EP0611834B1 - Substrat à base d'aluminium pour l'émaillage - Google Patents

Substrat à base d'aluminium pour l'émaillage Download PDF

Info

Publication number
EP0611834B1
EP0611834B1 EP19940810015 EP94810015A EP0611834B1 EP 0611834 B1 EP0611834 B1 EP 0611834B1 EP 19940810015 EP19940810015 EP 19940810015 EP 94810015 A EP94810015 A EP 94810015A EP 0611834 B1 EP0611834 B1 EP 0611834B1
Authority
EP
European Patent Office
Prior art keywords
weight
quantities
substrate according
aluminium
enamel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19940810015
Other languages
German (de)
English (en)
Other versions
EP0611834A1 (fr
Inventor
Jean-François Paulet
Hermann Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alusuisse Lonza Services Ltd
Alusuisse Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Lonza Services Ltd, Alusuisse Technology and Management Ltd filed Critical Alusuisse Lonza Services Ltd
Publication of EP0611834A1 publication Critical patent/EP0611834A1/fr
Application granted granted Critical
Publication of EP0611834B1 publication Critical patent/EP0611834B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D3/00Chemical treatment of the metal surfaces prior to coating

Definitions

  • the invention relates to an enamel-coated aluminum-containing substrate containing an oxide layer at least on the sides of the enamel coating, a method for producing the oxide layer and the use of the aluminum-containing substrates.
  • Aluminum materials such as foils, tapes or sheets are used as cover sheets for facade and vehicle construction, for example. Such cover plates are usually anodized in order to be resistant to environmental influences.
  • cover plates are usually anodized in order to be resistant to environmental influences.
  • Alignment 54th year, 1978, volume 8, pages 527 and 528, W. Grosskopf, "Overview of the application and implementation of the enamelling of aluminum” describes the enamelling of pure aluminum strips up to 0.3 mm thick. It has been found that not every aluminum material can be enamelled, and aluminum alloys containing magnesium in particular are unsuitable for enamelling.
  • An aluminum strip for coating with organic, decorative or protective layers has become known from EP-A 0 181 173, the oxide layer of which is a maximum of 200 ⁇ m.
  • DE-A 33 28 049 discloses a process for the anodic oxidation of aluminum for offset printing plates. Offset printing plates must have a high surface roughness in order to provide sufficient storage options for the printing inks. Therefore a roughened surface is oxidized.
  • An aluminum-clad steel sheet is known from JP-A 63-270-482, which is oxidized and then coated with an enamel layer.
  • the object of the present invention is to avoid these disadvantages and to provide an enamel-coated substrate which is particularly suitable for the application of an enamel layer and a method for Production of the substrate.
  • the object was achieved in that the substrate contains a surface layer made of aluminum or an aluminum alloy and on this layer there is a pore-containing oxide layer on which the enamel layer was applied, the oxide layer having a thickness of more than 0. 2 ⁇ m, the pore diameter is 0.03 to 0.15 ⁇ m and the ratio of pore depth to pore diameter is from 2 to 60.
  • Aluminum-containing substrates are, for example, sheet-like substrates made of aluminum or its alloys. Examples are foils, strips, sheets or profiles. However, the substrates can also be bodies of any shape with an aluminum surface or an aluminum-containing surface. Other substrates are composite materials that consist of at least one cover layer made of aluminum or an aluminum alloy. Foils, strips or sheets made of aluminum or aluminum alloys are preferably used. The oxide layer can extend over the entire surface of the aluminum or the aluminum alloy or can at least be provided at the points at which the enamel coating is to be applied.
  • the oxide layer contains pores. In particular, pores are provided which are open towards the surface. The pore distribution over the surface is advantageously uniform.
  • the aluminum-containing substrate advantageously has an oxide layer with a thickness of 0.2 to 2 ⁇ m.
