EP0581269B1 - Aussendämm- und Oberflächenbehandlungssystem - Google Patents

Aussendämm- und Oberflächenbehandlungssystem Download PDF

Info

Publication number
EP0581269B1
EP0581269B1 EP93112067A EP93112067A EP0581269B1 EP 0581269 B1 EP0581269 B1 EP 0581269B1 EP 93112067 A EP93112067 A EP 93112067A EP 93112067 A EP93112067 A EP 93112067A EP 0581269 B1 EP0581269 B1 EP 0581269B1
Authority
EP
European Patent Office
Prior art keywords
insulating material
wall
outer coating
slot
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93112067A
Other languages
English (en)
French (fr)
Other versions
EP0581269A2 (de
EP0581269A3 (de
Inventor
John R. S. Edgar
Kenneth Paul Wesley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sto SE and Co KGaA
Original Assignee
Sto SE and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sto SE and Co KGaA filed Critical Sto SE and Co KGaA
Publication of EP0581269A2 publication Critical patent/EP0581269A2/de
Publication of EP0581269A3 publication Critical patent/EP0581269A3/de
Application granted granted Critical
Publication of EP0581269B1 publication Critical patent/EP0581269B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/762Exterior insulation of exterior walls
    • E04B1/765Bottom edge finishing profile
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/762Exterior insulation of exterior walls

Definitions

  • the invention relates to a system for thermal insulation and surface treatment of the outside of a building.
  • the surface sealing method tries to eliminate all openings in the wall through which water can pass.
  • the materials available to seal all of these openings are exposed to extreme weather conditions and movement of the building. Even if the problems due to inaccuracies at the place of work and poor craftsman services can be overcome and a perfect seal can be achieved, the weather conditions in practice are capable of causing the seals to be destroyed and to fail, so that openings in the wall are created, through which water can pass.
  • these openings can be extremely small and difficult to identify, so that even an extensive maintenance program is unable to keep the building free of such openings.
  • the other way to control rainwater penetration is to switch off the forces that drive or pull water into the wall.
  • forces are typically considered: kinetic energy, capillarity, gravitational pull, and wind pressure differences.
  • raindrops can be driven directly into large openings in the wall. However, if there is no direct path inside, they will Do not let raindrops penetrate deep into the wall. Where large openings, such as joints, are unavoidable, the use of boards, wedges, barriers or overlaps has proven to be successful in minimizing rain penetration caused by the kinetic energy of the raindrops.
  • the force of gravity causes water to move down the outside of a wall and into the wall through any downward sloping channels. In order to avoid the movement by joints caused by gravity, these are typically constructed inclined upwards from the outside. Unwanted cracks or openings are more difficult to control. If there is a cavity immediately behind the outer surface of the wall, any water that flows through the wall is then drained down under the force of gravity on the inner surface of the outer wall. At the bottom of the cavity, the water can then be drained to the outside by using inclined cover plates.
  • Pressure equalization casing is based on the theory that it neutralizes the air pressure difference across the casing (caused by wind) that causes water penetration. It is impossible to prevent wind from pressurizing a building, but it is possible to counteract the pressure of the wind so that the pressure difference across the outer wall cladding becomes approximately zero. If the pressure difference across the casing is zero, one of the main causes of rain penetration is eliminated.
  • a rain shield wall comprises two layers or layers separated from one another by an air space or a cavity.
  • the outer layer or casing is ventilated to the outside. If wind affects the facade of the building, a pressure difference is generated via the cladding; however, when the cavity behind the cladding is ventilated to the outside, the wind blowing against the wall also affects the cavity and causes the pressure in the cavity to increase until it has reached the outside pressure.
  • This concept of pressure equalization presupposes that the inner coating of the wall is airtight.
  • This inner layer which includes an air barrier, must be able to withstand the wind loads so that the pressure equalization can take place. If there are significant openings in the air barrier, no pressure equalization can occur in the cavity and water penetration can occur.
  • the state of the art includes the knowledge that optimal thermal insulation of a building is achieved if the insulating material is attached to the outside of the building. If thermal insulation is arranged on the outside of the building, thermal bridges formed by building elements are eliminated and a consistently high R-value is guaranteed.
  • the invention has for its object to provide external thermal insulation with rain shield structure, in which the aforementioned disadvantages are avoided or substantially mitigated.
  • the system according to the invention in which this object is achieved, is achieved by the features highlighted in the characterizing part of claim 1.
  • the invention is thus based on the knowledge that a pressure compensation cavity can be formed by an air-permeable thermal insulation between the load-bearing Structure and cladding is provided, as well as arrangements to allow air to flow into and out of the cavity. This enables the pressures to be compensated very quickly, but also ensures that surfaces of the thermal insulation in the installed state are not exposed to an air cavity.
  • a wall of a building designated 10
  • the load-bearing structure 12 includes vertical load-bearing punches 16, which are arranged at regular intervals, and a casing 18, which is fixed to the punches 16.
  • the load-bearing structure 12 can of course be created in any suitable manner, ie in concrete or steel construction or the like.
  • An airtight barrier 20 is provided over the shroud 18 and meets the guidelines for a type III air barrier of the NRC Institute for Research and Construction.
  • a suitable material for this purpose is a product known as Sto Flexyl, reinforced with a mesh called Sto Airbarrier Mesh; both materials are available from Sto Industries Canada Inc., Mississauga, Ontario.
  • the EIF system 14 can be applied after the building's load bearing structure 12 is erected, or it can be prefabricated in the form of panels, including the load bearing structure, which are then installed on the building. In any case, the structure of the EIF system 14 is the same and leads to a uniform structure that covers a certain area, e.g. covers a wall, part of a wall or a single panel that has defined edges. For convenience, the term "panel" is used below to refer to a unitary structure. This term is to be understood in the sense that there is no limitation to a separate, prefabricated unit.
  • the EIF system 14 consists of a layer of insulating material 28 and a laminate 27 which comprises a base coating 29, a glass fiber reinforcement mesh 30 and a surface coating 31. The base coat 29 and surface coating 31 extend over the exposed outer surfaces of each panel to prevent moisture from entering the insulation material 28, and the mesh 30 reinforces against cracking of the base coating 29 and surface coating 31, respectively.
  • an angle element 22 is fixed to the casing 18, that it runs along the lower edge 32 of the insulating material 28.
  • the angle element 22 has openings 24 which are arranged on its horizontal leg 26 are provided.
  • the openings 24 form a ventilation area which is larger than 1% of the panel area, and so about 26 holes with a diameter of about 2.5 cm per meter are necessary along the angle element 22 for an approximately 1.25 m high panel.
  • a ventilation area greater than 1 to 2% of the front surface of the system 14 has been found to be acceptable.
  • strips of glass fiber reinforcement mesh are first applied around the perimeter of the panel, that is, the area to be covered by the insulation material 28 to facilitate covering the exposed edges of the thermal insulation.
  • an insulation panel 28 is applied to the casing 18 to cover the area of the panel and is attached to the air barrier 20 by a suitable adhesive 21, which is preferably non-combustible.
  • a suitable adhesive is STO BTS-NC, available from STO Industries Canada, Inc.
  • the insulating material 28 is a suitable, air-permeable thermal insulation material which has sufficient pressure and tensile strength to support the coatings 29, 31. It has been shown that Roxul External Wall Lamellas insulation material, which is a mineral wool insulation material with a density of approximately 0.96 g / cm 3, is suitable for this purpose.
  • the Roxul External Wall Lamellas insulation material can be applied in various thicknesses of approximately 5, 7.5 or 10 cm, depending on the desired degree of insulation desired, and typically will be in individual panels 36 with dimensions of approximately 15 cm x 125 cm are provided which are applied to the load bearing structure 12 to cover the desired area.
  • the panels 36 are aligned so that their longitudinal edges 38, ie the 125 cm edges, are arranged vertically and a vertical butt joint, shown at 40, between adjacent ones Form panels 36 and extend to the angle element 22. Although the narrow edges of panels 36 are shown aligned in Fig. 3, it is common to vertically offset the narrow edges to mitigate the formation of cracks.
  • the Roxul External Wall Lamellas thermal insulation consists of mineral wool fibers, of which approximately 10% of the volume is taken up and 90% or more of air.
  • the fibers are arranged in the panel 36 so that they extend between the major surfaces of the panel so that, when fixed, the majority of the fibers extend perpendicular to the jacket 18. This arrangement ensures the necessary compressive and tensile strength, while at the same time forming a relatively permeable thermal insulation through which air can flow in a direction parallel to the casing 18.
  • a suitable coating material is STO BTS-NC, which is a polymer-modified coating based on Portland cement, which ensures an adhesive bond with the thermal insulation and serves as a carrier for decorative coatings.
  • the base coat 29 is reinforced by the glass fiber reinforcement network 30, which is alkali-resistant by pretreatment and which is embedded in the base coat 29 while the latter is still in a moist state.
  • the reinforcement mesh 30 is applied to the exposed edges of the insulation material in accordance with conventional installation procedures.
  • the net 30 also extends over the lower edge 32, but no coating 29 is applied to the area covered by the horizontal leg 26 of the angle element 22 to define a slot 35, so that air can flow freely through the openings 24 to and from the Insulation board 28 can move.
  • the corner element 22 thus protects part of the lower edge 32 while allowing the air flow into the thermal insulation.
  • the base coat 29 and the embedded mesh 30 can then be coated with a surface coating 31 of any of the conventional stucco synthetic primers and top coats available from STO Industries Canada Inc. for the top coat in the desired manner.
  • FIGS. 4a and 4b show experimental results which were obtained with the arrangement according to FIG. 1 on an experimental panel which showed a continuous increase in pressure over an extended period Period has been subjected. This is followed by an increase in the external pressure, as illustrated by the solid black line, immediately followed by an increase in the internal pressure, which is illustrated by the broken line. This could be ascertained in particular in the case of small pressure rise values, which are more typical of values which can be determined under real conditions. Similarly, a decrease in pressure, as illustrated in Figure 4b, causes the outside pressures to be followed immediately by the inside pressures.
  • each edge can be provided with a longitudinal recess that extends along the length of the panel 36 so that abutting edges 38 define a channel that extends vertically to promote air flow. This can be an advantage if the EIF system uses panels with larger vertical dimensions.
  • angle element 22 can be expanded to provide protection for the underside of the thermal insulation and can carry a drip edge, as shown in Fig. 2a, to provide further protection for the lower edge of the panel .
  • a sealing strip 42 is used to seal between adjacent prefabricated sections.
  • the top edge 34 of each section is inclined downward to aid drainage away from the sealing strip 42.
  • FIG. 2b Another embodiment that does not use an angle element 22 is illustrated in FIG. 2b, in which a suffix "b" is used to designate the same components.
  • the lower edge 32b of one panel and the upper edge 34b of the adjacent panel are arranged at a mutual distance from one another and inclined downwards and outwards at an angle of approximately 30 °.
  • the lower edge 32b is covered with a reinforcement mesh 30b, but only the outer portion of the edge 32b is coated with the base coat 29b to define a slot 35b and leave an exposed strip.
  • the lower edge of the insulating material 28 is open in this way, and air can flow freely into and out of the thermal insulation along its lower edge 32.
  • the width of the slot 35 should form an area of 1 to 2% of the area of the panel.
  • the slot 35 should be between about 2.5 and 5 cm wide for a panel approximately 2.50 m high.

