EP0572848A2 - Verfahren zur Bestimmung des Endpunktes für den Frischprozess in Sauerstoffkonvertern - Google Patents

Verfahren zur Bestimmung des Endpunktes für den Frischprozess in Sauerstoffkonvertern Download PDF

Info

Publication number
EP0572848A2
EP0572848A2 EP93107946A EP93107946A EP0572848A2 EP 0572848 A2 EP0572848 A2 EP 0572848A2 EP 93107946 A EP93107946 A EP 93107946A EP 93107946 A EP93107946 A EP 93107946A EP 0572848 A2 EP0572848 A2 EP 0572848A2
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
converter
oxygen supply
computer
gas components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93107946A
Other languages
English (en)
French (fr)
Other versions
EP0572848A3 (en
EP0572848B1 (de
Inventor
Pervez Dr. Patel
Hans-Joachim Dr. Selenz
Friedrich Dr.-Ing. Höfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georgsmarienhuette GmbH
Original Assignee
Georgsmarienhuette GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georgsmarienhuette GmbH filed Critical Georgsmarienhuette GmbH
Publication of EP0572848A2 publication Critical patent/EP0572848A2/de
Publication of EP0572848A3 publication Critical patent/EP0572848A3/de
Application granted granted Critical
Publication of EP0572848B1 publication Critical patent/EP0572848B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing

Definitions

  • the invention relates to a method for determining the end point for the fresh process in oxygen converters in steel production.
  • Carbon is essentially oxidized during the freshening, that is to say when oxygen is blown onto or into the molten steel. At the end of oxygen blowing, the carbon content is relatively small. Therefore, the reaction of iron with oxygen comes to the fore. In addition to the fact that this reaction creates what is known as brown smoke, which is a heavy burden on the environment, the liquid iron oxide reacts with the expensive refractory lining of the converter and thus increases the fire test costs. At the same time, iron spreading is reduced. That is why it is particularly important to switch off the oxygen supply in good time. In addition, an increased FeO content of the slag is disadvantageous for the production of steel with a high degree of purity.
  • the carbon content is determined by a quick determination using its dependence on the solidification temperature.
  • the disadvantages of sublance technology are the very high investment and maintenance costs as well as an unsatisfactory hit rate in terms of carbon content.
  • the invention is therefore based on the object of carrying out a method of the type mentioned at the outset in such a way that it is possible to decide individually for each melt as early as possible and at a specific bath carbon content to switch off the oxygen supply when freshening.
  • the invention solves this problem with the aid of the features of the characterizing part of claim 1.
  • the course over time of a number of exhaust gas components is preferably determined by mass spectrometry. Towards the end of the freshening process, the proportion of individual exhaust gas components decreases, while the proportion of other exhaust gas components increases.
  • the exhaust gas components CO, CO2 and N2 are measured, it turns out that towards the end of the fresh process, the proportion of CO falls, while the proportions of CO2 and N2 increase.
  • the increase in CO2 is relatively small, while the increase in N2 is very significant. This is due to the fact that at the end of the freshening process, a lot of false air gets into the exhaust gas stream. For environmental reasons, the exhaust gases have to be extracted. There is a gap between the converter opening and the exhaust hood through which more and more false air is drawn in when the suction pumps can no longer be offered enough converter gas.
  • the parameters are selected so that they show a significant change even if the exhaust gas components only slowly rise or fall.
  • this time course must be subjected to a pattern recognition. According to the invention, this is accomplished with the aid of a computer program.
  • the measured exhaust gas values are analog values that are digitized in an analog-digital converter.
  • the derived parameters are then formed from the digital values obtained using the computer program. Measuring point for measuring point, which are approximately 3 seconds apart, is scanned and the respective time change is compared with a target state.
  • This desired state means, for example, “fall” with CO, while it means “rise” with nitrogen.
  • Returns the scan i.e. the comparison of the temporal change of the measuring points with the respective target state in several runs in succession the same tendency (CO falls constantly, N2 rises continuously) a signal is generated which is used to switch off the oxygen supply.
  • the number of comparison runs (loops) is determined in advance and is, for example, 7.
  • pattern recognition is only started when a point has been reached in the course of time from which the final drop occurs of the CO portion or the final increase in the N2 content can be expected. This is roughly determined, for example, using one of the static models given above.
