EP0638706A1 - Ventiltrieb einer Brennkraftmaschine - Google Patents

Ventiltrieb einer Brennkraftmaschine Download PDF

Info

Publication number
EP0638706A1
EP0638706A1 EP93119520A EP93119520A EP0638706A1 EP 0638706 A1 EP0638706 A1 EP 0638706A1 EP 93119520 A EP93119520 A EP 93119520A EP 93119520 A EP93119520 A EP 93119520A EP 0638706 A1 EP0638706 A1 EP 0638706A1
Authority
EP
European Patent Office
Prior art keywords
rocker arm
cam
valve
lift
valve train
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93119520A
Other languages
English (en)
French (fr)
Inventor
Harald Unger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19934326331 external-priority patent/DE4326331A1/de
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0638706A1 publication Critical patent/EP0638706A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/26Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of two or more valves operated simultaneously by same transmitting-gear; peculiar to machines or engines with more than two lift-valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • F01L13/0026Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio by means of an eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • F01L2013/0068Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot with an oscillating cam acting on the valve of the "BMW-Valvetronic" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/06Timing or lift different for valves of same cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis

Definitions

  • the invention relates to a valve train of an internal combustion engine with at least two parallel-acting lift valves per cylinder, each actuated by a cam and a transmission element, the valve lift course of which can be adjusted differently from one another.
  • Such a valve train is known for example from DE 37 39 246 A1.
  • the transmission member is designed as a rocker arm, wherein individual rocker arms of the lift valves assigned to a single cylinder can be connected to one another via coupling elements. Since different cams are assigned to the individual rocker arms in this known prior art, it is thus possible, by appropriate control of these rocker arm clutches, to actuate a specific lift valve either directly by the cam assigned to it or by the cam of another lift valve. The course of the valve stroke of this particular lift valve can thus be varied in different ways from that of another lift valve.
  • the support points of the transmission members are adjustable via rotatable eccentrics located on a common eccentric shaft, the elevation curves of the at least two eccentrics per cylinder differing from one another.
  • the support points of the transmission elements interposed between the individual cams and the individual valves are adjustable.
  • these transmission links can be a rocker arm or also a rocker arm or rocker arm, but other embodiments are also possible, for example a link element having a link track for a roller. If the support point of this rocker arm or rocker arm or of the link element is now shifted, a modified stroke curve results for the respectively associated lift valve, since the cam stroke is transmitted in different ways.
  • This principle for varying the valve stroke course is known per se (DE 38 33 540 C2), but this known embodiment does not specify how the support point of the transmission element can be shifted in a simple manner.
  • eccentrics on which the transmission members are supported are part of a common eccentric shaft - if several cylinders are arranged in series, this eccentric shaft can extend over all cylinders - which can be rotated in a simple manner.
  • the eccentrics assigned to an individual cylinder also differ. As a result, it is possible, as desired, to actuate the valves assigned to these individual eccentrics in different ways from one another, or to adjust their stroke course in different ways from one another.
  • the reference numeral 1 denotes a cylinder head of an internal combustion engine. In the illustration according to FIG. 1, this cylinder head extends across several cylinders perpendicular to the plane of the drawing. At least two inlet channels 2 to a combustion chamber 3 are provided per cylinder, a lift valve 4 being provided in a known manner per inlet channel 2. This lift valve is actuated by a cam 5a of a camshaft 5, the cam 5a acting on a roller 6, which in turn rolls on the tappet 7 of the lift valve 4.
  • the roller 6 is of stepped design and has a plurality of rolling stages 6a, 6b, 6c. With the rolling stage 6a, the roller 6 rests on the tappet 7, while the rolling stage 6b is in contact with the cam 5a. Finally, with the rolling stage 6c, the roller 6 rolls on a slide track 8a of a slide element 8, so that the roller 6 is guided as a whole through this slide element 8 in accordance with the slide track 8a. Overall, the link element 8 and the roller 6 thus form the so-called transmission element 9 located between the cam 5a and the lift valve 4.
  • this transmission element 9 or the link element 8 is supported on an eccentric 10a, which is machined out of an eccentric shaft 10. If the eccentric shaft 10 is now rotated about its longitudinal axis 10b - two different positions are shown in FIGS. 1, 2 - the support point of the link element 8 or of the transmission element 9 is shifted. This also changes the position of the roller 6 or the sliding track 8a, which ultimately guides the roller 6 moved by the rotating cam 5a. When the support point of the transmission element 9 is changed, however, as can be seen, different valve lifts result with the same cam stroke. In Figure 1, the maximum achievable valve stroke h is shown at maximum cam stroke. In contrast, in FIG. 2 the eccentric shaft 10 is rotated through 180 ° about its longitudinal axis 10b. The resulting displacement of the transmission element 9 results in a valve lift of almost the amount 0 at maximum cam lift, i.e. the lift valve 4 is only opened minimally.
  • a reset lever 11 which also engages the rolling step 6a of the roller 6 and thus always presses this roller against the cam 5a.
  • This reset lever 11 is acted upon in a corresponding manner by a compression spring 12a.
  • the compression spring 12a is clamped between a pressure element 12b acting on the reset lever 11 and a guide element 12c screwed into the cylinder head 1.
  • the longitudinal guide 13 for the link element 8 is also only shown in principle.
  • FIG. 3 shows, two lift valves 4, 4 'are provided for each individual cylinder 14a, 14b of the internal combustion engine cylinder head 1.
  • Each lift valve 4, 4 'of an individual Cylinder 14a or 14b is assigned its own cam 5a, 5a 'and its own transmission element 9, 9' in the form of its own link element 8, 8 'and its own roller 6, 6'.
  • Each link element 8, 8 ' is supported on its own eccentric 10a, 10a' of the eccentric shaft 10 which extends over the entire cylinder head 1.
  • FIGS. 1, 2 show, the two eccentrics 10a, 10a 'assigned to a cylinder 14a or 14b differ in their geometry.
  • the two eccentrics 10a, 10a 'of a cylinder are identical only in the points of the minimum and the maximum eccentric stroke. Thus, if the eccentric shaft 10 is in the position shown in FIG. 2, the two lift valves 4, 4 'of a cylinder remain almost closed despite the maximum cam stroke. If, on the other hand, the eccentric shaft 10 is in the position according to FIG. 1, the two lift valves 4, 4 'are opened to the maximum at maximum cam lift (valve lift h). In the intermediate positions of the eccentric shaft, on the other hand, the two lift valves 4, 4 'are opened to different degrees at maximum cam lift. The course of the valve stroke of these two lift valves 4, 4 'per cylinder 14a or 14b can thus be varied in different ways by adjusting the eccentric shaft 10.
  • FIG. 4 shows various valve lift profiles in a diagram.
  • the crank angle or camshaft angle is plotted on the abscissa, the ordinate indicates the valve lift that can be achieved.
  • the associated position of the eccentric shaft 10 is indicated for each of the five valve lift profiles selected by way of example.
  • the numerical value given on the rising branch refers to the first lift valve 4, while the numerical value given on the falling branch indicates the required eccentric shaft position for the second lift valve 4 '.
  • the position the eccentric shaft 10 is described by degrees of angle, the position according to FIG. 2 corresponding to 0 ° and the position according to FIG. 1 representing the value of 180 °.
  • the reference number 1 again designates a cylinder head of an internal combustion engine.
  • This cylinder head also extends across several cylinders perpendicular to the plane of the drawing.
  • At least two inlet ducts 2 to the combustion chamber 3 are provided per cylinder, a lift valve 4 being provided for each inlet duct 2.
  • Each lift valve 4, 4 ' is actuated by a cam 5a, 5a' of a camshaft, each cam acting on a rocker arm 16, 16 ', which in turn acts on a rocker arm 17, 17'.
  • a hydraulic lash adjuster 18, 18 ' is mounted in the rocker arm 17, 17' on which ultimately the stem of the lift valve 4, 4 'is supported.
  • the rocker arm 16 and the rocker arm 17 form a transmission member 19 or 19 ', by means of which the stroke profile of the cam 5a or 5a' is transmitted to the lift valve 4 or 4 '.
  • the transmission link 19 or the rocker arm 16 is supported on an eccentric 10a, which is machined out of an eccentric shaft 10. If the eccentric shaft 10 is rotated about its longitudinal axis 10b, the support point of the rocker arm 16 or the transmission member 19 is shifted. Such a change in the support point of the transmission member 19 results in different valve lifts for the same cam stroke, since, due to the changed support of the rocker arm 16 when the cam 5a rotates with respect to the rocker arm 17, a different path of motion is passed through, so that the rocker arm 17 is deflected differently. In particular, it is hereby possible to achieve not only a maximum valve lift but also a valve lift of almost the amount 0 at which the lift valve 4 is opened only minimally.
  • the rocker arm 16 is guided by an elongated bolt guide, designated in its entirety by the reference number 20.
  • the rocker arm 16 has an elongated hole 20a, via which it is suspended in a bolt 20b, which is fastened to the cylinder head in a bearing point 20c. Because of this elongated bolt guide 20, the rocker arm 16 can thus assume different positions.
  • the elongated bolt guide 20 can also be designed the other way round, ie the bolt 20b can be attached to the rocker arm 16 and the elongated hole 20a can then be provided in the cylinder head bearing point 20c.
  • each lift valve 4, 4 ' is assigned its own cam 5a, 5a' and its own transmission link 19, 19 'in the form of its own rocker arm 16, 16' and its own rocker arm 17, 17 '.
  • Each rocker arm 16, 16 ' is supported on its own eccentric 10a, 10a' of the eccentric shaft 10 which extends over the entire cylinder head 1.
  • 5 shows, the two eccentrics 10a, 10a 'assigned to a cylinder or combustion chamber 3 differ in their geometry.
  • the two eccentrics 10a, 10a 'of a cylinder / combustion chamber are identical only in the points of the minimum and the maximum eccentric stroke.
  • the two lift valves 4, 4 'of a cylinder remain almost closed despite the maximum cam stroke. If, on the other hand, the eccentric shaft 10 is rotated from the position shown, and the eccentrics 10a, 10a 'accordingly adjust the rocker arms 16, 16' on account of their then maximum eccentric stroke, the two lift valves 4, 4 'are opened to the maximum with a maximum cam stroke . In the intermediate positions of the eccentric shaft 10, on the other hand, the two lift valves 4, 4 'are opened to different degrees at maximum cam lift. The course of the valve lift of these two lift valves 4, 4 'can thus be changed in different ways from one another by adjusting the eccentric shaft 10.
  • the transmission link 19 is formed by a rocker arm 16 and by a rocker arm 17 connected downstream, an extremely reliable construction results, which is furthermore distinguished by a space-saving design.
  • a rolling friction is realized in the contact areas between the cam 5a and the rocker arm 16 and between the rocker arm 16 and the rocker arm 17.
  • the rocker arm 16 carries a roller 16b and the rocker arm 17 carries a roller 17b.
  • each rocker arm 16 is guided between the two arms 16c of the rocker arm, which in some cases has two arms, and is mounted on a roller axle (not specified in more detail) which is fastened in these rocker arm arms. Due to the two-armed nature of the rocker arm 16 in the section that emerges in particular from the illustration according to FIG. 4, the eccentric 10a associated with this rocker arm 16 is also formed in two parts, in particular for weight reduction. H. a separate eccentric disk is provided for each of the rocker arm 16c, the two adjacent eccentric disks, which are only spaced apart from one another by the width of the roller 16b, of course having the same configuration.
  • the rocker arm 17 has - as is known per se - a rocker arm bearing 17a, from which a rocker arm 17c leads to a receptacle 17d which carries the hydraulic lash adjuster 18 acting on the lift valve 4.
  • the roller 17b is arranged on the side of the rocker arm 17c. This asymmetrical design, which can be seen particularly clearly from FIG. 9, results in an extremely space-saving design.
  • the roller 17b is also mounted on one Axle that is attached on the one hand to the rocker arm 17c and on the other hand to a further secondary arm 17e. This secondary arm 17e also leads from the rocker arm bearing 17a to the receptacle 17d.

