the inner surface 2a of the concrete trough 2.
  • This release agent 10 is said to consist of one permanent contact of the mortar suspension 14 on the inner surface 2a of the concrete trough 2 preventing spraying agents, e.g.
  • a bituminous layer or are formed by a thin PE film, which allows a force transmission of the ballast bed 9a to the inner surface 2a of the concrete trough 2, but which is likewise not permanent Allows contact of the mortar suspension 14 on the inner surface 2a of the concrete trough 2.
  • the concrete trough 2 On its underside 2b, the concrete trough 2 is connected to the substructure 1 by means of dowel teeth 11 in a square truncated pyramid shape (see FIGS. 1 to 5 in connection with FIG. 7).
  • openings 12 are provided for drainage at the level of the plane 4a of the sole surface with openings 12 that can be closed by elastomeric plugs 13. Through these openings 12, the concrete trough 2 can be drained during the construction phase. However, before the mortar suspension 14 according to FIGS. 4 and 5 is introduced, these openings 12 must be closed by these plugs 13 in order to prevent the mortar suspension from flowing off.
  • the track gratings 6 are only put on when these reinforced concrete troughs 2 have reached the necessary strength, which is usually the case after 28 days.
  • these concrete troughs 2 are provided with expansion joints 18 (see FIG. 7) which are sealed with known elastomeric and polymeric joint tapes.
  • Track gratings 6 are installed in the concrete trough prepared in this way.
  • the track gratings 6 are installed with the conventional superstructure equipment, all of which can be moved on the track.
  • the track grate 6 consists of the rail shape specified by the client and the prestressed concrete sleepers 7 located on these rails 3. These prestressed concrete sleepers 7 also require no special pretreatment.
  • the special wagons with the ballast 9 are then pulled over this track grating 6 and the concrete trough 2 is filled with the required ballast height, which is at least 10 cm below the prestressed concrete sleepers 7. All grits can be used in accordance with DB regulations. They are only to be installed oil-free and dust-free in order to ensure intensive contact and thus complete filling of the cavities of the ballast 9 with the mortar suspension 14.
  • a tamping machine travels over the track grate 6, which is so ballasted, and pulls the track grate up only 5 cm, so that the first ballast stones can fall under the sleepers.
  • the raised track grate 6 is now with a tamping machine by one
  • the tamping operation has been raised to the exact prescribed height.
  • the ballast 9 is compacted to such an extent that driving on the track grille 6 does not result in any change.
  • the ballast 9 is profiled, that is to say it is distributed until it ends with the upper edge 7a of the prestressed concrete sleepers 7. Thereafter, the ballast bed 9a formed by the ballast 9 is checked and removed by the client.
  • This mortar suspension 14 can consist of a cement suspension or another suitable hydraulic binder. The following design variants are possible when backfilling the ballast 9 and backfilling or casting the mortar suspension 14:
  • the ballast bed 9a closes on its surface 9b both with the upper edge 7a of the prestressed concrete sleeper 7 and with the upper edge 2d of the two side cheeks 2c of the concrete trough 2.
  • the ballast bed 9a is poured with the mortar suspension 14 in such a way that the ballast structure remains visible in the vicinity of the surface 9b and thus has a sound-absorbing effect.
  • the ballast 9 is not installed up to the upper edge 7a of the prestressed concrete sleeper 7, but ends a few centimeters below the surface 7a of the Prestressed concrete sleeper 7.
  • the mortar suspension 14 can be provided with a level 14a after it has been cast, which forms a closed, flat surface 2d, 7a, 14a with the surface 7a of the prestressed concrete sleeper 7 and the adjacent surfaces 2d of the side walls 2c.
  • the level 14a of the mortar suspension 14 is horizontal. With such a position of the concrete trough 2, after the openings 12 have been closed by means of the plugs 13, the cavities within the ballast bed 9a to form a rigid ballast bed 9a can be completely filled with a quickly hardening grout 14. In the case of track systems with large ridges, the mortar suspension 14 is to be introduced in sections into the ballast bed 9a.
  • the superstructure according to the invention requires a drainage device 15 on multi-track lines, which is either of conventional design or can consist of a ballast 16 without grout with the usual drainage channels 17.
  • the particular advantages of the superstructure according to the invention are that all work can be carried out without using a second track as shown in FIG. 6.
  • the installation of the track gratings 6 can be used with the existing equipment without changing the way the track builders work. Aligning the track grate 6 in the ballast bed 9a is known to all track construction companies and is carried out using state-of-the-art equipment.
  • the bringing in the ballast 9 in the concrete trough 2 is done with the special wagons of the railway companies. Conventional crushed stone that does not require special treatment can be used.
  • ballast bed 9a is mortared. In contrast to the entire state of the art, this load can be preloaded by rolling traffic.
  • driving operation on the superstructure can be started after only 3 to 4 hours.
  • the superstructure is provided with dowel teeth 11, which consist of square truncated pyramids 11a on the underside 2b of the concrete trough 2, which positively engage in correspondingly designed recesses 11b of the substructure 1 (see FIGS. 1 to 5 and 7 ).
  • the tracks 3 including the ballast bed 9a to the separating layer 10 are cut in sections by means of diamond saws, cutting discs etc. and lifted out by known lifting devices.