  • the aluminum-containing substrate advantageously has an oxide layer with a pore diameter of 0.04 to 0.1 ⁇ m.
  • Substrates with a surface layer made of pure aluminum, essentially containing aluminum and the commercially available impurities or made of aluminum alloys, can be used as the aluminum-containing substrate.
  • Aluminum substrates can, for example, be an aluminum with a purity of 98.5% by weight and higher, preferably 99.0% by weight and higher and in particular 99.5% by weight and higher, and the rest of commercially available impurities contain.
  • Wrought aluminum alloys are preferred for the substrates. These alloys include e.g. the types AlMg, AlMgSi, AlCuMg, AlZnMg and AlZnMgCu.
  • Wrought aluminum alloys can contain, for example: up to 1.5% by weight of silicon, up to 1.0% by weight of iron, up to 6.0% by weight of copper, up to 1.5% by weight of manganese, up to 6.0% by weight of magnesium, up to 7.0% by weight of zinc, up to 0.2% by weight of titanium and up to 1.6% by weight of other elements, the rest being aluminum.
  • Substrates made of an aluminum alloy are particularly preferred, containing 0.25 to 1.5% by weight of silicon, up to 0.3% by weight of iron, up to 0.25% by weight of copper, 0.1 to 0, 8% by weight manganese, 2.7-5.0% by weight magnesium, up to 1% by weight zinc, 0.01 to 0.2% by weight titanium, up to 0.2% by weight Chromium, and up to 1.5% by weight of other elements, balance aluminum.
  • Examples from the practice of substrates are aluminum alloys AlMg3, AlMg3Si, AlMg5, AlMg5Si and AlMg10.
  • Aluminum casting alloys are also preferred for the substrates. These alloys include e.g. the types: AlSi, AlSiMg, AlSiCuMg, AlMgSiCuMg, AlMgSi and AlZnMg. Of these types, in particular aluminum casting alloys are particularly preferred containing: up to 11.0% by weight of silicon, up to 1.0% by weight of iron, up to 5.2% by weight of copper, up to 0.5% by weight. % Manganese, up to 7.5% by weight magnesium, up to 10% by weight zinc, up to 0.3% by weight titanium, up to 1.2% by weight nickel, up to 0, 03% by weight of lead, up to 0.03% by weight of tin and up to 0.05% by weight of other elements, the rest being aluminum.
  • AlSi, AlSiMg, AlSiCuMg, AlMgSiCuMg, AlMgSi and AlZnMg are particularly preferred containing: up to 11.0% by weight of silicon, up to 1.0% by weight of iron, up to 5.2%
  • the substrates can only have this aluminum or aluminum-containing surface layer and, at least partially, the oxide layer above this surface layer, or further aluminum-containing layers or layers of other materials can be arranged on one side of the surface layer, for example in the sense of a composite or a laminate, while the oxide layer is on the other side can be arranged.
  • the aluminum or aluminum-containing surface layer must be located on the surface, so that the oxide layer is properly attached to it resp. can be attached to it.
  • the oxide layer then forms the layer now exposed on the outside for further coating with the enamel layer.
  • the present invention also relates to a method for producing the enamel-coated aluminum or aluminum-containing substrate.
  • the method is carried out in such a way that an anodizing process with an acidic electrolyte is carried out on the substrate, at least on the sides of the enamel coatings provided, at temperatures of 30 to 80 ° C. and a voltage of 30 to 120 volts, for 1 to 60 seconds, and the enamel layer is applied in these areas.
  • the anodizing process can be carried out, for example, in such a way that the surface of the substrate to be anodized is brought into contact with the acidic electrolyte.
  • the acidic electrolyte can contain, for example, a strong acid or a mixture of strong acids. Typical examples of such acids are sulfuric acid (H 2 SO 4 ) or phosphoric acid (H 3 PO 4 ). Other acids that can be used include oxalic acid or sulfosalicylic acid. Mixtures of the acids mentioned can also be used.
  • sulfuric acid is used in amounts of 40 to 200 g / l and preferably 50 to 160 g / l (sulfuric acid based on 100% acid).
  • Phosphoric acid can also be used as an electrolyte in an amount of 60 to 100 g / l and in particular 85 g / l, the amount of acid being based on 100% pure acid.