Description

  • Die Erfindung bezieht sich auf ein System zur Wärmedämmung und Oberflächenbehandlung der Außenseite eines Gebäudes.
  • Das Eindringen von Regenwasser ist eines der ältesten Probleme, mit denen sich Hauseigentümer auseinandersetzen mußten; es tritt immer noch allzuhäufig auf. Das Eindringen von Regenwasser kann nicht nur innere Anstriche und Materialien sondern auch den Aufbau der Wände selbst zerstören.
  • Regenwasser dringt ein, wenn eine Kombination von an der Wandoberfläche befindlichem Wasser, von Öffnungen, durch die es hindurchtreten kann, und einer Kraft, um das Wasser durch diese Öffnungen zu bewegen, existiert. Durch Ausschalten von einer dieser drei Voraussetzungen ließe sich das Eindringen von Regenwasser verhindern. Während breite Dachüberhänge hilfreich sein mögen, die Wände eines niedrigen Gebäudes zu schützen, steht ein ähnlicher Schutz für höhere Gebäude nicht zur Verfügung. Deshalb muß eine der beiden verbleibenden Voraussetzungen ausgeschaltet werden, um den Regenwasserdurchtritt zu unterbinden.
  • Bei der Flächenabdichtungsmethode wird versucht, alle in der Wand vorhandenen Öffnungen, durch die Wasser hindurchtreten kann, zu eliminieren. Die zum Abdichten all dieser Öffnungen zur Verfügung stehenden Materialien sind jedoch extremen Wetterbedingungen sowie Bewegungen des Gebäudes ausgesetzt. Selbst wenn die auf Ungenauigkeiten am Arbeitsort sowie mangelhafte Handwerkerleistungen zurückzuführenden Probleme überwunden und eine einwandfreie Abdichtung erreicht werden kann, sind die in der Praxis gegebenen Wetterbedingungen in der Lage, ggf. eine Zerstörung und einen Ausfall dieser Abdichtungen herbeizuführen, sodaß Öffnungen in der Wand entstehen, durch die Wasser hindurchtreten kann. Unglücklicherweise können diese Öffnungen außerordentlich klein und schwer zu identifizieren sein, so daß selbst ein weitreichendes Wartungsprogramm nicht in der Lage ist, das Gebäude frei von derartigen Öffnungen zu halten.
  • Der andere Weg, die Regenwasserpenetration zu beherrschen, besteht in der Ausschaltung der Kräfte, die Wasser in die Wand hineintreiben bzw. hineinziehen. Es sind typischerweise vier solcher Kräfte in Betracht zu ziehen: Kinetische Energie, Kapillarität, Erdanziehungskraft sowie Winddruckdifferenzen.
  • Bei einem windgetriebenen Regen, können Regentropfen direkt in große Öffnungen in der Wand getrieben werden. Wenn es jedoch keinen direkten Weg in das Innere gibt, werden die Regentropfen nicht tief in die Wand hinein eindringen. Wo große Öffnungen, wie z.B. Fugen unvermeidbar sind, hat sich die Verwendung von Brettern, Keilen, Sperrwänden oder Überlappungen als erfolgreich zur Minimierung von Regenpenetration erwiesen, die durch die kinetische Energie der Regentropfen verursacht wird.
  • Aufgrund der Oberflächenspannung des Wassers streben in einem Material vorhandene Löcher danach, eine gewisse Menge an Feuchtigkeit anzuziehen, bis sich das Material der Sättigung nähert. Falls sich Kapillaren von der Außen- zur Innenseite erstrecken, kann sich Wasser aufgrund der kapillaren Saugwirkung durch die Wand hindurchbewegen. Da teilweise Wasserpenetration durch eine Wand aufgrund Kapillarität für poröses Verkleidungsmaterial kennzeichnend ist, kann die Einführung einer Diskontinuität bzw. eines Luftspalts eine Bewegung von Wasser durch die Wand hindurch verhindern.
  • Die Kraft der Erdanziehung verursacht die Bewegung von Wasser an der Außenseite einer Wandung nach abwärts und durch irgendwelche nach unten geneigt verlaufende Kanäle in die Wand hinein. Um die durch Gravität erzeugte Bewegung durch Fugen zu vermeiden, sind diese typischerweise von der Außenseite ausgehend nach aufwärts geneigt konstruiert. Unerwünschte Risse bzw. Öffnungen sind schwieriger zu kontrollieren. Falls es unmittelbar hinter der Außenfläche der Wandung einen Hohlraum gibt, wird jedes Wasser, das durch die Wand hindurchfließt, sodann unter der Schwerkraftwirkung an der Innenfläche der Außenwand nach unten abgeleitet. Am Boden des Hohlraums kann das Wasser dann durch Verwendung geneigter Abdeckbleche zur Außenseite hin abgeleitet werden.
  • Eine Luftdruckdifferenz quer zur Wand des Gebäudes wird durch einen Staueffekt, Wind und/oder mechanische Belüftung erzeugt. Falls der Druck auf die Außenseite der Wand größer als im Inneren der Wand ist, kann Wasser durch winzige Öffnungen in der Wand hindurchgezwungen werden. Untersuchungen haben gezeigt, daß die Menge an Regenwasser, das durch eine Wandumkleidung aufgrund dieser Wirkungsweise hindurchbewegt wird, äußerst bedeutsam ist. Es ist bereits erkannt worden, daß diese Kraft durch Verwendung eines druckausgleichenden Hohlraums eliminiert bzw. reduziert werden kann.
  • Der Druckausgleichsumkleidung liegt die Theorie zugrunde, daß sie die Luftdruckdifferenz über die Verkleidung (hervorgerufen durch Wind), die die Wasserpenetration verursacht, neutralisiert. Es ist unmöglich zu verhindern, daß Wind ein Gebäude druckbeaufschlagt, aber es ist möglich, dem Druck des Windes entgegenzuwirken, so daß die Druckdifferenz über die äußere Umkleidung der Wand angenähert Null wird. Falls die Druckdifferenz über die Umkleidung gleich Null ist, ist eine der Hauptursachen der Regenpenetration eliminiert.
  • Gemäß früheren Vorschlägen umfaßt eine Regenabschirmwand zwei durch einen Luftraum bzw. eine Höhlung voneinander getrennte Lagen bzw. Schichten. Die äußere Lage bzw. Umkleidung ist zur Außenseite hin belüftet. Wenn Wind auf die Gebäudefassade einwirkt, wird über die Verkleidung eine Druckdifferenz erzeugt; wenn jedoch der Hohlraum hinter der Verkleidung zur Außenseite hin belüftet ist, beaufschlagt der Wind, der gegen die Wand bläst, auch die Höhlung und sorgt dafür, daß der Druck in der Höhlung ansteigt, bis er den Außendruck erreicht hat. Dieses Konzept des Druckausgleichs setzt voraus, daß die innere Beschichtung der Wand luftdicht ist. Diese innere Schicht, die eine Luftsperre umfaßt, muß in der Lage sein, den Windbeanspruchungen standzuhalten, damit der Druckausgleich stattfinden kann. Falls sich in der Luftsperre bedeutende Öffnungen befinden, kann sich kein Druckausgleich im Hohlraum einstellen, und es kann zu einer wasserpenetration kommen.
  • Zum Stand der Technik gehört die Erkenntnis, daß eine optimale Wärmedämmung eines Gebäudes erreicht wird, wenn das Dämmaterial an der Außenseite des Gebäudes angebracht wird. Bei Anordnung der Wärmedämmung an der Außenseite des Gebäudes werden von Bauelementen des Gebäudes gebildete Wärmebrücken eliminiert und ein beständig hoher R-Wert gewährleistet.