  • new track gratings 6 are arranged on the sleeper supports 5, the tracks 3 are welded at the joints and the ballasting of these track gratings 6 is carried out as in the new construction described.
  • the ballast 9 is filled into a rigid ballast bed 9a by means of a quickly hardening grout 14.
  • an advantageous second alternative solution during the repair is the possibility of already pre-grouted Insert gravel, which is then provided with a setting retarder, in order to be able to carry out the repair work for aligning and compacting before the setting process begins. Particularly in the case of short-distance repair work, this can then be carried out in a single time interval.
  • the method according to the invention ensures a superstructure both on bridges and in tunnels, which due to its low overall height forms a particularly advantageous alternative to the embodiments of the prior art.
  • the prestressed concrete sleepers 7 in the exemplary embodiment of FIGS. 9 to 11 are provided with a plurality of through openings 19 running parallel to one another in the track direction according to the double arrows 3a, through which the Steel rods 20 are passed through and then welded together endlessly. These steel bars 20 are shown in FIG. 11 with bold, dashed lines.
  • the track gratings 6 are lashed and filled with ballast in the manner described above.
  • this composite system 6, 7, 9a, 14, 20 prevents an abrupt lowering of the track grating 6.
  • recesses on the underside 7b of the prestressed concrete sleepers 7 can also occur if and insofar as the resulting notch effects are compensated for either by reinforced reinforcement of the prestressed concrete sleepers 7 themselves or by a greater thickness or by other measures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Railway Tracks (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Forging (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Oberbaus für Eisenbahngleise, insbesondere für Strecken für hohe Geschwindigkeiten und Belastungen, mit einer in Gleisrichtung verlegten Betonwanne mit U-förmigem Querschnitt und einem darin angeordneten Schotterbett und Gleisrost.
  • Ein bekanntes Verfahren dieser Art gemäß der DE 41 00 881 A1 offenbart in Gleisrichtung aneinanderreihbare, kurvengängig verlegare Fertigteile, welche die Betonwanne bilden, in denen auf einem federnden Schotterbett das Gleisrost angeordnet ist. Das federnde Schotterbett ist zumindest an ihrer Oberfläche mit Kunststoff verdichtet. Als Kunststoff wird ein teurer Kunstharz oder ein Mehrkomponentenkleber vorgeschlagen. Dieser Oberbau ist mit dem Nachteil einer sich durch Einschlämmungen verändernden Homogenität sowie mit einer Verklebung des Schotterbettes mit der Innenoberfläche der Betonwanne verbunden, wodurch Reparaturarbeiten erheblich behindert werden.
  • Die Herstellungsart dieses Oberbaus geht im wesentlichen von dem Konstruktionsprinzip der Bauart "Rheda/Sengeberg" aus. Bei der Herstellung des Rheda-Oberbaus wird ein vorgefertigter Gleisrost, bestehend aus Schienen, Spannbetonschwellen und Bewehrung, mit Hilfe von Spindeln auf einer zuvor erstellten Betontragplatte ausgerichtet und einbetoniert. Die zur Verteilung der Verkehrslast auf mehrere Schwellen erforderliche Durchbiegung der Schiene wird durch eine elastische Schienenbefestigung erzielt. Die zum ersten Mal im Sengeberg-Tunnel der Neubaustrecke Hannover-Würzburg eingebaute Modifikation dieses Oberbaus besteht darin, daß die mit einem Gleitschalungsfertiger hergestellte Betonplatte trogförmig ausgebildet ist, so daß die Seitenwangen als Widerlager für die horizontalen Spindeln, als Schalung für den Füllbeton und als Lauffläche für das Betoniergerät zum Einbau des Füllbetons dienen. Zwischen dem einbetonierten Gleisrost und der als Trog ausgebildeten Betontragplatte wird eine Folie eingelegt oder ein Trennmittel aufgesprüht, womit bei einer Reparatur oder Erneuerung ein Anheben der Fahrbahnplatten möglich ist. Dieses System ist jedoch mit dem Nachteil einer durchgehend kostspieligen und zeitaufwendigen Einbetonierung der Gleisroste verbunden, was nicht nur Spezialmaschinen erfordert, sondern auch eine Vorbelastung durch rollenden Verkehr verhindert.
  • Aus der AT-PS 370 461 ist ein Verfahren zur Hertellung eines Oberbaus der eingangs genannten Gattung bekannt, bei welchem die Betonwanne aus Stahlbetonfertigteilen von ca. 2 m Länge besteht, in welche als Auflager eine Betoninnensohle und hiernach zur Aufnahme von Querkräften nach Einsatz einer Innenschalung aus Stahlbetonfertigteilen Ortbeton für die Versteifung der Seitenwangen eingebracht wird. Diese zeitaufwendige Fertigung erfordert nicht nur mindestens vier Einzelteile für die Betonwanne, sondern auch eine sehr präzise Oberfläche der Betoninnenschale als Auflager für das Gleisrost. Das aufgrund seiner Hohlräume federnde Schotterbett erfordert insbesondere bei hohen Geschwindigkeiten und Belastungen eine regelmäßige Wartung, da sich die Lage des Gleisrostes und/oder die Homogenität des Schotterbettes durch Einschlämmungen verändert. Außerdem beeinträchtigt der aufliegende Staub des Schotterbettes die Wirbelstrombremsen von Hochgeschwindigkeitszügen bei Bremsvorgängen.
  • Aus der DE-OS 23 06 428 ist ein Verfahren anderer Gattung bekanntgeworden, bei welcher auf einem Unterbau eine erste Schotterschicht gewalzt und sodann an ihrer Oberfläche kleiner zerteilte Steine die Zwischenräume füllen. Auf diese Schicht werden unterhalb der Gleisbereiche zwei zu diesem parallel verlaufende elastisch gehärtete Schichten aus einem schnell härtenden Einspritzmaterial relativ großflächig aufgebracht und darauf große, plattenförmige Schwellen aufgesetzt, an denen die Gleise befestigt werden. Der Zwischenraum zwischen diesen plattenförmigen sowie in Längsrichtung verlegten Schwellen und den zu beiden Seiten davon äquidistant angeordneten, im Querschnitt U-förmigen Abflußgräben wird von einer oberen Schotterschicht mit einer Höhe von etwa 15 cm bis 25 cm verfüllt. Diese Schotterschicht wird sodann mit einer weiteren wasserdichten Schicht abgedeckt. Dieser Oberbau ist mit dem Nachteil einer aufwendigen, nur mit Spezialmaschinen durchführbaren Fertigung behaftet, wobei ein schnell härtendes Einspritzmaterial auch in den unteren Bereich des Schotters eingebracht werden muß und somit insgesamt den Aufbau und die Arbeiten nicht nur abschnittsweise, sondern auch stufenförmig durchgeführt werden müssen.