Abstract

Eine Brennkraftmaschine besitzt je Zylinder zumindest zwei Einlaß-Hubventile (4, 4'), deren Hubverlauf voneinander verschiedenartig verstellbar ist. Die Verstellung erfolgt mittels einer Exzenterwelle (10), die den Abstützpunkt eines zwischen jedem Nocken (5a, 5a') und jedem Hubventil (4, 4') liegenden Übertragungsgliedes (19, 19') verschiebt, wobei die beiden einem Zylinder zugeordneten Exzenter (10a, 10a') von unterschiedlicher Geometrie sind. Das Übertragungsglied (19, 19') wird von einem sich auf dem Exzenter (10a, 10a') abstützenden sowie vom Nocken (5a, 5a') betätigten Schlepphebel (16, 16') gebildet, der seinerseits auf einen Schwinghebel (17, 17') einwirkt. Die jeweiligen Kontaktflächen werden durch Rollen gebildet. Beschrieben ist ferner ein weiteres Übertragungsglied, das eine Kulissenbahn aufweist. <IMAGE>

Description

  • Die Erfindung betrifft einen Ventiltrieb einer Brennkraftmaschine mit zumindest zwei parallel wirkenden, jeweils durch einen Nocken sowie ein Übertragungsglied betätigten Hubventilen je Zylinder, deren Ventilhubverlauf voneinander verschiedenartig verstellbar ist.
  • Ein derartiger Ventiltrieb ist beispielsweise aus der DE 37 39 246 A1 bekannt. Das Übetragungsglied ist dabei als Kipphebel ausgebildet, wobei einzelne Kipphebel der einem einzigen Zylinder zugeordneten Hubventile über Kupplungselemente miteinander verbunden werden können. Indem bei diesem bekannten Stand der Technik den einzelnen Kipphebeln unterschiedliche Nocken zugeordnet sind, ist es durch entsprechende Ansteuerung dieser Kipphebel-Kupplungen somit möglich, ein bestimmtes Hubventil entweder direkt durch den ihm zugeordneten Nocken oder durch den Nocken eines anderen Hubventiles zu betätigen. Der Ventilhubverlauf dieses bestimmten Hubventiles ist somit verschiedenartig von dem eines anderen Hubventiles veränderbar.
  • Dieser bekannte Ventiltrieb ist insofern nachteilig, als an den einzelnen Hubventilen lediglich Hubverläufe erzeugt werden können, die durch die tatsächlich vorhandenen Nocken vorgegeben sind. Weitere Variationen sind dabei nicht möglich. Ferner erfahren die Kupplungselemente der Kipphebel bzw. Übertragungsglieder extrem hohe mechanische Belastungen.
  • Aufgabe der Erfindung ist es daher, an einem Ventiltrieb mit zumindest zwei parallel wirkenden Hubventilen je Zylinder Maßnahmen aufzuzeigen, mit Hilfe derer der Ventilhubverlauf in vielfältiger Weise und verschiedenartig voneinander verstellt werden kann.
  • Zur Lösung dieser Aufgabe ist vorgesehen, daß die Abstützpunkte der Übertragungsglieder über verdrehbare, auf einer gemeinsamen Exzenterwelle liegende Exzenter verstellbar sind, wobei sich die Erhebungskurven der zumindest zwei Exzenter je Zylinder voneinander unterscheiden. Vorteilhafte Weiterbildungen der Erfindung sind Inhalt der Unteransprüche.
  • Erfindungsgemäß sind die Abstützpunkte der zwischen die einzelnen Nocken sowie die einzelnen Ventile zwischengeschalteten Übertragungsglieder verstellbar. Bei diesen Übertragungsgliedern kann es sich wie im oben genannten Stand der Technik um einen Kipphebel oder auch um einen Schlepp- oder Schwinghebel handeln, daneben sind aber auch andere Ausführungsformen möglich, so beispielsweise ein eine Kulissenbahn für eine Walze aufweisendes Kulissenelement. Wird nun der Abstützpunkt dieses Schwing- oder Kipphebels oder des Kulissenelementes verschoben, so ergibt sich für das jeweilig zugeordnete Hubventil ein abgewandelter Hubverlauf, da der Nockenhub in verschiedenartiger Weise übertragen wird. Dieses Prinzip zur Variation des Ventilhubverlaufes ist zwar an sich bekannt (DE 38 33 540 C2), jedoch gibt diese bekannte Ausführungsform nicht an, wie der Abstützpunkt des Übertragungsgliedes auf einfache Weise verschoben werden kann.
  • Erfindungsgemäß erfolgt dies mit Hilfe von Exzentern, an denen sich die Übertragungsglieder abstützen. Diese Exzenter sind Bestandteil einer gemeinsamen Exzenterwelle - sind mehrere Zylinder in Reihe angeordnet, so kann sich diese Exzenterwelle über sämtliche Zylinder erstrecken -, die in einfacher Weise verdreht werden kann. Erfindungsgemäß unterscheiden sich darüberhinaus die einem einzelnen Zylinder zugeordneten Exzenter. Dadurch ist es wie gewünscht möglich, die wiederum diesen einzelnen Exzentern zugeordneten Ventile verschiedenartig voneinander zu betätigen, bzw. deren Hubverlauf verschiedenartig voneinander zu verstellen.
  • Im folgenden wird die Erfindung anhand zweier bevorzugter Ausführungsbeispiele näher erläutert. Es zeigt:
  • Figur 1
    Einen Halb-Querschnitt durch einen Brennkraftmaschinen-Zylinderkopf mit einem erfindungsgemäßen Ventiltrieb, wobei der maximale Nockenhub in einen maximalen Ventilhub umgesetzt ist,
    Figur 2
    die gleiche Anordnung, wobei der maximale Nockenhub lediglich minimalen Ventilhub bewirkt,
    Figur 3
    eine Teilansicht X aus Figur 1 sowie
    Figur 4
    in einem Diagramm mehrere mögliche Ventilhubverläufe.
    Figur 5
    einen Querschnitt durch einen Brennkraftmaschinen-Zylinderkopf mit einem weiteren erfindungsgemäßen Ventiltrieb,
    Figur 6
    eine perspektivische Ansicht des Ventiltriebes aus Fig. 5 für einen einzigen Zylinder,
    Figur 7
    die Ansicht aus Fig. 6 in einer anderen Perspektive,
    Figur 8
    eine Perspektivdarstellung insbesondere des Übertragungsgliedes dieses weiteren Ventiltriebes, sowie
    Figur 9
    eine Perspektivdarstellung des Schwinghebels, der Bestandteil des Übertragungsgliedes von Fig. 8 ist.
  • Mit der Bezugsziffer 1 ist ein Zylinderkopf einer Brennkraftmaschine bezeichnet. Dieser Zylinderkopf erstreckt sich in der Darstellung gemäß Figur 1 senkrecht zur Zeichenebene über mehrere Zylinder. Je Zylinder sind zumindest zwei Einlaßkanäle 2 zu einem Brennraum 3 vorhanden, wobei je Einlaßkanal 2 in bekannter Weise ein Hubventil 4 vorgesehen ist. Betätigt wird dieses Hubventil durch einen Nocken 5a einer Nockenwelle 5, wobei der Nocken 5a auf eine Walze 6 einwirkt, die ihrerseits auf dem Stößel 7 des Hubventiles 4 abrollt.
  • Wie auch Figur 3 zeigt, ist die Walze 6 stufenförmig ausgebildet und besitzt mehrere Abrollstufen 6a, 6b, 6c. Mit der Abrollstufe 6a liegt die Walze 6 auf dem Stößel 7 auf, während die Abrollstufe 6b mit dem Nocken 5a Kontakt hat. Mit der Abrollstufe 6c schließlich wälzt die Walze 6 auf einer Kulissenbahn 8a eines Kulissenelementes 8 ab, so daß die Walze 6 insgesamt durch dieses Kulissenelement 8 entsprechend der Kulissenbahn 8a geführt ist. Insgesamt bildet somit das Kulissenelement 8 sowie die Walze 6 das sogenannte zwischen dem Nocken 5a sowie dem Hubventil 4 liegende Übertragungsglied 9.
  • Wie ersichtlich stützt sich dieses Übertragungsglied 9 bzw. das Kulissenelement 8 an einem Exzenter 10a ab, der aus einer Exzenterwelle 10 herausgearbeitet ist. Wird nun die Exzenterwelle 10 um ihre Längsachse 10b verdreht - zwei verschiedene Positionen sind in den Figuren 1, 2 dargestellt -, so wird der Abstützpunkt des Kulissenelementes 8 bzw. des Übertragungsgliedes 9 verschoben. Hierdurch verändert sich auch die Lage der Walze 6 bzw. der Kulissenbahn 8a, die letztlich die durch den rotierenden Nocken 5a bewegte Walze 6 führt. Mit Veränderung des Abstützpunktes des Übertragungsgliedes 9 ergeben sich aber - wie ersichtlich - bei gleichem Nockenhub verschiedenen Ventilhübe. In Figur 1 ist der maximal erreichbare Ventilhub h bei maximalen Nockenhub gezeigt. Bei Figur 2 wird demgegenüber die Exzenterwelle 10 um ihre Längsachse 10b um 180° gedreht. Aus der daraus resultierenden Verschiebung des Übertragungsgliedes 9 ergibt sich bei maximalen Nockenhub ein Ventilhub nahezu vom Betrag 0, d.h. das Hubventil 4 wird lediglich minimal geöffnet.
  • Zur Sicherstellung der beschriebenen Funktion ist ein Rückstellhebel 11 erforderlich, der ebenfalls an der Abrollstufe 6a der Walze 6 angreift und diese Walze somit stets gegen den Nocken 5a preßt. Dieser Rückstellhebel 11 wird in entsprechender Weise von einer Druckfeder 12a beaufschlagt. Hierzu ist die Druckfeder 12a zwischen einem auf den Rückstellhebel 11 einwirkenden Druckelement 12b sowie einem in den Zylinderkopf 1 eingeschraubten Führungselement 12c eingespannt. Lediglich prinzipiell dargestellt ist ferner die Längsführung 13 für das Kulissenelement 8.
  • Wie Figur 3 zeigt, sind für jeden einzelnen Zylinder 14a, 14b des Brennkraftmaschinen-Zylinderkopfes 1 zwei Hubventile 4, 4' vorgesehen. Jedem Hubventil 4, 4' eines einzelnen Zylinders 14a bzw. 14b ist ein eigener Nocken 5a, 5a' sowie ein eigenes Übertragungsglied 9, 9' in Form eines eigenen Kulissenelementes 8, 8' sowie einer eigenen Walze 6, 6' zugeordnet. Dabei stützt sich jedes Kulissenelement 8, 8' an einem eigenen Exzenter 10a, 10a' der sich über den gesamten Zylinderkopf 1 erstreckenden Exzenterwelle 10 ab. Wie die Figuren 1, 2 zeigen, unterscheiden sich die beiden einem Zylinder 14a bzw. 14b zugeordneten Exzenter 10a, 10a' in ihrer Geometrie. Identisch sind die beiden Exzenter 10a, 10a' eines Zylinders lediglich in den Punkten des minimalen sowie des maximalen Exzenterhubes. Befindet sich somit die Exzenterwelle 10 in der in Figur 2 gezeigten Position, so bleiben trotz maximalen Nockenhubes die beiden Hubventile 4, 4' eines Zylinders nahezu geschlossen. Befindet sich hingegen die Exzenterwelle 10 in der Position gemäß Figur 1, so werden bei maximalem Nockenhub die beiden Hubventile 4, 4' maximal geöffnet (Ventilhub h). In Zwischenpositionen der Exzenterwelle hingegen werden die beiden Hubventile 4, 4' bei maximalem Nockenhub unterschiedlich weit geöffnet. Der Ventilhubverlauf dieser beiden Hubventile 4, 4' je Zylinder 14a bzw. 14b ist somit durch Verstellen der Exzenterwelle 10 voneinander verschiedenartig veränderbar.