  • Die Anwendung der äußeren Wärmedämmung bei einer Regenabschirmwand hat jedoch zu praktischen Schwierigkeiten geführt, bedingt durch die Notwendigkeit, für einen Ausgleich des Druckes innerhalb des durch die Wärmedämmung definierten Hohlraums zu sorgen und doch den für beispielhafte Gebäude geltenden Regeln Rechnung zu tragen. Der Wärmedämmungsraum zwischen dem lasttragenden Aufbau und der Verkleidung, die den Hohlraum definiert, läßt eine Fläche der Wärmedämmung exponiert. Dies ist gegen die erwähnten Regeln, wie z.B. den National Building Code of Canada (NBCC), wonach es erforderlich ist, daß alle Flächen von brennbarem Wärmedämmaterial abgedichtet sein müssen. Deshalb kann diese Bauweise nur in solchen Fällen angewandt werden, in denen brennbare Konstruktionen zugelassen sind, typischerweise Gebäude mit einer Höhe von weniger als 3 Stockwerken. Im Ergebnis wurde eine äußere Wärmedämmung in Verbindung mit Flächenabdichtungssystemen eingesetzt, und es wurden Regenabschirmwände mit innerer Wärmedämmung verwendet.
  • Ausgehend von einem Außendämm- und Oberflächenabschlußsystem zur Anwendung an einer Wand eines Gebäudes, wie es im Oberbegriff des Anspruchs 1 herausgestellt und aus der "Deutschen Bauzeit D.B.Z.", Nr. 9, Sept. 1982, Gütersloh (DE), Seiten 1241-1245 vorbekannt ist, liegt der Erfindung die Aufgabe zugrunde, eine äußere Wärmedämmung mit Regenabschirmaufbau vorzusehen, bei der die vorerwähnten Nachteile vermieden bzw. wesentlich abgeschwächt sind.
  • Das erfindungsgemäße System, bei dem diese Aufgabe gelöst ist, ist durch die im kennzeichnenden Teil des Anspruchs 1 herausgestellten Merkmale gelöst. Die Erfindung basiert somit auf der Erkenntnis, daß ein Druckausgleichshohlraum durch eine luftdurchlässige Wärmedämmung gebildet sein kann, die zwischen dem lasttragenden Aufbau und der Verkleidung vorgesehen ist, sowie durch Vorkehrungen, um Luft in den und aus dem Hohlraum fließen zu lassen. Dies ermöglicht einen sehr schnellen Ausgleich der Drücke, stellt jedoch auch sicher, daß Flächen der Wärmedämmung in eingebautem Zustand nicht zu einem Lufthohlraum offen liegen.
  • Eine Ausführungsform der Erfindung wird nachstehend lediglich anhand eines Beispieles unter Bezugnahme auf die zugehörige Zeichnung erläutert, und zwar zeigen
  • Fig. 1
    eine perspektivische isometrische Ansicht, teilweise weggebrochen, einer Gebäudewand,
    Fig. 2
    einen Schnitt entsprechend der Linie 2-2 der Fig. 1,
    Fig. 2 a und 2 b
    abgewandelte Ausführungsformen,
    Fig. 3
    eine Vorderansicht der in Fig. 1 gezeigten Wand, und
    Fig. 4a und 4b
    Diagramme, die die Reaktion auf Druckäderungen auf der Außen- sowie Innenseite der Wand gemäß Fig. 1 zeigen.
  • Wie aus Fig. 1 ersichtlich, umfaßt eine Wand eines Gebäudes, die mit 10 bezeichnet ist, einen Last-tragenden Aufbau 12 sowie ein Oberflächenbehandlungssystem 14 (auch EIF-System genannt). Der Last-tragende Aufbau 12 schließt vertikale Last-tragende Stempel 16 ein, die in gleichmäßigen Abständen angeordnet sind, sowie eine Ummantelung 18, die an den Stempeln 16 festgelegt ist. Der Last-tragende Aufbau 12 kann natürlich auf jede geeignete Weise geschaffen sein, d.h. in Beton- bzw. in Stahlbauweise o. dgl.
  • Eine luftdichte Sperre 20 ist über der Ummantelung 18 vorgesehen und genügt den Richtlinien für eine Luftsperre des Typs III des NRC Institute for Research and Construction. Als hierfür geeignetes Material kommt ein Produkt in Frage, das als Sto Flexyl bekannt ist, verstärkt mit einem Netz der Bezeichnung Sto Airbarrier Mesh; beide Materialien sind bei der Sto Industries Canada Inc., Mississauga, Ontario, erhältlich.
  • Das EIF-System bzw. Oberflächenbehandlungssystem 14 kann nach der Errichtung des Last-tragenden Aufbaus 12 des Gebäudes aufgebracht werden, oder es kann in Form von Paneelen, einschließlich des Last-tragenden Aufbaus vorgefertigt sein, die dann an dem Gebäude installiert werden. In jedem Fall ist der Aufbau des EIF-Systems 14 gleich und führt zu einer einheitlichen Struktur, die einen bestimmten Bereich wie z.B. eine Wand, einen Teil einer Wand bzw. ein einzelnes Paneel abdeckt, das definierte Ränder besitzt. Der Einfachheit halber wird der Ausdruck "Paneel" nachstehend benutzt, um auf einen einheitlichen Aufbau Bezug zu nehmen. Dieser Begriff ist dabei in dem Sinne zu verstehen, daß damit keine Beschränkung auf eine getrennte, vorgefertigte Einheit zu verstehen ist. Das EIF-System 14 besteht aus einer Lage aus Dämmaterial 28 und ein Laminat 27, das einen Grundüberzug 29, ein Glasfaser-Verstärkungs-Netz 30 und eine Oberflächenbeschichtung 31 umfaßt. Der Grundüberzug 29 und die Oberflächenbeschichtung 31 erstrecken sich über die exponierten Außenflächen jedes Paneels, um Feuchtigkeit daran zu hindern, in das Dämmaterial 28 einzudringen, und das Netz 30 bildet eine Verstärkung gegen eine Rißbildung des Grundüberzugs 29 bzw. der Oberflächenbeschichtung 31.
  • Aus Fig. 1 ist ersichtlich, daß ein Winkelelement 22 so an der Ummantelung 18 festgelegt ist,
    daß es am unteren Rand 32 des Dämmaterials 28 entlang verläuft. Das Winkelelement 22 weist Öffnungen 24 auf, die an seinem horizontalen Schenkel 26 vorgesehen sind. Die Öffnungen 24 bilden einen Belüftungsbereich, der größer als 1% der Paneelfläche ausgebildet ist, und so sind längs des Winkelelements 22 für ein etwa 1,25 m hohes Paneel etwa 26 Löcher mit einem Durchmesser von ca. 2,5 cm pro Meter nötig. Eine Belüftungsfläche größer als 1 bis 2 % der Vorderfläche des Systems 14 hat sich als akzeptabel herausgestellt.
  • Zur Bildung des EIF-Systems 14 werden zuerst Streifen aus Glasfaserverstärkungsnetz um den Umfang des Paneels herum aufgebracht, d.h. den durch das Dämmaterial 28 abzudeckenden Bereich, um das Bedecken der exponierten Ränder der Wärmedämmung zu erleichtern. Sodann wird eine Dämmplatte 28 auf die Ummantelung 18 aufgebracht, um den Bereich des Paneels abzudecken, und wird an der Luftsperre 20 durch einen geeigneten Kleber 21 festgelegt, der vorzugsweise nicht brennbar ist. Ein geeigneter Kleber ist STO BTS-NC, erhältlich von der STO Industries Canada, Inc.. Bei dem Dämmaterial 28 handelt es sich um ein geeignetes luftdurchlässiges Wärmedämmaterial, das eine ausreichende Druck- und Zugfestigkeit besitzt, um die Überzüge 29, 31 zu tragen. Es hat sich gezeigt, daß Roxul External Wall Lamellas-Dämmaterial bei dem es sich um ein Mineralwolle-Dämmaterial mit einer Dichte von etwa 0,96 g/cm3 handelt, für diesen Zweck geeignet ist.
  • Das Roxul External Wall Lamellas-Dämmaterial kann in verschiedenen Stärken von etwa 5, 7,5 oder 10 cm Stärke aufgebracht werden, und zwar in Abhängigkeit von dem gewünschten Grad der gewünschten Dämmung, und typischerweise wird es in einzelnen Tafeln 36 mit den Abmessungen von etwa 15 cm x 125 cm zur Verfügung gestellt, die auf den Last-tragenden Aufbau 12 aufgebracht werden, um den gewünschten Bereich zu bedecken. Die Tafeln 36 werden so ausgerichtet, daß ihre Längsränder 38, d.h. die 125 cm-Ränder vertikal angeordnet sind und eine vertikale Stoßfuge, die bei 40 gezeigt ist, zwischen benachbarten Tafeln 36 bilden und sich zum Winkelelement 22 erstrecken. Obgleich die schmalen Ränder der Tafeln 36 in Fig. 3 ausgerichtet gezeigt sind, ist es üblich, die schmalen Ränder vertikal versetzt anzuordnen, um die Bildung von Rissen abzumildern. Die Roxul External Wall Lamellas-Wärmedämmung besteht aus Mineralwollefasern, von denen angenähert 10% des Volumens eingenommen wird und 90% oder mehr von Luft. Die Fasern sind in der Tafel 36 so angeordnet, daß sie sich zwischen den Hauptflächen der Tafel erstrecken, damit sich in festgelegtem Zustand die Mehrzahl der Fasern senkrecht zu der Ummantelung 18 erstreckt. Diese Anordnung stellt die notwendige Druck- und Zugfestigkeit sicher, während sie gleichzeitig eine relativ durchlässige Wärmedämmung bildet, durch die Luft in einer Richtung parallel zur Ummantelung 18 fließen kann.