  • Another preferred electrolyte is sulfuric acid in a mixture with oxalic acid, in particular an amount of 150 to 200 g / l sulfuric acid being mixed with, for example, 30 to 50 g / l oxalic acid.
  • Another electrolyte contains, for example, 130 to 170 g / l sulfosalicylic acid mixed with 6 to 10 g / l sulfuric acid.
  • Direct current is also understood to mean practically identical currents, for example those generated by full-wave rectification of a single-phase alternating current or by rectification of a three-phase alternating current.
  • alternating current for example, sinusoidal alternating current with a voltage / time curve with unequal high amplitudes in the positive and negative part, rectangular alternating current with a voltage / time curve with equally high amplitudes and unevenly long time portions of the positive and negative part, rectangular alternating current with a voltage / time curve with unevenly high amplitudes in the positive and negative range, or rectangular alternating current with a Voltage / time curve with unequal amplitudes and unequal time portions of the positive and negative part can be applied.
  • sinusoidal alternating current curves with phase gating in the positive and negative part and also other asymmetrical alternating currents with interrupted current flow can be used, such as with triangular alternating current.
  • the anodizing process is carried out at electrolyte temperatures of 40 to 60 ° C.
  • the process of producing the oxide layer used in practice essentially takes place in such a way that the substrate and in particular the surface to be coated with enamel made of aluminum or aluminum alloy is subjected to a pretreatment, the surface first being degreased, then rinsed and finally pickled, wherein the pickling can be carried out for example with a sodium hydroxide solution in a concentration of 50 to 200 g / l at 40 to 60 ° for one to ten minutes.
  • the surface can then be rinsed and cleaned with an acid such as Nitric acid, in particular a concentration of 25 to 35% by weight in the room temperature range of typically 20-25 ° C., is neutralized for 20-60 seconds, rinsed again and optionally dried.
  • the optionally pretreated substrate surface can be anodically switched in the electrolytic solution, whereupon an electrical current passes between the metal acting as an anode and a cathode likewise immersed in the solution.
  • the substrate or the treated surface can be subjected to further treatments, such as rinsing or impregnation, such as with a flux.
  • the substrate according to the present invention can be used for enamel coatings with a melting point of 480 ° C. up to or near the melting point of the substrate. Temperatures between 20 or 10 ° C. below the melting point are described as being near the melting point.
  • the product is expediently used as a substrate for enamel coatings based on alkali-silico-titanates, optionally with additives which lower the baking temperature, e.g. the compounds such as oxides, lithium, barium, antimony, cadmium, bismuth or vanadium are used.
  • the present invention relates to the use of the product as a substrate for enamel coatings from a frit, containing the oxides of silicon in amounts of 27 to 33% by weight, preferably 30% by weight, of potassium from 9 to 12% by weight.
  • % preferably 9.5 to 11.5% by weight, of the titanium from 18 to 22% by weight, preferably 20 to 22% by weight, of the sodium from 18 to 22% by weight, preferably 20 to 22% by weight, of aluminum from 0.5 to 3.2% by weight, preferably 2.8 to 3.2% by weight, of lithium from 3.5 to 4.2% by weight, preferred 3.8 to 4.2% by weight, boron from 5 to 8% by weight, preferably 6.5 to 8% by weight, zircon from 0.05 to 3% by weight, preferably from 2 , 3 to 3% by weight of the zinc from 0.8 to 2.0% by weight, preferably 0.8 to 1.5% by weight, optionally of the magnesium from 1 to 1.5% by weight , cadmium from 0 to 5% by weight, antimony from 0 to 2.8% by weight, strontium from 0 to 1.5% by weight and phosphorus from 0 to 2.5% by weight .
  • enamel coatings which are applied to the substrate as frits with additives and converted into an enamel coating with a thickness of 50 to 200 ⁇ m, preferably 50 to 120 ⁇ m and in particular 70 to 100 ⁇ m, by heat treatment or baking.