  • Ersichtlich wird dies auch aus Figur 4, die in einer Diagrammdarstellung verschiedene Ventilhubverläufe zeigt. Auf der Abszisse ist der Kurbelwinkel bzw. Nockenwellen-Winkel aufgetragen, die Ordinate gibt den erreichbaren Ventilhub an. Dabei ist für jeden der einzelnen exemplarisch herausgegriffenen fünf Ventilhubverläufe die zugehörige Position der Exzenterwelle 10 angegeben. Der am ansteigenden Ast angegebene Zahlenwert bezieht sich dabei auf das erste Hubventil 4, während der am abfallenden Ast angegebene Zahlenwert die erforderliche Exzenterwellenposition für das zweite Hubventil 4' angibt. Die Position der Exzenterwelle 10 ist dabei durch Winkelgrade beschrieben, wobei die Position gemäß Figur 2 0° entspricht und die Position gemäß Figur 1 den Wert von 180° darstellt.
  • Man erkennt somit, daß wie bereits erläutert bei der Exzenterwellenposition 0° die beiden Hubventile 4, 4' lediglich einen äußerst geringen Ventilhub ausführen, während bei der Exzenterwellenposition 180° beide Hubventile 4, 4' ihren maximalen Ventilhub h erreichen. Den minimal möglichen Ventilhub behält das Hubventil 4' aber auch bei einer Exzenterwellenposition von 45° und 90° bei, während bei diesen Positionen das Hubventil 4 bereits deutliche Hübe ausführt.
  • Verschiedenartige Ventilhubverläufe zweier parallel wirkender Hubventile je Zylinder sind erwünscht, um die Ladungswechseldynamik sowie die Verwirbelung der in den Brennraum 3 eingebrachten Ladung zu verbessern. Mit der gezeigten sowie mit der im folgenden beschriebenen weiteren Konstruktion ist eine derartige Ventilhubcharakteristik für zumindest zwei parallel wirkende Hubventile je Zylinder auf einfache Weise erzielbar.
  • Im zweiten Ausführungsbeispiel gemäß Fig. 5 ist mit der Bezugsziffer 1 wieder ein Zylinderkopf einer Brennkraftmaschine bezeichnet. Auch dieser Zylinderkopf erstreckt sich in der Darstellung senkrecht zur Zeichenebene über mehrere Zylinder. Je Zylinder sind zumindest zwei Einlaßkanäle 2 zum Brennraum 3 vorhanden, wobei je Einlaßkanal 2 ein Hubventil 4 vorgesehen ist. Betätigt wird jedes Hubventil 4, 4' durch jeweils einen Nocken 5a, 5a' einer Nockenwelle, wobei jeder Nocken auf einen Schlepphebel 16, 16' einwirkt, der seinerseits auf einen Schwinghebel 17, 17' wirkt. Im Schwinghebel 17, 17' ist ein hydraulisches Spielausgleichselement 18, 18' gelagert, auf dem sich letztendlich der Schaft des Hubventiles 4, 4' abstützt. Insgesamt bildet der Schlepphebel 16 sowie der Schwinghebel 17 ein Übertragungsglied 19 bzw. 19', mittels dessen der Hubverlauf des Nockens 5a bzw. 5a' auf das Hubventil 4 bzw. 4' übertragen wird.
  • Wie ersichtlich stützt sich das Übertragungsglied 19 bzw. der Schlepphebel 16 an einem Exzenter 10a ab, der aus einer Exzenterwelle 10 herausgearbeitet ist. Wird die Exzenterwelle 10 um ihre Längsachse 10b verdreht, so wird der Abstützpunkt des Schlepphebels 16 bzw. des Übertragungsgliedes 19 verschoben. Mit einer derartigen Veränderung des Abstützpunktes des Übertragungsgliedes 19 ergeben sich bei gleichem Nockenhub unterschiedliche Ventilhübe, da aufgrund der geänderten Abstützung der Schlepphebel 16 bei Rotation des Nockens 5a gegenüber dem Schwinghebel 17 eine unterschiedliche Bewegungsbahn durchläuft, so daß auch der Schwinghebel 17 unterschiedlich ausgelenkt wird. Insbesondere ist es hiermit möglich, neben einem maximalen Ventilhub auch einen Ventilhub nahezu vom Betrag 0 zu erzielen, bei dem das Hubventil 4 lediglich minimal geöffnet wird.
  • Geführt wird der Schlepphebel 16 durch eine in ihrer Gesamtheit mit der Bezugsziffer 20 bezeichnete Bolzen-Lang-loch-Führung. Wie ersichtlich weist der Schlepphebel 16 ein Langloch 20a auf, über welches er in einen Bolzen 20b eingehängt ist, der am Zylinderkopf in einer Lagerstelle 20c befestigt ist. Aufgrund dieser Bolzen-Langloch-Führung 20 kann somit der Schlepphebel 16 unterschiedliche Positionen einnehmen. Selbstverständlich kann die Bolzen-Langloch-Führung 20 auch umgekehrt ausgebildet sein, d. h. der Bolzen 20b kann am Schlepphebel 16 befestigt sein und das Langloch 20a kann dann in der Zylinderkopf-Lagerstelle 20c vorgesehen sein. Zur Sicherstellung der beschriebenen Verstellfunktion greift ferner an einem Absatz 16a des Schlepphebels ein Rückstelldorn 11 an, der den Schlepphebel 16 stets sowohl gegen den Nocken 5a als auch gegen den Exzenter 10a preßt. Hierzu wird der Rückstelldorn 11 in entsprechender Weise von einer Druckfeder 12a beaufschlagt, die sich an einem in den Zylinderkopf 1 eingeschraubten Führungselement 12c abstützt.
  • Wie die Fig. 6, 7 zeigen, sind für jeden Zylinder bzw. Brennraum 3 des Brennkraftmaschinen-Zylinderkopfes 1 zwei Hubventile 4, 4' vorgesehen. Jedem Hubventil 4, 4' ist ein eigener Nocken 5a, 5a' sowie ein eigenes Übertragungsglied 19, 19' in Form eines eigenen Schlepphebels 16, 16' sowie eines eigenen Schwinghebels 17, 17' zugeordnet. Dabei stützt sich jeder Schlepphebel 16, 16' an einem eigenen Exzenter 10a, 10a' der sich über den gesamten Zylinderkopf 1 erstreckenden Exzenterwelle 10 ab. Wie Fig. 5 zeigt, unterscheiden sich die beiden einem Zylinder bzw. Brennraum 3 zugeordneten Exzenter 10a, 10a' in ihrer Geometrie. Identisch sind die beiden Exzenter 10a, 10a' eines Zylinders/Brennraumes lediglich in den Punkten des minimalen sowie des maximalen Exzenterhubes. In der gezeigten Position minimalen Exzenterhubes bleiben die beiden Hubventile 4, 4' eines Zylinders trotz maximalen Nockenhubes nahezu geschlossen. Wird hingegen ausgehend von der gezeigten Position die Exzenterwelle 10 um 180° gedreht und verstellen somit die Exzenter 10a, 10a' aufgrund ihres dann maximalen Exzenterhubes die Schlepphebel 16, 16' dementsprechend, so werden bei maximalem Nockenhub die beiden Hubventile 4, 4' maximal geöffnet. In Zwischenpositionen der Exzenterwelle 10 hingegen werden die beiden Hubventile 4, 4' bei maximalem Nockenhub unterschiedlich weit geöffnet. Der Ventilhubverlauf dieser beiden Hubventile 4, 4' ist somit durch Verstellen der Exzenterwelle 10 voneinander verschiedenartig veränderbar.
  • Indem das Übertragungsglied 19 durch einen Schlepphebel 16 sowie durch einen nachgeschalteten Schwinghebel 17 gebildet wird, ergibt sich eine äußerst zuverlässige Konstruktion, die sich darüber hinaus durch eine raumsparende Bauweise auszeichnet. Um die Reibungsverluste im Ventiltrieb gering zu halten, ist in den Kontaktbereichen zwischen dem Nocken 5a und dem Schlepphebel 16 sowie zwischen dem Schlepphebel 16 und dem Schwinghebel 17 eine Rollreibung realisiert, d. h. der Schlepphebel 16 trägt eine Rolle 16b und der Schinghebel 17 trägt eine Rolle 17b.
  • Die Rolle 16b jedes Schlepphebels 16 ist zwischen den beiden Armen 16c des abschnittsweise zweiarmig ausgebildeten Schlepphebels geführt und auf einer nicht näher bezeichneten, in diesen Schlepphebel-Armen befestigten Rollenachse gelagert. Aufgrund der Zweiarmigkeit des Schlepphebels 16 in dem insbesondere aus der Darstellung gemäß Fig. 4 hervorgehenden Abschnitt ist - insbesondere zur Gewichtsreduzierung - auch der diesem Schlepphebel 16 zugeordnete Exzenter 10a zweiteilig ausgebildet, d. h. für jeden der Schlepphebel-Arme 16c ist eine eigene Exzenterscheibe vorgesehen, wobei die beiden nebeneinanderliegenden, lediglich um die Breite der Rolle 16b voneinander beabstandeten Exzenterscheiben selbstverständlich von gleicher Konfiguration sind.
  • Der Schwinghebel 17 weist - wie an sich bekannt - ein Schwinghebel-Lager 17a auf, von dem ausgehend ein Schwinghebelarm 17c zu einer Aufnahme 17d führt, die das auf das Hubventil 4 einwirkende hydraulische Spielausgleichselement 18 trägt. Seitlich am Schwinghebelarm 17c ist die Rolle 17b angeordnet. Mit dieser asymmetrischen Gestaltung, die besonders deutlich aus Fig. 9 hervorgeht, ergibt sich eine äußerst raumsparende Bauweise. Gelagert ist die Rolle 17b dabei ebenfalls auf einer Achse, die einerseits am Schwinghebelarm 17c und andererseits an einem weiteren Nebenarm 17e befestigt ist. Dieser Nebenarm 17e führt dabei ebenfalls vom Schwinghebellager 17a zur Aufnahme 17d.
  • Die gleichen Vorteile hinsichtlich zuverlässiger, einfacher und raumsparender Bauweise, die sich aufgrund der Tatsache einstellen, daß das Übertragungsglied durch den Schlepphebel 16 sowie den Schwinghebel 17 gebildet wird, stellen sich selbstverständlich auch dann ein, wenn die Kontaktflächen sowohl zwischen dem Nocken 5a sowie dem Übertragungsglied 19 als auch innerhalb desselben nicht durch die Rollen 16b, 17b gebildet werden, sondern wenn diese Kontaktflächen als ballige oder gerade Gleitflächen ausgebildet sind. Dabei zeichnen sich die beiden beschriebenen Systeme nicht nur durch einfache konstruktive Gestaltung, sondern auch durch höchste Zuverlässigkeit aus. Selbstverständlich sind darüber hinaus eine Vielzahl weiterer Abweichungen insbesondere konstruktiver Art von den gezeigten Ausführungsbeispielen möglich, ohne den Inhalt der Patentansprüche zu verlassen.