  • Alle exponierten Flächen und Ränder des Dämmaterials 28, mit Ausnahme des Teils des unteren Randes 32, das von dem Winkelelement 22 abgestützt ist, sind mit einem nicht brennbaren Grundüberzug 29 einer durchschnittlichen Stärke von etwa 3,2 mm beschichtet. Ein geeignetes Beschichtungsmaterial ist STO BTS-NC, bei dem es sich um einen Polymer-modifizierten Überzug auf Portland-Zement-Basis handelt, der mit der Wärmedämmung einen Haftverbund gewährleistet und als Träger für dekorative Überzüge dient. Der Grundüberzug 29 ist durch das Glasfaserverstärkungsnetz 30 verstärkt, welches durch Vorbehandlung Alkali-widerstandsfest ist und das in den Grundüberzug 29 eingebettet wird, während sich dieser noch in feuchtem Zustand befindet. Das Verstärkungsnetz 30 wird an den exponierten Rändern des Dämmaterials in Übereinstimmung mit üblichen Installationsverfahren aufgebracht. Das Netz 30 erstreckt sich auch über den unteren Rand 32, jedoch wird kein Überzug 29 auf den vom horizontalen Schenkel 26 des Winkelelements 22 abgedeckten Bereich aufgebracht, um einen Schlitz 35 zu definieren, so daß sich Luft durch die Öffnungen 24 frei zu und aus der Dämmaterial-Tafel 28 bewegen kann. Das Winkelelement 22 schützt so einen Teil des unteren Randes 32, während es die Luftströmung in die Wärmedämmung zuläßt. Der Grundüberzug 29 und das eingebettete Netz 30 können dann mit einer Oberflächenbeschichtung 31 irgendeines der üblichen synthetischen Stuckgrundierer und Endbeschichtungen überzogen werden, die von der STO Industries Canada Inc. für die Endbeschichtung auf die gewünschte Weise erhältlich sind.
  • Die Öffnungen 24 im Winkelelement 22 erlauben eine Luftbewegung in die und aus der Wärmedämmplatte 28. Die Fig. 4a und 4b zeigen experimentelle Ergebnisse, die mit der Anordnung gemäß Fig. 1 an einem Versuchs-Paneel gewonnen wurden, das einem fortlaufenden Druckanstieg über einen ausgedehnten Zeitraum unterworfen wurde. Danach folgt einer Erhöhung des Außendrucks, wie er durch die durchgehende schwarze Linie veranschaulicht ist, unmittelbar eine Erhöhung des inneren Drucks, der durch die unterbrochene Linie veranschaulicht ist. Dies konnte insbesondere bei kleinen Druckanstiegswerten festgestellt werden, die für solche Werte typischer sind, welche sich bei realen Bedingungen feststellen lassen. Auf gleiche Weise ruft eine Druckverringerung, wie sie in Fig. 4b veranschaulicht ist, hervor, daß den Außendrücken die Innendrücke unmittelbar folgen. Der unmittelbare Druckausgleich ist signifikant, da die Druckkräfte gewöhnlich vorübergehend gegeben sind, und zwar aufgrund von Windstößen, und eine Druckausgleichsverzögerung würde Druckdifferenzen die Möglichkeit der Existenz geben und folglich einen Durchtritt von Feuchtigkeit durch die Endbeschichtung erlauben. Die Ergebnisse von Testversuchen, bei denen das Paneel gemäß Fig. 1 einer zyklischen dynamischen Druckänderung unterworfen wurde, haben bestätigt, daß der Druck innerhalb der Wärmedämmung 28 dicht auf den außen angelegten Druck folgt.
  • Auf diese Weise kann sich eine signifikante Druckdifferenz über die Schichten nicht ergeben, und folglich wird Wasser nicht durch die Schichten hindurch in die Wärmedämmung gedrückt. Dies ermöglicht es, das anzubringende Dämmaterial 28 unmittelbar auf der Luftsperre 20 ohne jede Vorkehrung für eine Wasserableitung oder aber einen Hohlraum aufzubringen.
  • Die Ausrichtung der Fasern im Dämmaterial 28 dürfte die schnelle Verteilung der Druckwellen über den durch die Wärmedämmplatte abgedeckten Bereich beschleunigen. Dies wird durch die Vertikalausrichtung der Stoßfugen 40 begünstigt, die der Luft eine Vertikalbewegung entlang jeder Tafel 36 und in den Körper der Wärmedämmung hinein zulassen, um die Verteilung von Luft und folglich einen Druckausgleich zu unterstützen. Falls erforderlich, kann jeder Rand mit einer Längsausnehmung versehen sein, der sich entlang der Länge der Tafel 36 ausdehnt, so daß aneinander anliegende Ränder 38 einen Kanal definieren, der sich vertikal erstreckt, um eine Luftströmung zu begünstigen. Dies kann von Vorteil sein, wenn das EIF-System Paneele mit größeren vertikalen Abmessungen verwendet.
  • Es ist zu erwarten, daß das Winkelelement 22 ausgedehnt werden kann, um einen Schutz für die Unterseite der Wärmedämmung zu bilden, und kann eine Tropfkante tragen, wie dies in Fig. 2a gezeigt ist, um einen weiteren Schutz für den unteren Rand des Paneels vorzusehen.
  • Wenn das EIP-System 14 zusammen mit dem lasttragenden Aufbau 12 vorgefertigt ist, findet ein Abdichtungsstreifen 42 Anwendung, um zwischen benachbarten vorgefertigten Abschnitten abzudichten. Wie in den Fig. 1 und 2 gezeigt wird, ist in diesem Fall vorzugsweise die obere Kante 34 jedes Abschnitts nach unten geneigt, um die Drainage weg vom Abdichtungsstreifen 42 zu unterstützen.
  • Eine weitere Ausführung, die sich keines Winkelelements 22 bedient, ist in Fig. 2b veranschaulicht, in der ein Suffix "b" zur Bezeichnung gleicher Bauelemente verwendet ist. Bei der Ausführung nach Fig. 2b sind der untere Rand 32b des einen Paneels und der obere Rand 34b des benachbarten Paneels voneinander in einem gegenseitigen Abstand und nach unten und außen unter einem Winkel von etwa 30° geneigt angeordnet. Die untere Kante 32b ist mit einem Verstärkungsnetz 30b abgedeckt, jedoch ist lediglich der äußere Abschnitt des Randes 32b mit dem Grundüberzug 29b beschichtet, um einen Schlitz 35b zu definieren und einen exponierten Streifen zu belassen. Der untere Rand des Dämmaterials 28 ist auf diese Weise offen, und Luft kann in die und aus der Wärmedämmung längs ihrer unteren Kante 32 frei strömen. In der Praxis hat sich herausgestellt, daß die Breite des Schlitzes 35 eine Fläche von 1 bis 2% des Flächenbereichs des Paneels bilden sollte. So sollte der Schlitz 35 für ein ca. 2,50 m hohes Paneel zwischen etwa 2,5 und 5 cm Breite liegen.
  • Es wird angenommen, daß die vorstehend im Beispiel herausgestellte Wärmedämmung aus Mineralwolle eine maximale Antwort auf Druckluftänderungen gibt; es können jedoch auch andere Arten des Dämmaterials Verwendung finden, vorausgesetzt daß sie keine Aufrechterhaltung einer wesentlichen Luftdruckdifferenz zwischen der Innenseite und der Außenseite des Dämmaterials erlauben.

