EP0590067A1 - Fragments d'anticorps produits par des microbes et leurs conjugues - Google Patents

Fragments d'anticorps produits par des microbes et leurs conjugues

Info

Publication number
EP0590067A1
EP0590067A1 EP92914467A EP92914467A EP0590067A1 EP 0590067 A1 EP0590067 A1 EP 0590067A1 EP 92914467 A EP92914467 A EP 92914467A EP 92914467 A EP92914467 A EP 92914467A EP 0590067 A1 EP0590067 A1 EP 0590067A1
Authority
EP
European Patent Office
Prior art keywords
fab
preparing
molecule
enzyme
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92914467A
Other languages
German (de)
English (en)
Inventor
Arnold H. Horwitz
Marc D. Better
Steve Carroll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xoma Corp
Original Assignee
Xoma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xoma Corp filed Critical Xoma Corp
Publication of EP0590067A1 publication Critical patent/EP0590067A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • This invention relates to methods for producing antibody F(ab') 2 and Fab' fragments by recombinant DNA manipulations and microbial fermentation, and methods for their use in the preparation of protein conjugates, including immunoconjugates.
  • mouse antibody immunogenicity is to use recombinant DNA technology to produce mouse-human chimeric antibodies in which gene sequences encoding mouse V regions are fused to gene sequences encoding human constant regions (reviewed by Morrison et al, Adv. Immunol. 44: 65-92 (1989)).
  • the same genetic engineering technology used for producing chimeric antibodies can also be used to permit easy class switching (Shaw et al. J. Natl. Cancer Institute 80: 1553 (1988)).
  • antibody fragments such as Fab, Fab' and F(ab') 2 , which consist of the antigen-binding subunits but lack regions containing the effector functions (Fc), have been demonstrated to be efficacious in animal models (Colapinto el al. Cancer Res. 48: 5701 (1988); Wahl et al J. Nucl. Med. 24: 316 (1983)), and in human clinical studies (Delaloye et al. J. Clin. Invest. 77: 301 (1986)). These fragments, which are generated by proteolytic digestion .of whole antibody, have been shown to give higher tumor/blood ratios for imaging and promote deeper penetration into tumors for therapeutic applications than whole antibody.
  • F(ab')o molecules which consist of two Fab units linked by the interchain disulfide bonds in the hinge region, retain the binding affinity achieved by the whole antibody.
  • Unconjugated F(ab')- > molecules may be useful therapeutic agents and have been shown to have equal or higher efficacy as whole antibodies in immunosuppression models (Carteron et al. Clin. Immuno. Immimopalh. 56: 373-383 (1990), and Hirsch et al. Transplantation Proceedings 23: 270-271 (1991)).
  • immunoconjugates of F(ab') 2 may be superior to those containing whole antibodies for imaging applications or for delivery of therapeutic agents to tumors (Colapinto, supra; Delaloye, supra; Wahl, supra).
  • F(ab') 2 molecules are also useful since the individual antigen- binding units (Fab') can be separated by using mild reducing conditions (Johnstone et al. Immunochemistry in Practice (Blackwell, Oxford), page 52 (1982)).
  • the resulting Fab' fragments contain reactive sulfhydryl groups which can be used for covalent attachment of label, or other clinically or experimentally useful molecules. They also can serve as the starting point for the construction of heterobifunctional F(ab') 2 molecules consisting of individual Fab' units with different specificities. Examples of such heterobifunctional F(ab')-, molecules include those which combine specificity toward a tumor antigen with a chelating agent for a radionuclide, or toward an antigen and an Fc receptor.
  • the crosslinking reagents are coupled to the lysine residues of the antibody molecules which have been first derivatized with bifunctional cross-linking reagents such as N- succinimidyl-3 (2-pyridyldithio)propionate (SPDP), which modified lysine residues throughout the molecule.
  • SPDP N- succinimidyl-3 (2-pyridyldithio)propionate
  • Fab' fragments are useful for thiol-directed conjugation, and may be generated by selective reduction of F(ab')-, fragments (Johnstone. supra, at 53-55). Fab' produced by selective thiol reduction of F(ab')-> may however have the same problems mentioned above for F(ab')-, generated by classical enzymatic methods.
  • This invention provides immunoglobulin fragments, such asF(ab') 2 , which retain the full binding affinity of whole antibody.
  • This invention also provides immunoglobulin fragments, such as Fab', which have the useful feature of convenient and selective thiol conjugation to polypeptide and chemical moieties. These fragments are produced directly from microorganisms, such as bacteria and yeast, which are engineered to secrete intact recombinant F(ab') 2 (rF(ab') 2 ) and recombinant Fab' (rFab') fragments. This production system is advantageous over traditional proteolysis methods which have additional steps and often give nicked or partially degraded antibody fragments.
  • immunotoxins are provided for the conjugation of microbially-produced F(ab') 2 molecules with protein toxins such as ricin toxin A chain to form immunotoxins.
  • protein toxins such as ricin toxin A chain
  • immunotoxins are advantageous in that they have reduced levels of heterogeneity caused by proteolytic nicks introduced by standard art procedures for rF(ab') 2 generation.
  • immunotoxins are also advantageous because they provide high affinity binding and the rF(ab') 2 molecules lack Fc receptors which may cause non-specific uptake by macrophages and other cells of the immune system.
  • the purified rF(ab') 2 and rFab' fragments from microbial fermentation have blocked cysteine thiol groups, which required the discovery of methods to unblock the cysteines for Fab' thiol conjugation.
  • the invention provides reducing agents and conditions that achieve the selective reduction of the cysteine residue(s) nearest the carboxy terminus of Fd, without reducing the interchain disulfide linkage of light chain to Fd. These reduced Fab' fragments are conjugated to other proteins, polypeptides, or chemical moieties reactive with the free thiol group.
  • the invention provides methods for the conjugation of a reduced Fab' fragment by mixing it with a second polypeptide which contains free thiols under sufficient oxidizing conditions to form a disulfide linkage.
  • reduced Fab' fragments can be successfully conjugated to similarly reduced Fab' fragments to form either homodimeric or bifunctional, heterodimeric F(ab') 2 molecules.
  • Other useful proteins containing free thiol groups can be similarly conjugated to the Fab' fragments to form mixed-function molecules.
  • the invention also provides methods for the chemical modification of reduced, microbially-produced Fab' fragments to achieve directed conjugation of the activated immunoglobulin fragment.
  • a free thiol of the reduced Fab' fragment is reacted with activating moieties such as dithiobis(pyridine-N-oxide), and the activated Fab' is mixed with a polypeptide containing a free thiol.
  • activating moieties such as dithiobis(pyridine-N-oxide
  • the activated Fab' is mixed with a polypeptide containing a free thiol.
  • Figure 1(a) is a physical representation of the structure of IgG. Shown are the positions of endopeptidase cleavages for papain and pepsin used to generate F(ab') 2 and Fab fragments, respectively. The position of both intrachain and interchain disulfide bonds are shown, as are the protein domains VH, CHI, CH2, and CH3 on the heavy chain and VL and CL on the light chain.
  • Figure 1(b) represents the DNA and corresponding peptide sequences of the Fd' modules hinge region used for the production of F(ab') 2 and Fab'.
  • Figure 2 represents the construction scheme for modules containing gene sequences encoding Fd' with one or both inter-heavy chain cysteines. Not drawn to scale.
  • Figure 3 represents the construction scheme for the gene module encoding Fd' with two inter-heavy chain cysteines plus 29 amino acids.
  • the carboxy terminal amino acid is an Asp (Glu is normally at this position). Not drawn to scale.
  • Figure 4 represents the construction scheme for optimized yeast expression plasmids containing the ING-4 chimeric light chain and various Fd' genes fused to the PGK promoter (P), invertase signal sequence (S), and PGK polyadenylation signal (T). Not drawn to scale.
  • P PGK promoter
  • S invertase signal sequence
  • T PGK polyadenylation signal
  • Figure 5 represents the binding inhibition of yeast-derived ING-4 F(ab') 2 and of ING-4 F(ab')-, generated by pepsin digestion of ING-4 IgG.
  • the yeast and pepsin-generated ING-4 F(ab')-,, as well as ING-4 Fab and IgG, were used to inhibit binding of biotinylated ING-4 IgG to the surface of antigen-positive HT29 colon carcinoma cells.
  • Biotinylated IgG was incubated with HT29 tumor cells in the presence of competing antibody at 4°C. Cells were washed and further incubated with avidin- peroxidase at room temperature. The cell-bound peroxidase was visualized with OPD reagent, and its OD490 was used to determine the extent of inhibition.
  • Figure 6 represents the construction scheme for bacterial expression plasmid containing the gene sequences encoding the H65 chimeric light chain and Fd' chain with one or two inter-heavy chain cysteines. Each gene was fused to the E. carotovora pelB ribosome binding site and signal sequence. These were fused to each other and placed under the control of the Salmonella typhimurium ⁇ r ⁇ BAD promoter and the trp transcription termination sequence in a plasmid containing tetR gene for selection in E. coli. Not drawn to scale.
  • Figure 7 represents the SDS polyacrylamide gel analysis of various chimeric H65 Fab and Fab' molecules secreted from bacteria. Regions of the gel which were scanned by densitometry are denoted.
  • Figure 8 represents the DNA sequence of pXOMl (H65 VH). Shown is the nucleotide sequence including the ATG initiation codon to the JK/CK junction. Also shown is the predicted amino acid sequence of the region. Shown in bold are the regions where PCR primers bound for amplification of the V-J region.
  • Figure 9 represents the DNA sequence of pXOM2 (H65 VL). Shown is the nucleotide sequence including the ATG initiation codon to the JK/CK junction. Also shown is the predicted amino acid sequence of the region. Shown in bold are the regions where PCR primers bound for amplification of the V-J region.
  • Figure 10 represents the DNA sequence of the 4A2 kappa V- region. Shown is the nucleotide sequence for the ATG initiation codon to the JK/CK junction. Also shown is the predicted amino acid sequence of the region. Shown in bold are the regions where PCR primers bound for amplification of the V-J region.
  • Figure 11 represents the DNA sequence of the 4A2 gamma V- region. Shown is the nucleotide sequence for the ATG initiation codon to the JH/CH junction. Also shown is the predicted amino acid sequence of the region. Shown in bold are the regions where PCR primers bound for amplification of the V-J region.
  • Figure 12 represents the construction scheme for bacterial expression plasmid containing the gene sequences encoding the 4A2 chimeric light and Fd' chains. Each gene was fused to the E. carotovora pelB ribosome binding site and signal sequence. These were fused to each other and placed under the control of the Salmonella typhimurium araBAD promoter and the trp transcription termination sequence in a plasmid containing j tttR gene for selection in E. coli. Not drawn to scale.
  • Figure 13 represents the cytotoxicity mediated by ricin A chain immunoconjugates prepared from H65 antibodies and fragments.
  • the human T cell line HSB2 was exposed to H65 mouse antibody conjugated to ricin toxin A (RTA) chain (-o-), or chimeric H65 Fab', either unconjugated (- ⁇ -) or conjugated (-v-) to ricin toxin 30-kd A (RTA30) chain.
  • RTA ricin toxin A
  • RTA30 chimeric H65 Fab'
  • Figure 14 represents the cytotoxicity of resting (panel a) and phytohemagglutimin-activated (panel b) human peripheral blood mononuclear cells, mediated by various H65 antibodies and fragment immunoconjugates.
  • the samples tested were H65 mouse antibody linked by 5-methyl-2-iminothiolane to RTA30 (-o-), and chimeric H65 Fab' linked to RTA30 (-D-).
  • IND2 antibody linked to RTA30 (- ⁇ -) and RTA30 alone (- 0 -) were included as additional controls.
  • V domain is intended the variable region polypeptide sequence of an immunoglobulin light chain, as shown by Kabat et al, Sequences of Proteins of Immunological Interest, 4th ed. (U.S. Dept. of Health and Human Services, NIH) (1987).
  • CL domain is intended the constant region polypeptide sequence of an immunoglobulin light chain, as shown by Kabat et al, supra.
  • CHI domain is intended the first constant region polypeptide sequence of an immunoglobulin heavy chain that is carboxy to the V domain, as shown by Kabat el al, supra.
  • hinge domain is intended the constant region polypeptide sequence of an immunoglobulin heavy chain that is on the carboxyl side of the CHI domain, as shown by Kabat et al, supra.
  • rFab an antigen-binding immunoglobulin fragment or its equivalent containing an intact light chain and a truncated heavy chain, linked by an interchain disulfide bond, and which includes at least one cysteine residue in the hinge domain which is carboxy to the light chain-Fd interchain disulfide bond.
  • Fab recombinantly produced Fab'.
  • F(ab')- > is intended a dimer of Fab' molecules linked by at least one disulfide bond involving a cysteine residue in the hinge domain which is carboxy to the light chain-Fd interchain disulfide.
  • rF(ab')- > is intended recombinantly produced F(ab')- > .
  • Fv is intended an antigen-binding immunoglobulin fragment or its equivalent containing only the V domains of light and heavy chains.
  • Fd is intended the heavy chain of a Fab' molecule.
  • RTA is intended ricin toxin A chain.
  • RTA30 is intended the Mr 30,000 form of ricin toxin A. Recognizing that conventional amino acid numbering is from left to right; and that the amino terminus is conventionally shown on the left, with the carboxyl terminus on the right; the term “cysteine residue with the highest residue number” is the cysteine residue with the highest amino acid number, or, stated another way, the cysteine closest to the carboxy terminus.
  • thiol-containing active moiety immunoglobulin Fab' molecules, enzymes, polypeptides, radionuclides, and organic or inorganic compounds containing a reactive sulfhydryl group.
  • culture medium is intended a nutritive solution for culturing or growing cells.
  • the ingredients that compose such media may vary depending on the type of cell to be cultured.
  • osmolarity and pH are considered important parameters of culture media.
  • tumor-associated antigen is intended a tumor bearing antigen(s) recognized by the Fab' or F(ab') 2 of the present invention. Specific examples of tumor associated antigens are disclosed in European Patent Application Number 8730600.
  • genes which encode immunoglobulin fragments are provided by the present invention.
  • the preferred genes encode both light and heavy chains, and retain complete variable regions for the light and heavy chains to provide at least an active immunoglobulin Fv binding domain.
  • the heavy and light chain genes encode additional peptide sequences which have at least one cysteine residue which is not located within the immunoglobulin Fv binding domain.
  • These peptide sequences are preferably a CL (kappa or lambda) region for light chain, and a CHI and hinge region for Fd chain.
  • the genes are preferably linked to a secretion signal appropriate for the host, such as the pectate lyase B signal peptide for bacterial hosts, or the yeast invertase signal peptide for yeast hosts.
  • a preferred embodiment of the invention is a host transformed with a complete light chain gene and a truncated heavy chain gene (Fd) which encode an Fab' fragment molecule. These molecules are capable of spontaneous assembly into F(ab') 2 fragments.
  • the gene sequences encoding light chain CL and Fd chain CHI and hinge domains may be derived from either human or non-human immunoglobulins of any isotype. For in vivo human uses, human CL, CHI, and hinge domains are preferred: they are more compatible with the human body than non- human domains.
  • the invention exemplifies the use of human IgGl isotype sequences as the source of CHI and hinge domains.
  • purification of homogeneous F(ab') 2 or Fab' molecules from microbial fermentations is enhanced by including more than one, preferably two, cysteine residues in the Fd hinge region on the carboxyl side of the light chain Fd disulfide bond.
  • a polypeptide tail may follow on the carboxyl side of the two cysteine residues.
  • immunoglobulin fragments may be generated within the practice of this invention.
  • a selectively reducible cysteine residue may be located on the light chain of an Fab-like molecule by adding a polypeptide sequence to the carboxy terminus of the light chain.
  • Another embodiment of the invention is the modification of the heavy chain gene so that a partial deletion is used to generate a modified immunoglobulin, containing at least an Fab region, and having a selectively reducible cysteine residue in the hinge domain.
  • Another embodiment of the invention is the modification of Fv fragment genes by-including sequences encoding an additional polypeptide region (or regions) on either the light or heavy chain (or both), with such additional polypeptide (or polypeptides) encoding a selectively reducible cysteine residue (or residues).
  • the F(ab') 2 and Fab' fragments of the present invention may be produced from a variety of host cells.
  • Preferred hosts are bacteria and yeast. Vectors are exemplified for the bacterium E. coli, and the yeast S. cerevisiae. Other hosts may be utilized in the practice of this invention, including gram-negative bacteria such as Salmonella typhimurium or Serratia marcescens, and various Pseudomonas species; gram-positive bacteria; other yeasts and fungi, and plant, insect, and animal cells.