Claims (7)

  1. Ventiltrieb einer Brennkraftmaschine mit zumindest zwei parallel wirkenden jeweils durch einen Nocken (5a, 5a') sowie ein Übertragungsglied (9, 9', 19, 19') betätigten Hubventilen (4, 4') je Zylinder (14a, 14b), deren Ventilhubverlauf voneinander verschiedenartig verstellbar ist,
    dadurch gekennzeichnet, daß die Abstützpunkte der Übertragungsglieder (9, 9', 19, 19') über verdrehbare, auf einer gemeinsamen Exzenterwelle (10) liegende Exzenter (10a, 10a') verstellbar sind, wobei sich die Erhebungskurven der zumindest zwei Exzenter (10a, 10a') je Zylinder (14a, 14b) voneinander unterscheiden.
  2. Ventiltrieb einer mehrzylindrigen Brennkraftmaschine nach Anspruch 1,
    gekennzeichnet durch eine gemeinsame Exzenterwelle (10) für die in Reihe angeordneten Zylinder (14a, 14b).
  3. Ventiltrieb nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß das Übertragungsglied (9) als eine zwischen dem Stößel (7) des Hubventiles (4) sowie dem Nocken (5a) abwälzende Walze (6) ausgebildet ist, die weiterhin durch ein mittels des Exzenters (10a) verstellbares Kulissenelement (8) geführt ist.
  4. Ventiltrieb nach Anspruch 3,
    dadurch gekennzeichnet, daß die Walze (6) verschiedene mit dem Nocken (5a) oder mit dem Stößel (7) oder mit der Kulissenbahn (8a) des Kulissenelementes (8) zusammenwirkende Abrollstufen (6a, 6b, 6c) aufweist.
  5. Ventiltrieb nach Anspruch 3 oder 4,
    dadurch gekennzeichnet, daß an der Walze (6) ein Rückstellhebel (11) angreift.
  6. Ventiltrieb nach Anspruch 1 oder 2
    dadurch gekennzeichnet, daß das Übertragungsglied (19, 19') als ein sich am Exzenter (10a, 10a') abstützender Schlepphebel (16, 16'), der auf einen Schwinghebel (17, 17') einwirkt, ausgebildet ist.
  7. Ventiltrieb nach Anspruch 6,
    gekennzeichnet durch zumindest eines der folgenden Merkmale:
    - der abschnittsweise zweiarmig ausgebildet Schlepphebel (16) trägt eine Rolle (16b), auf der der Nocken (5a) abwälzt
    - für die beiden Schlepphebelarme (16c) ist jeweils eine eigene Exzenterscheibe vorgesehen
    - der Schwinghebel (17) trägt eine seitlich am Schwinghebelarm (17c), der vom Schwinghebel-Lager (17a) zu einer Aufnahme (17d) für ein Spielausgleichselement (18), auf dem sich das Hubventil (4) abstützt, führt, angeordnete Rolle (17b), auf die der Schlepphebel (16) einwirkt
    - der Schlepphebel (16) ist über eine Bolzen-Langloch-Führung (20) am Zylinderkopf (1) der Brennkraftmaschine gelagert, wobei das Langloch (20a) im Schlepphebel (16) oder in der Zylinderkopf-Lagerstelle (20c) vorgesehen ist.
EP93119520A 1993-08-05 1993-12-03 Ventiltrieb einer Brennkraftmaschine Withdrawn EP0638706A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4326331 1993-08-05
DE19934326331 DE4326331A1 (de) 1992-07-15 1993-08-05 Ventiltrieb einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP0638706A1 true EP0638706A1 (de) 1995-02-15

Family

ID=6494543

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93119520A Withdrawn EP0638706A1 (de) 1993-08-05 1993-12-03 Ventiltrieb einer Brennkraftmaschine

Country Status (3)

Country Link
US (1) US5373818A (de)
EP (1) EP0638706A1 (de)
JP (1) JP3245492B2 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780547A1 (de) 1995-12-22 1997-06-25 Siemens Aktiengesellschaft Verstellvorrichtung für den Hubverlauf eines Gaswechselventils einer Brennkraftmaschine
WO1998003778A1 (de) 1996-07-20 1998-01-29 Dieter Reitz Ventiltrieb und zylinderkopf einer brennkraftmaschine
WO1999009303A1 (de) 1997-08-14 1999-02-25 Siemens Aktiengesellschaft Verfahren zur einstellung des ventilhubes
DE19810369C1 (de) * 1998-03-10 1999-08-12 Siemens Ag Vorrichtung zur Messung des Ventilhubes
DE19920512A1 (de) * 1999-05-05 2000-11-09 Opel Adam Ag Vorrichtung zur Betätigung eines Ventiles mit variablem Hub an Brennkraftmaschinen
US6164254A (en) * 1997-08-14 2000-12-26 Siemens Aktiengesellschaft Method for setting valve lift
DE19942934A1 (de) * 1999-09-08 2001-03-15 Siemens Ag Verfahren zum Messen des maximalen Ventilhubes
EP1143118A3 (de) * 2000-04-07 2002-11-13 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Hubverstellung eines Gaswechselventils im Zylinderkopf einer Brennkraftmaschine
WO2004057160A1 (de) * 2002-12-21 2004-07-08 Ina-Schaeffler Kg Zwischenhebel für einen variablen ventiltrieb einer brennkraftmaschine
EP1666714A2 (de) * 2004-10-14 2006-06-07 Bayerische Motoren Werke Aktiengesellschaft Maschinengehäuse für eine Brennkraftmaschine
DE10251007B4 (de) * 2001-11-15 2007-09-06 Avl List Gmbh Mit fremdzündbaren Kraftstoff betriebene Brennkraftmaschine
DE102006018512A1 (de) * 2006-04-21 2007-10-25 Schaeffler Kg Rollenelement für ein schwenkbewegliches Maschinenteil
DE102010048709A1 (de) 2010-10-19 2012-04-19 Kolbenschmidt Pierburg Innovations Gmbh Mechanisch steuerbarer Ventiltrieb sowie mechanisch steuerbare Ventiltriebanordnung
DE102011014744A1 (de) 2011-03-22 2012-09-27 Kolbenschmidt Pierburg Innovations Gmbh Mechanisch steuerbarer Ventiltrieb sowie mechanisch steuerbare Ventiltriebanordnung
DE102013113815A1 (de) 2013-12-11 2015-06-11 Pierburg Gmbh Übertragungsanordnung für einen mechanisch steuerbaren Ventiltrieb
DE102014114396A1 (de) 2014-10-02 2016-04-07 Pierburg Gmbh Mechanisch steuerbarer Ventiltrieb sowie mechanisch steuerbare Ventiltriebanordnung
EP3073072A2 (de) 2015-03-26 2016-09-28 Pierburg GmbH Mechanisch steuerbarer ventiltrieb sowie mechanisch steuerbare ventiltriebanordnung