Claims (12)

  1. Außendämm- und Oberflächenabschlußsystem zur Anwendung an einer Wand (10) eines Gebäudes,
    a) mit einer Luftsperre (20), die ein Paar zu entgegengesetzten Richtungen gewandte Oberflächen besitzt, von denen eine die Wand (10) berührt und die andere von der Wand weggerichtet ist, und
    b) mit einem Dämmaterial (28) mit einer ersten Fläche und einer zweiten zur entgegengesetzten Seite gerichteten Fläche, von denen die erste Fläche mit der von der Wand (10) weggerichteten Fläche der Luftsperre (20) in Berührung steht, um einen vorbestimmten Bereich der Wand abzudecken, sowie
    c) mit Umfangsrändern, die sich zwischen der ersten Fläche und der zweiten Fläche erstrecken und den von dem Dämmaterial (28) abzudeckenden Bereich begrenzen, und
    d) einer auf seiner zweiten Fläche aufgebrachten äußeren Beschichtung (29, 30, 31), um das Eindringen von Feuchtigkeit in das Dämmaterial (28) zu verhindern,
       dadurch gekennzeichnet,
    e) daß die äußere Beschichtung (29, 30, 31) auch auf wenigstens einem der Umfangsränder aufgebracht ist,
    f) daß das Dämmaterial (28) luftdurchlässig ist und
    g) daß wenigstens ein Teil (35) eines anderen der Umfangsränder (32) von der äußeren Beschichtung (29, 30, 31) freigelassen ist, um Luft das Einströmen in das Dämmaterial (28) zu erlauben und einen Druckausgleich über die äußere Beschichtung (29, 30, 31) herbeizuführen.
  2. System nach Anspruch 1, dadurch gekennzeichnet, daß das Dämmaterial (28) faserige Struktur besitzt und daß die Fasern eine Ausrichtung besitzen, aufgrund derer sie sich zwischen der ersten und der zweiten Fläche erstrecken.
  3. System nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Dämmaterial (28) aus einer Vielzahl von Tafeln (36) gebildet ist, die sich mit benachbarten Rändern (38) berühren, um eine Stoßfuge (40) zu bilden, und daß diese Stoßfugen (40) von den anderen (32) der erwähnten Umfangsränder ausgehen.
  4. System nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sich der erwähnte Teil (35) des anderen Umfangsrandes (32) benachbart der erwähnten ersten Fläche und zwischen angrenzenden Rändern erstreckt, um einen länglichen Schlitz (35b) in der äußeren Beschichtung (29, 30, 31) zu schaffen, über den ein Bereich des Dämmaterials (28) frei liegt.
  5. System nach Anspruch 4, dadurch gekennzeichnet, daß die äußere Beschichtung (29, 30, 31) ein Verstärkungsnetz (30) umfaßt, das sich über die Umfangsränder und auch über den Schlitz (35b) erstreckt.
  6. System nach Anspruch 4, dadurch gekennzeichnet, daß der eine andere Rand (32) in Bezug auf die ersten und zweiten Flächen des Dämmaterials (28) geneigt verläuft.
  7. System nach Anspruch 6, dadurch gekennzeichnet, daß der eine andere Rand (32) die zweite Fläche unter einem spitzen Winkel schneidet und daß sich die äußere Beschichtung längs dem erwähnten einen anderen Rand (32) von der zweiten Fläche bis zum Schlitz (35b) erstreckt.
  8. System nach Anspruch 7, dadurch gekennzeichnet, daß der längliche Schlitz (35b) eine Fläche umfaßt, die größer als 1% der zweiten Fläche des Dämmaterials (28) ist.
  9. System nach Anspruch 7, dadurch gekennzeichnet, daß der längliche Schlitz (35b) eine Fläche von 1 bis 2% der zweiten Fläche des Dämmaterials (28) umfaßt.
  10. System nach Anspruch 4, dadurch gekennzeichnet, daß der Schlitz durch einen mit Öffnungen (24) versehenen, an der erwähnten Wand befestigten Streifen abgedeckt ist.
  11. System nach Anspruch 10, dadurch gekennzeichnet, daß der Streifen durch ein Winkelelement (22) mit einem Schenkel gebildet ist, der den Schlitz abdeckt und dessen anderer Schenkel sich zwischen dem Wärmedämmaterial (28) und der Luftsperre (20) erstreckt.
  12. System nach Anspruch 2, dadurch gekennzeichnet, daß die äußere Beschichtung (29, 30, 31) einen polymer-modifizierten Überzug (29) auf Zementbasis und ein darin eingebettetes Netz (30) umfaßt.
EP93112067A 1992-07-28 1993-07-28 Aussendämm- und Oberflächenbehandlungssystem Expired - Lifetime EP0581269B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB929216029A GB9216029D0 (en) 1992-07-28 1992-07-28 Exterior insulation and finish system
GB9216029 1992-07-28

Publications (3)

Publication Number Publication Date
EP0581269A2 EP0581269A2 (de) 1994-02-02
EP0581269A3 EP0581269A3 (de) 1994-12-28
EP0581269B1 true EP0581269B1 (de) 1997-10-08

Family

ID=10719439

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93112067A Expired - Lifetime EP0581269B1 (de) 1992-07-28 1993-07-28 Aussendämm- und Oberflächenbehandlungssystem

Country Status (16)