  • carbon is blown into the batch through the bottom of the converter. If there is enough carbon in the melt, the carbon supply is stopped while freshening continues.
  • the pattern recognition process is then 5 minutes, for example. started after the coal stop, d. that is, when it is approximately certain that only a little carbon can react with oxygen, the carbon monoxide content in the exhaust gas stream thus begins to decrease steadily.
  • the computer If the above-mentioned conditions are then fulfilled over a predetermined time or a predetermined number of comparison runs, the computer generates a signal that either stops the oxygen supply automatically in DDC mode or is sent to the converter control station, where the oxygen supply from the Operating personnel can be ended.
  • This second alternative has the advantage that, based on experience, the operating personnel can still maintain the oxygen supply a little despite the signal.
  • a converter 1 is shown schematically in FIG. 1.
  • the oxygen blowing device is omitted for reasons of clarity.
  • the suction pumps are also not shown for reasons of clarity.
  • a schematically illustrated branch 6 from the chimney 5 supplies a mass spectrometer 7 with the exhaust gas components to be analyzed.
  • the measurement signals are plotted over time, for example with the aid of a recorder 8.
  • the analog values are sampled and fed to an analog-digital converter 9.
  • the digitized values arrive in the computer 10 and are further processed there. After it has been determined that the right time to switch off the oxygen supply has been reached, the computer 10 generates a signal which in the present example is transmitted via the digital output 11 to the converter control station (not shown).
  • the method is based on the palpation of the time-varying variables specified above. To do this, it is necessary to create a computer program, as shown schematically in FIG. 5, and to convert the analog values into digital data.
  • the computer program first of all generates the derived quantities and constantly compares the change over time with the target state.
  • the program is only started at a later point in time so that this comparison does not take place at the beginning of the fresh process or at the beginning of the measuring time, i.e. in an area in which no meaningful decisions can yet be made. In the present example only 5 minutes after the coal stop.
  • the mass spectrometer is completely exposed to nitrogen. Now that the measurement begins, ie if the exhaust gases to be examined are fed to the mass spectrometer, the proportion of calibration gas nitrogen in the mass spectrometer drops. If it drops below 95%, the program is deactivated by a reset. Are the 5 min. Once the carbon supply has been reached, the system asks whether the proportion of calibration gas in the mass spectrometer has dropped to below 95%. If this question is answered in the affirmative, the counter in the program is set to 0 and the first condition is queried. In this case the condition is "the nitrogen content increases”. If the answer is no, the run is restarted. If the condition is met, the second condition is queried, in this case "the carbon dioxide content increases”.
  • the run is restarted, if the answer is yes, the third condition is queried, in this case "the carbon monoxide content drops". If the answer is no, the system restarts. Otherwise, other conditions are taken into account, e.g. B. falls over time the ratio of CO to N2. Another condition could be whether the gradient of the falling edge of this ratio (CO / N2) exceeds a certain value. If all conditions are met, the counter is increased by one and the conditions are queried for the next measuring point. If the number of loops reaches a previously set value, the process is ended and the signal to switch off the oxygen supply is generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

Bei einem Verfahren zur Bestimmung des Endpunktes für den Frischprozeß in Sauerstoffkonvertern bei der Stahlerzeugung wird erfindungsgemäß vorgeschlagen, daß während des Frischens fortlaufend aus dem Konverter entweichende Abgasbestandteile vorzugsweise massenspektrometrisch analysiert, aus den gemessenen Werten Parameter erzeugt werden, deren signifikante Änderung im zeitlichen Verlauf ein Signal für die Beendigung der Sauerstoffzufuhr ergibt.

Description

  • Die Erfindung betrifft ein Verfahren zur Bestimmung des Endpunktes für den Frischprozeß in Sauerstoffkonvertern bei der Stahlerzeugung.
  • Während des Frischens, also beim Auf- bzw. Einblasen von Sauerstoff auf bzw. in die Stahlschmelze, wird im wesentlichen Kohlenstoff oxidiert. Am Ende des Sauerstoffblasens ist der Kohlenstoffgehalt relativ klein. Daher tritt nun die Reaktion von Eisen mit Sauerstoff in den Vordergrund. Neben der Tatsache, daß durch diese Reaktion der sogenannte braune Rauch entsteht, eine starke Belastung der Umwelt, reagiert das flüssige Eisenoxid mit dem teuren Feuerfest-Futter des Konverters und erhöht so die Feuertest-Kosten. Gleichzeitig wird das Eisenausbringen verringert. Deshalb ist das rechtzeitige Abschalten der Sauerstoffzufuhr besonders wichtig. Zudem ist ein erhöhter FeO-Gehalt der Schlacke von Nachteil für die Erzeugung von Stahl mit hohem Reinheitsgrad.