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19509604A1 (de) * 1995-03-16 1996-09-19 Bayerische Motoren Werke Ag Ventiltrieb einer Brennkraftmaschine
IT1285853B1 (it) * 1996-04-24 1998-06-24 Fiat Ricerche Motore a combustione interna con valvole ad azionamento variabile.
AU4815000A (en) * 1999-05-10 2000-11-21 Armer & Frank Motors, Llc Valve system having improved opening and breathing characteristics for internal combustion engines
JP2001164911A (ja) * 1999-12-10 2001-06-19 Yamaha Motor Co Ltd 4サイクルエンジンの動弁機構
DE10016103A1 (de) * 2000-03-31 2001-10-04 Audi Ag Variable Ventilsteuerung
DE10052811A1 (de) * 2000-10-25 2002-05-08 Ina Schaeffler Kg Variabler Ventiltrieb zur Laststeuerung einer fremdgezündeten Brennkraftmaschine
US7104229B2 (en) * 2001-04-05 2006-09-12 Stephen William Mitchell Variable valve timing system
GR20010100295A (el) 2001-06-18 2003-02-27 Εμμανουηλ Παττακος Μεταβλητο συστημα βαλβιδων
DE10136612A1 (de) * 2001-07-17 2003-02-06 Herbert Naumann Variable Hubventilsteuerungen
DE10206465A1 (de) * 2002-02-16 2003-08-28 Mahle Ventiltrieb Gmbh Steuereinrichtung für Gaswechselventile eines Verbrennungsmotors
DE10211999A1 (de) * 2002-03-18 2003-10-02 Ina Schaeffler Kg Verfahren und Vorrichtung zum Steuern der Zylinderladung eines fremdgezündeten Verbrennungsmotors
JP4276620B2 (ja) * 2002-05-17 2009-06-10 ヤマハ発動機株式会社 エンジンの動弁装置
WO2003098013A1 (fr) 2002-05-17 2003-11-27 Yamaha Hatsudoki Kabushiki Kaisha Dispositif d'entrainement de soupape de moteur
US6659053B1 (en) 2002-06-07 2003-12-09 Eaton Corporation Fully variable valve train
DE10228022B4 (de) * 2002-06-20 2009-04-23 Entec Consulting Gmbh Ventilhubvorrichtung zur Hubverstellung der Gaswechselventile einer Verbrennungskraftmaschine
DE10261304B4 (de) * 2002-12-27 2009-01-22 BÖSL-FLIERL, Gerlinde Ventilhubvorrichtung zur variablen Ventilsteuerung der Gaswechselventile einer Verbrennungskraftmaschine
US7107949B2 (en) * 2003-02-19 2006-09-19 Iav Gmbh Ingenieurgesellschaft Auto Und Verkeh Device for variable activation of valves for internal combustion engines
CA2518949A1 (en) 2003-03-11 2004-09-23 Yamaha Hatsudoki Kabushiki Kaisha Variable valve mechanism for internal combustion engine
US7007649B2 (en) * 2003-03-18 2006-03-07 General Motors Corporation Engine valve actuator assembly
US6688267B1 (en) 2003-03-19 2004-02-10 General Motors Corporation Engine valve actuator assembly
JP4669471B2 (ja) * 2003-03-29 2011-04-13 ヒュドラオリク−リング・ゲーエムベーハー 内燃エンジンのガス交換弁のリフト調整のための可変弁リフト装置
DE10314683B4 (de) 2003-03-29 2009-05-07 Entec Consulting Gmbh Variable Ventilhubsteuerung für einen Verbrennungsmotor mit untenliegender Nockenwelle
US6837196B2 (en) * 2003-04-02 2005-01-04 General Motors Corporation Engine valve actuator assembly with automatic regulation
US6883474B2 (en) * 2003-04-02 2005-04-26 General Motors Corporation Electrohydraulic engine valve actuator assembly
US6918360B2 (en) * 2003-04-02 2005-07-19 General Motors Corporation Engine valve actuator assembly with hydraulic feedback
US6886510B2 (en) 2003-04-02 2005-05-03 General Motors Corporation Engine valve actuator assembly with dual hydraulic feedback
JP4248344B2 (ja) * 2003-05-01 2009-04-02 ヤマハ発動機株式会社 エンジンの動弁装置
JP4248343B2 (ja) 2003-05-01 2009-04-02 ヤマハ発動機株式会社 エンジンの動弁装置
EP1697619B1 (de) * 2003-08-18 2009-04-08 Manousos Pattakos Verstellbare ventilsteuerung
JP4247529B2 (ja) * 2003-08-22 2009-04-02 ヤマハ発動機株式会社 内燃機関の動弁機構
JP4237643B2 (ja) 2003-08-25 2009-03-11 ヤマハ発動機株式会社 内燃機関の動弁機構
JP2005069014A (ja) * 2003-08-25 2005-03-17 Yamaha Motor Co Ltd 内燃機関の動弁機構
JP4039383B2 (ja) * 2003-10-21 2008-01-30 トヨタ自動車株式会社 水素利用内燃機関
US6945204B2 (en) * 2003-11-12 2005-09-20 General Motors Corporation Engine valve actuator assembly
EP1700014B1 (de) * 2003-12-18 2007-05-23 Toyota Jidosha Kabushiki Kaisha Variabler ventilmechanismus
EP1710402B1 (de) 2003-12-18 2013-06-19 Toyota Jidosha Kabushiki Kaisha Variabler ventilmechanismus
JP4238203B2 (ja) 2004-01-30 2009-03-18 本田技研工業株式会社 エンジン
JP4381188B2 (ja) * 2004-03-19 2009-12-09 三菱ふそうトラック・バス株式会社 内燃機関の可変動弁装置
DE112004001267B4 (de) 2004-03-23 2010-06-24 Mitsubishi Fuso Truck And Bus Corp. Variabler Ventiltrieb eines Verbrennungsmotors
JP4221327B2 (ja) * 2004-04-13 2009-02-12 三菱ふそうトラック・バス株式会社 内燃機関の可変動弁装置
JP4327645B2 (ja) * 2004-04-13 2009-09-09 三菱ふそうトラック・バス株式会社 V型エンジンの可変動弁装置
KR100621961B1 (ko) 2004-04-13 2006-09-19 미쯔비시 지도샤 고교 가부시끼가이샤 내연 기관의 가변식 구동 밸브 장치
JP4343021B2 (ja) 2004-04-28 2009-10-14 本田技研工業株式会社 内燃機関の動弁装置
JP4342372B2 (ja) 2004-04-28 2009-10-14 本田技研工業株式会社 内燃機関の動弁装置
JP4412190B2 (ja) 2004-04-28 2010-02-10 トヨタ自動車株式会社 可変動弁機構
JP4103872B2 (ja) * 2004-08-31 2008-06-18 トヨタ自動車株式会社 可変動弁装置
JP4278590B2 (ja) 2004-08-31 2009-06-17 株式会社日立製作所 内燃機関の可変動弁装置
JP4026634B2 (ja) 2004-08-31 2007-12-26 トヨタ自動車株式会社 可変動弁装置
JP4103871B2 (ja) 2004-08-31 2008-06-18 トヨタ自動車株式会社 可変動弁装置
CN100417788C (zh) 2004-08-31 2008-09-10 丰田自动车株式会社 可变气门传动装置
US6932035B1 (en) 2005-01-28 2005-08-23 Ford Global Technologies, Llc Cylinder valve operating system for internal combustion engine
JP2006307765A (ja) 2005-04-28 2006-11-09 Honda Motor Co Ltd 内燃機関のリフト可変動弁装置
JP2006329084A (ja) 2005-05-26 2006-12-07 Yamaha Motor Co Ltd エンジンの動弁装置
JP2006329164A (ja) 2005-05-30 2006-12-07 Yamaha Motor Co Ltd 複数気筒エンジン
JP4507997B2 (ja) * 2005-06-15 2010-07-21 三菱自動車工業株式会社 内燃機関の可変動弁装置
JP4546427B2 (ja) * 2006-07-19 2010-09-15 本田技研工業株式会社 内燃機関の可変動弁機構