  • the enamel coating in turn can be produced, for example, from a mixture of oxides in the specified proportions.
  • the oxides are usually present as a frit, ie as a mixture that has been ground.
  • Processing fritters such as boric acid, sodium metasilicate, potassium hydroxide, titanium dioxide and pigments can in turn be added to this frit.
  • Typical example of a frit composition contains: 100 parts of frit, about 4 parts of boric acid, one part with sodium metasilicate, one part of potassium hydroxide, five to fifteen parts of titanium dioxide and one to seven parts of pigment.
  • Coloring pigments can be used in accordance with the requirements for the color design of the enamelling.
  • the enamelling can comprise, for example, a layer, a layer of a frit composition being applied to the substrate surface and baked in one firing process, ie being transferred into the enamel coating. Further methods are also within the scope of the invention, according to which two layers in two firing processes, three layers in three firing processes, respectively. multiple layers can be applied in multiple firing processes. Other methods of applying enamel layers consist of applying two or more frit layers or frit compositions with only one firing process.
  • the frit can, for example, have an average grain size of less than 74 ⁇ m and expediently less than 44 ⁇ m.
  • the frit can be applied by sprinkling, spraying, dipping or slurrying. Other options are electrostatic spraying or electrophoresis. If necessary, the frit, if applied with a suspension aid such as water, must be dried. After drying, the coated substrate can be placed in an oven, and the firing process can be carried out continuously or in stages. Typical burning times are in the range between 3 and 10 minutes, with burning times between 3 and 6 minutes being preferred. Typical firing temperatures are between 480 and 560 ° C. All procedures can be carried out step by step or continuously.
  • the surface layer according to the invention and the oxide layer arranged above it represent a substrate which is particularly suitable for an enamel coating, since the wetting due to the constituents of the enamel coating is particularly pronounced during the stoving process and therefore the use of frits with a lower melting point, i.e. with a Melting point of up to 20 ° C below the usual range, for example.
  • the oxide layer according to the invention is particularly low in magnesium and copper and prevents further diffusion of magnesium from the surface layer during and after the enamel coating has been baked. A negative influence copper is switched off because the oxide layer is poor in copper due to the redissolving during anodization.
  • the substrates according to the present invention with the enamel coatings have an extremely smooth surface. Thanks to the enamel coating, the substrate is largely protected against mechanical, physical, chemical and actinic influences and, for example, against environmental influences.
  • the surface is smooth, shiny and extremely hard. Due to the smooth surface, for example, dirt, dyes, solvent-based dyes or dyes in a carrier medium cannot penetrate into pores and change or deface the appearance of the surface. The high hardness of the surface protects against abrasion and other mechanical influences.
  • Existing substrates with an enamel coating are suitable, for example, in building construction as facade panels for interior and exterior applications, as an outer layer on composite panels for facades or for interior construction, as cladding panels or body parts for vehicles, such as railroad cars, buses and other road and rail vehicles and for applications in Areas of corrosive atmosphere.
  • the substrates coated with enamel according to the present invention are also suitable for furnishing in public areas such as poster columns, letter boxes, vending machine boxes and the like, which e.g. are at increased risk from vandalism.
  • the enamel coatings on the substrates according to the invention can, for example, have such a smooth surface that only the weathering results in a strong self-cleaning of the enamel-coated substrates.