  • Methoden, den günstigsten Abschaltzeitpunkt zu finden, sind vielfältig. So gibt es allgemeine mathematische Modelle, bei denen der Zeitpunkt auf der Grundlage vorher festgelegter Werte, unter anderem die Schmelze selbst betreffend, ermittelt wird.
  • Da diese Werte von Charge zu Charge jedoch wechseln, sind diese statischen Modelle nicht in der Lage, den für jede Charge zutreffenden Abschaltzeitpunkt zu ermitteln.
  • Dagegen sind dynamische Modelle, die ein Signal benutzen, eher geeignet, den Frischprozeß befriedigend zu steuern. Eine dieser dynamischen Methoden ist die sogenannte Sublanzentechnik. Hier wird kurz vor Ende des Blasens eine bzw. zwei Proben durch das Einführen einer Lanze in Blasstellung genommen.
  • Der Kohlenstoffgehalt wird durch eine Schnellbestimmung mittels seiner Abhängigkeit von der Erstarrungstemperatur ermittelt. Die Nachteile der Sublanzentechnik sind die sehr hohen Investitions- und Wartungskosten sowie eine unbefriedigende Trefferquote in Bezug auf den Kohlenstoffgehalt.
  • Weitere dynamische Modelle benutzen die Gasanalyse. Derartige Modelle wären an sich für die Ermittlung des Abschaltzeitpunktes besonders geeignet, wenn eine zufriedenstellende Methode zur Verwendung der Signale zur Steuerung des Frischprozesses vorhanden wäre. Bei der herkömmlichen Abgasanalyse wird die Entkohlungsgeschwindigkeit aus den gemessenen CO- und CO₂-Volumenanteilen unter Berücksichtigung der Abgasrate GA ermittelt. Eine Senkung der Entkohlungsgeschwindigkeit signalisiert den Endpunkt. Dieses Verfahren ist wegen unzureichender Reproduzierbarkeit der Endkohlenstoffgehalte im Metall sowie der FeO-Gehalte der Schlacke nicht empfehlenswert.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art so zu führen, daß individuell für jede Schmelze möglichst frühzeitig und bei einem bestimmten Bad-Kohlenstoffgehalt über die Abschaltung der Sauerstoffzufuhr beim Frischen entschieden werden kann.
  • Die Erfindung löst diese Aufgabe mit Hilfe der Merkmale des kennzeichnenden Teils des Anspruchs 1.
  • Weitere vorteilhatte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche. Bei dem erfindungsgemäßen Verfahren wird der zeitliche Verlauf einer Anzahl von Abgasbestandteilen, vorzugsweise massenspektrometisch ermittelt. Gegen Ende des Frischvorganges sinkt der Anteil einzelner Abgasbestandteile, während der Anteil anderer Abgasbestandteile steigt.
  • Wenn z. B. mit Hilfe des Massenspektrometers die Abgasbestandteile CO, CO₂ und N₂ gemessen werden, so stellt sich heraus, daß gegen Ende des Frischvorganges der Anteil an CO fällt, während die Anteile an CO₂ und N₂ ansteigen. Der Anstieg an CO₂ ist dabei relativ gering, während der Anstieg an N₂ sehr signifikant ist. Das liegt daran, daß gerade am Ende des Frischvorganges viel Falschluft in den Abgasstrom gelangt. Aus umwelttechnischen Gründen müssen nämlich die Abgase abgesaugt werden. Zwischen Konverteröffnung und Abgashaube befindet sich ein Spalt, durch den mehr und mehr Falschluft angesaugt wird, wenn den Absaugpumpen nicht mehr genug Konvertergas angeboten werden kann.