  • Preferable features for hosts include the ability to be practically grown in industrial fermenters and bioreactors, and the capability of the secretion of intact immunoglobulin fragments.
  • a method for the preparation of F(ab') 2 and Fab' fragments is the culturing of host cells on culture media followed by isolation of active fragment from the fermentation broth, preferably after removal of cells from the broth.
  • Reducing agents useful for the selective reduction of the cysteine residues used for conjugation include dithiothreitol, cysteine, beta- mercaptoethanol, and the like. As shown in the examples, different concentrations of reducing agents may be required to achieve the desired selective reduction.
  • reducing agents For F(ab') 2 molecules secreted from bacteria or yeast where the Fab' molecules are joined by a single disulfide bond, 2.0 mM cysteine selectively reduces the single heavy chain-heavy chain disulfide and is preferred. However, 2.0 M cysteine is insufficient to reduce two hinge region heavy chain-heavy chain disulfide bonds, which require approximately 5.0 to 15.0 M cysteine for selective reduction.
  • cysteine residue For Fab' molecules secreted from bacteria or yeast, the desired hinge region cysteine residue (or residues) are blocked by small molecular weight adducts. These residues may be unblocked by reduction with dithiothreitol at concentrations of about 0.1 to 2.0 mM, or by cysteine at concentrations of about 5.0 to 15.0 mM.
  • the selectively-reduced Fab' fragments can be conjugated to useful thiol-containing moieties such as enzymatic and non-enzymatic polypeptides, Fab' fragments, radionuclides, and other compounds. In one method, selectively-reduced Fab' molecules are placed in oxidizing conditions to form disulfide-linked F(ab') 2 fragments.
  • the Fab' molecule is reacted by disulfide exchange with an activating compound such as dithiobis(nitrobenzoate), dithiobis (pyridine- N-oxide) or the like, creating an excellent leaving group for directed disulfide formation.
  • an activating compound such as dithiobis(nitrobenzoate), dithiobis (pyridine- N-oxide) or the like.
  • the activated Fab' is then reacted with a thiol- containing moiety for the formation of heteroconjugates such as a heterobifunctional F(ab') 2 or a Fab'-enzyme.
  • An alternate method for heteroconjugate formation is the reaction of the reduced Fab' molecule with linker compounds which have functional groups reactive with Fab' thiols such as maleimide and the like, to form a Fab'-linker conjugate.
  • the Fab'-linker conjugate is then reacted with a useful active moiety to form a heteroconjugate.
  • any sulfhydryl linking compound may be utilized.
  • the linker compound may have an S-acetyl functional group.
  • the Fab-linker, S- acetyl, is reacted with a thiol-containing enzyme or other polypeptide which has been activated with an appropriate compound, such as dithiobis (nitrobenzoate) or dithiobis(pyridine-N-oxide).
  • a heteroconjugate has a disulfide linkage to the active moiety.
  • a linker compound which forms other than a disulfide linkage to the active moiety may be used.
  • Such uses include, for example, a thioether linkage to enhance stability of a Fab '-conjugate.
  • Both homodimeric and heterodimeric F(ab') ⁇ molecules are provided by the invention.
  • Homodimeric F(ab')- > are preferred when a single specificity with bifunctional binding is desired.
  • Bispecific, heterodimeric F(ab') 2 fragments are preferred when the separate binding functions of heterobifunctional antibodies are desired.
  • the heterodimeric F(ab') 2 are preferred over known bispecific antibodies in their properties of a smaller molecular weight and the deletion of the Fc region, which can be advantageous when better tissue penetration and minimization of Fc-receptor cell interactions are desired.
  • F(ab') 2 or Fab' with different specificities are first reduced to monovalent Fab' forms. They are then either mixed and oxidized to form heterodimeric F(ab') 2 , or are reacted with linker compounds known in the art and subsequently mixed and reacted to form F(ab') 2 .
  • Another method is to use the hosts and vectors of this invention to separately express the genes encoding the two different Fab' molecules within the same host cell. Heterodimeric F(ab') 2 may then be purified from the fermentation culture.
  • Enzymes may be conjugated to microbially-produced F(ab') 2 and Fab' molecules to form immunoconjugates with therapeutic or diagnostic use.
  • therapeutically useful enzymes include protein toxins, such as the ribosome-inhibitor ricin A chain, to achieve therapeutically targeted killing of cells, and other enzymes such as alkaline phosphatase. to achieve therapeutic effects by prodrug conversion into active drug, Pseudomonas toxin. Diphtheria toxin, and Tumor Neucrosis Factor (TNF).
  • Such F(ab') 2 or Fab'-enzyme conjugates can also be used in in vitro diagnostic assays to convert a substrate into a detectable form, in a similar way as immunoassays known in the art.
  • the F(ab')-, fragments or activated Fab' fragments of the invention may be conjugated to non-enzymatic polypeptides that interact with cellular receptors, such as interleukin-2, epidermal growth factor, immunoglobulin Fc regions, and the like.
  • non-enzymatic polypeptides that interact with cellular receptors, such as interleukin-2, epidermal growth factor, immunoglobulin Fc regions, and the like.
  • Such molecules could be useful in activating cells to accomplish desired effector functions, such as the selective activation or killing of targeted cells, and thereby achieve a therapeutic effect.
  • F(ab')-, fragments may be conjugated to enzymes and other polypeptides by current art methods that rely on the derivatization of amino acid residues with linker compounds such as N-succinimidyl 3-(2- pyridyldithio)propionate (SPDP), or preferably sterically hindered linkers such as the substituted 2-iminothiolanes (Goff et al., Bioconjugate Chem. 1: 381-386 (1990)). Other examples of linker compounds may be found in U.S. Patent No. 4,970,303.
  • the derivatized F(ab') 2 is then reacted with a thiol-containing polypeptide to form a stable conjugate.
  • the number and placement of polypeptides or enzymes which may be conjugated to the cysteine thiol(s) of a Fab' molecule is limited by the number and placement of selectively reducible cysteine residues.
  • the preferred location of cysteines is away from the variable regions which define and accomplish the Fab' binding activity.
  • the number of selectively reducible cysteines is from 1 to. about 10, preferably 2, to achieve targeted conjugation and avoid interference of the enzymatic activity with the binding activity.
  • a functionally derivatized F(ab') ⁇ or a selectively-reduced Fab' may also be conjugated to chemical moieties (radionuclides and organic compounds) that confer a desired second function on the Fab'.
  • chemical moieties include cytotoxic compounds such as trichothecenes, and metal- chelating compounds such as diethylene triamine pentaacetic acid (DTPA), daunorubicin, doxorubicin, methotrexate, Mitomycin C and others that are known in the art. See Goodman et al, Goodman and Gilman's THE PHARMACOLOGICAL BASIS OF THERAPEUTICS, 7th Ed., Macmillan Publishing Co., (1983). Examples of radionuclides include 212 Bi, I31 I.
  • a selectively-reduced Fab' may be directly bonded to certain diagnostic or therapeutic radionuclides, such as 99Tc or 186Re, by methods that are known in the art.
  • F(ab') 2 or Fab' molecules require the co-expression of genes encoding the light chain and a heavy chain fragment designated as Fd'.
  • the human IgGl Fd' fragment contains at least one of the two cysteines involved in heavy chain interchain disulfide bond formation (Figure la).
  • a fourth Fd' module (Figure lb-D) was constructed as outlined in Figure 3. This module (pING1695, Figure 3c) encodes both inter-heavy chain cysteines plus 29 additional amino acids 3' to the cysteines.
  • Yeast cells are capable of secreting functional Fab and IgG molecules such as mouse-human chimeric IgG and Fab molecules (Horwitz et al., supra).
  • Secretion of IgG is accomplished by co-expressing genes encoding the mature forms of light chain and heavy chain each fused to yeast invertase signal sequence and PGK promoter and polyadenylation signals.
  • Fab secretion is accomplished by co-expressing light chain with a genetically engineered Fd chain containing a stop codon introduced at the gene sequences encoding the first of two cysteines responsible for IgGl heavy chain interchain disulfide bonds.
  • the Fd chain gene is fused to the yeast invertase signal sequence-PGK promoter and polyadenylation signal.
  • yeast serves as a host for the production of mouse-human chimeric F(ab') 2 and Fab' molecules.
  • the chimeric antibody fragments in this example contain the light and heavy chain variable regions of a monoclonal antibody designated Me4, which binds ' to an antigen expressed on the surface of cells from many melanomas and carcinomas.
  • Me4 a monoclonal antibody designated Me4
  • the chimeric version of Me4 is designated as ING-4, and the production of ING-4 IgGl by mouse Sp/20 cells and of Fab by yeast and bacterial cells have been previously described (Better el al., PCT US8903852).
  • S. cerevisiae strain PS6 (ura3 leul MATa) was developed and subsequently used as a host for yeast transformations performed as described by Ito et al. J. Bacteriol 153: 163-168 (1983). Yeast transformants were selected on SD + leu agar (2% glucose, 0.67% yeast nitrogen base, 2% agar) and grown in SD + leu broth buffered with 50 mM sodium succinate, pH 5.5.
  • F(ab') ⁇ or Fab' molecules by yeast requires the simultaneous production of both the light chain and Fd' chain proteins. This can be accomplished by co- transforming a leu2- and ura3- strain with plasmids containing the light and Fd' chain genes with the leu2 and ura3 genes, respectively. Optimal production is achieved by placing both the light and Fd chain genes on the same plasmid. Accordingly, the Fd' gene module from pING1624 (module A, Figure 1) described in Example 1 was ligated to a ura3 expression vector to form plasmid pINGl636 ( Figure 4b). The yeast expression plasmid pING1697 was then constructed as shown in Figure 4c.
  • pING1697 contains the gene sequences encoding the mature forms of the ING-4 chimeric light chain plus the chimeric Fd' chain module A gene fused to the DNA sequences encoding the invertase signal sequence and the PGK promoter and polyadenylation signals.
  • the plasmids pING1673, pING1684 and pING1695 were used to construct expression plasmids pING1698 (module B).
  • pING1800 modulee C
  • pING1699 module D.
  • the plasmids pING1697, pING1698, pING1699, and pING1800 were transformed into S. cerevisiae PS6 by selection for Ura-t- colonies in SD + leu agar. Transformants were grown in SD broth lacking uracil and the levels of secreted F(ab')-, or Fab' assessed by ELISA.
  • the cultures secreting the highest levels of Fab' (pING1697, 0.6 ⁇ g/ml; pING1698, 1.9 ⁇ g/ ⁇ ; ⁇ ING1699, 1.9 g/ml; ⁇ ING1800, 2.5 g/ml) were grown in 10 liters of SD broth for 60 hours and F(ab') 2 and Fab' proteins were purified from the culture supernatant.
  • a mixture of F(ab') 2 and Fab' was purified from 10 liters of culture supernatant.
  • the culture supernatants were first concentrated by a DC10 concentrator (Amicon) using a S10Y30 cartridge (Amicon), washed with 20 liters of distilled water, reconcentrated, and then washed with 10 mM sodium phosphate buffer at pH 8.0, and concentrated again.
  • the concentrate was then loaded on a DE52 (Whatman) column pre- equilibrated with 10 mM sodium phosphate buffer at pH 8.0.
  • the flow- through from the DEAE column was collected and adjusted to a pH of 6.8 and a conductivity of 1.0 ms/cm.
  • the sample was next loaded onto a CM52 column, equilibrated with 10 M sodium phosphate at pH 6.8.
  • the CM52 column was eluted with 25 mM NaCl in 10 mM NaP04, pH 6.8. Th ⁇ .
  • eluant was collected and diluted with water to a conductivity of 1.0 ms/cm and loaded onto a second CM52 column equilibrated with 10 mM sodium phosphate at pH 6.8 and the bound antibody was eluted with a linear salt gradient from 0 to 25 mM NaCl in 10 mM sodium phosphate, pH 6.8.
  • the fractions were analyzed by ELISA and SDS-PAGE and those that contained a mixture of F(ab')-*, and Fab' were pooled and concentrated.
  • the F(ab') 2 and Fab' were purified away from each other using a TSK-125 gel filtration HPLC column.
  • the purified Fab', and F(ab') 2 ran at ⁇ 48 Kd and ⁇ 100 kd, respectively, in non-reducing SDS polyacrylamide gels.
  • Samples from both the F(ab')-, and Fab' fractions resolved into light chain and Fd chain bands on reducing SDS polyacrylamide gels.
  • F(ab') 2 was generated by pepsin digestion of ING-4 IgG as follows. 25 ul of 50% slurry of immobilized pepsin (Pierce) was equilibrated with 400 ⁇ l of digestion buffer (20 mM sodium acetate, pH 4.5), and centrifuged at 1000 x g, 5 min. The immobilized pepsin was resuspended in 50 ⁇ l of digestion buffer. 50 ⁇ l of ING-4 (1 mg) was added to the pepsin suspension and incubated 4 hours, 30 °C on a shaker. The digested IgG was extracted by adding 150 ⁇ l of 10 mM Tris, pH 7.5 followed by centrifugation at 1000 x g, 5 min.
  • the supernatant, containing F(ab') 2 was separated from undigested IgG and Fc fragment by passage through a 1 ml protein A-sepharose column. SDS-PAGE analysis revealed the presence of F(ab') 2 plus two lower molecular weight bands. F(ab') 2 was further purified on a TSK-125 HPLC column.
  • the F(ab') 2 proteins from pING1698 and pING1699 were also tested; their competitions of biotinylated ING-4 binding were also equivalent to ING-4 IgG (data not shown).
  • the competition of F(ab') 2 prepared by pepsin digestion of ING-4 was equivalent to ING-4 Fab, rather than to IgG ( Figure 5), suggesting that pepsin digestion adversely affected the binding characteristics of the F(ab') 2 .
  • Monovalent Fab' proteins containing either one (pING1697) or two (pING1698, pING1699, pING1800) Fd' interchain cysteines competed in a manner similar to that of monovalent ING-4 Fab (data not shown).
  • E. coli Bacteria such as E. coli are capable of secreting functional mouse- human chimeric Fab (Better el al., supra).
  • E. coli serves as the host for the production of mouse-human chimeric F(ab') 2 and Fab' molecules containing Fd' modules with either one or two inter- heavy chain Fd' cysteines in the hinge domain carboxy to the cysteine that normally forms the light chain-heavy chain disulfide bond (see Figure lb).
  • the gene modules used for these experiments include Fd' module C ( Figure lb) encoding two inter-heavy chain cysteines plus nine additional amino acids on the carboxyl side of the last cysteine and several different Fd' modules A, E.
  • the chimeric antibody fragments in this example contain the light and heavy chain variable regions of a monoclonal antibody, designated as H65, which binds to the CD5 antigen on human T cells (Kernan et al. J. Immunology 133: 137-146 (1984)).
  • F(ab')-, or Fab' by bacteria requires the simultaneous expression of the genes encoding both the light chain and Fd' chain each fused to a bacterial ribosome binding site and signal sequence. This is optimally achieved by fusing both genes to each other and placing the dicistronic operon under the control of a strong, inducible promoter.
  • This example describes a system using the pelB signal sequence from Erwinia carotovora (Lei et al J. Bacteriol. 169: 4379-43 ⁇ 3 (1987)) and the ⁇ r BAD promoter from Salmonella typhimurium (Horwitz et al. Gene 14: 309-319 (1981)) to produce chimeric H65 F(ab') 2 and Fab' in E. coli.
  • H65 hybridoma cells secreting a mouse IgGl, kappa were used for RNA isolation and cDNA preparation.
  • oligonucleotides were designed, synthesized, and used to prime the amplification of the VH-JH1 and VL-Jkl coding sequences by polymerase chain reaction (PCR) using standard methods (PCR Protocols, Innis, ed., Academic Press, (1990)).
  • VH S ⁇ cl-digested plasmid pUCl ⁇ to.generate pXOMl (VH) and pXOM2 (VL).
  • Figures 8 and 9 show the DNA sequences of pXOMl and pXOM2.
  • new primers were designed, synthesized and used to amplify the V region sequences encoding the fully processed VH and VL domains.
  • the PCR primers were designed so that a blunt end would be present at the 5' end to join to a pelB leader peptide-encoding sequence prepared by treatment with •SM-restriction endonuclease and T4 polymerase to generate a blunt end at its 3' end.
  • the PCR primers were also designed to include a BstEll site (JH1) or a Hind ⁇ ll site (Jkl) at the 3' end of the V region to match those of the pIT106 expression vector of Better el al., supra, and Robinson et al, PCT US8 ⁇ 02514.
  • JH1 BstEll site
  • Jkl Hind ⁇ ll site
  • the primers used for VH PCR amplification are H65G1 (5'-AAC ATC CAG TTG GTG CAG TCT G-3') and H65G2 (5'- GAG GAG ACG GTG ACC GTG GT-3'), and for VL amplification were H65K1 (5'-GAC ATC AAG ATG ACC CAG T-3') and JKl-Hindlll (5'- GTT TGA TTT CAA GCT TGG TGC-3').
  • Fd' gene module A from Example 1 was used to assemble first pX15F, then pING3217 ( Figure 6).
  • Fd' gene module C was used in the same way to construct pING3219.
  • Fd' gene modules E and F were generated by PCR gene amplification using Fd' gene modules A and C as templates.
  • Synthetic oligonucleotides to introduce the desired sequence changes were synthesized and used in a PCR reaction to generate Sail to Xhol Fd' gene fragments for ligation to DNA fragments from the chimeric Fd' vector pX15F. The remainder of the assembly is the same as for pING3217 ( Figure 6).
  • pING1500 is identical to pRRl ⁇ 7 described in Figure 3 ⁇ of Robinson et al, PCT US ⁇ 02514, except for the insertion of a Xhol linker oligonucleotide into the unique Sail site.