  • Aus der DE 37 36 943 C1 ist ein Verfahren zur Herstellung eines Oberbaus anderer Art bekanntgeworden, bei welchem auf einem Betonunterbau eine Trennschicht in Form einer auflegten Folie angebracht ist, auf welcher sodann bewehrter Ortbeton mit zur Längsrichtung der Gleise querverlaufenden Fugen aufgebracht und die aus Spannbeton bestehenden Schwellen in ihrem unteren Bereich in den Ortbeton miteingesetzt werden. Nach dem Abbinden des Ortbetons wird eine unterhalb der Oberkante der Schwellen endende luftschallabsorbierende Schicht aus Haufwerksbeton aufgebracht. Auch dieser fertigungsaufwendige Oberbau erfordert eine regelmäßige Nachbearbeitung des Haufwerkbetons, der zudem Absetzungen von Stäuben und sonstigen Schmutzpartikeln begünstigt und dadurch die Wirbelstrombremsen von Hochgeschwindigkeitszügen beeinträchtigt. Wegen der fehlenden Betonwanne erfordert dieser Oberbau kosten- und zeitaufwendige Verschalungen, bietet eine geringere Sicherheit gegen Querkräfte und ist durch rollenden Verkehr erst nach dem Abbinden der Ortbetonplatte im Oberbau befahrbar.
  • Schließlich ist aus der DE-OS 20 63 727 ein Verfahren zur Stabilisierung eines Schotterbettes bekanntgeworden, mit welchem die einzelnen Steine des Schottergerüstes flächig durch einen Kunststoff verklebt werden, der die Hohlräume zwischen den Steinen ausfüllt. Als Kunststoff wird ein Zwei-Komponenten-Kunstharz genannt, der unter Schaumbildung aushärtet, so daß sich eine vollständige Füllung der Hohlräume zwischen den Steinen ergibt. Dieses Verfahren ist aufgrund des verwendeten Kunststoffes sehr kostspielig und setzt eine stufenweise Verfüllung und/oder Verschalung voraus, weil andernfalls der Kunststoff in die Umgebung außerhalb des Schotterbettes abfließen kann. Reparaturen gestalten sich äußerst zeitaufwendig und schwierig. Ferner bleibt die Elastizität des Schotterbettes aufgrund des verwendeten Kunststoffes erhalten, was bei Hochgeschwindigkeitszügen keineswegs erwünscht ist.
  • Von diesem Stand der Technik ausgehend, liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Oberbaus für Eisenbahngleise der eingangs genannten Gattung zu schaffen, der mit den herkömmlichen Oberbaugeräten verlegt und repariert werden kann, bei dem alle Arbeiten ohne Benutzung eines zweiten Gleises ausführbar sind, der eine Vorbelastung durch rollenden Verkehr gestattet und innerhalb eines relativ kurzen Zeitraumes eine endgültige Fertigstellung gewährleistet.
  • Diese komplexe Aufgabe wird in Verbindung mit dem eingangs genannten Gattungsbegriff erfindungsgemäß dadurch gelöst, daß die aus bewehrtem Ortbeton bestehende Betonwanne unterhalb der Gleise mit je einem aus der Ebene der Sohlenoberfläche der Betonwanne herausragenden Schwellenauflager versehen ist und daß nach Ausrichtung des Gleisrostes die Hohlräume im eingebrachten, verdichteten Schotter mit einer Mörtelsuspension zur Bildung eines starren Schotterbettes ausgefüllt sind. Durch die aus Sohlenoberfläche der Betonwanne herausragenden Schwellenauflager kann das Gleisrost sehr genau auf einer definierten Sohlenoberfläche aufgesetzt und die Strecke mit den herkömmlichen Oberbaugeräten in Form von Meß-, Richt- und Justierwaggons sowie den üblichen Stopfmaschinen auf derselben Gleisstrecke befahren werden, ohne daß es eines parallelen Nachbargleises bedarf. Über dieses Gleisrost werden die Spezialwaggons mit dem Schotter gezogen, und die Betonwanne wird mit Schotter so weit aufgefüllt, wie es gerade zu ihrer Befahrbarkeit erforderlich ist. An die Körnung des Schotters werden keine besonderen Anforderungen gestellt. Es können alle Körnungen, die im Bereich der DB üblich sind, eingesetzt werden. Sie sind lediglich ölfrei und staubfrei einzubauen. Über das so eingeschotterte Gleis fährt sodann eine Stopfmaschine, die das Gleisrost lediglich 5 cm hochzieht, so daß die ersten Schottersteine unter die vorteilhaft aus Spannbeton bestehenden Schwellen fallen. Das hochgezogene Gleis wird hiernach mit einer Stopfmaschine durch einen Stopfhebegang auf eine exakte, vorherbestimmte Höhe gebracht. Bei diesem Arbeitsgang wird der Schotter so weit verdichtet, daß ein Befahren keinerlei Veränderungen der Gleislage nach sich zieht und eine Vorbelastung durch rollenden Verkehr möglich ist.
  • Vorteilhaft werden die Schottermassen profiliert, das heißt der Schotter wird so verteilt, daß er mit der Oberkante der Schwelle abschließt, soweit dies erwünscht ist. Es ist jedoch auch möglich, die Oberkante des Schotterbettes wenige Zentimeter unterhalb der Oberkante der Spannbetonschwelle enden zu lassen und nach Einbringung der Mörtelsuspension deren Pegel mit der Oberfläche des Schotterbettes und den angrenzenden Oberflächen der Seitenwangen eine geschlossene ebene Oberfläche bilden zu lassen.
  • Sobald das Schotterbett mit dem Gleisrost durch den Auftraggeber kontrolliert und abgenommen ist, erfolgt die Einfüllung der Mörtelsuspension zur Bildung eines starren Schotterbettes. Dadurch entsteht im Gegensatz zum Stand der Technik ein Schwingungssystem mit großer Masse und hoher Eigendämpfung, weil die Elastizität aus dem Oberbau entfernt und nur noch die des Unterbaus wirksam ist, der bekanntermaßen nicht nur bei feisigem Untergrund, sondern insgesamt als eine sehr "harte Feder" betrachtet werden kann. Harte Federn haben den Vorzug einer hohen Eigendämpfung, so daß die Belastung durch Hochgeschwindigkeitszüge nicht zu negativen Schwingungserscheinungen führt.
  • Für die Betonwanne wird vorteilhaft eine Mindestbetongüte von B 25 verwendet. Das Schwellenauflager ist mit einer definierten Lagerfläche versehen und ragt mindestens 20 mm über die Ebene der Sohlenoberfläche der Betonwanne hinaus. Dadurch kann es mit den herkömmlichen Oberbaugeräten während der Beschotterung bequem gehandhabt werden.