DE102005040959A1 (de) * 2005-08-30 2007-03-08 Bayerische Motoren Werke Ag Hubvariabler Ventiltrieb für eine Brennkraftmaschine
JP2007077940A (ja) * 2005-09-15 2007-03-29 Otics Corp 可変動弁機構
JP2007127117A (ja) * 2005-10-04 2007-05-24 Masaaki Yoshikawa 4ストローク内燃機関の動弁系装置
JP4518010B2 (ja) * 2005-12-01 2010-08-04 三菱自動車工業株式会社 内燃機関の可変動弁装置
JP2007198363A (ja) * 2005-12-26 2007-08-09 Otics Corp 可変動弁機構
US7162983B1 (en) 2006-02-22 2007-01-16 Gm Global Technology Operations, Inc. Valve actuator assembly for variable displacement of an engine valve
JP4697011B2 (ja) * 2006-04-03 2011-06-08 トヨタ自動車株式会社 可変動弁機構
JP4519104B2 (ja) * 2006-06-01 2010-08-04 日立オートモティブシステムズ株式会社 内燃機関の可変動弁装置
JP4726775B2 (ja) 2006-12-20 2011-07-20 ヤマハ発動機株式会社 エンジンの連続可変式動弁装置
US7404386B1 (en) 2007-02-13 2008-07-29 Gm Global Technology Operations, Inc. Multi-step valve actuation system
JP4440293B2 (ja) 2007-10-05 2010-03-24 本田技研工業株式会社 開弁特性可変型内燃機関
JP2009091943A (ja) * 2007-10-05 2009-04-30 Honda Motor Co Ltd 開弁特性可変型内燃機関
JP5137595B2 (ja) * 2008-01-18 2013-02-06 ダイハツ工業株式会社 内燃機関のバルブリフト可変式動弁装置
KR100986355B1 (ko) * 2008-07-23 2010-10-08 현대자동차주식회사 슬라이드형 연속 가변 밸브 리프트 장치
EP2157292A1 (de) 2008-08-20 2010-02-24 Delphi Technologies, Inc. Ventilgetriebeanordnung für einen Verbrennungsmotor
US8602002B2 (en) 2010-08-05 2013-12-10 GM Global Technology Operations LLC System and method for controlling engine knock using electro-hydraulic valve actuation
DE102010048708A1 (de) * 2010-10-19 2012-04-19 Kolbenschmidt Pierburg Innovations Gmbh Mechanisch steuerbarer Ventiltrieb
US8839750B2 (en) 2010-10-22 2014-09-23 GM Global Technology Operations LLC System and method for controlling hydraulic pressure in electro-hydraulic valve actuation systems
US8781713B2 (en) 2011-09-23 2014-07-15 GM Global Technology Operations LLC System and method for controlling a valve of a cylinder in an engine based on fuel delivery to the cylinder
US9169787B2 (en) 2012-05-22 2015-10-27 GM Global Technology Operations LLC Valve control systems and methods for cylinder deactivation and activation transitions
US9567928B2 (en) 2012-08-07 2017-02-14 GM Global Technology Operations LLC System and method for controlling a variable valve actuation system to reduce delay associated with reactivating a cylinder
CN103244230B (zh) * 2013-05-23 2015-07-01 长城汽车股份有限公司 车辆、发动机及其可变气门升程装置
EP3296531A1 (de) 2016-09-14 2018-03-21 Mechadyne International Limited Motorventilsystem
CN108561231B (zh) * 2017-06-09 2020-09-04 长城汽车股份有限公司 连续可变气门升程机构的控制策略
JP2020033872A (ja) * 2018-08-27 2020-03-05 株式会社オティックス 内燃機関の可変動弁機構
CN112282959A (zh) * 2020-10-28 2021-01-29 哈尔滨工程大学 一种二冲程船用低速机四排气阀结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2506834A1 (fr) * 1981-05-27 1982-12-03 Honda Motor Co Ltd Dispositif de calage variable de soupape d'un moteur a combustion interne
WO1983002301A1 (en) * 1981-12-31 1983-07-07 BAGUÉNA, Michel Variable timing for four stroke engine
DE3621080A1 (de) * 1985-06-24 1987-01-02 Nissan Motor Ventilzeitsteuerungsvorrichtung fuer verbrennungsmotoren mit mehreren einlassventilen pro zylinder
DE3730001A1 (de) * 1987-09-08 1989-03-30 Gerhard Werner Kappelmeier Ventilbetaetigungsmechanismus fuer eine verbrennungskraftmaschine
EP0319956A1 (de) * 1987-12-08 1989-06-14 Nissan Motor Co., Ltd. Ventilsteuervorrichtung
EP0462853A1 (de) * 1990-06-21 1991-12-27 Automobiles Peugeot Amplitudenveränderliche Vorrichtung für mindestens einen Brennkraftmaschinensteuerventilhub
US5189998A (en) * 1991-07-23 1993-03-02 Atsugi Unisia Corporation Valve mechanism of internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413965A (en) * 1967-07-13 1968-12-03 Ford Motor Co Mechanism for varying the operation of a reciprocating member
US4138973A (en) * 1974-06-14 1979-02-13 David Luria Piston-type internal combustion engine
US4526142A (en) * 1981-06-24 1985-07-02 Nissan Motor Company, Limited Variable valve timing arrangement for an internal combustion engine or the like
JPH036801Y2 (de) * 1986-11-18 1991-02-20
DE3833540A1 (de) * 1988-10-01 1990-04-12 Peter Prof Dr Ing Kuhn Vorrichtung zur betaetigung der ventile an verbrennungsmotoren mit veraenderlicher ventilerhebungskurve
JP2700692B2 (ja) * 1989-06-30 1998-01-21 スズキ株式会社 4サイクルエンジンの動弁装置
US5111781A (en) * 1990-03-14 1992-05-12 Suzuki Kabushiki Kaisha Valve actuating mechanism in four-stroke cycle engine
US5025761A (en) * 1990-06-13 1991-06-25 Chen Kuang Tong Variable valve-timing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2506834A1 (fr) * 1981-05-27 1982-12-03 Honda Motor Co Ltd Dispositif de calage variable de soupape d'un moteur a combustion interne
WO1983002301A1 (en) * 1981-12-31 1983-07-07 BAGUÉNA, Michel Variable timing for four stroke engine
DE3621080A1 (de) * 1985-06-24 1987-01-02 Nissan Motor Ventilzeitsteuerungsvorrichtung fuer verbrennungsmotoren mit mehreren einlassventilen pro zylinder
DE3730001A1 (de) * 1987-09-08 1989-03-30 Gerhard Werner Kappelmeier Ventilbetaetigungsmechanismus fuer eine verbrennungskraftmaschine
EP0319956A1 (de) * 1987-12-08 1989-06-14 Nissan Motor Co., Ltd. Ventilsteuervorrichtung
EP0462853A1 (de) * 1990-06-21 1991-12-27 Automobiles Peugeot Amplitudenveränderliche Vorrichtung für mindestens einen Brennkraftmaschinensteuerventilhub
US5189998A (en) * 1991-07-23 1993-03-02 Atsugi Unisia Corporation Valve mechanism of internal combustion engine