  • pING3215 is identical to pING1500 except that it has the Fd' gene module A (Example 1).
  • pS2D contains the human Ck Hindlll to Xhol sequence present in pING1431 described in Figure 27 of Robinson et al., PCT US ⁇ 02514.
  • pLElO contains the human CHI BstEll to BstEll fragment of pIT106 described by Better et al, supra. b. Production of chimeric H65 F(ab') 2 and Fab' in bacteria
  • F(ab')-, and Fab' were purified from 10 liters of culture supernatant using a process similar to that described for the yeast Fab'.
  • the fermentation broth was passed through a 0.2 ⁇ M filter and concentrated five-fold by ultrafiltration (Amicon YM10 membrane).
  • the media was replaced with 10 mM sodium phosphate buffer, pH 6.8, by diafiltration.
  • the concentrate was bound to a CM cellulose column and eluted with 0.10M sodium chloride in pH 6. ⁇ sodium phosphate buffer.
  • the eluate is concentrated by ultrafiltration. and F(ab') and Fab' fragments are separated by size exclusion chromatography.
  • the concentrated eluate containing no more than 500 mg total protein is loaded onto a 3.2 cm diameter x 120 cm high Sephacryl-S200® column preequilibrated in pH 7.4 sodium phosphate buffer.
  • the sample volume is less than 2.5% of the total column volume.
  • the resulting protein fractions were analyzed on a non-reducing SDS polyacrylamide gel stained with coomassie blue.
  • the Fab' fractions containing the two selectively-reducible cysteine/Fd' module C (pING3219) resolved into the expected Fab' band plus small-molecular- weight proteolytic digestion products of the light and Fd chains ( Figure 7. lanes 5 and 6).
  • the Fab' band comprised greater than 50% of the relative area within these lanes as measured by densitometry scans of the coomassie blue-stained gel (see Table 1 below) and could be readily separated from the small-molecular-weight light and Fd' chain fragments by standard chromatographic methods.
  • the various Fab' proteins containing the single selectively reducible cysteine Fd' modules A, E, and F also resolved into the expected Fab' band and the proteolytic digestion products of unassociated light and Fd chain bands (Figure 7).
  • the Fab' bands comprised 30-40% of the relative area within each lane as determined by densitometry scans of the Coomassie blue-stained gel (Table 1).
  • the bacterially-produced Fab' containing the single selectively- reducible hinge cysteine (pING3217) was assessed for function in a competitive binding assay using Molt-4 cells and FITC-labeled H65 IgG.
  • CD5+ Molt 4 cells (10 ml) were mixed with varying concentrations (1 to 4 ⁇ g/ l) of the H65 IgG or Fab', together with a fixed concentration (0.2 ⁇ g ml) of H65-FITC. Following a 1-hour incubation at 4°C in the dark, cell-associated H65-FITC was measured by flow cytometry.
  • Bacterial expression vectors for 4A2 Fab' were constructed in a similar manner to those for H65 Fab' (Example 3).
  • the mouse hybridoma cell line producing the 4A2 antibody served as the starting point for isolation of the antibody genes.
  • N- terminal amino acid sequence for both the light and heavy chain proteins was also determined to assure that the correct genes were identified and used for subsequent cloning steps.
  • PCR amplification of the light chain V-J region was with primers:
  • the DNA fragment containing the light chain V-J region was digested with Hindlll and cloned as a blunt to Hindlll fragment into pING1500 along with the human kappa constant region to generate pZlG.
  • the DNA fragment containing the heavy chain V-J region was digested with BstEll and cloned as a blunt to BstEll fragment into pING3215 along with a BstEll fragment from CHI to generate pD28H. Plasmids pZIG and pD28H were used to assemble the 4A2 Fab' expression vector, pING3218. This cloning scheme is outlined in Figure 12.
  • Plasmid pING321 ⁇ contains Kappa and Fd', where the C-terminus of Fd' is as shown in Figure 1 gene module A.
  • a derivative of this plasmid, pING3197 was constructed that has an Fd' C-terminus as shown in Figure 1, gene module C.
  • Plasmid pING3197 was derived from pZIG and pD28H where the genes were assembled in the order kappa followed by Fd (opposite order to pING3218), and the Fd' sequence illustrated on Figure 1 gene module C was introduced as a Saul to Xhol fragment from pING3219 (Example 3).
  • F(ab') 2 and Fab' from either pING321 ⁇ or pING3197 were purified from 10 liters of culture supernatant using a process similar to that described for the H65 F(ab') 2 and Fab' from either yeast or E. coli.
  • the fermentation broth was passed through a 0.1 ⁇ M filter and concentrated by ultrafiltration (Amicon S10Y10 membrane) and adjusted to pH 6.5. This concentrate was loaded onto a CM52 column at pH 6.5 in 10 mM phosphate buffer. The CM52 column was eluted with 0.02 N NaCl, and concentrated to 50 ml.
  • the Fab' molecules described in Examples 2, 3, and 4 should contain cysteine thiol groups which can be used for in vitro coupling to a variety of molecules.
  • Initial attempts to couple two Fab' molecules to form a F(ab') 2 were unsuccessful, suggesting that the cysteine thiol groups on these molecules were blocked, possibly due to adduct formation. This hypothesis was confirmed by testing with Ellman's reagent.
  • ING-4 F(ab') 2 produced by yeast and purified as described in Example 2 was incubated for 4 hours at 4°C in 20 mM Tris-HCl, pH 8.0 containing dithiothreitol (DTT) at concentrations from 0.05 to 1 mM.
  • the proteins subsequently were analyzed by SDS-PAGE, followed by coomassie blue staining.
  • a DTT concentration of 0.5 mM was sufficient to reduce the F(ab') 2 molecules to Fab' without affecting the Fd-light chain disulfide bond.
  • DTT concentrations of 1 mM or higher reduced the F(ab') 2 molecules to individual Fd and light chains, as assessed by SDS- PAGE.
  • the H65 Fab' produced by E. coli was tested as above and also required 0.5 mM DTT in 20 mM Tris-HCI, pH 8.0 to selectively reduce the single hinge cysteine nearest the carboxy terminus of Fd without affecting the Fd-light chain disulfide bond. Following removal of excess DTT by gel filtration in 0.1 N acetic acid. Ellman's reagent was used to establish that there were approximately 1.4 thiol groups per Fab' molecule.
  • Example 6 Formation of F(ab') 2 from Fab'
  • Fab' molecules with selectively-reducible thiol groups can be used to form either homodimeric or bifunctional heterodimeric F(ab') 2 molecules.
  • Homodimeric Fab' molecules should retain the affinity of an IgG molecule.
  • Heterobifunctional F(ab') 2 molecules could include specificities toward two different cell types or a cell and a ligand.
  • chimeric ING-2 and ING-4 Fab' molecules containing Fd chains with one or two cysteines at the C terminal side of the Fd-light chain disulfide bond are used for the production of homodimeric and bifunctional, heterodimeric F(ab') 2 molecules.
  • ING-4 Fab' molecules containing an Fd chain with either one or two cysteines on the carboxyl side of the Fd-light chain disulfide bond were used to form F(ab') 2 .
  • Adducts associated with these additional Fd cysteines were removed by incubating 50 ⁇ g of the various Fab' proteins in 20 mM Tris-HCl, pH 8.0, containing dithiothreitol at 0.5 mM DTT in a volume of 50 ⁇ l for 4 hours at 4°C.
  • the reduced Fab' proteins were then diluted to 20 ⁇ g/ml into a cold (4°C) aqueous solution comprised of 2 to 5 mM cysteine in 50 mM Tris-HCl, pH 7.8, and incubated overnight at 4°C to allow reassociation to occur.
  • the solutions were then concentrated by Centricon® 10 to a volume of approximately 50 ⁇ l and F(ab') 2 formation was quantitated by densitometric scanning of coomassie blue-stained bands following SDS-PAGE.
  • the F(ab') 2 can be separated from Fab' by gel filtration.
  • Heterobifunctional F(ab') 2 molecules can be made by reducing the Fab' of two different specificities, either alone or in equimolar mixture, followed by simultaneous addition of the reduced Fab' molecules to the reassociation buffer described above. Using this procedure, a heterobifunctional F(ab') 2 was constructed with chimeric ING-2 and ING- 4 Fab' molecules. Chimeric ING-2 Fab is described by Better et al, PCT US8903852; and chimeric ING-2 Fab' was made in the same manner as described above for ING-4 Fab'. Analysis of the reassociated protein on non-reducing, Coomassie blue-stained SDS gels demonstrated the presence of F(ab')- > protein of the expected molecular weight.
  • Immunotoxins are frequently prepared by randomly derivat ⁇ zing an antibody with the heterobifunctional crosslinker SPDP, followed by a disulfide-exchange reaction with the free thiol of ricin toxin A chain (RTA).
  • RTA ricin toxin A chain
  • the disulfide linkage so produced is essential for maximal conjugate cytotoxic activity (Blakey et al. Prog. Allergy 115: 50 (19 ⁇ )). Since the microbially-produced Fab' fragments described in the present invention contain a selectively-reducible thiol on the Fd chain, the process of disulfide conjugation is greatly simplified and highly specific.
  • conjugates could be used to generate conjugates between a Fab' and any other thiol-containing toxin (viz., abrin A chain), or to create monospecific or bispecific F(ab')- > fragments linked by a disulfide bridge.
  • linkers such as SPDP or 2-iminothiolane
  • conjugates could also be prepared between Fab' fragments and compounds that do not contain selectively-reducible thiols, such as the type I ribosome-inactivating proteins (gelonin, saporin, polkweed antiviral protein, the barley RIP, etc.), enzymes (alkaline phosphatase), or drugs (daunomycin, etc.).
  • the number of RTA30 molecules conjugated to a Fab' is dependent on the reaction conditions and the number of selectively reducible thiols on the Fab'.
  • the Fab' from construct pING3219 has two selectively reducible thiols on the Fd chain, and was conjugated by the methods shown below to make an active Fab'- immunoconjugate with 2 RTA molecules per Fab. a. Preparation of H65 Fab'-RTA30
  • H65 Fab' containing the single selectively- reducible hinge cysteine described in Example 3 and the aromatic disulfide dithiobis(pyridine-N-oxide) were used to prepare a disulfide- crosslinked conjugate with the 30 kD form of RTA (RTA30).
  • H65 Fab' ( ⁇ 6 mg, 2.4 mg/ml in PBS, pH 7.0) was reduced by the addition of dithiothreitol to a final concentration of 2 mM with rapid stirring. Following incubation for 1 hour at 25°C, dithiobis(pyridine-N-oxide) was added to 7 mM and incubation was continued for 1 additional hour.
  • RTA30 Prior to conjugation, RTA30 (300 mg, 6 mg/ml in PBS) was reduced by adding DTT to 50 mM for 30 minutes at 25°C, divided in half, and each half was desalted on a 5 x 30 cm column of Trisacryl GF-05LS equilibrated in PBS.
  • the RTA30-SH contained 0.91 SH/mol, and was concentrated by ultrafiltration on an Amicon YM10® membrane to 6 mg/ml.
  • the thiol-activated H65 Fab' (82 mg) was then mixed with a five ⁇ fold molar excess (246 mg) of the freshly-reduced RTA30 and incubated at 25 °C for 3 hours.
  • the final concentrations of activated Fab' and RTA30 were 1.0 and 3.0 mg/ml, respectively.
  • the Fab'- RTA30 conjugate was purified from the reaction mixture by sequential affinity chromatography on protein G and Cibachron Blue® F3GA resins. First, residual-free RTA30 was removed by applying the mixture to a 10 ml column of GammaBind Plus® (Genex) previously equilibrated in PBS. The column was washed with PBS until the absorbance at 280 nm approached zero; Fab '-RTA30 and any remaining unconjugated Fab ' were eluted with 0.5 M ammonium acetate, pH 3.0.
  • the antigen binding and cytotoxic properties of the H65 Fab'- RTA30 conjugate were evaluated in several systems. Antigen reactivity was assessed by using the competitive binding assay described in Example 3(c). Relative to unconjugated H65 Fab', binding of the Fab-RTA30 conjugate was virtually 100% (30 vs. 27% of control on a molar basis, respectively). Although these values are lower (roughly 1/3 on a molar basis) than that obtained with the parental, bireactive H65 antibody, these results indicate that the process of conjugation has little effect on the reactivity with antigen.
  • FIG. 13 shows the results of a representative experiment in which cells from the CD5 T-cell line HSB2 (5 x 10 * ⁇ per ml) were incubated with increasing concentrations of conjugate for up to 24 hours, at which time the ability of the cells to synthesize protein was quantitated by measuring the incorporation of H- leucine.
  • the Fab'-RTA30 conjugate inhibited protein synthesis in these cells by 50% (the IC50) at a concentration of 43 ng/ml. Based upon a molecular weight of 80,000 daltons, this translates to an IC50 of 0.5 nM.
  • the curves obtained for the free H65 Fab', as well as for the intact IgG H65-RTA30 conjugate are also shown for comparison.
  • H65 Fab'-RTA30 was also tested against human peripheral blood mononuclear cells (PBMC) by an assay which measures the inhibition of DNA synthesis as an index of cellular cytotoxicity.
  • PBMC peripheral blood mononuclear cells
  • PHA Phytohemagglutinin
  • H65 Fab'-RTA30 The cytotoxicity of H65 Fab'-RTA30 for resting and PHA-activated PBMCs is shown in Figure 14.
  • both H65 Fab'-RTA30 and the control H65 IgG-RTA30 exhibited similar IC50 values, which averaged ca. 100 ng/ml for each of the two cell populations.
  • Control IgG (IND1-RTA30) or Fab' (ING-2RTA30) conjugates were nontoxic at the concentrations tested. On a molar basis, the H65 Fab'-RTA30 conjugate was thus roughly 1/3 as active as the IgG conjugate.
  • the H65 Fab'-RTA30 conjugate exhibited a greater degree of cell killing than did the corresponding H65 IgG-RTA30 conjugate. To a lesser extent, this trend to more complete killing with the Fab'-RTA30 conjugate was also noted with each of the cell lines tested (data not shown).
  • immunotoxins are typically composed of an antibody linked to a ribosome-inactivating protein (such as RTA) via a reducible disulfide bond.
  • RTA ribosome-inactivating protein
  • advantage is taken of the intrinsic bivalency of the intact antibody molecule, thereby providing a targeting moiety with an affinity for target cells generally higher than is typical for monovalent antibody fragments.
  • the F(ab') 2 fragments described in the present invention offer an alternative to intact antibodies for the preparation of immunotoxins.
  • F(ab')-> fragments lack Fc receptors which may cause non-specific uptake by macrophages and other cells of the immune system.
  • the F(ab') 2 fragments must first be derivatized with a crosslinking reagent so as to introduce a reactive thiol group necessary for conjugation.
  • a crosslinking reagent such as 5-methyl-2-iminothiolane (M2IT; (see Goff et al, Bioconjugate Chem. 1: 3 ⁇ l-3 ⁇ 6 (1990); and U.S. Patent No. 4,970,303) and the aromatic disulfide dithionitrobenzoic acid (DTNB).
  • M2IT heterobifunctional crosslinking reagent 5-methyl-2-iminothiolane
  • DTNB aromatic disulfide dithionitrobenzoic acid
  • H65 F(ab') (65 mg; 2.9 mg/ml in 25 mM triethanolamine, 150 mM NaCl, 2.5 mM DTNB, pH ⁇ .O) was reacted with a 12-fold molar excess of M2IT at 25°C. Under these conditions, the F(ab') 2 fragments are first derivatized with M2IT, and then the newly exposed linker thiol becomes activated with TNB.
  • the thiol- activated H65 F(ab') 2 -(M2IT)-TNB was recovered by desalting on a 2.5 cm x 40 cm column of Trisacryl® GF05LS equilibrated in 0.1 M NaP04, 0.1 M NaCl, pH 7.5, at 4°C. Spectrophotometric analysis of DTT-treated samples indicated that 1.9 activated thiols had been introduced into the H65 F(ab') 2 fragments.
  • the thiol-activated H65 F(ab') 2 -(M2IT)-TNB (62 mg) was mixed with a three-fold molar excess (58 mg) of RTA30-SH (prepared as described in Example 7) and the mixture was allowed to incubate at 25 °C for 2 hr.
  • the final concentrations of F(ab') 2 and RTA30 were 1.4 and 1.3 mg/ml, respectively.
  • the H65 F(ab') 2 -(M2IT)-RTA30 conjugate was purified away from residual unreacted F(ab') 2 fragments and RTA30 by sequential affinity chromatography on Protein G® and Cibacron Blue® F3GA resins as described in the preceding example.
  • the final conjugate (15 mg) contained a mixture of F(ab') 2 fragments containing 1 or 2 RTA30 molecules, with an average RTA F(ab') 2 ratio of 1.3.
  • Antigen reactivity of the H65 F(ab') 2 -(M2IT)-RTA30 conjugate was examined in the competitive binding assay as described in Example 3(c). Relative to the intact H65 antibody, binding of the F(ab') 2 -RTA conjugate was actually greater (147%) on a molar basis. This result is similar to that seen for the intact H65 antibody conjugate (153% relative to antibody). Thus, the F(ab')-,-RTA conjugate binding was 97% that of the corresponding intact antibody conjugate.
  • the cytotoxic activity of the F(ab') 2 conjugate was examined against several cell types, as described in Example 7(b). Against HSB2 cells, the IC50 was 1.8 ng/ml (13 pM), relative to 23 ng/ml (112 pM) for the intact antibody H65-RTA conjugate. In addition, as was noted with the Fab'-RTA30 conjugate of Example 7, the F(ab') 2 conjugate killed the target cells to a greater extent (92%) than did H65- RTA (78%). Against CEM cells, the IC50 of H65 F(ab') 2 -(M2IT)- ' RTA30 was 22 ng/ml (158 pM), vs.
  • the RTA30 immunoconjugate of microbially-produced F(ab')- ⁇ shows a more potent and complete killing of a variety of target CD5 T cells than does the immunoconjugate of parental mouse antibody.
  • ADDRESSEE Sterne, Kessler, Goldstein & Fox
  • MOLECULE TYPE DNA
  • ACATCTCCAC CATGCCCAGC TCCTGAATTG TTGGCTGGTC CA 42
  • MOLECULE TYPE DNA
  • SEQUENCE DESCRIPTION SEQ ID NO:13:
  • MOLECULE TYPE protein
  • Trp Met Gly Trp lie Asn Thr His Thr Gly Glu Pro Thr Tyr Ala 65 70 75 80
  • MOLECULE TYPE protein
  • ATGGAGTCAG ACACACTCCT GCTATGGGTG CTGCTGCTCT GGGTTCCAGG CTCCACTGGT 60
  • GACATTGTGC TCACCCAATC TCCAGCTTCT TTGGCTGTGT CTCTGGGGCA GAGAGCCACC 120
  • CAACAGAAAC CAGGACAGCC ACCCAAACTC CTCATCTATG CTGCATCCAA CGTAGAATCT 240