  • the frits used are based on alkali silicate titanate with a composition: % By weight Frit 1 Frit 2 SiO 2 27-33 30th K 2 O 9.5 - 11.5 10th TiO 2 20-22 18th Na 2 O 20-22 18th Al 2 O 3 2.8 - 3.2 0.5 Li 2 O 3.8 - 4.2 3.5 B 2 O 3 6.5 - 8 5 ZrO 2 2,3 - 3 0.05 MgO 1 - 1.5 - ZnO 0.8 - 1.5 2nd CdO 2 - 5 Sb 2 O 5 - 2.8 SrO - 1.5 P 2 O 5 - 2.5 Baking temperature: 500 - 520 ° C 540 - 560 ° C
  • a substrate made of an aluminum-containing alloy AlMg 3 for example a metal sheet with a thickness of 2 mm, is prepared according to the pretreatment described above.
  • a low-melting enamel frit according to composition 1 mentioned above is baked in one layer and one baking process at 500 ° C. for 10 minutes. The result is an enamel-coated substrate, but the enamel coating shows no adhesion and peels off. Underneath, the substrate made of aluminum alloy has a gray surface.
  • a substrate made of an aluminum alloy AlMg 3 is prepared and anodized according to the pretreatment steps a) to f) given above.
  • the electrolyte contains 50 g / l H 2 SO 4 and the anodization is carried out at 55 to 60 ° C with a current density of 15 A / dm 2 at 30 volts for 12 seconds. After the anodization was complete, a layer thickness of 9000 ⁇ (0.9 ⁇ m) and a pore diameter of 310 ⁇ (0.031 ⁇ m) were measured.
  • the anodized substrate, which now carries an oxide layer is enamelled with a low-melting enamel frit of the above composition 1 in one layer and a firing process at 500 ° C. for 10 minutes.
  • the resulting product has perfect adhesion and a perfect appearance of the enamel layer on the substrate. After forming the sheet and an impact resistance test in accordance with DEZ leaflet F6.2, no enamel flaking can be found.
  • Example 2 The experiment according to Example 2 is repeated, but the substrate is an AlMg 1 SiCu alloy. The process is carried out in accordance with Example 2 and the equally good results in Example 2 are obtained accordingly.
  • An aluminum alloy-containing substrate AlFe1.5Mn is divided into two samples, a sample a) undergoes the same pretreatment as in comparative experiment 1 and a sample b) undergoes the same treatment as sample 2.
  • the sample a) which has not been anodized and the anodized sample b ) are provided with enamelling, using a low-melting frit according to composition 1.
  • An enamel layer is applied and burned in at 490 ° C for 8 minutes.
  • the comparison sample a) results in a rough surface of the enamel coating and a matt aspect, while the sample b) according to the invention has a glossy surface with high smoothness.
  • a substrate in the form of an AlMg 3 aluminum alloy is subjected to the pretreatment as described above in steps a) to f) and then anodized.
  • the electrolyte contains 160 g / l H 2 SO 4 and 40 g / l oxalic acid.
  • the temperature during the anodization is set to 40 ° C, the current density is 10 A / dm 2 at a voltage of 30 volts.
  • Anodization takes place over 27 seconds.
  • the substrate has an oxide layer thickness of 14,000 ⁇ (1.4 ⁇ m) and a pore diameter of 420 ⁇ (0.042 ⁇ m).
  • the same material is exposed to another electrolyte during anodization, this time containing 150 g / l sulfosalicylic acid and 8 g / l H 2 SO 4 .
  • the temperature during the anodization is 40 ° C, the current density is 5 A / dm 2 and the voltage 41 volts.
  • the anodizing time is 18 seconds and an oxide layer results in a thickness of 4500 ⁇ (0.45 ⁇ m) and a pore diameter of 500 ⁇ (0.05 ⁇ m).
  • a third variant of anodization is carried out with the same substrate, an electrolyte containing 85 g / l H 3 PO 4 is used and at 60 ° anodization temperature, with a current density of 15 A / dm 2 and 88 volt voltage for 6 seconds anodized.
  • the result is an oxide layer with a thickness of 3800 ⁇ (0.38 ⁇ m) with a pore diameter of 1000 ⁇ (0.1 ⁇ m).
  • the enamelling according to Example 1 is repeated with all three samples. All samples show a good appearance and show perfect adhesion of the enamel layer on the substrate. In all cases, the layer thickness of the enamelling is 70 - 90 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Glass Compositions (AREA)