Country Link
US (1) US5410852A (de)
EP (1) EP0581269B1 (de)
AT (1) ATE159069T1 (de)
CA (1) CA2101505C (de)
CZ (1) CZ282484B6 (de)
DE (1) DE59307485D1 (de)
DK (1) DK0581269T3 (de)
ES (1) ES2052472T3 (de)
FI (1) FI101407B (de)
GB (2) GB9216029D0 (de)
GR (2) GR940300035T1 (de)
HU (1) HU211749B (de)
NO (1) NO307976B1 (de)
PL (1) PL172088B1 (de)
RU (1) RU2079612C1 (de)
SK (1) SK80593A3 (de)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5836135A (en) * 1997-01-31 1998-11-17 Hagan; Joseph R. Drainage track
WO1999014442A1 (en) * 1997-09-15 1999-03-25 Atkins Mark R Drainage and ventilation system for building wall assemblies
WO1999017913A1 (en) * 1997-10-02 1999-04-15 Angelo Rao Method and apparatus for coating a decorative workpiece
US5979131A (en) * 1998-04-15 1999-11-09 Sto Corp. Exterior insulation and finish system
US6314695B1 (en) * 1999-06-22 2001-11-13 Michael R. Belleau Stucco wall building arrangement
US6745531B1 (en) * 2000-07-31 2004-06-08 Construction Research & Technology Gmbh Pressure equalized compartment for exterior insulation and finish system
CA2354645A1 (en) * 2000-08-04 2002-02-04 Jack Spargur Three dimensional insulation panel having unique surface for improved performance
MXPA03009030A (es) 2001-04-03 2004-02-12 James Hardie Res Pty Ltd Articulo de fibrocemento reforzado y metodos para fabricar e instalar el mismo.
CA2458693A1 (en) * 2001-08-28 2003-03-06 David P. Dickinson Cladding member and/or a cladding system and/or a method of cladding
US6807786B1 (en) * 2002-01-04 2004-10-26 Stucco Restoration Systems Inc. Exterior wall restoration system and construction method
US6698144B1 (en) * 2002-04-18 2004-03-02 Plastic Components, Inc. Stucco casing bead
US6918218B2 (en) * 2002-06-04 2005-07-19 Robert Greenway External insulated finish system with high density polystyrene layer
US7036284B1 (en) * 2002-06-06 2006-05-02 Plastic Components, Inc. Stucco casing bead
AR040590A1 (es) 2002-07-16 2005-04-13 James Hardie Res Pty Ltd Productos de cemento de fibra preacabados protegidos
US8281535B2 (en) 2002-07-16 2012-10-09 James Hardie Technology Limited Packaging prefinished fiber cement articles
MXPA05003691A (es) 2002-10-07 2005-11-17 James Hardie Int Finance Bv Material mixto de fibrocemento de densidad media durable.
CA2413550C (en) * 2002-12-03 2009-01-20 Bakor Inc. Self-adhering vapor permeable air and moisture barrier membrane
EP1431470A1 (de) * 2002-12-20 2004-06-23 Rhino Exterior Coating Inc. System und Verfahren zur Beschichtung formstabiler Bauwerkstoffe
US7117651B2 (en) 2003-04-03 2006-10-10 Certainteed Corporation Rainscreen clapboard siding
AU2003903440A0 (en) * 2003-07-04 2003-07-17 James Hardie International Finance B.V. Rainscreen apparatus and method
US20050108965A1 (en) * 2003-11-26 2005-05-26 Morse Rick J. Clapboard siding panel with built in fastener support
US7786026B2 (en) * 2003-12-19 2010-08-31 Saint-Gobain Technical Fabrics America, Inc. Enhanced thickness fabric and method of making same
US7625827B2 (en) * 2003-12-19 2009-12-01 Basf Construction Chemicals, Llc Exterior finishing system and building wall containing a corrosion-resistant enhanced thickness fabric and method of constructing same
US6886268B1 (en) 2003-12-22 2005-05-03 Certainteed Corporation Siding installation tool and method of installing siding
US20050150183A1 (en) * 2004-01-09 2005-07-14 Hettler Neil R. Insulation system with variable position vapor retarder
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US20060101758A1 (en) * 2004-11-18 2006-05-18 Egan William F Composite building material
US20060245830A1 (en) * 2005-04-27 2006-11-02 Jon Woolstencroft Reinforcement membrane and methods of manufacture and use
US20060277854A1 (en) * 2005-05-27 2006-12-14 Construction Research & Technology Gmbh Exterior finish system
US8051611B2 (en) * 2005-06-24 2011-11-08 Dryvit Systems, Inc. Exterior insulation and finish system and method and tool for installing same
CN100357537C (zh) * 2005-09-08 2007-12-26 夏良强 硬泡聚氨酯复合板外墙外保温系统制作方法
US20070094964A1 (en) * 2005-10-17 2007-05-03 Stender Mark L Dynamically ventilated exterior wall assembly
US20070084139A1 (en) * 2005-10-17 2007-04-19 Stender Mark L Exterior wall assembly
NZ571874A (en) 2006-04-12 2010-11-26 Hardie James Technology Ltd A surface sealed reinforced building element
US8429871B2 (en) * 2007-04-11 2013-04-30 Erla Dögg Ingjaldsdottir Affordable, sustainable buildings comprised of recyclable materials and methods thereof
US7941975B2 (en) * 2007-04-11 2011-05-17 Erla Dogg Ingjaldsdottir Affordable, sustainable buildings comprised of recyclable materials and methods thereof
US8910439B2 (en) 2007-04-11 2014-12-16 M3house, LLC Wall panels for affordable, sustainable buildings
DE102007043983B3 (de) * 2007-09-14 2009-03-12 Stephan Wedi Profilanordnung zur Überbrückung einer Bauwerksfuge
GB2460720B (en) * 2008-06-12 2013-04-24 Victor Joseph Wigley Improvements to the external insulation of buildings
CZ19351U1 (cs) 2008-12-02 2009-02-23 Bahal Investments S.R.O. Obvodová nosná stena nízkoenergetické stavby
US8813443B2 (en) * 2009-05-18 2014-08-26 Moisture Management, Llc Building envelope assembly including moisture transportation feature
