EP0643292B1 - Méthode et dispositif de prise d'un échantillon représentatif de la production de lait d'une vache - Google Patents

Méthode et dispositif de prise d'un échantillon représentatif de la production de lait d'une vache Download PDF

Info

Publication number
EP0643292B1
EP0643292B1 EP94113638A EP94113638A EP0643292B1 EP 0643292 B1 EP0643292 B1 EP 0643292B1 EP 94113638 A EP94113638 A EP 94113638A EP 94113638 A EP94113638 A EP 94113638A EP 0643292 B1 EP0643292 B1 EP 0643292B1
Authority
EP
European Patent Office
Prior art keywords
milk
flow
valve
sample
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94113638A
Other languages
German (de)
English (en)
Other versions
EP0643292A2 (fr
EP0643292A3 (fr
Inventor
Tilman Dr. Hoefelmayr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bio Melktechnik Hoefelmayr and Co
Original Assignee
Bio Melktechnik Hoefelmayr and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bio Melktechnik Hoefelmayr and Co filed Critical Bio Melktechnik Hoefelmayr and Co
Publication of EP0643292A2 publication Critical patent/EP0643292A2/fr
Publication of EP0643292A3 publication Critical patent/EP0643292A3/xx
Application granted granted Critical
Publication of EP0643292B1 publication Critical patent/EP0643292B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01JMANUFACTURE OF DAIRY PRODUCTS
    • A01J5/00Milking machines or devices
    • A01J5/04Milking machines or devices with pneumatic manipulation of teats
    • A01J5/045Taking milk-samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/04Dairy products