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Cette invention concerne des procédés d'ADN recombinant permettant de produire des molécules de fragments d'anticorps F(ab')2 et Fab' à partir de microorganismes tels que des bactéries et de la levure. Les fragments de F(ab')2 et de Fab' recombinants sont sécrétés à partir de cellules hôtes et on peut les récupérer directement de la culture de fermentation. Ces procédés de production directe de F(ab')2 et de Fab' sont avantageux par rapport aux autres procédés existant dans l'art, en ce qu'ils n'utilisent pas de digestions protéolytiques et permettent d'obtenir des molécules homogènes. Des procédés sont décrits pour conjuguer ces fragments à l'aide de procédés visant des restes disponibles d'acides aminés de lysine ou bien des restes de cystérines réductibles de manière sélective, sur des fractions actives telles que la chaîne A de toxines de ricine. Les molécules de fragments F(ab')2 et Fab' produites par des microbes ainsi que leurs immunoconjugués sont utilisés dans des applications thérapeutiques et de diagnostics très diverses.
EP92914467A 1991-06-14 1992-06-15 Fragments d'anticorps produits par des microbes et leurs conjugues Withdrawn EP0590067A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US71417591A 1991-06-14 1991-06-14
US714175 1991-06-14
PCT/US1992/004976 WO1992022324A1 (fr) 1991-06-14 1992-06-15 Fragments d'anticorps produits par des microbes et leurs conjugues