Claims (15)

  1. Substrat contenant de l'aluminium revêtu d'émail, contenant au moins sous le revêtement d'émail une couche d'oxyde, caractérisé en ce que le substrat contient une couche superficielle d'aluminium ou d'un alliage d'aluminium et en ce que se trouve sur cette couche une couche d'oxyde contenant des pores, la couche d'oxyde présentant une épaisseur supérieure à 0,2 µm, le diamètre de pores étant de 0,03 à 0,15 µm et le rapport de profondeur de pores au diamètre de pores étant de 2 à 60.
  2. Substrat selon la revendication 1, caractérisé en ce que la couche d'oxyde présente une épaisseur de 0,2 à 2 µm.
  3. Substrat selon la revendication 1, caractérisé en ce que la couche d'oxyde présente un diamètre de pores de 0,04 à 0,1 µm.
  4. Substrat selon la revendication 1, caractérisé en ce que la couche superficielle représente un alliage corroyé d'aluminium.
  5. Substrat selon la revendication 4, caractérisé en ce que l'alliage corroyé d'aluminium contient jusqu'à 1,5 % en poids de silicium, jusqu'à 1,0 % en poids de fer, jusqu'à 6,0 % en poids de cuivre, jusqu'à 1,5 % en poids de manganèse, jusqu'à 6,0 % en poids de magnésium, jusqu'à 7,0 % en poids de zinc, jusqu'à 0,2 % en poids de titane et jusqu'à 1,6 % en poids d'autres éléments, le reste étant de l'aluminium.
  6. Substrat selon la revendication 4, caractérisé en ce que la couche superficielle représente un alliage corroyé d'aluminium contenant de 0,25 à 1,5 % en poids de silicium, jusqu'à 0,3 % en poids de fer, jusqu'à 0,25 % en poids de cuivre, de 0,1 à 0,8 % en poids de manganèse, de 2,7 à 5,0 % en poids de magnésium, jusqu'à 1,0 % en poids de zinc, de 0,01 à 0,02 % de titane, jusqu'à 0,2 % en poids de chrome et jusqu'à 1,5 % en poids d'autres éléments, le reste étant de l'aluminium.
  7. Substrat selon la revendication 1, caractérisé en ce que la couche superficielle représente un alliage de fonderie d'aluminium.
  8. Substrat selon la revendication 7, caractérisé en ce que les alliages de fonderie d'aluminium contiennent jusqu'à 11,0 % en poids de silicium, jusqu'à 1,0 % en poids de fer, jusqu'à 5,2 % en poids de cuivre, jusqu'à 0,5 % en poids de manganèse, jusqu'à 7,5 % en poids de magnésium, jusqu'à 10 % en poids de zinc, jusqu'à 0,3 % en poids de titane, jusqu'à 1,2 % en poids de nickel, jusqu'à 0,03 % en poids de plomb, jusqu'à 0,03 % en poids d'étain et jusqu'à 0,05 % en poids d'autres éléments, le reste étant de l'aluminium.
  9. Substrat selon la revendication 1, caractérisé en ce que le revêtement d'émail présente un point de fusion de 480°C jusqu'au point de fusion du substrat.
  10. Substrat selon la revendication 1, caractérisé en ce que le revêtement d'émail contient les oxydes du silicium dans des quantités de 27 à 33 % en poids, de préférence de 30 % en poids, du potassium de 9 à 12 % en poids, de préférence de 9,5 à 11,5 % en poids, du titane de 18 à 22 % en poids, de préférence de 20 à 22 % en poids, du sodium de 18 à 22 % en poids, de préférence de 20 à 22 % en poids, de l'aluminium de 0,5 à 3,2 % en poids, de préférence de 2,8 à 3,2 % en poids, du lithium de 3,5 à 4,2 % en poids, de préférence de 3,8 à 4,2 % en poids, du bore de 5 à 8 % en poids, de préférence de 6,5 à 8 % en poids, du zirconium de 0,05 à 3 % en poids, de préférence de 2,3 à 3 % en poids, du zinc de 0,8 à 2,0 % en poids, de préférence de 0,8 à 1,5 % en poids et éventuellement d'un ou plusieurs des oxydes du magnésium de 1 à 1,5 % en poids, du cadmium de 0 à 5 % en poids, de l'antimoine de 0 à 2,8 % en poids, du strontium de 0 à 1,5 % en poids et du phosphore de 0 à 2,5 % en poids.
  11. Procédé pour la préparation d'un substrat contenant de l'aluminium revêtu d'émail selon la revendication 1, caractérisé en ce qu'on réalise au moins dans les domaines des revêtements d'émail un procédé d'anodisation dans un électrolyte acide à des températures de 30 à 80°C et à une tension de 30 à 120 volts pendant 1 à 60 secondes et qu'on applique la couche d'émail dans ces domaines.
  12. Procédé pour la préparation d'un substrat selon la revendication 11, caractérisé en ce qu'on réalise le procédé d'anodisation à des températures d'électrolyte de 40 à 60°C.
  13. Procédé pour la préparation d'un substrat selon la revendication 11, caractérisé en ce qu'on réalise le procédé d'anodisation à une tension de 30 à 90 volts.
  14. Procédé pour la préparation d'un substrat selon la revendication 11, caractérisé en qu'on réalise le procédé d'anodisation pendant 5 à 30 secondes.
  15. Procédé pour la préparation d'un substrat selon la revendication 11, caractérisé en ce que le revêtement d'émail est appliqué sur le substrat en tant que fritte avec des additifs et est transformé par traitement thermique en un revêtement d'émail d'une épaisseur de 50 à 200 µm, de préférence de 50 à 120 µm et en particulier de 70 à 100 µm.
EP19940810015 1993-02-18 1994-01-14 Substrat à base d'aluminium pour l'émaillage Expired - Lifetime EP0611834B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00500/93A CH687989A5 (de) 1993-02-18 1993-02-18 Aluminiumhaeltiges Substrat.
CH500/93 1993-02-18