Definitions

  • the invention relates to a method for taking an analytical sample representative of the total milk volume of a cow, whereby during the milking process the milk is dependent on the milk flow, i. the milk volume milked per time, quantity-proportional sample quantities are taken, and a milk sampling device with a milk foot meter arranged in a milking line and a processor unit for controlling a milk sampling device connected to an analysis sample container, which is connected to the milking line.
  • the quality of a milk and the price paid for it per kg largely depend on its ingredients, in particular on the percentage fat content of the milk.
  • the determination of the fat content is, however, considerably more difficult if the milk has stood for a period of time, since the fat content preferentially settles on the surface of the milk. Therefore, there are very strict regulations on how to take a so-called representative analysis sample, which should normally not exceed 50 ml. This process is very cumbersome, labor intensive and also very time consuming.
  • a device for taking a predetermined amount of sample when transferring a larger amount of known milk from one container into another container was also already known.
  • the milk is conveyed in constant smaller amounts of milk of approximately 10 1 and a partial sample amount proportional to this delivery amount is taken via a sampling valve, the size of the respective opening of the valve, the opening time and the opening frequency corresponding to the known total amount of milk to be delivered and the constant delivery rate can be set in advance per time.
  • the utility model G 85 02 259.4 is again a milk conveyor for tank trucks or in-house milk transport in dairies, where the number of constant sample subsets to be withdrawn is determined in a similar way by the amount of each sample subsample to be taken in relation to the total to be withdrawn Amount of sample and the time during which this sample subset is taken.
  • the factor from the ratio of the total milk volume to be transferred to the milk flow measured in each case so that the pause times between two partial samples are taken depending on the respective milk flow to change.
  • DE 32 10 465 discloses the volume-proportional removal of milk from the milk flow that occurs immediately during the milking process.
  • a partial amount is branched off with the aid of a peristaltic pump by the running speed of the peristaltic pump depending on the milk flow measured in each case or the level measured in the milk flow meter is controlled.
  • a peristaltic pump has an extremely limited service life and a relatively high energy requirement, especially at higher circulation speeds, which is further increased by the fact that the pump has to operate between vacuum and atmospheric pressure.
  • Such a method could of course be omitted if it were possible to carry out such a representative sample immediately when a cow was being milked, ie if the milk had not yet become stale Can be found. Such a procedure would also be desirable in view of the fact that each cow could be monitored separately and the fat content of the milk could be determined separately.
  • the difficulty of such a method lies in the fact that, in spite of the fact that the total amount of milk per cow fluctuates considerably, and despite the strong fluctuations in milk flows from cow to cow and in time during each milking process, only a small analysis sample bottle of less than 50 ml content is available, in which a representative sample is available should be filled in directly.
  • a peristaltic pump that delivers predetermined volumes by squeezing a hose cannot be controlled over a range of 1: 360, since its maximum speed range is only 1: 100 and a complex direct current control is necessary for this.
  • the control of the DC motor required for this in the lower speed range is very problematic.
  • such a peristaltic pump would hardly be suitable for a portable measuring device to be used on the cow, since, in addition to a relatively high energy consumption, it also requires a high weight and also a large construction volume.
  • the useful life of the necessary hoses is short since the elasticity of these hoses changes over time, which means that the volume conveyed changes at the same time.
  • a solenoid pump working with diaphragm cannot cover the required range of 1: 360.
  • valves are necessary, each of which poses the problem of adequate cleaning, since in operation they tend to have the tendency for milk to settle, i.e. that there is an increased risk of cheesing.
  • electromagnetic pumps also have a relatively high power consumption.
  • the present invention therefore aims at a method and a device with which a representative analysis sample of less than 50 ml can be taken separately for each cow during milking.
  • each cycle comprising a valve open time and a valve closed time, for taking only an analysis sample kept below a predetermined maximum amount of 50 ml from the experience gained Expected value of the total milk to be milked of the cow in question
  • a cycle time and a valve open time are determined, the cycle time and valve open time each being selected such that they lie within predetermined value ranges, that the valve open time or the cycle time are controlled as a function of the respectively measured milk flow, and that for Avoidance of values of the valve open time or the cycle time lying outside the value ranges as a result of the change in the milk flow, the valve open time and the cycle time in equal proportions to values lying within the value ranges be changed.
  • representative analysis samples can be taken in a wide range of fluctuations between 5 and 30 kg of the total amount of milk to be expected and a possible milk flow between 0.1 and 12 kg per minute.
  • the split off sample portions are kept under the same pressure as the milk flow itself.
  • the milk accumulation height above the valve is preferably kept constant in order to generate a separation flow through the valve which is essentially independent of the milk flow.
  • the measuring range can be expanded if the method is carried out in such a way that a milk stagnation height which is dependent on the milk flow is generated above the valve for changing the separation flow through the valve as a function of the milk flow.
  • the range of values for the cycle time in which this can be changed is practically determined at the lower limit only by the controllability of the reproducible milk release quantity of the valve and at the upper end by the number of samples to be taken for small milk flows to achieve a representative sample and is preferably between 0.5 and 30 seconds (120 to 2 cycles per minute). However, the range of values is preferably between 2 and 30 seconds.
  • the range of values for the valve open time in the case of low open times is essentially determined by the inertia of the valve and, in the case of the upper open times, up to which open times a constant split-off flow can be achieved with constant milk flow.
  • the range of values is between 0.05 and 1.2 seconds for high milk flows or preferably between 0.1 and 0.8 seconds and can be reduced to 0.1 to 0.25 seconds for very small milk flows.
  • the fat content of the milked milk increases towards the end of the milking process. This also changes the viscosity and flow behavior of the milk slightly.
  • the influence of capillary forces can also be important in this context. For this reason, in order to calibrate the fat content contained in the analysis sample as the milk flow towards the end of the milking increases, it may be advisable to increase or decrease the valve opening time somewhat.
  • the method is preferably carried out in such a way that a portion of the milk flowing through the valve is pumped back each time the valve is closed, and advantageously the method is also carried out in such a way that each time the valve is opened a suction force which accelerates the start of the milk flow exerts on the milk becomes.
  • the invention also relates to a milk sampling device of the type mentioned at the outset, which is characterized in that the milk sampling device comprises an electrically controllable magnetic coil with which a closure body can be moved into a first position which blocks a flow opening for the sample separation stream and a second position which opens this opening.
  • the closure body can be moved back and forth with a controllable cycle time between the first and second positions, and that the cycle time and the time (valve open time) in which the closure body is in the second position which opens the flow opening as a function of the total milk quantity to be expected can each be selected such that they lie within predetermined value ranges and the valve open time or the cycle time can be controlled via the processor unit as a function of the milk flow measured in each case, and in order to avoid outside lb of the value ranges Values of the valve open time or the cycle time due to the change in the milk flow, the valve open time and the cycle time are changed in the same proportions to values within the value ranges.
  • the closure body consists of a permanent magnet or ferromagnetic material, and in the vicinity of the Flow opening is a body holding the closure body in its first position made of a ferromagnetic material or a permanent magnet.
  • This configuration enables energy-saving operation, since in each case only one changeover pulse of a short duration is necessary in order to move the closure body from a first to a second position and vice versa.
  • This can take place in each case by means of short pulses of approximately a pulse duration of 10 to 100 ms, each of which leads a current of opposite current direction in succession.
  • the changeover in the current direction can take place, for example, by only reversing the voltage at the ends of the magnetic coil, which can be done with the aid of electronic controls.