Publications (1)

Publication Number Publication Date
EP0590067A1 true EP0590067A1 (fr) 1994-04-06

Family

ID=24869022

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92914467A Withdrawn EP0590067A1 (fr) 1991-06-14 1992-06-15 Fragments d'anticorps produits par des microbes et leurs conjugues

Country Status (5)

Country Link
EP (1) EP0590067A1 (fr)
JP (1) JPH07503124A (fr)
AU (1) AU2238292A (fr)
CA (1) CA2110799A1 (fr)
WO (1) WO1992022324A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392596A2 (fr) 1999-12-28 2011-12-07 ESBATech, an Alcon Biomedical Research Unit LLC Anticorps simples chaines ScFv ayant une infrastructure définie et stable dans un environnement réducteur et leurs applications

Families Citing this family (390)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618920A (en) 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
WO1993006217A1 (fr) 1991-09-19 1993-04-01 Genentech, Inc. EXPRESSION DANS L'E. COLI DE FRAGMENTS D'ANTICORPS POSSEDANT AU MOINS UNE CYSTEINE PRESENTE SOUS FORME D'UN THIOL LIBRE, ET LEUR UTILISATION DANS LA PRODUCTION D'ANTICORPS BIFONCTIONNELS F(ab')¿2?
US5837491A (en) * 1991-11-04 1998-11-17 Xoma Corporation Polynucleotides encoding gelonin sequences
US6146850A (en) * 1991-11-04 2000-11-14 Xoma Corporation Proteins encoding gelonin sequences
US5621083A (en) * 1991-11-04 1997-04-15 Xoma Corporation Immunotoxins comprising ribosome-inactivating proteins
US5869619A (en) * 1991-12-13 1999-02-09 Xoma Corporation Modified antibody variable domains
CA2507749C (fr) * 1991-12-13 2010-08-24 Xoma Corporation Methodes et materiaux pour la preparation de domaines variables d'anticorps modifies et leurs utilisations therapeutiques
DE4312916C2 (de) * 1993-04-14 1995-03-23 Fresenius Ag Arzneimittel zur Behandlung von Immunreaktionen
JPH08510642A (ja) * 1993-05-12 1996-11-12 ゾマ コーポレイション ゲロニンおよび抗体から成る免疫毒素
US7429646B1 (en) 1995-06-05 2008-09-30 Human Genome Sciences, Inc. Antibodies to human tumor necrosis factor receptor-like 2
US7888466B2 (en) 1996-01-11 2011-02-15 Human Genome Sciences, Inc. Human G-protein chemokine receptor HSATU68
US7964190B2 (en) 1996-03-22 2011-06-21 Human Genome Sciences, Inc. Methods and compositions for decreasing T-cell activity
US6635743B1 (en) 1996-03-22 2003-10-21 Human Genome Sciences, Inc. Apoptosis inducing molecule II and methods of use
EP1093457B8 (fr) 1998-03-19 2011-02-02 Human Genome Sciences, Inc. Analogue de chaine gamma commune de recepteur de cytokine
WO2000050620A2 (fr) 1999-02-26 2000-08-31 Human Genome Sciences, Inc. Endokine alpha humain et methodes d'utilisation
US7291714B1 (en) 1999-06-30 2007-11-06 Millennium Pharmaceuticals, Inc. Glycoprotein VI and uses thereof
US20040001826A1 (en) 1999-06-30 2004-01-01 Millennium Pharmaceuticals, Inc. Glycoprotein VI and uses thereof
WO2002043660A2 (fr) 2000-11-28 2002-06-06 Mediummune, Inc Procedes d'administration / de dosage d'anticorps anti-rsv destines a la prevention et au traitement
AU2001266557A1 (en) 2000-04-12 2001-10-23 Human Genome Sciences, Inc. Albumin fusion proteins
US20030031675A1 (en) 2000-06-06 2003-02-13 Mikesell Glen E. B7-related nucleic acids and polypeptides useful for immunomodulation
AU2001282856A1 (en) 2000-06-15 2001-12-24 Human Genome Sciences, Inc. Human tumor necrosis factor delta and epsilon
CA2407910C (fr) 2000-06-16 2013-03-12 Steven M. Ruben Anticorps se liant de maniere immunospecifique a un stimulateur de lymphocyte b
JP2004529849A (ja) 2000-09-01 2004-09-30 インターナショナル バイオイムン システムズ,インコーポレーテッド 扁平上皮癌に対する特異的モノクローナル抗体の同定と開発
GB0022978D0 (en) 2000-09-19 2000-11-01 Oxford Glycosciences Uk Ltd Detection of peptides
US7090843B1 (en) 2000-11-28 2006-08-15 Seattle Genetics, Inc. Recombinant anti-CD30 antibodies and uses thereof
PT1355919E (pt) 2000-12-12 2011-03-02 Medimmune Llc Moléculas com semivida longa, composições que as contêm e suas utilizações
CN1564826A (zh) 2001-02-09 2005-01-12 人类基因组科学公司 人类g蛋白趋化因子受体(ccr5)hdgnr10
US6709655B2 (en) 2001-02-28 2004-03-23 Instituto Bioclon, S.A. De C.V. Pharmaceutical composition of F(ab1)2 antibody fragments and a process for the preparation thereof
DK1411962T3 (da) * 2001-03-15 2011-04-04 Neogenix Oncology Inc Terapi for pancreacancer med monoklonalt stof
US8231878B2 (en) 2001-03-20 2012-07-31 Cosmo Research & Development S.P.A. Receptor trem (triggering receptor expressed on myeloid cells) and uses thereof
US8981061B2 (en) 2001-03-20 2015-03-17 Novo Nordisk A/S Receptor TREM (triggering receptor expressed on myeloid cells) and uses thereof
EP2228389B1 (fr) 2001-04-13 2015-07-08 Human Genome Sciences, Inc. Anticorps contre facteur de croissance endothéliale vasculaire 2
US6867189B2 (en) 2001-07-26 2005-03-15 Genset S.A. Use of adipsin/complement factor D in the treatment of metabolic related disorders
EP2261250B1 (fr) 2001-12-21 2015-07-01 Human Genome Sciences, Inc. Protéines de fusion d'albumine et GCSF
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
US8093357B2 (en) 2002-03-01 2012-01-10 Xencor, Inc. Optimized Fc variants and methods for their generation
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
GB0207533D0 (en) 2002-04-02 2002-05-08 Oxford Glycosciences Uk Ltd Protein
US7371383B2 (en) 2002-04-12 2008-05-13 Medimmune, Inc. Recombinant anti-interleukin-9 antibodies
CN100418981C (zh) 2002-06-10 2008-09-17 瓦西尼斯公司 在乳腺癌和膀胱癌中差异表达的基因及编码多肽
US7425618B2 (en) 2002-06-14 2008-09-16 Medimmune, Inc. Stabilized anti-respiratory syncytial virus (RSV) antibody formulations
DK1534335T4 (en) 2002-08-14 2015-10-05 Macrogenics Inc FCGAMMARIIB-SPECIFIC ANTIBODIES AND PROCEDURES FOR USE THEREOF
US7335759B2 (en) 2002-12-02 2008-02-26 Universidad Nacional Autónoma de Méxica (UNAM) Recombinant immunogens for the generation of antivenoms to the venom of scorpions of the genus Centruroides
DE10303974A1 (de) 2003-01-31 2004-08-05 Abbott Gmbh & Co. Kg Amyloid-β(1-42)-Oligomere, Verfahren zu deren Herstellung und deren Verwendung
CA2516455C (fr) 2003-02-20 2012-05-01 Seattle Genetics, Inc. Conjugues de medicaments anticorps anti-cd70, utilisation desdits conjugues dans le traitement du cancer et des troubles immunitaires
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
RS54160B1 (sr) 2003-03-19 2015-12-31 Biogen Idec Ma Inc. Protein koji se vezuje za nogo receptor
EP2316487B1 (fr) 2003-04-11 2014-06-11 MedImmune, LLC Anticorps IL-9 recombinants et leurs utilisations
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
JP2008500005A (ja) 2003-07-15 2008-01-10 バロス リサーチ インスティテュート 癌及び感染症の免疫療法のための組成物及び方法
EP1651266B1 (fr) * 2003-07-25 2010-03-03 Laboratorios Silanes, S.A. de C.V. Administration de fragments d'anticorps f(ab')2 anti-tnf-alpha
WO2005014795A2 (fr) 2003-08-08 2005-02-17 Genenews Inc. Biomarqueurs d'osteoarthrite et leurs utilisations
JP4934426B2 (ja) 2003-08-18 2012-05-16 メディミューン,エルエルシー 抗体のヒト化
US8101720B2 (en) 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
US9714282B2 (en) 2003-09-26 2017-07-25 Xencor, Inc. Optimized Fc variants and methods for their generation
HUE027902T2 (en) 2004-02-09 2016-11-28 Human Genome Sciences Inc Corp Service Company Albumin fusion proteins
KR101239542B1 (ko) 2004-06-24 2013-03-07 바이오겐 아이덱 엠에이 인코포레이티드 탈수초화를 수반하는 병의 치료
US20150010550A1 (en) 2004-07-15 2015-01-08 Xencor, Inc. OPTIMIZED Fc VARIANTS
CA2576193A1 (fr) 2004-08-03 2006-02-16 Biogen Idec Ma Inc. Influence du taj sur les fonctions neuronales
US7700720B2 (en) 2004-09-21 2010-04-20 Medimmune, Llc Antibodies against and methods for producing vaccines for respiratory syncytial virus
EP2422811A2 (fr) 2004-10-27 2012-02-29 MedImmune, LLC Modulation d'une spécificité d'anticorps par adaptation sur mesure de son affinité a une antigène apparente
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
US8546543B2 (en) 2004-11-12 2013-10-01 Xencor, Inc. Fc variants that extend antibody half-life
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
EP2332985A3 (fr) 2004-11-12 2012-01-25 Xencor, Inc. Variants de Fc avec une liaison altérée à fcrn
GB0426146D0 (en) 2004-11-29 2004-12-29 Bioxell Spa Therapeutic peptides and method
CA2599589A1 (fr) 2005-02-07 2006-08-17 Genenews,Inc. Biomarqueurs de l'osteoarthrite benigne et utilisations
CA2597924C (fr) 2005-02-15 2018-10-02 Duke University Anticorps anti-cd19 et leur utilisation en oncologie
EP1858545A2 (fr) 2005-03-04 2007-11-28 Curedm Inc. Methodes et compositions pharmaceutiques pour traiter des diabetes sucres de type 1 et d'autres troubles
JP5153613B2 (ja) 2005-03-18 2013-02-27 メディミューン,エルエルシー 抗体のフレームワーク・シャッフル
US7381802B2 (en) 2005-04-15 2008-06-03 Universidad Nacional Autónoma De México (UNAM) Human antibodies that specifically recognize the toxin Cn2 from Centruroides noxius scorpion venom
US7393919B2 (en) 2005-05-25 2008-07-01 Cure Dm, Inc. Peptides, derivatives and analogs thereof, and methods of using same
KR20080025174A (ko) 2005-06-23 2008-03-19 메디뮨 인코포레이티드 응집 및 단편화 프로파일이 최적화된 항체 제제
TW201444869A (zh) 2005-06-30 2014-12-01 Abbvie Inc Il-12/p40結合蛋白
RS53058B (en) 2005-07-08 2014-04-30 Biogen Idec Ma Inc. SP35 ANTIBODIES AND THEIR APPLICATIONS
EP1920057A4 (fr) 2005-08-03 2009-03-18 Grains Res & Dev Corp Polysaccharide synthases
EP1928506A4 (fr) 2005-08-19 2009-10-21 Abbott Lab Immunoglobuline a deux domaines variables et utilisations de celle-ci
EP2500353A3 (fr) 2005-08-19 2012-10-10 Abbott Laboratories Immunoglobuline à double domaine variable et ses utilisations
US7612181B2 (en) 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
JP2009510002A (ja) 2005-09-30 2009-03-12 アボット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 反発誘導分子(rgm)タンパク質ファミリーのタンパク質の結合ドメイン、及びその機能的断片、及びそれらの使用
EP1931709B1 (fr) 2005-10-03 2016-12-07 Xencor, Inc. Variants de fc dotés de propriétés de liaison aux récepteurs fc optimisées
CA2625998C (fr) 2005-10-06 2015-12-01 Xencor, Inc. Anticorps anti-cd30 optimises
EP2319941A3 (fr) 2005-10-21 2011-08-17 GeneNews Inc. Procédé et appareil pour corréler des niveaux de produits biomarqueurs avec une maladie
CA2628451A1 (fr) 2005-11-04 2007-05-18 Biogen Idec Ma Inc. Procedes favorisant la croissance des neurites et la survie des neurones dopaminergiques
AU2006311661B2 (en) 2005-11-07 2011-05-26 The Scripps Research Institute Compositions and methods for controlling tissue factor signaling specificity
DK1963369T3 (da) 2005-11-28 2013-06-03 Zymogenetics Inc Il-21-antagonister
RU2442793C2 (ru) 2005-11-30 2012-02-20 Эбботт Лэборетриз АНТИТЕЛА ПРОТИВ ГЛОБУЛОМЕРА Аβ, ИХ АНТИГЕНСВЯЗЫВАЮЩИЕ ЧАСТИ, СООТВЕТСТВУЮЩИЕ ГИБРИДОМЫ, НУКЛЕИНОВЫЕ КИСЛОТЫ, ВЕКТОРЫ, КЛЕТКИ-ХОЗЯЕВА, СПОСОБЫ ПОЛУЧЕНИЯ УКАЗАННЫХ АНТИТЕЛ, КОМПОЗИЦИИ, СОДЕРЖАЩИЕ УКАЗАННЫЕ АНТИТЕЛА, ПРИМЕНЕНИЯ УКАЗАННЫХ АНТИТЕЛ И СПОСОБЫ ИСПОЛЬЗОВАНИЯ УКАЗАННЫХ АНТИТЕЛ
SG2014013437A (en) 2005-11-30 2014-07-30 Abbott Lab Monoclonal antibodies and uses thereof
EP2543384A3 (fr) 2005-12-02 2013-04-10 Biogen Idec MA Inc. Traitement des conditions impliquant la démyélinisation
CA2913655A1 (fr) 2006-01-27 2007-08-09 Biogen Ma Inc. Antagonistes des recepteurs nogo
EP2650306A1 (fr) 2006-03-06 2013-10-16 Aeres Biomedical Limited Anticorps humanisés anti CD22 et leur utilisation dans le traitement de l'oncologie, la transplantation et les maladies auto-immunes
GB0611116D0 (en) 2006-06-06 2006-07-19 Oxford Genome Sciences Uk Ltd Proteins
BRPI0713426A2 (pt) 2006-06-14 2012-10-09 Macrogenics Inc métodos de tratar, diminuir a progressão, ou melhorar um ou mais sintomas de um distúrbio, e de prevenir ou retardar o inìcio de um distúrbio
LT2029173T (lt) 2006-06-26 2016-11-10 Macrogenics, Inc. Fc riib specifiniai antikūnai ir jų panaudojimo būdai
US7572618B2 (en) 2006-06-30 2009-08-11 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
USRE47123E1 (en) 2006-07-18 2018-11-13 Sanofi EPHA2 receptor antagonist antibodies
WO2008022152A2 (fr) 2006-08-14 2008-02-21 Xencor, Inc. Anticorps optimisés ciblant cd19
JP5209625B2 (ja) 2006-08-28 2013-06-12 協和発酵キリン株式会社 アンタゴニストのヒトlight特異的ヒトモノクローナル抗体
MX349810B (es) 2006-09-08 2017-08-14 Abbvie Bahamas Ltd Proteinas de enlace de interleucina-13.
AU2007299843B2 (en) 2006-09-18 2012-03-08 Xencor, Inc Optimized antibodies that target HM1.24
EP2407548A1 (fr) 2006-10-16 2012-01-18 MedImmune, LLC Molécules ayant des demi-vies réduites, compositions et leurs utilisations
EP1914242A1 (fr) 2006-10-19 2008-04-23 Sanofi-Aventis Nouveau anticorps Anti-CD38 pour le traitement du cancer
US8785400B2 (en) 2006-11-22 2014-07-22 Curedm Group Holdings, Llc Methods and compositions relating to islet cell neogenesis
US8455626B2 (en) 2006-11-30 2013-06-04 Abbott Laboratories Aβ conformer selective anti-aβ globulomer monoclonal antibodies
EP2687232A1 (fr) 2006-12-06 2014-01-22 MedImmune, LLC Procédés de traitement du lupus érythémateux systémique
EP2740744B1 (fr) 2007-01-09 2018-03-28 Biogen MA Inc. Anticorps Sp35 et utilisations associées
US8128926B2 (en) 2007-01-09 2012-03-06 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
US8685666B2 (en) 2007-02-16 2014-04-01 The Board Of Trustees Of Southern Illinois University ARL-1 specific antibodies and uses thereof
US8114606B2 (en) 2007-02-16 2012-02-14 The Board Of Trustees Of Southern Illinois University ARL-1 specific antibodies
WO2008104803A2 (fr) 2007-02-26 2008-09-04 Oxford Genome Sciences (Uk) Limited Protéines
EP3118221B1 (fr) 2007-02-26 2019-08-21 Oxford BioTherapeutics Ltd Proteines
US20100311767A1 (en) 2007-02-27 2010-12-09 Abbott Gmbh & Co. Kg Method for the treatment of amyloidoses
AU2008232902B2 (en) 2007-03-30 2013-10-03 Medlmmune, Llc Antibody formulation
US7807168B2 (en) 2007-04-10 2010-10-05 Vaccinex, Inc. Selection of human TNFα specific antibodies
US20080279851A1 (en) 2007-05-07 2008-11-13 Medlmmune, Llc Anti-icos antibodies and their use in treatment of oncology, transplantation and autoimmune disease
SG10201503254TA (en) 2007-05-14 2015-06-29 Medimmune Llc Methods of reducing eosinophil levels
US8816047B2 (en) 2007-08-30 2014-08-26 Cure DM Group Holdings, LLC Compositions and methods of using proislet peptides and analogs thereof
GB0719231D0 (en) 2007-10-03 2007-11-14 Oxford Genome Sciences Uk Ltd Protein
PT2219452E (pt) 2007-11-05 2016-01-26 Medimmune Llc Métodos de tratamento de esclerodermia
US9308257B2 (en) 2007-11-28 2016-04-12 Medimmune, Llc Protein formulation
SI2235059T1 (sl) 2007-12-26 2015-06-30 Xencor, Inc. Fc variante s spremenjeno vezjo na fcrn
AU2009203350B2 (en) 2008-01-11 2014-03-13 Gene Techno Science Co., Ltd. Humanized anti-alpha9 integrin antibodies and the uses thereof
CN102083460A (zh) 2008-01-18 2011-06-01 米迪缪尼有限公司 用于位点特异性偶联的半胱氨酸工程化抗体
JP5608100B2 (ja) 2008-02-08 2014-10-15 メディミューン,エルエルシー 低下したFcリガンド親和性を有する抗IFNAR1抗体
US8962803B2 (en) 2008-02-29 2015-02-24 AbbVie Deutschland GmbH & Co. KG Antibodies against the RGM A protein and uses thereof
US20110020368A1 (en) 2008-03-25 2011-01-27 Nancy Hynes Treating cancer by down-regulating frizzled-4 and/or frizzled-1
EP2276509B1 (fr) 2008-04-11 2016-06-15 Seattle Genetics, Inc. Détection et traitement du cancer du pancréas, des ovaires et d'autres cancers
AU2009238897B2 (en) 2008-04-24 2015-03-19 Gene Techno Science Co., Ltd. Humanized antibodies specific for amino acid sequence RGD of an extracellular matrix protein and the uses thereof
CN102076355B (zh) 2008-04-29 2014-05-07 Abbvie公司 双重可变结构域免疫球蛋白及其用途
BRPI0911758A8 (pt) 2008-05-09 2017-10-10 Abbott Lab Anticorpos para receptor de produtos finais de glicação avançada (rage) e utilizações dos mesmos
EP3002299A1 (fr) 2008-06-03 2016-04-06 AbbVie Inc. Immunoglobulines à deux domaines variables et leurs utilisations
US9109026B2 (en) 2008-06-03 2015-08-18 Abbvie, Inc. Dual variable domain immunoglobulins and uses thereof