US8074409B2 (en) * 2009-05-18 2011-12-13 Moisture Management, Llc Exterior wall assembly including moisture removal feature
US8001736B2 (en) * 2009-05-18 2011-08-23 Moisture Management, Llc Exterior wall assembly including moisture transportation feature
US20100287863A1 (en) * 2009-05-18 2010-11-18 Moisture Management, Llc Building envelope assembly including moisture transportation feature
US20110021663A1 (en) * 2009-07-23 2011-01-27 Sacks Abraham J Light weight aggregate composition
US20140150362A1 (en) 2010-01-20 2014-06-05 Propst Family Limited Partnership Building panels and method of forming building panels
US7984594B1 (en) 2010-01-20 2011-07-26 Propst Family Limited Partnership, Llc Composite building and panel systems
US9032679B2 (en) * 2010-01-20 2015-05-19 Propst Family Limited Partnership Roof panel and method of forming a roof
US8695299B2 (en) 2010-01-20 2014-04-15 Propst Family Limited Partnership Building panel system
US9027300B2 (en) 2010-01-20 2015-05-12 Propst Family Limited Partnership Building panel system
FI122842B (fi) * 2010-01-26 2012-07-31 Stonel Oy Liikuntasauman peittävä vuorausjärjestely
WO2011100592A1 (en) 2010-02-12 2011-08-18 Darek Shapiro A building module, a method for making same, and a method for using same to construct a building
CA2788910C (en) 2010-02-15 2016-11-01 Construction Research & Technology Gmbh Exterior finish system
US20140096460A1 (en) * 2010-03-19 2014-04-10 Sto Ag Construction System for Walls above Ground Level
US8555583B2 (en) * 2010-04-02 2013-10-15 Romeo Ilarian Ciuperca Reinforced insulated concrete form
US8789329B2 (en) * 2010-04-26 2014-07-29 Marius Radoane NP-EIFS non-permissive exterior insulation and finish systems concept technology and details
US9611651B2 (en) * 2012-03-06 2017-04-04 Keith Richard Eisenkrein Wall cladding system
US9085907B2 (en) * 2012-03-28 2015-07-21 Robert B. Rutherford Lath furring strips
TW201429561A (zh) 2012-11-01 2014-08-01 Propst Family Ltd Partnership 用於施加塗層的工具及其使用方法
CA2966458C (en) * 2012-12-19 2018-05-29 Keith Warren Method of retrofitting a building
US20140202103A1 (en) * 2013-01-18 2014-07-24 Vance Campbell Membrane Interface for Building Apertures
US9267294B2 (en) 2013-03-15 2016-02-23 Darek Shapiro Bracket, a building module, a method for making the module, and a method for using the module to construct a building
US8919062B1 (en) * 2013-07-29 2014-12-30 Sto Corp. Exterior wall panel systems
EP2860319A1 (de) * 2013-10-11 2015-04-15 Daw Se Wärmedämmverbund und Wärmedämmverbundareal sowie Wandaufbau, umfassend den Wärmedämmverbund oder das Wärmedämmverbundareal, und verfahren zur herstellung von Wandaufbauten
US9453344B2 (en) * 2014-05-01 2016-09-27 David R. Hall Modular insulated facade
US9708816B2 (en) 2014-05-30 2017-07-18 Sacks Industrial Corporation Stucco lath and method of manufacture
US9752323B2 (en) 2015-07-29 2017-09-05 Sacks Industrial Corporation Light-weight metal stud and method of manufacture
US9856645B2 (en) * 2016-05-25 2018-01-02 David D. Dahlin Exterior stucco wall construction with improved moisture drainage
JP6674337B2 (ja) * 2016-06-28 2020-04-01 ニチハ株式会社 建物の外断熱構造
US9797142B1 (en) 2016-09-09 2017-10-24 Sacks Industrial Corporation Lath device, assembly and method
US9963875B1 (en) 2017-02-24 2018-05-08 Breghtway Construction Solutions, LLC Exterior wall cladding system for buildings
US10472820B2 (en) * 2017-05-11 2019-11-12 Timothy Dennis Lutz Exterior insulated finish wall assembly
WO2019033197A1 (en) 2017-08-14 2019-02-21 Sacks Industrial Corporation METALLIC STUDS OF VARIABLE LENGTH
US11332925B2 (en) 2018-05-31 2022-05-17 Moisture Management, Llc Drain assembly including moisture transportation feature
RU2686216C1 (ru) * 2018-06-09 2019-04-24 Виталий Алексеевич Кукушкин Конструкция для герметизации и утепления межпанельных швов
US11351593B2 (en) 2018-09-14 2022-06-07 Structa Wire Ulc Expanded metal formed using rotary blades and rotary blades to form such
US10689851B2 (en) * 2018-10-01 2020-06-23 Durabond Products Limited Insulation board assembly
CA3021461C (en) * 2018-10-19 2021-07-06 Durock Alfacing International Limited Mineral wool insulation board system with mechanical fasteners and reinforcing mesh
US20200326085A1 (en) * 2019-04-15 2020-10-15 Ut-Battelle, Llc Thermally Anisotropic Composites for Thermal Management in Building Environments
WO2022056644A1 (en) * 2020-09-21 2022-03-24 Nexii Building Solutions Inc. Encapsulated prefabricated panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2915977A1 (de) * 1979-04-20 1980-10-23 Ihlefeld Karl Helmut Unbrennbare aeussere waermedaemmschicht mit oberflaechenbeschichtung
US4349398A (en) * 1980-12-08 1982-09-14 Edward C. Kearns Protective coating system
FR2520408A1 (fr) * 1982-01-22 1983-07-29 Smac Acieroid Element d'isolation exterieure et veture utilisant de tels elements
DE3238445A1 (de) * 1982-10-16 1984-04-19 Lhc Loba-Holmenkol-Chemie Dr. Fischer Und Dr. Weinmann Kg, 7257 Ditzingen Verfahren zur herstellung waermegedaemmter putzfassaden
FR2639981B1 (fr) * 1988-12-06 1991-02-08 Rhenane Element de veture muni de canaux pour l'evacuation de l'eau de condensation
US5027572A (en) * 1989-08-17 1991-07-02 W. R. Grace & Co.-Conn. Moisture and vapor barrier in exterior insulation finish systems