  • the closure body In practice it has proven particularly expedient for the closure body to consist of a cylindrical body which is guided in lateral guides.
  • the body or the guides should expediently consist of such a material or be provided with such a material support that the lowest possible friction between the guides and the body results.
  • a tube which determines the flow opening for the sampling stream expediently forms the ferromagnetic body or the body consisting of a permanent magnet.
  • the closure body and / or the end of the flow opening facing the closure body is provided with a layer of a damping material.
  • a damping material can consist, for example, in the form of a plate made of, for example, silicone or polyurethane or else in the form of a spring steel wire which is coated with silicone.
  • the magnetic coil is arranged at the second position of the closure body.
  • the spaces provided for the milk flow are as small as possible, but on the other hand they are also designed so that milk flows off well and the milk sampling device can also be cleaned as well as possible.
  • An arrangement has proven to be advantageous in which the cylindrical closure body is movable along an essentially cylindrical guide track, in the surface of which faces the closure body, recesses extending in the longitudinal direction of the closure body are provided, which in the second position of the closure body with the flow opening and the end of the milk sampling device facing the sample container.
  • the milk sampling device is connected directly to a room in which a milk stagnation level corresponding to the respective milk flow is established. This is preferably a corresponding space of the related milk flow meter. Additional devices can also be provided in this room for measuring the accumulation height, such as measuring probes arranged at a distance from one another.
  • a lower computing and control effort is required if, according to a further embodiment, the sampling device opens into a room in which the milk flow is kept at a predetermined accumulation level. This can be achieved, for example, by a corresponding connection with a suitably designed milk flow meter, specifically in a so-called swamp area.
  • a splitting can also be achieved in that the flow opening of the sampling device is connected to a sampling tube protruding into a milk transport line. In this case dynamic sampling takes place.
  • the sampling tube with the longitudinal axis of its inlet opening in such a way that it is approximately 1/3 of the diameter apart the milk transport line is arranged from the inner wall of the milk transport line.
  • the sampling tube branches into a first line, which comprises the passage opening and is connected to a discharge line in the analysis sample container, and a second line which is connected to the milk drain, the closure body being movable in such a way that it closes the passage opening in its first position and releases the second line and releases the passage opening and the first line and closes the second line in its second position.
  • Fig. 1 the udder 1 of a cow is shown schematically, on the teats of which teat cups 2 are attached.
  • the milk milked with these milking cups is brought together in a so-called milk collecting piece 3 into a single transport line 4, which transfers the milked milk into an overall transport line 5, which is led, for example, overhead and is under a milking vacuum.
  • a milk flow meter 6 is arranged in the long milking tube 4.
  • a milk sampling device 7, which is connected to the long milking tube 4, or possibly also to the milk flow meter 6, is shown, which takes the sample taken into a Analysis sample vial 8 collects.
  • a processor 9 receives signals from the milk flow meter 6 via the line 10 corresponding to the milk flow or the milk accumulation level in the milk flow meter, calculates milk flow or change in milk flow per time, valve open times and cycle times, if necessary, and controls the milk sampling device 7 via the line 11.
  • a milk flow meter shown generally at 20 is designated.
  • a tube 21, which can be part of the long milk hose 4 the milked milk reaches the measuring and collecting space 22 under the applied milking vacuum.
  • the milk accumulates therein up to a damming height 23.
  • the in the room 22 jammed milk flows out of the measuring and collecting space through a measuring slot 24 into a so-called sump 25.
  • this sump 25 there is a milk discharge line 26 from above, which can also be part of the long milk hose.
  • the milk in the sump 25 is sucked up to the level of the lower end 27 of the discharge line via the discharge line 26 due to the milking vacuum active here.
  • the milk therefore has a constant height C in this sump part 25.
  • a number of accumulation height sensors 28 are arranged at a distance from one another, with which the accumulation height of the milk in this chamber can be determined.
  • a separate electrical scanning device can be provided in the milk flow meter 20 itself, via which a single signal corresponding to the accumulation height is then transmitted to the processor 9.
  • a corresponding scanning device for the accumulation height sensors can also be provided in the processor 9, which connects the individual accumulation height sensors via the line 10 scans and forms a corresponding congestion level signal in the processor itself.
  • a milk sampling device 30 is provided below the milk flow meter 20 and is connected to the measuring and collecting chamber 22 via a calibrated opening 31 in the bottom of the measuring and collecting chamber 22. Various embodiments of these milk sampling devices 30 will be described later with reference to FIGS. 6 to 10.
  • an analysis sample bottle 32 is fastened, into which the sampled sample is filled.
  • the lower end 33 of the milk sampling device protruding into this analysis sample bottle 32 is connected to the space 35 above the milk sample via a line 34 connected to this end.
  • FIG. 3 shows a milk flow meter and a milk sampling device of the same type as in FIG. 2, which is why the same parts are identified by the same reference numerals, but increased by 100.
  • the embodiment differs only from the embodiment shown in FIG. 2 in that the feed line to the milk sampling device is provided via a calibrated opening 131 in the bottom of the housing of the milk flow meter in the area of the so-called sump 125.
  • the damming height of the milk in the area of the sump remains at a constant height C, regardless of the total milk flow present.
  • the milk sampling device is shown in combination with a milk flow meter.
  • other milk flow meters can of course be used with another Principle of operation, for example, milk flow meters that analyze grafting or that work continuously.
  • a coupling of the milk flow meter and the milk sampling device is of course not necessary, but it contributes to a more compact design of the overall device.
  • the milk sampling device could also be connected to a separate space through which the milked milk flows while it is being blocked at a predetermined height in accordance with the respective milk flow, or it could also be connected to a space in the milk transport line in which the milk is above the Milk sampling device is kept constant at a predetermined level.
  • the hydrostatic pressure generated by the jammed milk plays a role in the separation flow that flows into the analysis sample bottle.
  • milk is split off with the aid of the kinetic energy of the milk flow newly accelerated from a milk sump.
  • FIG. 4 the same components are identified by the same reference numerals, however, increased by 200 as in FIG. 2.
  • the milk is removed from the milk flow meter 220 via the discharge line 226 in the direction of arrow A.
  • a small sampling tube 241 protrudes into the vertically extending part 240 of the discharge line 226, the downward free opening 242 of which, in relation to the free cross-sectional area of the discharge line 226, has a free cross-sectional area that is about a factor of 50-100 or even smaller.
  • the center 243 of the free opening 242 arranged so that it is about 1/3 of the inside diameter of the drain line 226 seen from the inner wall thereof, if approximately circular for both the drain line and the free end 242 Assumes cross sections. If the milk sampling device 230 were continuously open, a milk flow dependent on the milk flow, reproducible to a good approximation, but not proportional to the quantity, would flow into the analysis sample bottle.
  • the analysis sample bottle 232 is still connected to the milking vacuum via line 244, which is only shown in broken lines, and via pipe 245 protruding into the interior of discharge line 226.
  • an extremely small bore 247 of at most 0.5 to 0.8 mm in diameter is provided in line 244.
  • the opening is dimensioned such that a slight air flow takes place from the bore 247 through the line 244 into the interior of the discharge line 226 in order to prevent milk from penetrating into the line 244 from the outset.
  • the opening 247 should also be so small that there is practically no vacuum loss in the line 244, since the interior of the sample analysis bottle 232 is to be kept on the milking vacuum. This opening is preferably made at the start of line 244 near tube 245.
  • FIG. 5 shows a modified embodiment of the milk sampling device compared to the milk sampling device shown in FIG. 4.
  • the other parts that remain the same are identified by the same reference numerals, but increased by 300. These parts will not be discussed again in detail.
  • the pipe 341 protruding into the drain line 326 is split via a branch 350 into two lines 351 and 352, of which the line 351 is connected via the milk sampling device 330 and the end 353 of the line 351 to the milk sump 325 of the milk flow meter 320.