Publications (2)

Publication Number Publication Date
EP0611834A1 EP0611834A1 (fr) 1994-08-24
EP0611834B1 true EP0611834B1 (fr) 1997-04-23

Family

ID=4188432

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940810015 Expired - Lifetime EP0611834B1 (fr) 1993-02-18 1994-01-14 Substrat à base d'aluminium pour l'émaillage

Country Status (3)

Country Link
EP (1) EP0611834B1 (fr)
CH (1) CH687989A5 (fr)
DE (1) DE59402468D1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH686374A5 (de) * 1993-10-13 1996-03-15 Alusuisse Lonza Services Ag Emaillierbare Oxidschicht.
DE19649662A1 (de) * 1996-11-29 1998-06-04 Riedel De Haen Ag Schichtkörper mit Nachleuchteigenschaften, Verfahren zu dessen Herstellung und dessen Verwendung
ES2310026T3 (es) 1999-11-23 2008-12-16 Pemco Brugge N.V. Esmaltado de superficies de aleaciones de aluminio.
CN107265859B (zh) * 2017-06-29 2019-09-27 湖南华联君窑艺术瓷有限公司 一种搪瓷釉料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2991234A (en) * 1958-08-11 1961-07-04 Croname Inc Enameled aluminum and process for manufacture thereof
GB1555940A (en) * 1977-01-21 1979-11-14 Boeing Co Aluminium or aluminium alloy adherends and to a method oxide coating on an aluminium or aluminium alloy article
DE3328049A1 (de) * 1983-08-03 1985-02-21 Hoechst Ag, 6230 Frankfurt Verfahren zur einstufigen anodischen oxidation von traegermaterialien aus aluminium fuer offsetdruckplatten
GB8427943D0 (en) * 1984-11-05 1984-12-12 Alcan Int Ltd Anodic aluminium oxide film
JPS63270482A (ja) * 1987-04-28 1988-11-08 Nisshin Steel Co Ltd アルミめつきホ−ロ−鋼板