  • Die Betonwanne ist vorteilhaft an ihrer Unterseite zur Verankerung mit dem Unterbau mit Dübelverzahnungen versehen. Die Seitenwangen der Betonwanne sind in Höhe der Sohlenoberfläche mit von Stopfen verschließbaren Durchbrechungen zur Entwässerung während der Schotterung versehen. Vor dem Ausfüllen der Hohlräume des Schotterbettes durch Einfüllung einer Mörtelsuspension müssen diese Durchbrechungen von den Stopfen verschlossen werden. Hierzu eignen sich dübelähnliche Dichtstopfen aus einem elastomeren Material.
  • Zum Ausgleich von Wärmedehnungen ist die Betonwanne mit zur Gleisrichtung quer verlaufenden Dehnfugen versehen, die mit einem Dichtmittel wasserdicht verschlossen sind. Das Dichtmittel besteht vorteilhaft aus einem elastomeren sowie polymeren Fugenband, wie es in der Bautechnik üblich ist.
  • Der so beschaffene Oberbau ist zwar weitgehend wartungsfrei, kann jedoch durch Unterspülungen des Unterbaus oder durch besondere, nicht im bestimmungsgemäßen Gebrauch liegende Krafteinwirkungen Reparaturen erforderlich werden lassen. Diese Reparaturen müssen nach Wunsch der Deutschen Bundesbahn in möglichst kurzen Zeiträumen durchführbar sein, um eine Vollsperrung der betreffenden Strecke zu vermeiden. Um bei solchen Reparaturarbeiten die Betonwanne in ihrem ursprünglichen Zustand belassen zu können und lediglich das Schotterbett mit dem darin eingegossenen Gleisrost rasch entfernen zu können, ist zwischen der Innenoberfläche der Betonwanne und dem Schotterbett ein die Verklammerung bzw. Verkrallung zwischen diesen nicht behinderndes Trennmittel angeordnet (s. System Rheda/Sengeberg). Dieses Trennmittel soll bei der Erfindung eine hydraulische Verbindung zwischen der Mörtelsuspension und der Innenoberfläche der Betonwanne verhindern. Dieses Trennmittel wird vorteilhaft aus einem einen dauerhaften Kontakt der Mörtelsuspension an der Innenoberfläche der Betonwanne hindernden Sprühmittel, z.B. aus einem Bitumen, oder von einer dünnen, eine Kraftübertragung des Schotters auf die Innenoberfläche der Betonwanne zulassenden PE-Folie gebildet sein, die allerdings gleichfalls die Kontaktnahme der Mörtelsuspension mit der Innenoberfläche der Betonwanne verhindert.
  • Aufgrund dieses Trennmittels kann im Falle einer Reparatur der betreffende Streckenabschnitt innerhalb der Betonwanne, der aus einer durch Mörtelsuspension gebundenen Schotterschicht und dem Gleisrost besteht, nach Durchtrennung mit einer Diamantsäge oder einer ähnlichen Trennvorrichtung komplett herausgenommen und durch ein neues Gleisrost mit neuer Unterschotterung und erneuter Mörtelsuspensionsfüllung ersetzt werden.
  • Die Strecke ist bereits nach Einsatz des Gleisrostes und der Unterschotterung mit einer Mindesthöhe von 10 cm unterhalb der Spannbetonschwellen wieder durch Zugverkehr befahrbar. Während dieser Reparaturphase kann sich der Erdkörper unter Eisenbahnbedingungen nachverdichten. Bei eventuellen Setzungen oder Verschiebungen kann durch Korrektur des Schotterbettes dieses wieder ausgeglichen werden. Erst hiernach wird der Schotter mittels der Mörtelsuspension ausgefüllt. Dadurch wird erreicht, daß die Verstellmöglichkeiten der Schienenbefestigung nicht zu einem zu frühen Zeitpunkt voll ausgenutzt werden. Erst nach Abwarten der Setzungszeit können sodann in relativ kurzer Bauzeit von nur wenigen Stunden mit beispielsweise einem schnell aushärtenden Vergußmörtel die Hohlräume des Schotterbettes in der bereits beschriebenen Weise vergossen bzw. verfüllt werden.
  • Sowohl bei derartigen Reparaturarbeiten als auch bei einer Neuverlegung ist der Pegel der Mörtelsuspension in aller Regel waagerecht ausgerichtet. Aus diesem Grunde ist bei Gleisanlagen mit stärkerer Überhöhung die Mörtensuspension abschnittsweise in das Schotterbett einzubringen, um eine gleichmäßige Verfüllung der Hohlräume sicherzustellen.
  • Nach einer vorteilhaften Ausführungsalternative ist es auch möglich, bereits vermörtelten Schotter in die Betonwanne einzubringen. In diesem Fall behält die Mörtelsuspension ein ihren Abbindungsprozeß verlängerndes Verzögerungsmittel, so daß Arbeitsvorgänge - Ausrichten des Gleisrostes sowie Verdichten des Schotters - zeitgemäß ausgeführt werden können, bevor der Abbindungsprozeß der Mörtelsuspension einsetzt.
  • Um bei einem Bruch der Betonwanne oder des Unterbaus eine abrupte Absenkung des Gleisrostes zu vermeiden, ist nach einer vorteilhaften Weiterbildung der Erfindung das Schotterbett mit einer Bewehrung versehen. Diese Bewehrung besteht vorteilhaft aus meheren in Gleisrichtung verlegten, parallel zueinander verlaufenden Reihen von Stahlstäben, welche die Schwellen in Ausnehmungen oder Durchgangsöffnungen durchdringen. Dabei sind die Stahlstäbe endlos zusammengeschweißt und werden so angeordnet, daß sie von der Stopfmaschine nicht beschädigt werden können.
  • Mehrere Ausführungsbeispiele von nach dem erfindungsgemäßen Verfahren hergestellte Oberbauten sind in den Zeichnungen dargestellt. Dabei zeigen:
    • Figuren 1 bis 3 den Querschnitt durch eine auf einem Unterbau angeordnete Betonwanne während unterschiedlicher Fertigungsabschnitte der Erstellung des Oberbaus,
    • Figur 4 die Querschnittsansicht gemäß den Figuren 1 bis 3 nach Verfüllung des Schotterbettes mit einer Mörtelsuspension sowie mit einer Oberflächenform in Schotterstruktur,
    • Figur 5 die Querschnittsansicht der Figuren 1 bis 3 nach Verfüllung der Mörtelsuspension in das Schotterbett mit glatter Oberfläche,
    • Figur 6 die Querschnittsansicht von zwei nebeneinander verlaufenden Gleisstrecken,
    • Figur 7 die Draufsicht auf eine Gleisstrecke gemäß Fig. 5 mit den Querfugen und
    • Figur 8 die Querschnittsansicht gemäß dem Schnitt VIII-VIII von Fig. 7,
    • Figur 9 den Querschnitt von Fig. 2 mit in die Betonwanne eingesetztem Gleisrost und einer ungeschnittenen Schwelle mit Durchgangsöffnungen,
    • Figur 10 den Querschnitt von Fig. 9 mit in die Betonwanne eingefülltem Schotter und in die Durchgangsöffnungen eingesetzten Stahlstäben zur Bewehrung des Schotterbettes,
    • Figur 11 die Draufsicht von Fig. 10 nach Einbringung der Mörtelsuspension.