  • Da das Sinken des CO-Anteils bzw. das Steigen des N₂-Anteils aber zunächst sehr mäßig verläuft, ist nicht gleich zu entscheiden, ob der Zeitpunkt zum Abschalten der Sauerstoffzufuhr schon erreicht ist. Sicher kann man erst sein, wenn der Abfall des CO-Anteils bzw. der Anstieg des N₂-Anteils signifikant wird. Vor diesem Zeitpunkt kann jedoch schon die Reaktion des Sauerstoffes mit dem Eisen die Überhand über die Reaktion des Sauerstoffs mit dem Kohlenstoff gewonnen haben. Aus diesem Grunde werden aus den gemessenen Abgasbestandteilen Parameter abgeleitet, wie sie beispielhaft in Anspruch 4 aufgeführt sind. Dabei bedeutet G K = G A /100 · (100 - N₂ - O₂) ≈ G A /100 · (100 - N₂)
    Figure imgb0001
    , wobei N₂ bzw. O₂ Volumenanteile in % im Abgas sind.
  • Die Parameter sind so gewählt, daß diese schon dann eine signifikante Änderung zeigen, wenn die Abgasbestandteile erst langsam steigen bzw. fallen.
  • Auf diese Weise ist es möglich, die Entscheidung über die Abschaltung der Sauerstoffzufuhr schon etwa 2 Minuten früher zu treffen als bei der eben beschriebenen Methode, bei der lediglich die Abgasbestandteile selbst Verwendung finden.
  • Wichtig für das Verfahren ist es, daß am Beginn der Endpunktbestimmungsmessung der Kohlenmonoxidanteil über 40 Vol-% und der Stickstoffanteil unter 40 Vol-% im Abgasstrom beträgt. Denn erst, wenn diese Anfangsbedingungen gegeben sind, ergibt sich im Verlauf des Frischens ein auswertbarer Abfall des Kohlenmonoxidanteils bzw. Anstieg des Stickstoffgehaltes.
  • Da es also bei dem erfindungsgemäßen Verfahren darauf ankommt, daß die entscheidende signifikante Änderung im zeitlichen Verlauf der Abgasbestandteile bzw. der daraus abgeleiteten Parameter möglichst frühzeitig erkannt wird, muß dieser zeitliche Verlauf einer Mustererkennung unterzogen werden. Das wird erfindungsgemäß mit Hilfe eines Rechnerprogramms bewerkstelligt. Die gemessenen Abgaswerte sind Analogwerte, die in einem Analog-Digitalwandler digitalisiert werden. Dann werden aus den gewonnenen Digitalwerten mittels des Computerprogrammes die abgeleiteten Parameter gebildet. Meßpunkt für Meßpunkt, die zeitlich etwa 3 Sekunden auseinanderliegen, wird abgetastet und die jeweilige zeitliche Veränderung wird mit einem Soll-Zustand verglichen.
  • Dieser Sollzustand bedeutet beispielsweise bei CO "fallen", während er bei Stickstoff "steigen" bedeutet. Ergibt die Abtastung, d.h. der Vergleich der zeitlichen Veränderung der Meßpunkte mit dem jeweiligen Sollzustand in mehreren Durchläufen hintereinander jeweils die gleiche Tendenz (CO fällt ständig, N₂ steigt ständig) wird ein Signal erzeugt, das dazu benutzt wird, die Sauerstoffzufuhr abzuschalten.
  • Die Zahl der Vergleichsdurchläufe (Loopings) wird vorher festgelegt und beträgt beispielsweise 7.
  • Da es im zeitlichen Verlauf der gemessenen Abgaswerte aber auch vorher schon zu Situationen kommen kann, in denen die Soll-Zustände mehrmals hintereinander getroffen werden, wird die Mustererkennung erst dann gestartet, wenn im zeitlichen Verlauf ein Punkt erreicht ist, ab dem mit dem endgültigen Abfall des CO-Anteils bzw. dem endgültigen Anstieg des N₂-Gehaltes gerechnet werden kann. Das wird beispielsweise mit Hilfe eines der oben angegebenen statischen Modelle grob bestimmt. Es gibt jedoch auch andere Kriterien, wie z. B. den sogenannten Kohlestop. Bei manchen Stahlherstellungsverfahren wird beispielsweise von unten durch den Konverterboden Kohlenstoff in die Charge eingeblasen. Wenn genügend Kohlenstoff in der Schmelze vorhanden ist, wird die Kohlenstoffzufuhr gestoppt, während das Frischen weitergeht. Das Mustererkennungsverfahren wird dann beispielsweise 5 min. nach dem Kohlenstop begonnen, d. h., wenn ungefähr sicher ist, daß nur noch wenig Kohlenstoff mit Sauerstoff reagieren kann, der Kohlenmonoxidgehalt im Abgasstrom somit beginnt stetig abzunehmen.