  • the other line 352 is connected to the analysis sample bottle 332 via the milk sampling device 330.
  • the milk sampling device 330 comprises a changeover valve, as is shown in more detail with reference to FIG. 11.
  • FIG. 6 shows an embodiment of a milk sampling device, as can be used in the embodiments of FIGS. 2, 3 and 4.
  • the milk sampling device 430 can thus be attached to the underside of the milk flow meter 20 in such a way that the upper side 401 bears against the underside of the milk flow housing and the calibrated opening 31 is aligned with the through opening 402.
  • the through opening 402 is formed in its lower part by an annular body 403, which consists either of a permanent magnet or of a ferromagnetic material.
  • a baffle plate 404 made of a shock-absorbing material, such as silicone or polyurethane, bears against the underside of this body 403. The thickness of this plate allows the adhesive force of the permanent magnet to be set precisely under otherwise identical conditions.
  • the baffle plate has an opening 405 which is at least of the same size and is aligned with the passage 402.
  • a damping layer applied directly to the underside of the body 403 can also be provided below the baffle plate 404.
  • a body 407 which is movable in the vertical direction is guided in the cavity.
  • the body 407 preferably consists of a circular cylindrical body, but other shaped bodies movable in the cavity 406 can also be provided as long as it only has a head surface 409, which in a first upper position can seal against the baffle plate 404, around which the Seal passage 402 tightly.
  • the closure body 407 In its second, lower position, shown in FIG. 6, the closure body 407 is seated on a stop 410 which can consist, for example, of a steel wire 411 running transversely to the cylindrical cavity 406 with a movement-damping coating 412 made of approximately silicone material.
  • the closure body 407 is preferably made of a permanent magnetic material.
  • a solenoid 413 is arranged coaxially to the axis of the cylindrical cavity 406 and can be fed via an electrical feed line 414.
  • recesses 415 and 416 are provided below the height D, which in the second, lower position of the closure body 407 shown in FIG. 6 in connection with the interior 406 of the cylindrical cavity and at the bottom Stand with an outlet line 417.
  • the outlet line is designed at its lower end in the form of a puncture cannula 418, which can pierce, for example, the sealing plug 419 of an analytical sample tube (not shown in more detail).
  • An annular projection 420 is formed coaxially with the puncture tube 418 and seals against the upper side 421 of the sealing plug 419 is coming.
  • annular space 422 is formed between this annular projection 420 and the sealing plug, which is connected to a line 434 via a recess 423.
  • This line 434 can be the line 34 shown in FIG. 2 or the line 134 shown in FIG. 3, which is connected to the milking vacuum.
  • a milking vacuum is present in the annular space 422 after the end 418 has been inserted into the sealing plug 419, which on the one hand prevents the pressure in the analysis sample bottle from increasing due to the sealing of the plug 419 and on the other hand also the gas volume inside the analysis sample bottle, which is displaced by the incoming milk, can be suctioned off, so that it is ensured that a sample is taken under equal pressure.
  • the valve could possibly also be designed as a pinch valve in which a hose is squeezed or released.
  • FIG. 7 shows a similar embodiment of a milk sampling device, which is why the same parts are identified by the same reference numerals, but increased by 100.
  • a plug 524 can be placed on the lower tube end 518 and fastened to the housing 530 with a screw 525.
  • a corresponding tubular analysis sample vessel can then be placed on this plug 524, the inner circumference of which then lies sealingly against the beads 526.
  • FIG. 7 Another embodiment is shown in the lower right half of FIG. 7, in which two O-shaped sealing rings 527 are held on the outside of the tube 518, onto which an analysis sample container can then be pushed directly in a sealing manner.
  • FIGS. 8 and 9 show a further, slightly modified embodiment of a milk sampling device according to FIG. 6, which is why the same components are identified by the same reference numerals as in FIG. 6, but increased by 200.
  • the magnetic coil 613 is laid towards the lower end of the closure body 607, which is in the second lower position, which has proven to be extremely stability-promoting for an exact closure and opening behavior of the closure body.
  • the closure body is guided here on only three guide webs 640, 641 and 642.
  • the recesses 615 and 616 already described, are provided between the web 640 and the webs 641 and 642 for draining the milk.
  • a flatter recess 643 is formed between the webs 641 and 642, which is connected via a further recess 644 to the chamber 623, which is kept under a milking vacuum.
  • the recess 644 has the effect that the upper end of the closure body 607 is also under vacuum in the second lower open position, so that the milk flows away smoothly (no pipette effect).
  • the separation of milk with the milk sampling devices described in FIGS. 2 to 4 and 6 to 9 is preferably carried out in such a way that the arrangement works as an on-off valve. If, for example, starting from the second lower position of the closure body 407 shown in FIG. 6, an electrical pulse with a suitable current direction and strength is applied to the magnet coil 413, the closure body 407 is moved upwards until it comes into contact with the baffle plate 404. In this first upper position, which at the same time corresponds to the closed position, the inflow of milk via line 402 through the closed body 407 is interrupted.
  • the closure body 407 Since either the closure body 407 or the ring 403 consist of a permanent magnet, while the other part is made of is made of a ferromagnetic material, the closure body 407 is held in this position, even if the magnet coil 413 no longer carries current. To open the valve, it is only necessary to send an approximately equally large pulse with the opposite current direction through the magnet coil 413 in order to overcome the magnetic holding forces between the ring 403 and the closure body 407 and to bring the closure body back into its second lower open position. In this position, the milk flow is released through line 402. In this second lower position, there is likewise no need for the magnetic coil to hold the closure body 407, since the latter rests on the support 410.
  • the closure body can consist of an extremely small body of only about 6 mm in diameter and about 16 mm in length, which has a stroke of about 8 mm, while the line 402 to be closed has a diameter of between 1.5 and 3 mm, the inert mass of the closure body 407 can be kept extremely low, since the total volume of the closure body is less than 1.35 ml and a weight of 10 g.
  • the shortest pulses of 10 to 100 ms in length and with a maximum output of about 1.5 watts are required to open or close the valve.
  • the average energy consumption is extremely low (typically 0.2 watts), since no energy is consumed between the pulses. It is far more important, however, that defined opening times down to 0.05 seconds opening time can be achieved with a defined splitting flow with such a valve.
  • the pulses with the opposite current direction are preferably applied to the solenoid in such a way that the voltage on the solenoid is reversed.
  • the arrangement could also be such that instead of one magnetic coil, two magnetic coils are provided which are wound in opposite directions, alternately the pulse is applied to the first and second solenoid, respectively, to move the closure body from the first to its second position and back.
  • the device was preferably described above in connection with a pulse control, the device could nevertheless be carried out without the use of a permanent magnet and only using a ferromagnetic material for the closure body in such a way that a current is applied in each case to the magnet coil in a first direction, which flows as long as the closure body is to be held in one of its positions. To move the closure body into its other position, the direction of the current is then reversed and the current is preferably held until a changeover takes place.
  • a procedure would significantly increase the power consumption and the thermal load on the coil.
  • the effect of the piston effect which can be built into the valve, is as follows: When the closure body is closed, its head part moves into the cylindrical cavity 406 of length D like a piston. He displaces the milk in this cylinder space with the result that the separation channel 402 is blown free from the rear, whereby the milk is optimally exchanged for the next separation cycle. This further improves representativity. In addition, this purging causes the entire splitting channel, including the orifice 31, 131, to be cleaned of any dirt particles before each splitting cycle due to the piston effect. This effect can be further increased and exploited in the cleaning phase of the device by a then greatly increased valve switching frequency (eg 90-120 bpm).
  • valve switching frequency eg 90-120 bpm
  • milk is sucked out of the split-off channel by the same piston effect, before it then flows freely at the end of the cylinder length D over the top surface of the closure body through the recesses 415, 416 to the analysis bottle.
  • the milk volume that is sucked in when the valve is opened or pushed back when it is closed is of the same size and therefore has no (direct) influence on the amount of cleavage.
  • This back and forth milk volume depends only on the effective length of the cylinder section D and possibly also on the annular gap between the piston and the cylinder.