Also Published As

Publication number Publication date
EP0611834A1 (fr) 1994-08-24
DE59402468D1 (de) 1997-05-28
CH687989A5 (de) 1997-04-15

Similar Documents

Publication Publication Date Title
DE60033813T2 (de) Weissemail für aluminisierten oder galvanisierten Stahl
DE102007057777B4 (de) Verfahren zur Herstellung eines Bauteils aus Aluminium und/oder einer Aluminiumlegierung sowie Verwendung des Verfahrens
DE69912966T2 (de) Verfahren zur oberflächenbehandlung von gegenständen aus aluminium
EP0358933B1 (fr) Frittes d'émail pour émaillages monocouches résistant aux acides sur des aciers non décapés
DE4139006A1 (de) Verfahren zur erzeugung von oxidkeramikschichten auf sperrschichtbildenden metallen
EP0522401A1 (fr) Barbotine d'émail, procédé d'émaillage d'un tôle en acier aluminiséet tôle en acier aluminisé
EP3019644B1 (fr) Procédé de fabrication d'un substrat d'aluminium résistant à la corrosion et à l'usure
DE69200922T2 (de) Zweistufiges chemisches bzw elektrochemisches verfahren zur beschichtung von magnesium.
EP0453897A1 (fr) Revêtements auto-nettoyantes pour les parois de four
EP0090268B1 (fr) Procédé d'anodisation de produits en aluminium et pièces aluminées
EP0514661A2 (fr) Procédé de préparation de revêtements d'oxydes céramiques sur des alliages coulés de métaux légers contenant du silicium
EP0648863B1 (fr) Couche d'oxyde émaillable
EP0611834B1 (fr) Substrat à base d'aluminium pour l'émaillage
DE2528634B2 (de) Verfahren zur Erzeugung eigenfarbener, anodischer Oxydschichten auf Aluminium oder Aluminiumlegierungen
EP0018559A1 (fr) Procédé d'émaillage de l'acier roulé à froid sans prétraitement et tôle d'acier émaillée
AT390448B (de) Verfahren zum herstellen von glasemailcermetbeschichtungen
DE1758620A1 (de) Emaillierter Bauteil mit Aluminium als Hauptbestandteil
DE19735314A1 (de) Verfahren zur Vorbehandlung von Bauteilen
DE2739576A1 (de) Verfahren zum aufbringen eines schwarz gefaerbten ueberzuges auf aluminium oder aluminiumlegierungen
DE10156475A1 (de) Verfahren zur Herstellung von dunklen Schutzschichten auf Flacherzeugnissen aus Titanzink
DE69025022T2 (de) Gefärbter beschichteter Artikel und Verfahren zu seiner Herstellung
DE1011244B (de) Verfahren zum Vorbereiten von Metalloberflaechen fuer das Aufbringen von Emails
DE68908471T2 (de) Beschichtete Stahlbleche und Verfahren zu deren Herstellung.
EP0127774A2 (fr) Procédé de protection de l'aluminium anodisé
DE2134412B2 (de) Chromatbehandeltes Metallblech und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR IT LI NL

17P Request for examination filed

Effective date: 19950116

17Q First examination report despatched

Effective date: 19960126

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALUSUISSE TECHNOLOGY & MANAGEMENT AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR IT LI NL

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59402468

Country of ref document: DE

Date of ref document: 19970528

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030116

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030205

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050114