RU2559525C2 (ru) 2008-07-08 2015-08-10 Эббви Инк Белки, связывающие простагландин е2, и их применение
KR20110031369A (ko) 2008-07-08 2011-03-25 아보트 러보러터리즈 프로스타글란딘 e2 이원 가변 도메인 면역글로불린 및 이의 용도
DK2982695T3 (da) 2008-07-09 2019-05-13 Biogen Ma Inc Sammensætninger, der omfatter antistoffer mod lingo eller fragmenter deraf
CA2741523C (fr) 2008-10-24 2022-06-21 Jonathan S. Towner Espece de virus ebola humain et compositions et procedes associes
EP2358392B1 (fr) 2008-11-12 2019-01-09 MedImmune, LLC Formulation d'anticorps
AU2009334498A1 (en) 2008-12-31 2011-07-21 Biogen Idec Ma Inc. Anti-lymphotoxin antibodies
EP2389195B1 (fr) 2009-01-20 2015-05-20 Homayoun H. Zadeh Régénération osseuse à médiation par des anticorps
WO2010084408A2 (fr) 2009-01-21 2010-07-29 Oxford Biotherapeutics Ltd. Protéine pta089
US8852608B2 (en) 2009-02-02 2014-10-07 Medimmune, Llc Antibodies against and methods for producing vaccines for respiratory syncytial virus
WO2010093993A2 (fr) 2009-02-12 2010-08-19 Human Genome Sciences, Inc. Utilisation d'antagonistes de la protéine stimulant les lymphocytes b afin de favoriser la tolérance aux greffes
EP2810652A3 (fr) 2009-03-05 2015-03-11 AbbVie Inc. Protéines se liant à un IL-17
WO2010100247A1 (fr) 2009-03-06 2010-09-10 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Nouvelle thérapie contre l'anxiété
KR101667227B1 (ko) 2009-03-10 2016-10-18 가부시키가이샤 진 테크노 사이언스 인간화된 k33n 단일 클론 항체의 제조, 발현 및 해석
EP2241323A1 (fr) 2009-04-14 2010-10-20 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Tenascine-W et cancers du cerveau
KR101736076B1 (ko) 2009-04-20 2017-05-16 옥스포드 바이오테라퓨틱스 리미티드 카드헤린-17에 특이적인 항체
US20120213705A1 (en) 2009-06-22 2012-08-23 Medimmune, Llc ENGINEERED Fc REGIONS FOR SITE-SPECIFIC CONJUGATION
IE20090514A1 (en) 2009-07-06 2011-02-16 Opsona Therapeutics Ltd Humanised antibodies and uses therof
DK2464664T3 (da) 2009-08-13 2016-01-18 Crucell Holland Bv Antistoffer mod humant respiratorisk syncytialvirus (rsv) og fremgangsmåder til anvendelse deraf
EP2292266A1 (fr) 2009-08-27 2011-03-09 Novartis Forschungsstiftung, Zweigniederlassung Traitement du cancer en modulant la copine III
PE20121647A1 (es) 2009-08-29 2012-12-31 Abbvie Inc Proteinas terapeuticas de union a dll4
NZ598929A (en) 2009-09-01 2014-05-30 Abbvie Inc Dual variable domain immunoglobulins and uses thereof
WO2011028952A1 (fr) 2009-09-02 2011-03-10 Xencor, Inc. Compositions et procédés pour une co-liaison bivalente et monovalente simultanée d'antigènes
EP2480573A1 (fr) 2009-09-22 2012-08-01 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Traitement du cancer par modulation de mex-3
AR078470A1 (es) 2009-10-02 2011-11-09 Sanofi Aventis Anticuerpos que se unen especificamente al receptor epha2
WO2011047083A1 (fr) 2009-10-13 2011-04-21 Oxford Biotherapeutics Ltd. Anticorps anti-epha10
EP2488548A1 (fr) 2009-10-14 2012-08-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung Variant d'épissage de la protéine apparentée à la lipoprotéine de faible densité 1 en tant que marqueur du cancer
CN102666875A (zh) 2009-10-15 2012-09-12 雅培制药有限公司 双重可变结构域免疫球蛋白及其用途
WO2011045352A2 (fr) 2009-10-15 2011-04-21 Novartis Forschungsstiftung Tyrosine kinase de la rate et cancers du cerveau
UY32979A (es) 2009-10-28 2011-02-28 Abbott Lab Inmunoglobulinas con dominio variable dual y usos de las mismas
US20120213801A1 (en) 2009-10-30 2012-08-23 Ekaterina Gresko Phosphorylated Twist1 and cancer
WO2011053707A1 (fr) 2009-10-31 2011-05-05 Abbott Laboratories Anticorps pour récepteur pour produits terminaux de glycation avancée (rage) et utilisations de ceux-ci
WO2011054007A1 (fr) 2009-11-02 2011-05-05 Oxford Biotherapeutics Ltd. Ror1 comme cible thérapeutique et diagnostique
WO2011056073A2 (fr) 2009-11-04 2011-05-12 Erasmus University Medical Center Rotterdam Composés inédits capables de moduler la néovascularisation et méthodes de traitement faisant appel à ces composés
US9244063B2 (en) 2009-11-11 2016-01-26 Gentian As Immunoassay for assessing related analytes of different origin
MX2012006560A (es) 2009-12-08 2012-10-05 Abbott Gmbh & Co Kg Anticuerpos monoclonales contra la proteina rgm a para utilizarse en el tratamiento de degeneracion de capa de fibra de nervio retinal.
US8362210B2 (en) 2010-01-19 2013-01-29 Xencor, Inc. Antibody variants with enhanced complement activity
RU2605928C2 (ru) 2010-03-02 2016-12-27 Эббви Инк. Терапевтические dll4-связывающие белки
WO2011107586A1 (fr) 2010-03-05 2011-09-09 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research, Smoc1, ténascine-c et cancers du cerveau
MX360403B (es) 2010-04-15 2018-10-31 Abbvie Inc Proteinas de union a amiloide beta.
WO2011131611A1 (fr) 2010-04-19 2011-10-27 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Modulation de xrn1
US9011852B2 (en) 2010-04-30 2015-04-21 Alexion Pharmaceuticals, Inc. Anti-C5a antibodies
PE20130205A1 (es) 2010-05-14 2013-03-24 Abbvie Inc Proteinas de union a il-1
US20110293629A1 (en) 2010-05-14 2011-12-01 Bastid Jeremy Methods of Treating and/or Preventing Cell Proliferation Disorders with IL-17 Antagonists
EP2580239A1 (fr) 2010-06-10 2013-04-17 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Traitement du cancer par modulation de la kinase 3 stérile de mammifère de type 20
WO2012006500A2 (fr) 2010-07-08 2012-01-12 Abbott Laboratories Anticorps monoclonaux contre la protéine de capside du virus de l'hépatite c
UY33492A (es) 2010-07-09 2012-01-31 Abbott Lab Inmunoglobulinas con dominio variable dual y usos de las mismas
NZ603488A (en) 2010-07-09 2015-02-27 Crucell Holland Bv Anti-human respiratory syncytial virus (rsv) antibodies and methods of use
BR112013002578A2 (pt) 2010-08-03 2019-05-14 Abbvie Inc. imunoglobinas de domínio variável duplo e usos das mesmas
US20130177555A1 (en) 2010-08-13 2013-07-11 Medimmune Limited Monomeric Polypeptides Comprising Variant FC Regions And Methods Of Use
JP6147665B2 (ja) 2010-08-14 2017-06-14 アッヴィ・インコーポレイテッド アミロイドベータ結合タンパク質
WO2012022734A2 (fr) 2010-08-16 2012-02-23 Medimmune Limited Anticorps anti-icam-1 et procédés d'utilisation
AU2011291462A1 (en) 2010-08-19 2013-03-14 Zoetis Belgium S.A. Anti-NGF antibodies and their use
AU2011293253B2 (en) 2010-08-26 2014-12-11 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
WO2012032143A1 (fr) 2010-09-10 2012-03-15 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Twist1 phosphorylé et métastase
EP2640738A1 (fr) 2010-11-15 2013-09-25 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Agents antifongiques
SG10201604699VA (en) 2010-12-21 2016-07-28 Abbvie Inc Il-1 -alpha and -beta bispecific dual variable domain immunoglobulins and their use
TW201307388A (zh) 2010-12-21 2013-02-16 Abbott Lab Il-1結合蛋白
US9505826B2 (en) 2010-12-22 2016-11-29 Teva Pharmaceuticals Australia Pty Ltd Modified antibody with improved half-life
DK2668210T3 (da) 2011-01-26 2020-08-24 Celldex Therapeutics Inc Anti-kit antistoffer og anvendelser deraf
RU2625034C2 (ru) 2011-04-20 2017-07-11 МЕДИММЬЮН, ЭлЭлСи Антитела и другие молекулы, которые связывают в7-н1 и pd-1
KR101833465B1 (ko) 2011-05-06 2018-02-28 넥스베트 오스트레일리아 피티와이 리미티드 항신경 성장 인자 항체 및 그의 제조방법과 이용방법
KR20170070272A (ko) 2011-05-06 2017-06-21 넥스베트 오스트레일리아 피티와이 리미티드 항신경성 성장 인자 항체 및 그의 제조방법과 이용방법
GB201114858D0 (en) 2011-08-29 2011-10-12 Nvip Pty Ltd Anti-nerve growth factor antibodies and methods of using the same
HRP20211869T1 (hr) 2011-05-06 2022-03-04 Zoetis Services Llc Protutijela protiv faktora rasta živca i postupci za njihovu proizvodnju i uporabu
WO2012168259A1 (fr) 2011-06-06 2012-12-13 Novartis Forschungsstiftung, Zweigniederlassung Protéine tyrosine phosphatase de type non-récepteur 11 (ptpn11), et cancer du sein triple négatif
US9561274B2 (en) 2011-06-07 2017-02-07 University Of Hawaii Treatment and prevention of cancer with HMGB1 antagonists
US9244074B2 (en) 2011-06-07 2016-01-26 University Of Hawaii Biomarker of asbestos exposure and mesothelioma
EP3385280A1 (fr) 2011-06-10 2018-10-10 MedImmune Limited Molécules de liaison anti-psl de pseudomonas et leurs utilisations
LT2726094T (lt) 2011-06-28 2017-02-10 Oxford Biotherapeutics Ltd Gydymo ir diagnozavimo objektas
PE20140756A1 (es) 2011-06-28 2014-07-04 Oxford Biotherapeutics Ltd Anticuerpos que se unen a bst1
WO2013009648A2 (fr) 2011-07-08 2013-01-17 Momenta Pharmaceuticals, Inc. Procédé de culture cellulaire
AU2012283039A1 (en) 2011-07-13 2014-01-30 Abbvie Inc. Methods and compositions for treating asthma using anti-IL-13 antibodies
GB201112056D0 (en) 2011-07-14 2011-08-31 Univ Leuven Kath Antibodies
CA2845536A1 (fr) 2011-08-15 2013-02-21 Amplimmune, Inc. Anticorps anti-b7-h4 et leurs utilisations
KR20140063752A (ko) 2011-08-30 2014-05-27 엔브이아이피 피티와이 리미티드 견화(犬化) 종양 괴사 인자 항체 및 그의 이용방법
WO2013034660A1 (fr) 2011-09-09 2013-03-14 Medimmune Limited Anticorps anti-siglec-15 et utilisations associées
BR112014009799A2 (pt) 2011-10-24 2017-06-13 Abbvie Inc imunoligantes dirigidos conra tnf
SG11201401791WA (en) 2011-10-24 2014-08-28 Abbvie Inc Immunobinders directed against sclerostin
EP2773664A1 (fr) 2011-11-01 2014-09-10 Bionomics, Inc. Anticorps anti-gpr49
JP2014533247A (ja) 2011-11-01 2014-12-11 バイオノミクス インコーポレイテッド 抗体および癌を治療する方法
ES2697674T3 (es) 2011-11-01 2019-01-25 Bionomics Inc Procedimientos para bloquear el crecimiento de células madre cancerosas
AU2012332593B2 (en) 2011-11-01 2016-11-17 Bionomics, Inc. Anti-GPR49 antibodies
WO2013068431A1 (fr) 2011-11-08 2013-05-16 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research Traitement inédit contre les maladies neurodégénératives
US20140294732A1 (en) 2011-11-08 2014-10-02 Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute Early diagnostic of neurodegenerative diseases
US10118958B2 (en) 2011-12-14 2018-11-06 AbbVie Deutschland GmbH & Co. KG Composition and method for the diagnosis and treatment of iron-related disorders
WO2013090633A2 (fr) 2011-12-14 2013-06-20 AbbVie Deutschland GmbH & Co. KG Composition et méthode pour le diagnostic et le traitement de troubles liés au fer
CA3111357A1 (fr) 2011-12-23 2013-06-27 Pfizer Inc. Regions constantes d'anticorps modifies pour conjugaison specifique a un site, et leurs procedes et utilisations
TW201333035A (zh) 2011-12-30 2013-08-16 Abbvie Inc 針對il-13及/或il-17之雙特異性結合蛋白
WO2013102825A1 (fr) 2012-01-02 2013-07-11 Novartis Ag Cdcp1 et cancer du sein
PL2807192T3 (pl) 2012-01-27 2019-02-28 Abbvie Deutschland Kompozycja oraz sposób diagnostyki i leczenia chorób związanych ze zwyrodnieniem neurytów
CN104254778A (zh) 2012-02-10 2014-12-31 西雅图遗传学公司 Cd30+癌症的检测和治疗
CN104203977A (zh) 2012-02-15 2014-12-10 诺和诺德A/S(股份有限公司) 结合肽聚糖识别蛋白1的抗体
US9550830B2 (en) 2012-02-15 2017-01-24 Novo Nordisk A/S Antibodies that bind and block triggering receptor expressed on myeloid cells-1 (TREM-1)
EP2814844B1 (fr) 2012-02-15 2017-08-02 Novo Nordisk A/S Anticorps qui se lient et bloquent la stimulation d'un récepteur exprimé sur des cellules myéloïdes 1 (trem-1)
EP2831112A1 (fr) 2012-03-29 2015-02-04 Friedrich Miescher Institute for Biomedical Research Inhibition de l'interleukine 8 et/ou de ses récepteurs cxcrl dans le traitement du cancer du sein surexprimant her2/her3
EP2841452B1 (fr) 2012-04-25 2023-04-12 Momenta Pharmaceuticals, Inc. Glycoprotéines modifiées
NZ702178A (en) 2012-05-14 2017-01-27 Biogen Ma Inc Lingo-2 antagonists for treatment of conditions involving motor neurons
MX362497B (es) 2012-05-15 2019-01-21 Eisai Inc Un anticuerpo que se une específicamente al receptor alfa del folato y usos del mismo.
CN104603149B (zh) 2012-05-24 2017-06-30 万机集团有限公司 与预防和治疗狂犬病感染相关的组合物和方法
EP2859018B1 (fr) 2012-06-06 2021-09-22 Zoetis Services LLC Anticorps anti-ngf caninisés et procédés associés
WO2014001482A1 (fr) 2012-06-29 2014-01-03 Novartis Forschungsstiftung, Zweigniererlassung, Friedrich Miescher Institute For Biomedical Research Traitement de maladies par modulation d'un isoforme spécifique de mkl-1
WO2014006114A1 (fr) 2012-07-05 2014-01-09 Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research Nouveau traitement pour maladies neurodégénératives
EP2869818A1 (fr) 2012-07-06 2015-05-13 Novartis AG Combinaison d'un inhibiteur de phosphoinositide 3-kinase et d'un inhibiteur de l'interaction il-8/cxcr
AR091755A1 (es) 2012-07-12 2015-02-25 Abbvie Inc Proteinas de union a il-1
GB201213652D0 (en) 2012-08-01 2012-09-12 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
US9365641B2 (en) 2012-10-01 2016-06-14 The Trustees Of The University Of Pennsylvania Compositions and methods for targeting stromal cells for the treatment of cancer
EP2906241B1 (fr) 2012-10-12 2020-01-08 The Brigham and Women's Hospital, Inc. Renforcement de la réponse immunitaire
MY194330A (en) 2012-11-01 2022-11-28 Abbvie Inc Anti-dll4/vegf dual variable domain immunoglobulin and uses thereof
WO2014100542A1 (fr) 2012-12-21 2014-06-26 Abbvie, Inc. Humanisation d'anticorps à haut rendement
JP6359031B2 (ja) 2012-12-21 2018-07-18 メディミューン,エルエルシー 抗h7cr抗体
GB201302447D0 (en) 2013-02-12 2013-03-27 Oxford Biotherapeutics Ltd Therapeutic and diagnostic target
WO2014129895A1 (fr) 2013-02-19 2014-08-28 Stichting Vu-Vumc Moyen et méthode d'augmentation de la sensibilité de cancers à la radiothérapie
US9217168B2 (en) 2013-03-14 2015-12-22 Momenta Pharmaceuticals, Inc. Methods of cell culture
CN105209616A (zh) 2013-03-14 2015-12-30 雅培制药有限公司 用于改进的抗体检测的hcv ns3重组抗原及其突变体
EP2968526A4 (fr) 2013-03-14 2016-11-09 Abbott Lab Dosage de combinaison antigène-anticorps du virus de l'hépatite c et procédés et compositions destinés à être utilisés avec celui-ci
US8956830B2 (en) 2013-03-14 2015-02-17 Momenta Pharmaceuticals, Inc. Methods of cell culture
CN113549148A (zh) 2013-03-14 2021-10-26 雅培制药有限公司 Hcv核心脂质结合结构域单克隆抗体
CN105324396A (zh) 2013-03-15 2016-02-10 艾伯维公司 针对IL-1β和/或IL-17的双重特异性结合蛋白
KR20220041957A (ko) 2013-03-15 2022-04-01 아비에 도이치란트 게엠베하 운트 콤파니 카게 항-egfr 항체 약물 접합체 제형
US9469686B2 (en) 2013-03-15 2016-10-18 Abbott Laboratories Anti-GP73 monoclonal antibodies and methods of obtaining the same
EP2990485B1 (fr) * 2013-04-25 2019-09-11 Kaneka Corporation Gene de chaine fd ou gene de chaine l chacun apte a augmenter la quantite de secretion d'anticorps de type fab
US20160108450A1 (en) 2013-05-02 2016-04-21 Momenta Pharmaceutcals, Inc. Sialylated glycoproteins
AU2014268298B2 (en) 2013-05-24 2019-01-17 Medlmmune, Llc Anti-B7-H5 antibodies and their uses
SG11201509982UA (fr) 2013-06-06 2016-04-28 Igenica Biotherapeutics Inc
EP3003372B1 (fr) 2013-06-07 2019-10-09 Duke University Inhibiteurs du facteur h du complément
US20160151486A1 (en) 2013-06-13 2016-06-02 Fast Foward Pharmaceuticals B.V. CD40 Signalling Inhibitor and a Further Compound, Wherein the Further Compound is a Bile Acid, a Bile Acid Derivative, an TGR5-Receptor Agonist, an FXR Agonist or a Combination Thereof, for the Treatment of Chronic Inflammation, and the Prevention of Gastrointestinal Cancer or Fibrosis
US20160178610A1 (en) 2013-08-07 2016-06-23 Friedrich Miescher Institute For Biomedical Research New screening method for the treatment Friedreich's ataxia
DK3041507T3 (da) 2013-08-26 2021-07-26 Biontech Res And Development Inc Nukleinsyrer, der koder for humane antistoffer mod sialyl-lewis a
WO2015050959A1 (fr) 2013-10-01 2015-04-09 Yale University Anticorps anti-kits et leurs méthodes d'utilisation
AU2014329609B2 (en) 2013-10-02 2019-09-12 Humabs Biomed Sa Neutralizing anti-influenza A antibodies and uses thereof
WO2015057622A1 (fr) 2013-10-16 2015-04-23 Momenta Pharmaceuticals, Inc. Glycoprotéines sialylées
WO2015073575A2 (fr) 2013-11-12 2015-05-21 Centre For Probe Development And Commercialization Groupes de liaison à résidualisation et leurs applications