  • the total stroke of the closure body must be significantly greater than the length D, since only in this way can the milk finally flow out through the cutouts.
  • the capillary and cohesive forces of the milk are so strong that the cylinder is always filled with milk even in the vertical position before the next closing process. If the acceleration movement of the closure body is different when closing and when opening, this could be corrected for the two directions of movement by applying a different current strength to the coil (s).
  • the splitting channel above the flow opening 405 of the valve should be as short as possible. This results in very low hydrostatic pressures (typically 0.5 to 2 cm water column), especially with low milk flows. Also the dynamic pressures at kinetic separation systems (see, for example, FIGS. 4 and 5) are very small with low milk flows. At such low hydrostatic or hydrodynamic pressures, the capillary, cohesive and wall forces of the milk come to bear increasingly.
  • the result is an irregular, imprecise and sluggish start-up of the splitting stream after the opening of the passage opening 405 of a conventional open / close valve (without piston effect).
  • the piston effect described here acts specifically as an aid to overcoming the sluggish, imprecise starting behavior of the splitting stream at very low hydrostatic or hydrodynamic pressures. This is the only way to enable the shortest and shortest valve open times per cycle for the smallest, but reproducible amounts of cleavage, which are essential for a representative sample that needs to be filled directly into a small analysis bottle, especially with low milk flows.
  • valve open time / cycle and number of cycles / minute result in different, ie not as constant, release quantities, even if the open time is always kept strictly constant. In this way, at the same level with short valve open times (with a correspondingly higher number of cycles / minute), a larger amount of cleavage is achieved than with longer valve open times (with a correspondingly smaller number of cycles / minute).
  • the valve is therefore preferably operated at a lower number of cycles per time, for example below 30 cycles per minute.
  • the milk sampling device has the significant advantage that, due to the possible short opening times, the cross-section of the feed line 402 can be selected to be relatively large, so that relatively large separation flows are made possible and that a representative sample can nevertheless be achieved, since at each closing and opening operation, the milk is pumped back out of line 402 and new milk is sucked in, so that fresh milk is split off from the respective milk flow.
  • the milk sampling device 330 shown schematically in FIG. 5 is shown in more detail in FIG. 10.
  • the lines 351 and 352 open into one in the housing 360 formed, essentially cylindrical cavity 361.
  • drain lines 362, 363 are provided which are aligned with the first-mentioned lines.
  • a cylindrical permanent magnet 364 is also provided in the cavity 361 .
  • the permanent magnet is in the cavity 361 along its axis between a first position shown in FIG. 11, in which its right end closes the ends of the lines 352 and 363 and releases the ends of the lines 351 and 362, and a second one, in FIG.
  • two ferromagnetic bodies 365 and 366 are arranged on the axis of the cylindrical permanent magnet 364 at a distance from its first or second position.
  • the bodies mentioned are each held in a plug-shaped part 367 or 368, which each consist of a material that dampens the movement of the core.
  • An electromagnetic coil 369 is arranged coaxially to the axis of the permanent magnet 364.
  • the electromagnet With the aid of preferably pulse-shaped currents of appropriate size, which are sent through the electromagnetic coil 369, the electromagnet can be moved from its first to its second and from its second back to its first position in that the permanent magnet is then in each case by magnetic forces on the ferromagnetic Body 366 and 365 is held without current flowing through the electromagnetic coil.
  • the milk sampling device shown in FIG. 10 in connection with FIG. 5 has the advantage that from the respective Milk flow is continuously split off a portion that flows through the branch 350, the lines 351 and 362 back into the milk sump 325 when the permanent magnet 364 is in the position shown in FIG. 11. This current is interrupted when the permanent magnet is moved into its second position, during which time a milk sample separation stream can flow via lines 352 and 363 into the analysis sample container.
  • the value of the separation flow (100%) is a constant.
  • the separation flow dependent on the milk flow (100%) can be determined: Splitting flow (100%) 60 x ⁇ x A x SQR (2 xg) x [milk flow) / ⁇ 60 x ⁇ x S x 2/3 x SQR (2 xg)>] 1/3
  • Open time (s / min) Splitting volume ml / min x 60 s Waste flow 100% ml / min
  • n 30 / min.
  • the number of splitting cycles is also limited by the fact that representative samples must also be taken towards the end of milking with low milk flows. This is particularly important since the milk ingredients, especially the fat content of the milk, change considerably towards the end of the milking phase. The fat content towards the end of the milking is much greater than at the beginning of the milking phase. It follows that the number of splitting cycles should not drop below 2 to 3 per minute.
  • the task of covering the entire measuring range with a single sampling device can be carried out much more advantageously if the milk sampling device is operated in an arrangement according to FIG. 2 with the accumulation height changing as a function of the milk flow.
  • the open time ratio is reduced to a maximum: minimal to a ratio of only 122: 1.
  • the measuring range is already reduced by the respective milk flow already being the accumulation level , ie as hydrostatic pressure, and is therefore included to reduce the respective open times depending on the milk flow.
  • the range of valve open times per cycle can each be limited to a smaller range, for example from 0.1 to 0.8 seconds, in which it is ensured that the discharge flow is proportional to the time.
  • valve open time per splitting cycle For milk flows below 250 ml / min there is a minimum number of splitting cycles of 2 to 4 per minute, while the permissible valve open time per splitting cycle is between 0.1 and 0.25 seconds.
  • the reason for this restricted valve open time / cycle range is that with longer valve open times the number of splitting cycles and thus the piston effect of the valve decrease accordingly. Correspondingly larger areas result for higher milk flows.
  • the values of the valve open time per splitting cycle can be resolved programmatically in 0.02 second steps.
  • the respective control areas are entered in advance as area data for the processor.
  • the calculation of the respective number of splitting cycles with fixed valve open time per splitting cycle is calculated in each case as a function of the measured milk flow by the processor.
  • the number of splitting cycles is switched accordingly with a corresponding change in the valve open time per splitting cycle.
  • such a switchover can also take place before the corresponding range limit is reached, in order to remain as optimal as possible between the number of cycles and valve open time.
  • the above information is only exemplary and in each case relates to a passage cross section of the passage opening 31 or 131 of 0.0176 cm 2 .
  • the predetermined expected value E (total milk quantity) is 10,000 ml.
  • the desired total sample volume is 30 ml.
  • the measured instantaneous milk flow is 2,500 ml / min.
  • a necessary cleavage volume per minute of 7.5 ml / min can thus be calculated from equation (1).
  • a discharge flow (100%) can then be calculated from equation (4) at 61.15 ml / min.
  • the open time is then 7.36 s / min from equation (5). From Table 4, the number of splitting cycles per minute can be selected to be 15, given the instantaneous milk flow.
  • the valve open time per cycle from equation (6) is 0.49 seconds per cycle. This valve open time per splitting cycle is permissible according to Table 4.
  • the program for controlling the sampling can be further refined by taking into account that approximately With the milk flow meter shown in Figures 2 to 5, the amount of milk that has already flowed is also added up, so that the amount of milk that has flowed at intervals can be determined more precisely. Therefore, if the milk flow begins with a low value of about 200 ml / min during a milking phase, a cycle time of 30 seconds would possibly result. If the milk flow then rises comparatively suddenly, the analysis sample drawn could be falsified.
  • control can also be provided in such a way that a new cycle time or valve open time is determined if the change in the milk flow per time exceeds a predetermined threshold value.
  • a determination of the cycle time and the valve open time can be carried out in the same way for a method to be carried out with the arrangements according to FIGS. 4 and 5.
  • the only difference here is that the separation flow (100%) corresponds to the flow through lines 241, 341 when the valve is fully open.
  • this separation flow (100%) depends on the ratio of the cross sections of the inlet openings of these lines to the milk discharge line 226, 326.
  • this separation flow (100%) is dependent on the milk flow and is reproducible to a good approximation, but is generally not proportional to the quantity.
  • the discharge flow is best represented in the form of an empirically determined characteristic.
  • the valve can be cleaned with a maximum number of cycles.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Animal Husbandry (AREA)
  • Environmental Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Dairy Products (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Claims (33)