  • Auf einem Unterbau 1 herkömmlicher Bauart mit einer Mindestdicke der frostsicheren Konstruktion (Planungsschutzschicht und Frostschutzschicht im Unterbau) von mindestens 60 cm wird in Gleisrichtung gemäß Pfeil 3a eine Betonwanne 2 angeordnet, die in ihrer U-förmigen Querschnittsform aus dem System "Rheda" bekannt ist. Im Gegensatz zum vorbekannten Stand der Technik ist die aus bewehrtem Ortbeton hergestellte Betonwanne mit einer Mindestbetongüte von B 25 unterhalb der Gleise 3 mit je einem aus der Ebene 4a der Oberfläche der Betonsohle 4 herausragenden Schwellenauflager 5 versehen. Dieses Schwellenauflager 5 weist eine definierte Lagerfläche 5a auf, die mindestens 20 mm über die Ebene 4a der Sohlenoberfläche der Betonwanne 2 hinausragt. Auf diese Schwellenauflager 5 wird das pauschal mit der Bezugsziffer 6 bezeichnete Gleisrost aufgelegt, welches aus den Schienen 3, den Spannbetonschwellen 7 und der Schienenbefestigung 8 besteht. Vor dem Aufsetzen des Gleisrostes 6 wird gemäß Fig. 1 auf die Innenoberfläche 2a der Betonwanne 2 ein die Verklammerung bzw. Verkrallung des Schotterbettes 9a (s. Fig. 3) mit dieser Innenoberfläche 2a nicht hinderndes Trennmittel 10 angeordnet. Dieses Trennmittel 10 soll aus einem einen dauerhaften Kontakt der Mörtelsuspension 14 an der Innenoberfläche 2a der Betonwanne 2 hindernden Sprühmittel, z.B. einer Bitumenschicht, bestehen oder von einer dünnen, zwar eine Kraftübertragung des Schotterbettes 9a auf die Innenoberfläche 2a der Betonwanne 2 zulassenden PE-Folie gebildet werden, die jedoch gleichfalls keinen dauerhaften Kontakt der Mörtelsuspension 14 an der Innenoberfläche 2a der Betonwanne 2 zuläßt.
  • An ihrer Unterseite 2b ist die Betonwanne 2 mit dem Unterbau 1 durch eine Dübelverzahnung 11 in quadratischer Pyramidenstumpfform verbunden (s. Figuren 1 bis 5 in Verbindung mit Fig. 7).
  • Erst nach dem Aufbringen der Trennschicht 10 auf die Innenoberfläche 2a der Betonwanne 2 wird das Gleisrost 6 gemäß Fig. 2 auf die Schwellenauflager 5 aufgesetzt.
  • In den Seitenwangen 2c der Betonwanne 2 sind in der Höhe der Ebene 4a der Sohlenoberfläche mit von elastomeren Stopfen 13 verschließbare Durchbrechungen 12 zur Entwässerung vorgesehen. Durch diese Durchbrechungen 12 kann die Betonwanne 2 während der Bauphase entwässert werden. Bevor jedoch die Mörtelsuspension 14 gemäß den Figuren 4 und 5 eingebracht wird, müssen diese Durchbrechungen 12 durch diese Stopfen 13 verschlossen werden, um ein Abfließen der Mörtelsuspension zu verhindern.
  • Das Aufsetzen der Gleisroste 6 erfolgt erst dann, wenn diese Stahlbetonwannen 2 die nötige Festigkeit erreicht haben, was in der Regel nach 28 Tagen der Fall ist. Außerdem sind diese Betonwannen 2 mit Dehnfugen 18 (s. Fig. 7) versehen, die mit bekannten elastomeren sowie polymeren Fugenbändern abgedichtet sind.
  • In die so vorbereitete Betonwanne werden Gleisroste 6 eingebaut. Der Einbau der Gleisroste 6 erfolgt mit den herkömmlichen Oberbaugeräten, die alle gleisfahrbar sind. Das Gleisrost 6 besteht aus der vom Bauherrn vorgegebenen Schienenform sowie den an diesen Schienen 3 befindlichen Spannbetonschwellen 7. Auch diese Spannbetonschwellen 7 bedürfen keiner besonderen Vorbehandlung. Sobald der vorgesehene Abschnitt mit den Gleisrosten 6 bestückt ist, werden diese verlascht. Über dieses so erstellte Gleisrost 6 werden sodann im nächsten Schritt die Spezialwaggons mit dem Schotter 9 gezogen und die Betonwanne 2 mit der erforderlichen Schotterhöhe aufgefüllt, die unterhalb der Spannbetonschwellen 7 mindestens 10 cm beträgt. Dabei können sämtliche Körnungen gemäß den Vorschriften der DB eingesetzt werden. Sie sind lediglich ölfrei und staubfrei einzubauen, um einen intensiven Kontakt und damit eine vollständige Verfüllung der Hohlräume des Schotters 9 mit der Mörtelsuspension 14 sicherzustellen.
  • Über das derart eingeschotterte Gleisrost 6 fährt eine Stopfmaschine, die das Gleisrost lediglich 5 cm hochzieht, so daß die ersten Schottersteine unter die Schwellen fallen können. Das hochgezogene Gleisrost 6 wird jetzt mit einer Stopfmaschine durch einen Stopfhebegang auf die exakte vorbeschriebene Höhe angehoben. Bei diesem Arbeitsgang wird der Schotter 9 so weit verdichtet, daß ein Befahren keinerlei Veränderung des Gleisrostes 6 nach sich zieht. Der Schotter 9 wird profiliert, das heißt er wird so verteilt, bis er mit der Oberkante 7a der Spannbetonschwellen 7 abschließt. Hiernach wird das vom Schotter 9 gebildete Schotterbett 9a vom Auftraggeber kontrolliert und abgenommen. Erst nach dieser Abnahme werden die Hohlräume im eingebrachten, verdichteten Schotter 9 mit der Mörtelsuspension 14 zur Bildung eines starren Schotterbettes 9a vergossen und dadurch ausgefüllt. Diese Mörtelsuspension 14 kann aus einer Zementsuspension oder einem anderen geeigneten hydraulischen Bindemittel bestehen. Bei der Verfüllung des Schotters 9 sowie bei der Verfüllung bzw. beim Verguß der Mörtelsuspension 14 sind folgende Ausführungsvarianten möglich:
  • Nach einer ersten Ausführungsform gemäß Fig. 4 schließt das Schotterbett 9a an seiner Oberfläche 9b sowohl mit der Oberkante 7a der Spannbetonschwelle 7 als auch mit der Oberkante 2d der beiden Seitenwangen 2c der Betonwanne 2 ab. In diesem Fall wird das Schotterbett 9a mit der Mörtelsuspension 14 derart vergossen, daß in der Nähe der Oberfläche 9b die Schotterstruktur erkennbar bleibt und dadurch schallabsorbierend wirkt.
  • Nach einer zweiten Ausführungsform gemäß Fig. 5 wird der Schotter 9 nicht bis zur Oberkante 7a der Spannbetonschwelle 7 eingebaut, sondern endet wenige Zentimeter unterhalb der Oberfläche 7a der Spannbetonschwelle 7. Dadurch kann die Mörtelsuspension 14 nach ihrem Verguß mit einem Pegel 14a versehen werden, der mit der Oberfläche 7a der Spannbetonschwelle 7 und den angrenzenden Oberflächen 2d der Seitenwangen 2c eine geschlossene ebene Oberfläche 2d, 7a, 14a bildet.
  • In den Figuren 4 und 5 ist der Pegel 14a der Mörtelsuspension 14 waagerecht ausgebildet. Bei einer derartigen Lage der Betonwanne 2 können nach dem Verschließen der Durchbrechungen 12 mittels der Stopfen 13 die Hohlräume innerhalb der Schotterbettes 9a zur Bildung eines starren Schotterbettes 9a mit einem schnell aushärtenden Vergußmörtel 14 vollständig verfüllt werden. Bei Gleisanlagen mit stärkeren Überhöhungen ist die Mörtelsuspension 14 abschnittsweise in das Schotterbett 9a einzubringen.