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780547A1 (de) 1995-12-22 1997-06-25 Siemens Aktiengesellschaft Verstellvorrichtung für den Hubverlauf eines Gaswechselventils einer Brennkraftmaschine
DE19548389A1 (de) * 1995-12-22 1997-06-26 Siemens Ag Verstellvorrichtung für den Hubverlauf eines Gaswechselventils einer Brennkraftmaschine
WO1998003778A1 (de) 1996-07-20 1998-01-29 Dieter Reitz Ventiltrieb und zylinderkopf einer brennkraftmaschine
US6164254A (en) * 1997-08-14 2000-12-26 Siemens Aktiengesellschaft Method for setting valve lift
WO1999009303A1 (de) 1997-08-14 1999-02-25 Siemens Aktiengesellschaft Verfahren zur einstellung des ventilhubes
DE19810369C1 (de) * 1998-03-10 1999-08-12 Siemens Ag Vorrichtung zur Messung des Ventilhubes
DE19920512A1 (de) * 1999-05-05 2000-11-09 Opel Adam Ag Vorrichtung zur Betätigung eines Ventiles mit variablem Hub an Brennkraftmaschinen
DE19942934A1 (de) * 1999-09-08 2001-03-15 Siemens Ag Verfahren zum Messen des maximalen Ventilhubes
DE19942934B4 (de) * 1999-09-08 2005-08-04 Siemens Ag Verfahren zum Verwenden des Wertes des maximalen Ventilhubes eines Gaswechselventils
EP1143118A3 (de) * 2000-04-07 2002-11-13 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Hubverstellung eines Gaswechselventils im Zylinderkopf einer Brennkraftmaschine
DE10251007B4 (de) * 2001-11-15 2007-09-06 Avl List Gmbh Mit fremdzündbaren Kraftstoff betriebene Brennkraftmaschine
WO2004057160A1 (de) * 2002-12-21 2004-07-08 Ina-Schaeffler Kg Zwischenhebel für einen variablen ventiltrieb einer brennkraftmaschine
US7055478B2 (en) 2002-12-21 2006-06-06 Ina-Schaeffler Kg Intermediate lever for a variable valve train of an internal combustion engine
EP1666714A3 (de) * 2004-10-14 2010-08-11 Bayerische Motoren Werke Aktiengesellschaft Maschinengehäuse für eine Brennkraftmaschine
EP1666714A2 (de) * 2004-10-14 2006-06-07 Bayerische Motoren Werke Aktiengesellschaft Maschinengehäuse für eine Brennkraftmaschine
DE102006018512A1 (de) * 2006-04-21 2007-10-25 Schaeffler Kg Rollenelement für ein schwenkbewegliches Maschinenteil
WO2012052216A1 (de) 2010-10-19 2012-04-26 Kolbenschmidt Pierburg Innovations Gmbh Mechanisch steuerbarer ventiltrieb sowie mechanisch steuerbare ventiltriebanordnung
DE102010048709B4 (de) * 2010-10-19 2013-01-03 Kolbenschmidt Pierburg Innovations Gmbh Mechanisch steuerbarer Ventiltrieb sowie mechanisch steuerbare Ventiltriebanordnung
US8807104B2 (en) 2010-10-19 2014-08-19 Kolbenschmidt Pierburg Innovations Gmbh Mechanically controllable valve operating mechanism, and mechanically controllable valve operating mechanism arrangement
DE102010048709A1 (de) 2010-10-19 2012-04-19 Kolbenschmidt Pierburg Innovations Gmbh Mechanisch steuerbarer Ventiltrieb sowie mechanisch steuerbare Ventiltriebanordnung
US9133737B2 (en) 2011-03-22 2015-09-15 Kolbenschmidt Pierburg Innovations Gmbh Mechanically controllable valve drive and mechanically controllable valve drive arrangement
DE102011014744A1 (de) 2011-03-22 2012-09-27 Kolbenschmidt Pierburg Innovations Gmbh Mechanisch steuerbarer Ventiltrieb sowie mechanisch steuerbare Ventiltriebanordnung
WO2012126648A1 (de) 2011-03-22 2012-09-27 Kolbenschmidt Pierburg Innovations Gmbh Mechanisch steuerbarer ventiltrieb sowie mechanisch steuerbare ventiltriebanordnung
DE102013113815A1 (de) 2013-12-11 2015-06-11 Pierburg Gmbh Übertragungsanordnung für einen mechanisch steuerbaren Ventiltrieb
EP2905437A2 (de) 2013-12-11 2015-08-12 Pierburg GmbH Übertragungsanordnung für einen mechanisch steuerbaren Ventiltrieb
US9464540B2 (en) 2013-12-11 2016-10-11 Pierburg Gmbh Transfer assembly for a mechanically controllable valve train
DE102014114396A1 (de) 2014-10-02 2016-04-07 Pierburg Gmbh Mechanisch steuerbarer Ventiltrieb sowie mechanisch steuerbare Ventiltriebanordnung
EP3006684A1 (de) 2014-10-02 2016-04-13 Pierburg GmbH Mechanisch steuerbarer ventiltrieb sowie mechanisch steuerbare ventiltriebanordnung
EP3073072A2 (de) 2015-03-26 2016-09-28 Pierburg GmbH Mechanisch steuerbarer ventiltrieb sowie mechanisch steuerbare ventiltriebanordnung
DE102015104633A1 (de) 2015-03-26 2016-09-29 Pierburg Gmbh Mechanisch steuerbarer Ventiltrieb sowie mechanisch steuerbare Ventiltriebanordnung