  1. Procédé de prélèvement d'un échantillon représentatif de la quantité totale de lait tirée d'une vache, procédé dans lequel des doses partielles d'échantillonnage quantitativement proportionnelles sont prélevées, au cours de l'opération d'extraction du lait, en fonction du débit de lait, c'est-à-dire de la quantité de lait extraite par unité de temps, caractérisé par le fait que, en utilisant une soupape commandée par cycles, chaque cycle englobant un temps d'ouverture de la soupape et un temps de fermeture de la soupape, un temps de cycle et un temps d'ouverture de la soupape sont déterminés en vue de prélever uniquement un échantillon maintenu en deçà d'une quantité maximale prédéterminée de 50 ml, sur la base de la valeur escomptée, acquise d'après l'expérience et relative à la quantité totale de lait devant être tirée de la vache considérée, le temps de cycle et le temps d'ouverture de la soupape étant respectivement choisis de manière qu'ils se situent à l'intérieur de plages de valeurs prédéterminées ; par le fait que le temps d'ouverture de la soupape ou le temps de cycle est commandé en fonction du débit de lait chaque fois mesuré ; et par le fait que, pour éviter des valeurs du temps d'ouverture de la soupape ou du temps de cycle situées en dehors des plages de valeurs, suite à la variation du débit de lait, le temps d'ouverture de la soupape et le temps de cycle sont modifiés dans des proportions identiques par rapport à des valeurs situées à l'intérieur des plages de valeurs.
  2. Procédé selon la revendication 1, caractérisé par le fait que les doses partielles d'échantillonnage séparées sont maintenues sous la même pression que la quantité de lait venant d'être extraite.
  3. Procédé selon la revendication 1 ou 2, caractérisé par le fait qu'une partie du lait, séparée d'avec le lait acheminé dans le conduit de transport et soumise à la pression cinétique du lait acheminé, est amenée à la soupape.
  4. Procédé selon la revendication 1 ou 2, caractérisé par le fait que, en vue d'engendrer un courant séparé traversant la soupape et pour l'essentiel indépendant du débit du lait, la hauteur d'accumulation de lait est maintenue constante au-dessus de la soupape.
  5. Procédé selon la revendication 1 ou 2, caractérisé par le fait que, en vue de modifier le courant séparé traversant la soupape, en fonction du débit du lait, une hauteur d'accumulation de lait chaque fois tributaire du débit du lait est engendrée au-dessus de la soupape.
  6. Procédé selon la revendication 5, caractérisé par le fait que la plage de valeurs pour le temps d'ouverture de la soupape est modifiée, à chaque fois, en fonction de la hauteur mesurée d'accumulation de lait.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé par le fait que la plage de valeurs pour le temps de cycle est choisie entre 0,5 et 30 secondes (120 à 2 cycles par minute).
  8. Procédé selon la revendication 7, caractérisé par le fait que la plage de valeurs pour le temps de cycle est choisie entre 2 et 30 secondes (30 à 2 cycles par minute).
  9. Procédé selon l'une des revendications 1 à 8, caractérisé par le fait que la plage de valeurs pour le temps d'ouverture de la soupape est choisie entre 0,05 et 2 secondes.
  10. Procédé selon la revendication 9, caractérisé par le fait que le temps d'ouverture de la soupape est choisi entre 0,1 et 0,8 seconde.
  11. Procédé selon l'une des revendications précédentes, caractérisé par le fait que le temps d'ouverture de la soupape est quelque peu augmenté ou diminué de façon croissante au fur et à mesure de l'amenuisement du débit du lait vers la fin de la traite, en vue du calibrage fin de la teneur en graisse renfermée par l'échantillon.
  12. Procédé selon l'une des revendications 1 à 11, caractérisé par le fait que, au cours de chaque fermeture de la soupape, une partie du lait ayant traversé la soupape est recyclée par pompage.
  13. Procédé selon l'une des revendications 1 à 12, caractérisé par le fait que, lors de chaque ouverture de la soupape, le lait est soumis à une force d'aspiration accélérant l'amorce de l'écoulement du lait.
  14. Dispositif de prélèvement d'un échantillon représentatif de la quantité totale de lait tirée d'une vache, comprenant un appareil de mesure (6) de débits de lait logé dans un conduit de traite (4), ainsi qu'une unité de traitement (9) pour commander un dispositif (7) de prélèvement d'échantillons de lait, relié à un réceptacle (8) d'échantillons et en communication avec le conduit de traite, caractérisé par le fait que le dispositif (7) de prélèvement d'échantillons de lait inclut une bobine magnétique (369 ; 413 ; 513) commandable électriquement, par laquelle un corps obturateur (364 ; 407 ; 507) peut être déplacé à une première position obturant un orifice (351 405 ; 505) d'écoulement du courant d'échantillonnage séparé, et à une seconde position dégageant cet orifice ; par le fait que le corps obturateur peut être animé d'un mouvement alternatif entre les première et seconde positions, avec un temps de cycle commandable ; par le fait que le temps de cycle et le temps d'ouverture de la soupape, durant lequel le corps obturateur occupe la seconde position dégageant l'orifice d'écoulement (351 ; 405 ; 505), peuvent être respectivement choisis, en fonction de la quantité totale de lait escomptée, de telle sorte qu'ils se trouvent à l'intérieur de plages de valeurs prédéterminées, le temps d'ouverture de la soupape ou le temps de cycle étant commandable, par l'intermédiaire de l'unité de traitement, en fonction du débit de lait chaque fois mesuré ; et par le fait que, pour éviter des valeurs du temps d'ouverture de la soupape ou du temps de cycle situées en dehors des plages de valeurs, suite à la variation du débit de lait, le temps d'ouverture de la soupape et le temps de cycle sont modifiés dans des proportions identiques par rapport à des valeurs situées à l'intérieur des plages de valeurs.
  15. Dispositif selon la revendication 14, caractérisé par le fait que le corps obturateur (364 ; 407 ; 507) est respectivement constitué d'un aimant permanent ou d'un matériau ferromagnétique ; et par le fait qu'un corps (366 ; 403 ; 503) en un matériau ferromagnétique ou respectivement constitué d'un aimant permanent, maintenant le corps obturateur dans sa première position, est placé à proximité de l'orifice d'écoulement (351 ; 405 ; 505).
  16. Dispositif selon la revendication 14 ou 15, caractérisé par le fait que le corps obturateur (407) est constitué d'un corps cylindrique guidé dans des guides latéraux (408 ; 640, 641, 642).
  17. Dispositif selon la revendication 15 ou 16, caractérisé par le fait que le corps ferromagnétique ou, respectivement, le corps constitué d'un aimant permanent forme un tube (403, 503) matérialisant l'extrémité de l'orifice d'écoulement du courant d'échantillonnage séparé.
  18. Dispositif selon l'une des revendications 15 à 17, caractérisé par le fait que le corps obturateur (407 ; 507), et/ou l'extrémité de l'orifice d'écoulement (405 ; 505) tournée vers ledit corps obturateur, est pourvu(e) d'une couche en un matériau d'amortissement (404 ; 504).
  19. Dispositif selon l'une des revendications 14 à 18, caractérisé par le fait que la bobine magnétique (369 ; 613) est prévue à la hauteur de la seconde position du corps obturateur (364 ; 607).
  20. Dispositif selon l'une des revendications 14 à 19, caractérisé par le fait que la bobine magnétique (369 ; 413 ; 513 ; 613) peut être actionnée en mode impulsionnel.
  21. Dispositif selon l'une des revendications 14 à 20, caractérisé par le fait que la bobine magnétique peut être chaque fois commandée à l'aide d'impulsions à circulation de courant différente, afin de déplacer le corps obturateur de la première à la seconde position, et inversement.
  22. Dispositif selon la revendication 21, caractérisé par le fait que les impulsions présentent une longueur comprise entre 10 et 100 msec.
  23. Dispositif selon l'une des revendications 14 à 22, caractérisé par le fait que l'extrémité (518) du dispositif (530) de prélèvement d'échantillons de lait, reliée au réceptacle d'échantillons, est en communication avec la dépression de traite.
  24. Dispositif selon l'une des revendications 14 à 23, caractérisé par le fait que l'extrémité du dispositif (430) de prélèvement d'échantillons de lait, tournée vers le réceptacle d'échantillons, est réalisée sous la forme d'une extrémité tubulaire (418) pouvant être introduite dans la coiffe perforée (419) du réceptacle d'échantillons ; et par le fait qu'une chambre annulaire (422), communiquant avec la dépression de traite, est formée entre la face extérieure de l'extrémité tubulaire (418) et une pièce annulaire (420) qui entoure cette extrémité, et dont l'extrémité libre vient s'appliquer contre la face supérieure de la coiffe (419).
  25. Dispositif selon la revendication 23, caractérisé par le fait que l'extrémité (519) du dispositif de prélèvement d'échantillons de lait est réalisée de façon que le réceptacle d'échantillons puisse être emboîté de manière étanche sur cette extrémité.
  26. Dispositif selon l'une des revendications 16 à 25, caractérisé par le fait que le corps obturateur cylindrique (407 ; 507 ; 607) est mobile le long d'une piste de guidage pour l'essentiel cylindrique, dont la surface tournée vers le corps obturateur présente des évidements (415, 416 ; 515 ; 615, 616, 643) qui s'étendent dans la direction longitudinale dudit corps obturateur et qui, dans la seconde position de ce corps obturateur, sont en communication avec l'orifice d'écoulement (405 ; 505 ; 605) et avec l'extrémité (418 ; 518) du dispositif de prélèvement d'échantillons de lait qui est tournée vers le réceptacle d'échantillons, en vue d'une circulation traversante de lait.
  27. Dispositif selon la revendication 26, caractérisé par le fait que la communication, entre l'orifice d'écoulement (405 ; 505 ; 605) et les évidements (415, 416 ; 515 ; 615, 616, 643), est pour l'essentiel interrompue lors d'un mouvement de réglage du corps obturateur (407 ; 507 ; 607) sur un trajet prédéterminé (D) avant que la position d'obturation de l'orifice d'écoulement soit atteinte ou, respectivement, au cours du mouvement d'ouverture du corps obturateur.
  28. Dispositif selon l'une des revendications précédentes, caractérisé par le fait que l'orifice d'écoulement (31) du dispositif (30) de prélèvement d'échantillons de lait débouche, dans une direction opposée à la direction du courant d'échantillonnage séparé, dans une chambre (22) dans laquelle s'instaure une hauteur (23) d'accumulation de lait correspondant au débit du lait considéré.
  29. Dispositif selon la revendication 28, caractérisé par le fait que des dispositifs (28) sont prévus, dans la chambre (22), pour mesurer la hauteur d'accumulation de lait.
  30. Dispositif selon l'une des revendications 14 à 26, caractérisé par le fait que l'orifice d'écoulement (131) du dispositif (130) de prélèvement d'échantillons de lait débouche, dans la direction opposée à la direction du courant d'échantillonnage séparé, dans une chambre (125) dans laquelle le lait soutiré est chaque fois maintenu à une hauteur d'accumulation prédéterminée.
  31. Dispositif selon l'une des revendications 14 à 26, caractérisé par le fait que l'orifice d'écoulement du dispositif (230) de prélèvement d'échantillons de lait est relié, dans la direction opposée à la direction du courant d'échantillonnage séparé, à un tube (241, 341) de prélèvement d'échantillons qui fait intérieurement saillie dans un conduit (226) de transport de lait.
  32. Dispositif selon la revendication 31, caractérisé par le fait que le tube (241 ; 341) de prélèvement d'échantillons occupe, avec l'axe longitudinal de son orifice d'admission, une position telle que ce dernier se trouve, par rapport à la paroi intérieure, à une distance représentant environ 1/3 du diamètre du conduit (226 ; 326) de transport de lait.
  33. Dispositif selon l'une des revendications 14 à 32, caractérisé par le fait qu'un conduit d'arrivée du lait, prévu avant l'orifice d'écoulement dans la direction du courant séparé, se ramifie en un premier conduit (352) englobant l'orifice d'écoulement et relié à un conduit d'évacuation (363) gagnant le réceptacle (332) d'échantillons, et en un second conduit (351) raccordé à l'évacuation de lait ; et par le fait que le corps obturateur (364) est mobile de façon telle que, dans sa première position, il obture l'orifice d'écoulement (352) et dégage le second conduit (351) et que, dans sa seconde position, il dégage l'orifice d'écoulement pratiqué dans le premier conduit (352), et obture le second conduit (351).
EP94113638A 1993-09-14 1994-08-31 Méthode et dispositif de prise d'un échantillon représentatif de la production de lait d'une vache Expired - Lifetime EP0643292B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4331203A DE4331203A1 (de) 1993-09-14 1993-09-14 Verfahren und Vorrichtung zur Entnahme einer mengenproportionalen Analyseprobe aus einem Melkfluß
DE4331203 1993-09-14