CN106062005A (zh) 2013-12-30 2016-10-26 医药生命融合研究团 抗krs单克隆抗体及其用途
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
NZ711451A (en) 2014-03-07 2016-05-27 Alexion Pharma Inc Anti-c5 antibodies having improved pharmacokinetics
US9738702B2 (en) 2014-03-14 2017-08-22 Janssen Biotech, Inc. Antibodies with improved half-life in ferrets
CA2944649C (fr) 2014-04-04 2022-06-21 Bionomics, Inc. Anticorps humanises qui se lient a lgr5
US20170267780A1 (en) 2014-05-16 2017-09-21 Medimmune, Llc Molecules with altered neonate fc receptor binding having enhanced therapeutic and diagnostic properties
RS61678B1 (sr) 2014-05-28 2021-05-31 Agenus Inc Anti-gitr antitela i postupci za njihovu primenu
KR102614642B1 (ko) 2014-06-04 2023-12-19 바이오엔테크 리서치 앤드 디벨롭먼트 인코포레이티드 강글리오사이드 gd2에 대한 사람 단클론 항체
US20170137824A1 (en) 2014-06-13 2017-05-18 Indranil BANERJEE New treatment against influenza virus
US10308935B2 (en) 2014-06-23 2019-06-04 Friedrich Miescher Institute For Biomedical Research Methods for triggering de novo formation of heterochromatin and or epigenetic silencing with small RNAS
EP3164129A1 (fr) 2014-07-01 2017-05-10 Friedrich Miescher Institute for Biomedical Research Combinaison d'un inhibiteur de braf v600e et d'un inhibiteur de mertk pour le traitement du mélanome
CN106536559B (zh) 2014-07-17 2021-04-27 诺和诺德股份有限公司 定点诱变trem-1抗体以降低黏度
US20170298360A1 (en) 2014-09-24 2017-10-19 Friedrich Miescher Institute For Biomedical Research Lats and breast cancer
MX2017004196A (es) 2014-10-01 2017-07-19 Medimmune Ltd Anticuerpos contra ticagrelor y metodos de uso.
PT3333191T (pt) 2014-12-11 2020-12-15 Pf Medicament Anticorpos anti-c10orf54 e suas utilizações
US10093733B2 (en) 2014-12-11 2018-10-09 Abbvie Inc. LRP-8 binding dual variable domain immunoglobulin proteins
EP3789039A1 (fr) 2014-12-22 2021-03-10 The Rockefeller University Anticorps agonistes anti-mertk et leurs utilisations
AU2016205197B2 (en) 2015-01-08 2021-10-21 Biogen Ma Inc. LINGO-1 antagonists and uses for treatment of demyelinating disorders
BR112017015880A2 (pt) 2015-03-03 2018-07-31 Kymab Ltd anticorpos, usos e métodos
JP2018518152A (ja) 2015-03-27 2018-07-12 ユニバーシティ オブ サザン カリフォルニア 充実性腫瘍を処置するためのlhrに指向されたcar t細胞治療
KR20180002782A (ko) 2015-05-06 2018-01-08 얀센 바이오테크 인코포레이티드 전립선 특이적 막 항원(psma) 이중특이성 결합제 및 그의 용도
EP3292152A1 (fr) 2015-05-07 2018-03-14 Agenus Inc. Anticorps anti-ox40 et procédés d'utilisation de ceux-ci
HUE048284T2 (hu) 2015-05-29 2020-07-28 Abbvie Inc Anti-CD40 antitestek és alkalmazásuk
JP6900323B2 (ja) 2015-05-29 2021-07-07 アジェナス インコーポレイテッド 抗ctla−4抗体およびその使用方法
WO2016197064A1 (fr) 2015-06-04 2016-12-08 Epstein Alan L Immunothérapie des cellules car ciblées par lym-1 et lym-2
TW201710286A (zh) 2015-06-15 2017-03-16 艾伯維有限公司 抗vegf、pdgf及/或其受體之結合蛋白
EP3344656A1 (fr) 2015-09-01 2018-07-11 Agenus Inc. Anticorps anti-pd1 et méthodes d'utilisation de ceux-ci
EP3569244A1 (fr) 2015-09-23 2019-11-20 CytoImmune Therapeutics, LLC Cellules de cabine dirigées flt3 pour l'immunothérapie
EP3368566A1 (fr) 2015-10-28 2018-09-05 Friedrich Miescher Institute for Biomedical Research Ténascine w et cancers du tractus biliaire
EP3909983A1 (fr) 2015-12-02 2021-11-17 STCube & Co. Inc. Anticorps et molécules se liant de manière immunospécifique à btn1a1 et leurs utilisations thérapeutiques
KR20180100122A (ko) 2015-12-02 2018-09-07 주식회사 에스티사이언스 당화된 btla(b- 및 t-림프구 약화인자)에 특이적인 항체
WO2017097889A1 (fr) 2015-12-10 2017-06-15 Katholieke Universiteit Leuven Anticorps anti-adamts13 et leur utilisation pour le traitement ou la prévention de troubles hémorragiques provoqués par un dispositif d'assistance ventriculaire
AU2017239038A1 (en) 2016-03-22 2018-10-04 Bionomics Inc Administration of an anti-LGR5 monoclonal antibody
WO2017187183A1 (fr) 2016-04-27 2017-11-02 Itara Therapeutics Procédés d'identification de composés bifonctionnels
SG11201810023QA (en) 2016-05-27 2018-12-28 Agenus Inc Anti-tim-3 antibodies and methods of use thereof
US11427632B2 (en) 2016-07-06 2022-08-30 Celgene Corporation Antibodies with low immunogenicity and uses thereof
CN109689685A (zh) 2016-07-08 2019-04-26 斯塔滕生物技术有限公司 抗apoc3抗体及其使用方法
EP3519824A1 (fr) 2016-10-03 2019-08-07 Abbott Laboratories Procédés améliorés d'évaluation de l'état de uch-l1 dans des échantillons de patient
CA3037380A1 (fr) 2016-10-11 2018-04-19 Agenus Inc. Anticorps anti-lag-3 et leurs procedes d'utilisation
KR20190107656A (ko) 2016-11-02 2019-09-20 이뮤노젠 아이엔씨 항체-약물 콘주게이트 및 parp 억제제로 병용 치료
EP3534947A1 (fr) 2016-11-03 2019-09-11 Kymab Limited Anticorps, combinaisons comprenant des anticorps, biomarqueurs, utilisations et procédés
KR102539159B1 (ko) 2016-11-07 2023-06-02 주식회사 뉴라클사이언스 서열 유사성을 가진 항-패밀리 19, 멤버 a5 항체 및 그것의 사용 방법
CA3046082A1 (fr) 2016-12-07 2018-06-14 Agenus Inc. Anticorps et procedes d'utilisation de ceux-ci
KR102504605B1 (ko) 2016-12-07 2023-03-02 아게누스 인코포레이티드 항-ctla-4 항체 및 이의 사용 방법
US11016092B2 (en) 2017-03-23 2021-05-25 Abbott Laboratories Methods for aiding in the diagnosis and determination of the extent of traumatic brain injury in a human subject using the early biomarker ubiquitin carboxy-terminal hydrolase L1
US20200330590A1 (en) 2017-03-27 2020-10-22 Celgene Corporation Methods and compositions for reduction of immunogenicity
BR112019017241A2 (pt) 2017-04-13 2020-04-14 Agenus Inc anticorpos anti-cd137 e métodos de uso dos mesmos
BR112019021612A2 (pt) 2017-04-15 2020-05-12 Abbott Laboratories Métodos para auxiliar o diagnóstico hiperagudo e determinação de traumatismo crânioencefálico em um indivíduo humano com o uso de biomarcadores precoces
MA50958A (fr) 2017-04-21 2020-10-14 Staten Biotechnology B V Anticorps anti-apoc3 et leurs méthodes d'utilisation
EP3635407A1 (fr) 2017-04-28 2020-04-15 Abbott Laboratories Méthodes d'aide au diagnostic et à la détermination hyperaigus d'une lésion cérébrale traumatique au moyen de biomarqueurs précoces sur au moins deux échantillons provenant du même sujet humain
CA3062061A1 (fr) 2017-05-01 2018-11-08 Agenus Inc. Anticorps anti-tigit et leurs methodes d'utilisation
JP2020518673A (ja) 2017-05-05 2020-06-25 フュージョン・ファーマシューティカルズ・インコーポレイテッド 二官能性キレートの薬物動態増強及びその使用
US10865238B1 (en) 2017-05-05 2020-12-15 Duke University Complement factor H antibodies
KR20200004861A (ko) 2017-05-05 2020-01-14 퓨전 파마슈티칼즈 인크. Igf-1r 모노클로날 항체 및 그의 용도
JOP20190256A1 (ar) 2017-05-12 2019-10-28 Icahn School Med Mount Sinai فيروسات داء نيوكاسل واستخداماتها
CN110651190A (zh) 2017-05-25 2020-01-03 雅培实验室 用早期生物标记物帮助确定是否对已遭受或可能已遭受头部损伤的人受试者执行成像的方法
US11129564B2 (en) 2017-05-30 2021-09-28 Abbott Laboratories Methods for aiding in diagnosing and evaluating a mild traumatic brain injury in a human subject using cardiac troponin I
KR20200015602A (ko) 2017-05-31 2020-02-12 주식회사 에스티큐브앤컴퍼니 Btn1a1에 면역특이적으로 결합하는 항체 및 분자 및 이의 치료적 용도
CN111051346A (zh) 2017-05-31 2020-04-21 斯特库伯株式会社 使用免疫特异性结合btn1a1的抗体和分子治疗癌症的方法
EP3635007A1 (fr) 2017-06-06 2020-04-15 STCube & Co., Inc. Procédés de traitement du cancer à l'aide d'anticorps et de molécules se liant à btn1a1 ou des ligands de btn1a1
GB201709379D0 (en) 2017-06-13 2017-07-26 Univ Leuven Kath Humanised ADAMTS13 binding antibodies
US11169159B2 (en) 2017-07-03 2021-11-09 Abbott Laboratories Methods for measuring ubiquitin carboxy-terminal hydrolase L1 levels in blood
EA202090247A1 (ru) 2017-07-14 2020-05-12 Цитомкс Терапьютикс, Инк. Антитела против cd166 и их применения
US11707522B2 (en) 2017-10-13 2023-07-25 Boehringer Ingelheim International Gmbh Human antibodies to Tn antigen
WO2019087115A1 (fr) 2017-10-31 2019-05-09 Staten Biotechnology B.V. Anticorps anti-apoc3 et leurs procédés d'utilisation
WO2019089594A1 (fr) 2017-10-31 2019-05-09 Immunogen, Inc. Polythérapie avec des conjugués anticorps-médicament et de la cytarabine
EP3706795A4 (fr) 2017-11-09 2021-10-13 Pinteon Therapeutics Inc. Méthodes et compositions pour la génération et l'utilisation d'anticorps tau phosphorylés spécifiques à une conformation humanisée
CN111094983A (zh) 2017-12-09 2020-05-01 雅培实验室 使用胶质细胞原纤维酸性蛋白(gfap)和/或泛素羧基末端水解酶l1(uch-l1)帮助诊断和评价已遭受骨科损伤并已遭受或可能已遭受头部损伤诸如轻度创伤性脑损伤(tbi)的患者的方法
US11016105B2 (en) 2017-12-09 2021-05-25 Abbott Laboratories Methods for aiding in diagnosing and evaluating a traumatic brain injury in a human subject using a combination of GFAP and UCH-L1
MA51154A (fr) 2017-12-15 2020-10-21 Aleta Biotherapeutics Inc Variants de cd19
BR112020017701A2 (pt) 2018-03-12 2020-12-29 Zoetis Services Llc Anticorpos anti-ngf e métodos dos mesmos
KR20200139219A (ko) 2018-04-02 2020-12-11 브리스톨-마이어스 스큅 컴퍼니 항-trem-1 항체 및 이의 용도
JP2021521273A (ja) 2018-04-12 2021-08-26 メディアファーマ エス.アール.エル. Lgals3bp抗体−薬剤結合体及びがん治療のためのその使用
EP3784274A1 (fr) 2018-04-27 2021-03-03 Fondazione Ebri Rita Levi-Montalcini Anticorps dirigé contre un peptide neurotoxique dérivé de tau et ses utilisations
AU2019265888A1 (en) 2018-05-10 2020-11-26 Neuracle Science Co., Ltd. Anti-family with sequence similarity 19, member A5 antibodies and method of use thereof
WO2019222130A1 (fr) 2018-05-15 2019-11-21 Immunogen, Inc. Traitement combiné avec des conjugués anticorps-médicament et des inhibiteurs flt3
TW202016144A (zh) 2018-06-21 2020-05-01 日商第一三共股份有限公司 包括cd3抗原結合片段之組成物及其用途
EP3824287A1 (fr) 2018-07-20 2021-05-26 Pierre Fabre Médicament Récepteur pour vista
JP2022504287A (ja) 2018-10-03 2022-01-13 スターテン・バイオテクノロジー・ベー・フェー ヒト及びカニクイザルapoc3に特異的な抗体、並びにその使用の方法
PE20211286A1 (es) 2018-12-03 2021-07-19 Fusion Pharmaceuticals Inc Terapia de combinacion de radioinmunoconjugados con inhibidor del punto de control
CA3130303A1 (fr) 2019-02-26 2020-09-03 Rgenix, Inc. Anticorps anti-mertk a affinite elevee et utilisations associees
CN113874392A (zh) 2019-03-28 2021-12-31 丹尼斯科美国公司 工程化抗体
JP2022545368A (ja) 2019-08-12 2022-10-27 アプティーボ リサーチ アンド デベロップメント エルエルシー 4-1bbおよび0x40結合タンパク質ならびに関連する組成物および方法、4-1bbに対する抗体、0x40に対する抗体
AU2020335928A1 (en) 2019-08-30 2022-02-17 Agenus Inc. Anti-CD96 antibodies and methods of use thereof
US20220306736A1 (en) 2019-09-04 2022-09-29 Y-Biologics Inc. Anti-vsig4 antibody or antigen binding fragment and uses thereof
US20220411511A1 (en) 2019-09-26 2022-12-29 Stcube & Co. Antibodies specific to glycosylated ctla-4 and methods of use thereof
US20220356248A1 (en) 2019-10-09 2022-11-10 Stcube & Co Antibodies specific to glycosylated lag3 and methods of use thereof
CN113416258B (zh) * 2019-10-24 2023-08-29 北京免疫方舟医药科技有限公司 一种多特异性抗体及其制备方法和用途
KR20220137698A (ko) 2020-02-05 2022-10-12 라리마 테라퓨틱스, 인코포레이티드 Tat 펩티드 결합 단백질 및 이의 용도
WO2021202473A2 (fr) 2020-03-30 2021-10-07 Danisco Us Inc Anticorps modifiés
EP4136459A1 (fr) 2020-04-13 2023-02-22 Abbott Laboratories Procédés, complexes et kits pour détecter ou déterminer une quantité d'un anticorps anti-ss-coronavirus dans un échantillon
KR20230005268A (ko) 2020-04-24 2023-01-09 밀레니엄 파머슈티컬스 인코퍼레이티드 항-cd19 항체 및 이의 용도
WO2022031804A1 (fr) 2020-08-04 2022-02-10 Abbott Laboratories Méthodes et kits améliorés pour détecter une protéine sars-cov-2 dans un échantillon
WO2022081436A1 (fr) 2020-10-15 2022-04-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anticorps spécifique du domaine de liaison du récepteur du sars-cov-2 et procédés thérapeutiques
WO2022087274A1 (fr) 2020-10-21 2022-04-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anticorps qui neutralisent l'activité de l'interféron de type i (ifn)
CA3198161A1 (fr) 2020-12-01 2022-06-09 Beth MCQUISTON Utilisation d'un ou plusieurs biomarqueurs pour determiner un traumatisme cranien (tbi) chez un sujet soumis a un balayage de tomodensitometrie assistee par ordinateur de la tete a tbi negati
IL303328A (en) 2020-12-01 2023-07-01 Aptevo Res & Development Llc CD3-binding bispecific and heterodimeric antibodies to PSMA
WO2023102384A1 (fr) 2021-11-30 2023-06-08 Abbott Laboratories Utilisation d'un ou de plusieurs biomarqueurs pour déterminer un traumatisme crânien (tbi) chez un sujet ayant été soumis à un balayage de tomodensitométrie assistée par ordinateur de la tête ne démontrant par de tbi
EP4271998A1 (fr) 2020-12-30 2023-11-08 Abbott Laboratories Procédés pour déterminer un antigène sras-cov-2 et anticorps anti-sras-cov-2 dans un échantillon
WO2022153195A1 (fr) 2021-01-13 2022-07-21 Memorial Sloan Kettering Cancer Center Conjugué anticorps-médicament anti-dll3
TW202237135A (zh) 2021-01-13 2022-10-01 紀念斯隆凱特琳癌症中心 抗體-吡咯并苯并二氮呯衍生物結合物
KR20230156727A (ko) 2021-03-03 2023-11-14 피에르 파브르 메디카먼트 항-vsig4 항체 또는 이의 항원 결합 단편 및 용도
WO2022215054A1 (fr) 2021-04-09 2022-10-13 Takeda Pharmaceutical Company Limited Anticorps ciblant le facteur d du complément et leurs utilisations
JP2024516645A (ja) 2021-04-26 2024-04-16 ミレニアム ファーマシューティカルズ, インコーポレイテッド 抗clec12a抗体及びその使用
AR125450A1 (es) 2021-04-26 2023-07-19 Millennium Pharm Inc Anticuerpos anti-adgre2 y usos de los mismos
JP2024519858A (ja) 2021-05-18 2024-05-21 アボット・ラボラトリーズ 小児対象における脳損傷を査定する方法
EP4348263A1 (fr) 2021-05-28 2024-04-10 Alexion Pharmaceuticals, Inc. Procédés de détection de biomarqueurs cm-tma
EP4355776A1 (fr) 2021-06-14 2024-04-24 Argenx BV Anticorps anti-il-9 et leurs procédés d'utilisation
EP4356129A1 (fr) 2021-06-14 2024-04-24 Abbott Laboratories Procédés de diagnostic ou d'aide au diagnostic d'une lésion cérébrale provoquée par de l'énergie acoustique, de l'énergie électromagnétique, une onde de surpression et/ou le souffle d'une explosion
WO2023034777A1 (fr) 2021-08-31 2023-03-09 Abbott Laboratories Méthodes et systèmes de diagnostic de lésion cérébrale
AU2022354059A1 (en) 2021-09-30 2024-03-28 Abbott Laboratories Methods and systems of diagnosing brain injury
TW202330612A (zh) 2021-10-20 2023-08-01 日商武田藥品工業股份有限公司 靶向bcma之組合物及其使用方法
EP4177266A1 (fr) 2021-11-05 2023-05-10 Katholieke Universiteit Leuven Neutralisation d'anticorps humains anti-sars-cov-2
WO2023114978A1 (fr) 2021-12-17 2023-06-22 Abbott Laboratories Systèmes et procédés de détermination d'uch-l1, de gfap et d'autres biomarqueurs dans des échantillons de sang
US20230213536A1 (en) 2021-12-28 2023-07-06 Abbott Laboratories Use of biomarkers to determine sub-acute traumatic brain injury (tbi) in a subject having received a head computerized tomography (ct) scan that is negative for a tbi or no head ct scan
WO2023150652A1 (fr) 2022-02-04 2023-08-10 Abbott Laboratories Procédés d'écoulement latéral, dosages et dispositifs de détection de la présence ou de mesure de la quantité d'ubiquitine carboxy-terminal hydrolase l1 et/ou d'une protéine gliofibrillaire acide dans un échantillon
WO2023192436A1 (fr) 2022-03-31 2023-10-05 Alexion Pharmaceuticals, Inc. Dosage monoplex ou multiplex pour marqueurs de complément dans des échantillons biologiques frais
WO2023240124A1 (fr) 2022-06-07 2023-12-14 Regeneron Pharmaceuticals, Inc. Particules virales pseudotypées pour le ciblage de cellules exprimant un tcr
WO2024006876A1 (fr) 2022-06-29 2024-01-04 Abbott Laboratories Systèmes et analyses magnétiques hors laboratoire pour déterminer une gfap dans des échantillons biologiques
WO2024015953A1 (fr) 2022-07-15 2024-01-18 Danisco Us Inc. Procédés de production d'anticorps monoclonaux
WO2024050524A1 (fr) 2022-09-01 2024-03-07 University Of Georgia Research Foundation, Inc. Compositions et procédés de direction de l'apolipoprotéine l1 en vue d'induire la mort de cellules de mammifère
WO2024054436A1 (fr) 2022-09-06 2024-03-14 Alexion Pharmaceuticals, Inc. Profils de biomarqueurs de diagnostic et de pronostic chez des patients ayant une microangiopathie thrombotique associée à une greffe de cellules souches hématopoïétiques (hsct-tma)
WO2024059708A1 (fr) 2022-09-15 2024-03-21 Abbott Laboratories Biomarqueurs et méthodes de différenciation entre une lésion cérébrale traumatique légère et très légère