Also Published As

Publication number Publication date
ATE159069T1 (de) 1997-10-15
FI101407B1 (fi) 1998-06-15
EP0581269A2 (de) 1994-02-02
CZ282484B6 (cs) 1997-07-16
PL299804A1 (en) 1994-02-07
ES2052472T1 (es) 1994-07-16
NO307976B1 (no) 2000-06-26
HUT65304A (en) 1994-05-02
CZ150693A3 (en) 1994-02-16
DK0581269T3 (da) 1997-10-27
FI933387A (fi) 1994-01-29
CA2101505A1 (en) 1994-01-10
FI101407B (fi) 1998-06-15
PL172088B1 (pl) 1997-07-31
GR3025147T3 (en) 1998-02-27
NO932658L (no) 1994-01-31
GB2269194A (en) 1994-02-02
CA2101505C (en) 1997-12-30
ES2052472T3 (es) 1997-11-16
SK80593A3 (en) 1994-07-06
GR940300035T1 (en) 1994-06-30
GB9315626D0 (en) 1993-09-08
HU211749B (en) 1995-12-28
GB2269194B (en) 1996-04-03
US5410852A (en) 1995-05-02
DE59307485D1 (de) 1997-11-13
EP0581269A3 (de) 1994-12-28
HU9302177D0 (en) 1993-11-29
FI933387A0 (fi) 1993-07-28
RU2079612C1 (ru) 1997-05-20
GB9216029D0 (en) 1992-09-09
NO932658D0 (no) 1993-07-23

Similar Documents

Publication Publication Date Title
EP0581269B1 (de) Aussendämm- und Oberflächenbehandlungssystem
DE102004042667A1 (de) Mehrschichtige Gebäudewand
DE4004103C2 (de) Wandelement für Gebäudeaußenwände und Verfahren zur Herstellung eines Wandelements
DE102008048800A1 (de) Tafelförmiges Bauelement
EP0768440A1 (de) Plattenförmiges Dämmelement aus Mineralwolle
DE3519752A1 (de) Mineralfaserprodukt als daemmplatte oder daemmbahn
DE102005032557B4 (de) Bauelement, insbesondere für Hochbauwerke
EP3085873B1 (de) Effektpaneel
DE2349710A1 (de) Waermegedaemmte dacheindeckung
EP0219792B1 (de) Wärmedämmendes, tragendes Bauelement
DE3514445A1 (de) Fassadenbekleidung, insbesondere fuer altbauten
DE10125349B4 (de) Holzwandtafel
EP1807576B1 (de) Dämmendes Bauelement
DE3837377C2 (de) Flachdach-Dämmkeil
DE102016102780B4 (de) Anordnung mit mindestens einem Dach- oder Fassadenelement in Gestalt eines sandwichartig aufgebauten Dämmpaneels und mit einem benachbart zu dem Dach- oder Fassadenelement angeordneten Fensterelement
EP0645503A2 (de) Wand
DE102019003036B4 (de) Wärmedämmbaugruppe
DE2551597C2 (de) Wärmedämmelemente für Gebäudeaußenwände
AT2945U1 (de) Formstein zur herstellung von mauerelementen
CH669629A5 (de)
EP4293168A1 (de) Trockenbauwand sowie verfahren zum herstellen einer trockenbauwand
DE202017102253U1 (de) Flächiges Bauelement für ein Gebäude
EP3115526A1 (de) Fugenabdichtung zwischen dämmelementen zur gebäudedämmung
EP1792023B1 (de) Dämmstoffelement aus mineralfasern und verfahren zu seiner herstellung
CH655346A5 (de) Tragendes bauelement fuer decken oder daecher.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

ITCL It: translation for ep claims filed

Representative=s name: ING. C. GREGORJ S.P.A.

TCNL Nl: translation of patent claims filed
EL Fr: translation of claims filed
GBC Gb: translation of claims filed (gb section 78(7)/1977)
IECL Ie: translation for ep claims filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2052472

Country of ref document: ES

Kind code of ref document: T1

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19950622

17Q First examination report despatched

Effective date: 19960222

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 159069

Country of ref document: AT

Date of ref document: 19971015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALTSBUERO JEAN HUNZIKER

REF Corresponds to:

Ref document number: 59307485

Country of ref document: DE

Date of ref document: 19971113

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2052472

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971202

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19971008

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3025147

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 19980703

Year of fee payment: 6

Ref country code: IE

Payment date: 19980703

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980706

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19980707

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980714

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980717

Year of fee payment: 6

Ref country code: FR

Payment date: 19980717

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980727

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980729

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19980731

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980810

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980928

Year of fee payment: 6

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990728

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990728

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990728

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990731

BERE Be: lapsed

Owner name: STO A.G.

Effective date: 19990731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990728

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20000131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20000725

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010725

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010728

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020729

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050728