Publications (3)

Publication Number Publication Date
EP0643292A2 EP0643292A2 (fr) 1995-03-15
EP0643292A3 EP0643292A3 (fr) 1995-04-12
EP0643292B1 true EP0643292B1 (fr) 1997-06-11

Family

ID=6497701

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94113638A Expired - Lifetime EP0643292B1 (fr) 1993-09-14 1994-08-31 Méthode et dispositif de prise d'un échantillon représentatif de la production de lait d'une vache

Country Status (14)

Country Link
US (2) US5645012A (fr)
EP (1) EP0643292B1 (fr)
JP (1) JP3701040B2 (fr)
AT (1) ATE154435T1 (fr)
AU (1) AU676070B2 (fr)
CA (1) CA2131979C (fr)
CZ (1) CZ288154B6 (fr)
DE (2) DE4331203A1 (fr)
ES (1) ES2105448T3 (fr)
HU (1) HU221373B1 (fr)
IL (1) IL110928A (fr)
NZ (1) NZ264414A (fr)
PL (1) PL175803B1 (fr)
RU (1) RU2112364C1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9401685D0 (sv) * 1994-05-17 1994-05-17 Tetra Laval Holdings & Finance Metod för mjölkning av djur
US6694830B2 (en) 2001-03-03 2004-02-24 Reggie Hakes Sampling method and sampling device therefor
DE10129246A1 (de) * 2001-06-18 2003-01-02 Bartec Logistic Man Gmbh Verfahren und Vorrichtung zur Entnahme einer Probe aus einer Fluidcharge
DE10129475B4 (de) * 2001-06-21 2016-11-10 Gea Farm Technologies Gmbh Verfahren zum Melken eines Tieres, insbesondere einer Kuh
NL1020788C2 (nl) * 2002-06-06 2003-12-09 Lely Entpr Ag Werkwijze en inrichting voor het melken van dieren.
NZ525350A (en) * 2003-04-14 2005-09-30 Sensortec Ltd Sensor apparatus for extraction machinery for milking mammals
US6736087B1 (en) * 2003-06-02 2004-05-18 Martin Dionne Milk sampler
WO2005020674A1 (fr) * 2003-08-29 2005-03-10 David Eric Akerman Echantillonnage et analyse de lait
SE0601364L (sv) * 2006-06-21 2007-12-22 Delaval Holding Ab Mjölkningsanläggning
SE531677C2 (sv) * 2007-06-18 2009-06-30 Delaval Holding Ab Mjölkningssystem med provkanal
WO2010023112A2 (fr) * 2008-08-29 2010-03-04 Delaval Holding Ab Procédé de traite, programme informatique et système de traite
JP5544551B2 (ja) * 2009-02-26 2014-07-09 オリオン機械株式会社 乳量計
US20110017323A1 (en) * 2009-07-22 2011-01-27 Ewa Herbst Method and apparatus for inline testing
NL1037157C2 (nl) * 2009-07-29 2011-02-02 Lely Patent Nv Genereren van een attentiewaarde in een geautomatiseerde melkinrichting.
JP5224549B2 (ja) * 2009-11-18 2013-07-03 オリオン機械株式会社 乳量計
EP2555610B1 (fr) * 2010-04-09 2015-06-03 DeLaval Holding AB Agencement et procédé destinés à l'analyse de lait
DE102011100924A1 (de) 2011-05-09 2012-11-15 Lactocorder Ag Vorrichtung zum Durchführen mindestens einer Messung und zur Entnahme von Milchproben aus einer Melkmaschine
ES2791355T3 (es) * 2014-04-30 2020-11-04 Delaval Holding Ab Dispositivo de muestreo de leche con miembro deflector
RU2625535C1 (ru) * 2016-04-29 2017-07-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский технологический институт пищевой промышленности (университет)" Колебательный структурометр
EP3252463B1 (fr) 2016-05-30 2019-02-20 Agilent Technologies, Inc. (A Delaware Corporation) Prélèvement d'échantillon fluidique ayant une faible influence sur l'écoulement du fluide source
US11371968B2 (en) 2016-05-30 2022-06-28 Agilent Technologies, Inc. Branching off fluidic sample with low influence on source flow path
US11086013B2 (en) * 2017-05-15 2021-08-10 Ouster, Inc. Micro-optics for imaging module with multiple converging lenses per channel
CN107167343B (zh) * 2017-07-03 2023-09-08 山东省农业科学院农业质量标准与检测技术研究所 一种检测用牛奶取样及保鲜设备
DE102017214337A1 (de) * 2017-08-17 2019-02-21 Lactocorder Ag Probenentnahmevorrichtung zur Entnahme einer repräsentativen Milchprobe und Verfahren zur Entnahme von repräsentativen Milchproben
CN112847934B (zh) * 2021-01-08 2022-11-04 南丰县乾泰再生资源回收利用有限公司 一种用于废旧聚酯回收的清洗除杂设备

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE244215C (fr) *
US3308669A (en) * 1965-01-27 1967-03-14 Frederick G J Grise Proportionate liquid sampling device, specifically a milk scale
US3599607A (en) * 1969-12-15 1971-08-17 Sherwin Wallick Apparatus for metering and sampling milk
NL7411888A (nl) * 1974-09-06 1976-03-09 Philippus Pope Kiestra Inrichting voor het bepalen van de melkhoeveel- heid en voor het nemen van een melkmonster tij- dens het melken van koeien.
DE2810376B2 (de) * 1978-03-10 1980-04-03 D E C Gmbh, 4660 Gelsenkirchen-Buer MilchmengenmeBgerät
GB2069726A (en) * 1980-02-14 1981-08-26 Lovelock J E Fluid flow control apparatus and method
US4292994A (en) * 1980-02-25 1981-10-06 Johnson Julius T Raw milk transfer systems
SU916855A1 (ru) * 1980-03-13 1982-03-30 Омский политехнический институт Импульсный электроклапан
SU906460A1 (ru) * 1980-08-06 1982-02-23 Всероссийский Ордена Трудового Красного Знамени Научно-Исследовательский И Проектно-Технологический Институт Механизации И Электрификации Сельского Хозяйства Устройство дл учета количества молока в процессе доени
DE3101302A1 (de) * 1981-01-16 1982-08-05 Bio-Melktechnik Swiss Hoefelmayr & Co, 9052 Niederteufen, Aargau "milchflussmesser"
DE3118865A1 (de) * 1981-05-13 1982-12-02 Helmut 5204 Lohmar Lemmer "verfahren und vorrichtung zur bestimmung der milchleistung von kuehen waehrend des melkens mit hilfe einer melkvorrichtung"
SE426103B (sv) * 1981-05-15 1982-12-06 Arla Mjoelkcentralen Anordning for provtagning av vetska i samband med att vetskan ledes genom en ledning eller dylikt
DE3139536C2 (de) * 1981-10-05 1986-08-07 Westfalia Separator Ag, 4740 Oelde Milchmengenmeßgerät für Melkanlagen zum unmittelbaren Messen der von einer Kuh im Zuge des Melkens abgegebenen Milchmenge
DE3210465A1 (de) * 1982-03-22 1983-09-29 Ultrakust Gerätebau GmbH & Co KG, 8375 Ruhmannsfelden Vorrichtung zur erfassung der menge der von einer kuh bei einem melkvorgang abgegebenen milch
DE3214734A1 (de) * 1982-04-21 1983-10-27 F. Landwehr & Co., 4830 Gütersloh Milchmengenmess- und/oder milchflussueberwachungsvorrichtung und verfahren zum messen der von einer kuh waehrend eines melkvorganges abgegebenen milchmenge bzw. zum ueberwachen des milchflusses waehrend des melkvorganges unter verwendung der vorrichtung
DE3216537A1 (de) * 1982-05-03 1983-11-03 Ultrakust Gerätebau GmbH & Co KG, 8375 Ruhmannsfelden Milchmengen-messvorrichtung
DE3222234A1 (de) * 1982-06-12 1983-12-15 Alfons Schwarte Gmbh, 4730 Ahlen Vorrichtung zur entnahme von milchproben
SU1099907A1 (ru) * 1983-02-08 1984-06-30 Оренбургский Ордена Трудового Красного Знамени Сельскохозяйственный Институт Устройство дл отбора проб молока дл анализа
DE3307665C2 (de) * 1983-03-04 1985-08-14 Westfalia Separator Ag, 4740 Oelde Probeentnahmegerät für ein Milchmengenmeßgerät für Melkanlagen
SU1180627A1 (ru) * 1983-06-23 1985-09-23 Предприятие П/Я Р-6668 Магнитный клапан
FR2548360B1 (fr) * 1983-06-30 1986-11-28 Savoyet Jean Louis Dispositif pour le prelevement et la mesure du debit d'un liquide en circulation constante ou pulsee
DE3424179A1 (de) * 1984-06-30 1985-02-21 TC Technologie Consulting Institut für angewandte Forschung GmbH, 8000 München Verfahren zur milchmengenmessung
DE3429987C2 (de) * 1984-08-16 1985-12-12 TC Technologie Consulting Institut für angewandte Forschung GmbH, 8000 München Milchmengenmeßgerät
DE8431817U1 (de) * 1984-10-30 1988-05-19 Jansky, Manfred Probeentnahmevorrichtung für eine Milchumfüllanlage
DE8502259U1 (de) * 1985-01-29 1989-03-16 Schwarte-Werk GmbH, 2059 Büchen Vorrichtung für die Entnahme von Milchproben
DE3528827A1 (de) * 1985-08-10 1987-02-12 Diessel Gmbh & Co Volumenmessanlage fuer milchsammelwagen
DD244215A1 (de) * 1985-12-23 1987-03-25 Komb Orsta Hydraulik Veb Einrichtung zum erreichen eines definierten volumenstromes
DE3729183C2 (de) * 1987-09-01 1994-11-10 Rexroth Mannesmann Gmbh Schaltung zum Betrieb eines magnetisch betätigten Ventils
FR2621390B1 (fr) * 1987-10-06 1992-03-27 Commissariat Energie Atomique Dispositif de transfert d'une quantite determinee de fluide entre une conduite et une derivation
IL89954A0 (en) * 1989-04-13 1989-12-15 Afikim S A E Liquid sampling apparatus
DE3942606A1 (de) * 1989-12-22 1991-06-27 Diessel Gmbh & Co Vorrichtung zur entnahme von fluessigen proben
EP0574412B1 (fr) * 1991-03-05 1997-08-06 R.J. FULLWOOD & BLAND LIMITED Prelevement d'echantillons de lait lors de la traite a des fins de diagnostic
US5116119A (en) * 1991-10-04 1992-05-26 S.C.R. Engineers Ltd. Method and apparatus for measuring liquid flow