  • Gemäß Fig. 6 erfordert der erfindungsgemäße Oberbau bei mehrgleisigen Strecken eine Entwässerungseinrichtung 15, die entweder herkömmlich gestaltet ist oder aus einer Einschotterung 16 ohne Vergußmörtel mit den üblichen Entwässerungskanälen 17 bestehen kann. Die besonderen Vorteile des erfindungsgemäßen Oberbaus beruhen darin, daß sämtliche Arbeiten ohne Benutzung eines zweiten Gleises gemäß Fig. 6 ausgeführt werden können. Der Einbau der Gleisroste 6 kann mit den vorhandenen Geräten ohne Umstellung der Arbeitsweise der Gleisbauer eingesetzt werden. Das Ausrichten des Gleisrostes 6 im Schotterbett 9a ist sämtlichen Gleisbaufirmen bekannt und erfolgt mit hochmodernen Geräten. Das Einbringen des Schotters 9 in die Betonwanne 2 erfolgt mit den Spezialwagen der Eisenbahngesellschaften. Es kann herkömmlicher Schotter verwendet werden, der keiner Spezialbehandlung bedarf. Die Möglichkeiten der Nachbesserung sind so lange gegeben, bis das Schotterbett 9a vermörtelt ist. Eine Vorbelastung durch rollenden Verkehr ist im Gegensatz zum gesamten Stand der Technik bei diesem Oberbau möglich. Bei der Verwendung von bekannten, schnell aushärtenden Vergußmörteln kann nach einer Wartezeit von lediglich 3 bis 4 Stunden der Fahrbetrieb auf dem Oberbau aufgenommen werden.
  • Zur Übertragung von Längs- und Querkräften ist der Oberbau mit einer Dübelverzahnung 11 versehen, die aus quadratischen Pyramidenstümpfen 11a an der Unterseite 2b der Betonwanne 2 besteht, die formschlüssig in entsprechend gestaltete Rücksprünge 11b des Unterbaus 1 greifen (s. Figuren 1 bis 5 und 7).
  • Bei einer Reparatur werden die Gleise 3 einschließlich des Schotterbettes 9a bis zur Trennschicht 10 abschnittsweise mittels Diamantsägen, Trennscheiben etc. durchtrennt und von bekannten Hebegeräten herausgehoben. Nach erneuter Aufbringung einer Trennschicht 10 werden neue Gleisroste 6 auf den Schwellenauflagern 5 angeordnet, die Gleise 3 an den Stoßstellen verschweißt und die Beschotterung dieser Gleisroste 6 wie bei der beschriebenen Neuerstellung durchgeführt. Anschließend wird der Schotter 9 mittels eines schnell aushärtenden Vergußmörtels 14 zu einem starren Schotterbett 9a verfüllt. Da die Gleise 3 nach Einfüllung des Schotters 9 in die Betonwanne 2 bereits durch rollenden Verkehr vorbelastet werden können und hiernach in einem zeitlich zweiten Reparaturabschnitt das Schotterbett 9a mit dem schnell aushärtenden Vergußmörtel 14 fertiggestellt werden kann, bietet sich als vorteilhafte zweite Lösungsalternative während der Reparatur die Möglichkeit an, bereits vorvermörtelten Schotter einzubringen, der dann allerdings mit einem Abbindungsverzögerer versehen ist, um die Reparatur-Arbeitsgänge des Ausrichtens und Verdichtens ausführen zu können, bevor der Abbindungsprozeß einsetzt. Insbesondere bei kurzstreckigen Reparaturarbeiten können diese dann in einem einzigen Zeitintervall durchgeführt werden.
  • Das erfindungsgemäße Verfahren gewährleistet einen Oberbau sowohl auf Brücken als auch in Tunnels, der aufgrund seiner geringen Gesamtbauhöhe eine besonders vorteilhafte Alternative zu den Ausführungsformen des Standes der Technik bildet.
  • Um bei einem Bruch der Betonwanne 2 oder des Unterbaus 1 eine abrupte Absenkung des Gleisrostes 6 zu unterbinden, sind die Spannbetonschwellen 7 im Ausführungsbeispiel der Fig. 9 bis 11 mit mehreren in Gleisrichtung gemäß den Doppelpfeilen 3a parallel zueinander verlaufenden Durchgangsöffnungen 19 versehen, durch welche die Stahlstäbe 20 hindurchgeführt sowie hiernach endlos zusammengeschweißt werden. Diese Stahlstäbe 20 sind in Fig. 11 mit fetten, gestrichelten Linien dargestellt.
  • Sobald der vorgesehene Abschnitt mit den Gleisrosten 6 und der aus den Stahlstäben 20 bestehenden Bewehrung bestückt ist, werden die Gleisroste 6 verlascht und in der vorbeschriebenen Weise mit Schotter gefüllt.
  • Diese Bewehrung in Form der Stahlstäbe 20 bewirkt nach Einfüllung der Mörtelsuspension 14 ein Verbundsystem, welches aus dem Gleisrost 6 mit den Spannbetonschwellen 7, der von den Stahlstäben 20 gebildeten Bewehrung, dem Schotterbett 9a und der Mörtelsuspension 14 besteht. Auf diese Weise wird ein Oberbau mit bewehrten Schotterbett 9a und Gleisrost 6 geschaffen.
  • Bei einem Bruch der bewehrten Betonwanne 2 und/oder des Unterbaus 1, z.B. infolge einer Unterspülung und nachfolgenden Belastung, verhindert dieses Verbundsystem 6, 7, 9a, 14, 20 eine abrupte Absenkung des Gleisrostes 6.
  • Anstelle der Durchgangsöffnungen 19 in den Spannbetonschwellen 7 können auch Ausnehmungen an der Unterseite 7b der Spannbetonschwellen 7 treten, wenn und soweit die dadurch bedingten Kerbwirkungen entweder durch eine verstärkte Armierung der Spannbetonschwellenn 7 selbst oder durch eine größere Dicke oder durch andere Maßnahmen kompensiert wird.
  • Bezugszeichenliste:
    • Unterbau    1
    • Betonwanne    2
    • Innenoberfläche der Betonwanne 2    2a
    • Unterseite der Betonwanne 2    2b
    • Seitenwangen der Betonwanne 2    2c
    • Oberfläche der Seitenwangen 2c    2d
    • Gleise    3
    • Gleisrichtung    3a
    • Betonsohle    4
    • Sohlenoberfläche der Betonsohle 4    4a
    • Schwellenauflager    5
    • Lagerfläche des Schwellenauflagers 5    5a
    • Gleisrost    6
    • Spannbetonschwellen    7
    • Oberfläche der Spannbetonschwellen 7    7a
    • Schienenbefestigung    8
    • Schotter    9
    • Schotterbett    9a
    • Oberfläche des Schotterbettes 9a    9b
    • Trennschicht    10
    • Dübelverzahnung    11
    • quadratische Pyramidenstümpfe    11a
    • Rücksprünge des Unterbaus 1    11b
    • Durchbrechungen    12
    • Stopfen    13
    • Mörtelsuspension    14
    • Pegel    14a
    • Entwässerungseinrichtung    15
    • Einschotterung    16
    • Entwässerungskanäle    17
    • Dehnfugen    18
    • Durchgangsöffnungen    19
    • Stahlstäbe    20
    • Höhe des Schotterbettes 9a unterhalb der Spannbetonschwelle 7    h