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9222324A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392596A2 (fr) 1999-12-28 2011-12-07 ESBATech, an Alcon Biomedical Research Unit LLC Anticorps simples chaines ScFv ayant une infrastructure définie et stable dans un environnement réducteur et leurs applications

Also Published As

Publication number Publication date
JPH07503124A (ja) 1995-04-06
AU2238292A (en) 1993-01-12
WO1992022324A1 (fr) 1992-12-23
CA2110799A1 (fr) 1992-12-23

Similar Documents

Publication Publication Date Title
EP0590067A1 (fr) Fragments d'anticorps produits par des microbes et leurs conjugues
CA2162689C (fr) Immunotoxines renfermant de la gelonine et un anticorps
US5621083A (en) Immunotoxins comprising ribosome-inactivating proteins
JP2761012B2 (ja) 組換dna産物及び方法
CA2235269C (fr) Anticorps monoclonal br110 et ses utilisations
US5892019A (en) Production of a single-gene-encoded immunoglobulin
US7635475B2 (en) Diabody-type bispecific antibody
EP1997894B1 (fr) Protéine de liaison biosynthétique pour un marqueur du cancer
EP0504350B1 (fr) Anticorps a efficacite antigoniste a l'antigene cd3
US6410690B1 (en) Therapeutic compounds comprised of anti-Fc receptor antibodies
EP0669982B1 (fr) Matieres comprenant des proteines d'inactivation de ribosomes, procedes de preparation et utilisation de ces proteines
US5792456A (en) Mutant BR96 antibodies reactive with human carcinomas
US6307026B1 (en) Humanized antibodies directed against A33 antigen
WO2022104692A1 (fr) Anticorps modifié, conjugué anticorps-médicament et son utilisation
JPH0899901A (ja) 免疫抱合体ii
US6146850A (en) Proteins encoding gelonin sequences
US5837491A (en) Polynucleotides encoding gelonin sequences
US5597569A (en) Bryodin 2 a ribosome-inactivating protein isolated from the plant Bryonia dioica
KR102353086B1 (ko) 신규 면역독소 제조방법
MXPA98002129A (en) Monoclonal antibody br110 and uses of the mi

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19950502

R18W Application withdrawn (corrected)

Effective date: 19950502