Also Published As

Publication number Publication date
RU2112364C1 (ru) 1998-06-10
CA2131979A1 (fr) 1995-03-15
US5645012A (en) 1997-07-08
ATE154435T1 (de) 1997-06-15
HUT70322A (en) 1995-09-28
HU9402592D0 (en) 1994-11-28
DE4331203A1 (de) 1995-03-16
RU94032289A (ru) 1997-05-10
JPH07167755A (ja) 1995-07-04
JP3701040B2 (ja) 2005-09-28
PL305045A1 (en) 1995-03-20
ES2105448T3 (es) 1997-10-16
IL110928A0 (en) 1994-11-28
AU676070B2 (en) 1997-02-27
EP0643292A2 (fr) 1995-03-15
IL110928A (en) 1998-10-30
CZ288154B6 (en) 2001-05-16
CA2131979C (fr) 2004-04-06
US5746153A (en) 1998-05-05
HU221373B1 (en) 2002-09-28
CZ219394A3 (en) 1995-03-15
AU7166294A (en) 1995-03-30
EP0643292A3 (fr) 1995-04-12
NZ264414A (en) 1997-02-24
PL175803B1 (pl) 1999-02-26
DE59403097D1 (de) 1997-07-17

Similar Documents

Publication Publication Date Title
EP0643292B1 (fr) Méthode et dispositif de prise d'un échantillon représentatif de la production de lait d'une vache
DE3441893C2 (fr)
DE4110146C2 (fr)
DE2944386A1 (de) Verfahren und vorrichtung zur messung einer fluessigkeitsstroemung
DD241189A5 (de) Verfahren zum injizieren viskoser fluessigkeit in brot oder konditoreiwaren
EP2706837B1 (fr) Dispositif permettant de prendre au moins une mesure et de prélever des échantillons de lait dans une trayeuse
EP3669160B1 (fr) Dispositif de prélèvement d'échantillon pour le prélèvement d'un échantillon représentatif de lait et procédé pour le prélèvement d'échantillons représentatifs de lait
DE3337895C2 (fr)
DE19828247A1 (de) Öffnungs- und Schließventil
DE2438796C2 (de) Vorrichtung zum portionsweisen Abfüllen von flüssigem oder pastösem Füllgut in Behältnisse
DE2434691A1 (de) Verfahren und vorrichtung zum abmessen und abgeben von fluessigkeitsproben
DE2214458C3 (de) Vorrichtung zum selbsttätigen Entnehmen vorbestimmter Flüssigkeitsmengen aus einem Behälter
WO1991017386A1 (fr) Station d'ecouvillonnage nettoyable
EP0075255B1 (fr) Dispositif de traite mécanique
EP3685924A1 (fr) Dispositif de transport de poudre de revêtement et installation de revêtement par poudre dotée d'un dispositif de transport de poudre
EP1397662B1 (fr) Procede et dispositif de prelevement d'un echantillon dans une charge fluidique
EP3545271B1 (fr) Appareil de mesure et procédé de mesure pour des petits volumes de gaz
DE3538885C1 (en) Method and appliance for measuring the intrinsic moisture of bulk solids in the preparation of concrete
EP0519273A2 (fr) Appareil pour déterminer la teneur en gaz d'un composant d'une matière plastique
DE3236593C2 (de) Vorrichtung zum Abrauchen von rauchbaren Artikeln
DE102021109076A1 (de) Dosiervorrichtung und Verfahren zum Dosieren von flüssigen Medien
DE3210465A1 (de) Vorrichtung zur erfassung der menge der von einer kuh bei einem melkvorgang abgegebenen milch
DE1224522B (de) Verfahren und Vorrichtung zur Probeentnahme von Milch aus einer Durchflussleitung
DE3139030C1 (de) Vorrichtung zur Regulierung der Durchflußmenge eines flexiblen Rohres
DE2728965A1 (de) Fluessigkeitsdosiervorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL PT SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL PT SE

17P Request for examination filed

Effective date: 19951011

17Q First examination report despatched

Effective date: 19951109

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI NL PT SE

REF Corresponds to:

Ref document number: 154435

Country of ref document: AT

Date of ref document: 19970615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970612

REF Corresponds to:

Ref document number: 59403097

Country of ref document: DE

Date of ref document: 19970717

ITF It: translation for a ep patent filed

Owner name: PROPRIA PROTEZIONE PROPR. IND.

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2105448

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19970730

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130820

Year of fee payment: 20

Ref country code: DE

Payment date: 20130828

Year of fee payment: 20

Ref country code: IE

Payment date: 20130820

Year of fee payment: 20

Ref country code: SE

Payment date: 20130826

Year of fee payment: 20

Ref country code: NL

Payment date: 20130823

Year of fee payment: 20

Ref country code: CH

Payment date: 20130822

Year of fee payment: 20

Ref country code: PT

Payment date: 20130228

Year of fee payment: 20

Ref country code: DK

Payment date: 20130823

Year of fee payment: 20

Ref country code: ES

Payment date: 20130812

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130823

Year of fee payment: 20

Ref country code: FR

Payment date: 20130821

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130803

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130823

Year of fee payment: 20

BE20 Be: patent expired

Owner name: BIO-MELKTECHNIK *HOEFELMAYR & CO.

Effective date: 20140831

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20140831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59403097

Country of ref document: DE

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20140831

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140830

Ref country code: IE

Ref legal event code: MK9A

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 154435

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140831

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140902

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140909

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140901