Claims (21)

  1. Verfahren zur Herstellung eines Oberbaus für Eisenbahngleise, insbesondere für Strecken für hohe Geschwindigkeiten und Belastungen, mit einer in Gleisrichtung verlegten, bewehrten Betonwanne mit U-förmigem Querschnitt und einem darin angeordneten Schotterbett und Gleisrost, dadurch gekennzeichnet, daß die aus bewehrtem Ortbeton bestehende Betonwanne (2) unterhalb der Gleise (3) mit je einem aus der Ebene (4a) der Sohlenoberfläche der Betonwanne (2) herausragenden Schwellenauflager (5) versehen ist, und daß nach Ausrichtung des Gleisrostes (6) die Hohlräume im eingebrachten, verdichteten Schotter (9) mit einer Mörtelsuspension (14) zur Bildung eines starren Schotterbettes (9a) ausgefüllt sind.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Betonwanne (2) eine Mindestbetongüte von B 25 aufweist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Schwellenauflager (5) mit einer definierten Lagerfläche (5a) versehen ist und mindestens 20 mm über die Ebene (4a) der Sohlenoberfläche der Betonwanne (2) hinausragt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zwischen der Innenoberfläche (2a) der Betonwanne (2) und dem Schotterbett (9a) ein die Verklammerung bzw. Verkrallung zwischen diesen (2a, 9a) nicht behinderndes Trennmittel angeordnet ist.
  5. Verfahren nah Anspruch 4, dadurch gekennzeichnet, daß das Trennmittel aus einem einen dauerhaften Kontakt der Mörtelsuspension (14) an der Innenoberfläche (2a) der Betonwanne (2) hindernden Sprühmittel (10), z.B. Bitumen, oder von einer dünnen, eine Kraftübertragung des Schotterbettes (9a) auf der Innenoberfläche (2a) der Betonwanne (2) zulassenden PE-Folie gebildet ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Betonwanne (2) an ihrer Unterseite (2b) zur Verankerung mit dem Unterbau (1) mit einer Dübelverzahnung (11) versehen ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Seitenwangen (2c) der Betonwanne (2) in der Höhe der Sohlenoberfläche mit von elastomeren Stopfen (13) verschließbaren Durchbrechungen (12) zur Entwässerung versehen sind.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Betonwanne (2) mit zur Gleisrichtung (Pfeil 3a) quer verlaufenden Dehnfugen (18) versehen ist, die mit einem Dichtmittel wasserdicht verschlossen sind.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das Dichtmittel aus einem elastomeren sowie polymeren Fugenband besteht.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Gleisrcst (6) Spannbetonschwellen (7) aufweist.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Schotterbett (9a) sowohl mit der Oberfläche (7a) der Spannbetonschwelle (7) als auch mit der Oberkante (2d) der beiden Seitenwangen (2c) der Betonwanne (2) abschließt.
  12. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Oberfläche (9b) des Schotterbettes (9) wenige Zentimeter unterhalb der Oberfläche (7a) der Spannbetonschwelle (7) endet und nach Einbringung der Mörtelsuspension (14) deren Pegel (14a) mit der Oberfläche (7a) der Spannbetonschwelle (7) und den angrenzenden Oberflächen (2d) der Seitenwangen (2c) eine geschlossene ebene Oberfläche (2d, 7a, 14a) bildet.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Höhe (h) des Schotterbettes (9a) unterhalb der Spannbetonschwelle (7) mindestens 10 cm beträgt.
  14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der Pegel (14a) der Mörtelsuspension (14) waagerecht ausgerichtet ist.
  15. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß bei Gleisanlagen mit stärkeren Überhöhungen die Mörtelsuspension (14) abschnittsweise in das Schotterbett (9a) einbringbar ist.
  16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Mörtelsuspension (14) aus einem schnell aushärtenden Vergußmörtel besteht.
  17. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß bei Reparaturarbeiten die Mörtelsuspension (14) ein ihren Abbindungsprozeß verlängerndes Verzögerungsmittel enthält.
  18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß das Schotterbett (9a) mit einer Bewehrung (20) versehen ist.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß die Bewehrung aus mehreren in Gleisrichtung (Pfeil 3a) verlegten, parallel zueinander verlaufenden Reihen von Stahlstäben (20) besteht.
  20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß die Stahlstäbe (20) die Schwellen (7) in Ausnehmungen oder Durchgangsöffnungen (19) durchdringen.
  21. Verfahren nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, daß die Stahlstäbe (20) endlos zusammengeschweißt sind.
EP94120161A 1994-01-18 1994-12-20 Verfahren zur Herstellung eines Oberbaus für Eisenbahngleise Expired - Lifetime EP0663470B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4401260 1994-01-18
DE19944401260 DE4401260C1 (de) 1994-01-18 1994-01-18 Oberbau für Eisenbahngleise
DE4439894 1994-11-08
DE4439894A DE4439894C2 (de) 1994-01-18 1994-11-08 Oberbau für Eisenbahngleise