Also Published As

Publication number Publication date
US5373818A (en) 1994-12-20
JPH0763023A (ja) 1995-03-07
JP3245492B2 (ja) 2002-01-15

Similar Documents

Publication Publication Date Title
EP0638706A1 (de) Ventiltrieb einer Brennkraftmaschine
DE102017101792B4 (de) Variabler Ventiltrieb eines Verbrennungskolbenmotors
AT408127B (de) Brennkraftmaschine mit mindestens einer durch eine verstellvorrichtung axial verschiebbaren nockenwelle
DE60304621T2 (de) Kipphebel zur zweistufigen Nockenbetätigung
DE102011052912A1 (de) Brennkraftmaschine und Ventiltrieb für eine Brennkraftmaschine
DE102008028513A1 (de) Ventilbetrieb für Gaswechselventile einer Brennkraftmaschine mit doppelt abgestützten Nockenträgern
DE4326331A1 (de) Ventiltrieb einer Brennkraftmaschine
DE19509604A1 (de) Ventiltrieb einer Brennkraftmaschine
EP0712462B1 (de) Schwinghebel-baugruppe mit miteinander verbindbaren armen
WO2019007453A1 (de) Variabler ventiltrieb eines verbrennungskolbenmotors
DE10228022A1 (de) Ventilhubvorrichtung zur Hubverstellung der Gaswechselventile einer Verbrennungskraftmaschine
DE4223173A1 (de) Ventiltrieb einer Brennkraftmaschine
DE102012012150B4 (de) Schlepphebelanordnung und Verbrennungsmotor
DE102005010182B4 (de) Variabel mechanische Ventilsteuerung einer Brennkraftmaschine
DE102016212480A1 (de) Variabler Ventiltrieb eines Verbrennungskolbenmotors
DE102017129424A1 (de) Variabler Ventiltrieb eines Verbrennungskolbenmotors
EP1205643A1 (de) Ventieltrieb für eine Verbrennungskraftmaschine
EP1619362A2 (de) Ventiltrieb einer Brennkraftmaschine
EP0352580B1 (de) Betätigungsvorrichtung für Ventile einer Brennkraftmaschine
DE102004008389A1 (de) Hubvariabler Ventiltrieb für eine Brennkraftmaschine
DE4124305C2 (de) Ventiltrieb für eine Brennkraftmaschine
WO2018087242A1 (de) Ventiltrieb für eine brennkraftmaschine
DE10312959A1 (de) Vorrichtung zur variablen Betätigung der Gaswechselventile von Verbrennungsmotoren und Verfahren zum Betreiben einer derartigen Vorrichtung
EP3173593B1 (de) Variabler ventiltrieb mit einem kipphebel
EP3073072A2 (de) Mechanisch steuerbarer ventiltrieb sowie mechanisch steuerbare ventiltriebanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES FR GB IT SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950816