Publications (2)

Publication Number Publication Date
EP0663470A1 EP0663470A1 (de) 1995-07-19
EP0663470B1 true EP0663470B1 (de) 1997-03-26

Family

ID=25933083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94120161A Expired - Lifetime EP0663470B1 (de) 1994-01-18 1994-12-20 Verfahren zur Herstellung eines Oberbaus für Eisenbahngleise

Country Status (3)

Country Link
EP (1) EP0663470B1 (de)
AT (1) ATE150822T1 (de)
DE (2) DE4439894C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245580B (zh) * 2007-12-28 2011-03-16 中铁二局股份有限公司 轨道板沥青砂浆灌注方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19625249C2 (de) * 1996-06-17 1998-07-02 Projektgemeinschaft Feste Fahr Lagestabiler Gleiskörper aus Betonfertigteilen sowie Verwendung von Betonfertigteilen für diesen Gleiskörper
DE19755602A1 (de) * 1996-12-18 1998-06-25 Heitkamp Gmbh Bau Oberbau für Eisenbahngleise
DE19707296C2 (de) * 1997-02-11 1999-11-25 Betonwerk Rethwisch Gmbh Verfahren zur Herstellung einer festen Fahrbahn und dazu geeigneter Betonfertigteile
DE19741020A1 (de) 1997-09-18 1999-04-08 Georg Groetz Gleisanlage für schienengebundene Fahrzeuge
FR2776683A1 (fr) * 1998-03-27 1999-10-01 Spie Batignolles Tp Procede de construction de voie ferree, panneau unitaire de voie, machine de depose de tels panneaux, machine de betonnage, et voie ferree
DE20005558U1 (de) * 2000-03-24 2000-05-25 Groetz Georg Gleisanlage für schienengebundene Fahrzeuge
DE20120610U1 (de) 2001-12-20 2002-02-28 Groetz Georg Gleisschotter für ein Schotterbett eines Gleisfahrweges, insbesondere für Eisenbahnen
DE10325166B4 (de) * 2003-06-04 2006-11-23 Graf von der Schulenburg-Wolfsburg, Günzel, Dr. Gleisaufbau für schienengebundene Fahrzeuge, insbesondere Eisenbahnen
CN102966008A (zh) * 2011-08-31 2013-03-13 中国铁道科学研究院铁道建筑研究所 无砟轨道系统
FR2990964B1 (fr) 2012-05-23 2015-02-06 Colas Rail Voie de chemin de fer avec traverses sur dalle en beton arme ou non arme continu a amortissement pour circulation de trains et procede de fabrication
CN106988164A (zh) * 2017-05-09 2017-07-28 中铁二十二局集团第工程有限公司 板式无砟轨道结构及其施工方法
DE102017117623A1 (de) * 2017-08-03 2019-02-07 Goldbeck Gmbh Betonfertigdeckenteil für ein Parkhaus und Verfahren zur Herstellung
CN108103853A (zh) * 2017-12-20 2018-06-01 芜湖润蓝生物科技有限公司 一种轨道交通用路基结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT377805B (de) * 1983-04-01 1985-05-10 Getzner Chemie Gmbh & Co Daemmzwischenlage fuer die elastische lagerung der bettung von gleiskoerpern
US4616395A (en) * 1983-06-30 1986-10-14 Perini Corporation Railroad track fixation method and apparatus
DE3602669A1 (de) * 1986-01-31 1987-07-30 Japan National Railway Federnder ueberzug fuer eine direktverbindungs-schwelle
DE3736943C1 (de) * 1987-10-31 1988-12-08 Dyckerhoff & Widmann Ag Eisenbahnoberbau,insbesondere fuer sehr hohe Fahrgeschwindigkeiten
DE4100881A1 (de) * 1991-01-14 1992-07-16 Cronau Heinrich Gmbh Oberbau fuer eisenbahn-gleisanlagen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245580B (zh) * 2007-12-28 2011-03-16 中铁二局股份有限公司 轨道板沥青砂浆灌注方法

Also Published As

Publication number Publication date
ATE150822T1 (de) 1997-04-15
EP0663470A1 (de) 1995-07-19
DE4439894C2 (de) 1998-04-09
DE59402227D1 (de) 1997-04-30
DE4439894A1 (de) 1996-05-15

Similar Documents

Publication Publication Date Title
EP1417379B1 (de) Verfahren zum kontinuierlichen lagern einer schiene auf einer festen fahrbahn sowie justiereinrichtung und feste fahrbahn
EP0663470B1 (de) Verfahren zur Herstellung eines Oberbaus für Eisenbahngleise
AT391499B (de) Eisenbahnoberbau, insbesondere fuer schienenfahrzeuge mit sehr hohen fahrgeschwindigkeiten
DE4100881A1 (de) Oberbau fuer eisenbahn-gleisanlagen
EP0357161B1 (de) Bahnsteig
DE4401260C1 (de) Oberbau für Eisenbahngleise
EP1558815B1 (de) Feste Fahrbahn für den Schienenverkehr und Verfahren zu ihrer Herstellung
DE19620731A1 (de) Feste Fahrbahn für schienengebundene Fahrzeuge auf Brücken und Verfahren zu ihrer Herstellung
DE102016114855A1 (de) Trogförmiger Überbau für eine Brücke, Brücke, Betonfertigteil für eine Trogwange einer Brücke sowie Verfahren zur Herstellung einer Brücke
EP1882777B1 (de) Verfahren zum Herstellen einer festen Fahrbahn für Schienenfahrzeuge
EP1048783A1 (de) Feste Fahrbahn für Schienenfahrzeuge und Verfahren zu ihrer Herstellung
EP1039030A1 (de) Schotterloser Oberbau
EP0546380B1 (de) Gleiskörper
DE4430769A1 (de) Eisenbahnoberbau mit einem auf einer durchgehenden Tragplatte aus Stahlbeton aufgelagerten Gleisrost
DE4007710A1 (de) Verfahren zum herstellen eines eisenbahnoberbaus im tunnel
EP1216326B1 (de) Verfahren zur herstellung eines schallgedämmten gleises
DE10261641A1 (de) Verfahren zum Herstellen einer Festen Fahrbahn und Fahrweg
DE19952803C2 (de) Oberbau für schienengebundene Fahrzeuge des öffentlichen Nahverkehrs sowie Verfahren und Vorrichtung zu seiner Herstellung
AT500876B1 (de) Verfahren zum herstellen einer festen fahrbahn für schienenfahrzeuge
AT525562B1 (de) Gleisanordnung und Gleisanordnungssystem
DE102004037170A1 (de) Schienenfahrweg
DE19959978A1 (de) Gleisanlagen-Tragplatte, Gleisanlagen-Unterbau und Gleisanlage
WO2018121902A1 (de) Trogförmiger überbau für eine brücke, brücke, fertigteil für eine trogwange einer brücke sowie verfahren zur herstellung einer brücke
WO2011160625A2 (de) Verfahren zur sanierung einer gleisanlage mit einem schotterbett
EP2295635B1 (de) Schienenlagerung mit Deckkörpern für flexible Bustrasse und Verfahren zur deren Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19950914

17Q First examination report despatched

Effective date: 19951222

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970326

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970326

Ref country code: DK

Effective date: 19970326

REF Corresponds to:

Ref document number: 150822

Country of ref document: AT

Date of ref document: 19970415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59402227

Country of ref document: DE

Date of ref document: 19970430

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 72913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970626

Ref country code: PT

Effective date: 19970626

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991013

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 19991125

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19991210

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991215

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19991223

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001220

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001231

BERE Be: lapsed

Owner name: BAUUNTERNEHMUNG E. HEITKAMP G.M.B.H.

Effective date: 20001231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001220

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051220

NLS Nl: assignments of ep-patents

Owner name: HEITKAMP RAIL GMBH

Effective date: 20060711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20131211

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20131219

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140226

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59402227

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59402227

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20141220

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 150822

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141220