  • Sind dann die oben genannten Bedingungen über eine vorher bestimmte Zeit bzw. vorher bestimmte Anzahl von Vergleichsdurchläufen erfüllt, wird vom Rechner ein Signal erzeugt, das entweder im DDC-Modus die Sauerstoffzufuhr selbständig beendet, oder aber zum Konverterleitstand gesendet wird, wo dann die Sauerstoffzufuhr vom Bedienungspersonal beendet werden kann. Diese zweite Alternative hat den Vorteil, daß das Bedienungspersonal aufgrund von Erfahrungswerten die Sauerstoffzufuhr trotz des Signals noch ein wenig aufrechterhalten kann.
  • Die Erfindung wird im folgenden anhand von Zeichnungen dargestellt und näher erläutert. Es zeigen:
  • Fig. 1
    den prinzipiellen Aufbau der Meß- und Auswerteapparatur am Konverter,
    Fig. 2
    den zeitlichen Verlauf der Volumenanteile von CO, CO₂ und N₂,
    Fig. 3
    den zeitlichen Verlauf des Verhältnisses von CO und N₂ multipliziert mit dem Konvertergasanteil,
    Fig. 4
    den zeitlichen Verlauf des Verhältnisses von CO und N₂ und
    Fig. 5
    ein Flußdiagramm des erfindungsgemäßen Auswerteverfahrens.
  • In der Fig. 1 ist schematisch ein Konverter 1 dargestellt. Die Sauerstoffblaseinrichtung ist aus Übersichtlichkeitsgründen weggelassen. Über der Konverter-Öffnung 2 befindet sich in einem geringen Abstand 3 dazu eine Absaughaube 4, über die die Abgase aus dem Konverter 1 in den Kamin 5 gelangen. Die Absaugpumpen sind ebenfalls aus Übersichtlichkeitsgründen nicht dargestellt. Eine schematisch dargestellte Abzweigung 6 aus dem Kamin 5 beliefert einen Massenspektrometer 7 mit den zu analysierenden Abgasbestandteilen. Die Meßsignale werden beispielsweise mit Hilfe eines Schreibers 8 über der Zeit aufgetragen. Die Analogwerte werden abgetastet und einem Analog-Digitalwandler 9 zugeführt. Die digitalisierten Werte gelangen in den Rechner 10 und werden dort weiter verarbeitet. Nachdem festgestellt worden ist, daß der richtige Zeitpunkt zum Abschalten der Sauerstoffzufuhr erreicht ist, wird vom Rechner 10 ein Signal erzeugt, das im vorliegenden Beispiel über den digitalen Ausgang 11 zum nicht dargestellten Konverterleitstand übermittelt wird.
  • In der Fig. 2 ist der zeitliche Verlauf der gemessenen Volumenanteile in % von Kohlenmonoxid, Kohlendioxid und Stickstoff dargestellt. Die Messungen sind während des Frischens nach einer vorher festgelegten Zeit begonnen worden. Es ist zu erkennen, daß am Frischende, d. h. in diesem Fall im Bereich 10 bis 12 min., die CO-Kurve sinkt und die CO₂- und N₂-Kurven steigen. Die Verläufe der Meßsignale sind nach ca. 10,5 min. eindeutig.
  • Werden nun bestimmte, abgeleitete Größen, wie z. B. CO/N₂ oder CO² (1/N₂ - 1/100)
    Figure imgb0002
    , in Abhängigkeit von der Frischzeit aufgetragen, so ist ein eindeutiger Verlauf noch früher als nach 10, 5 min. zu erkennen.
  • In Fig. 3 ist für die gleiche Charge wie in Fig. 2 eine Auftragung von (CO/N₂) · (CO [100 - N₂]/100)
    Figure imgb0003
    , was CO² (1/N₂ - 1/100)
    Figure imgb0004
    entspricht, als Funktion der Frischzeit durchgeführt worden. Hier ist schon ein eindeutiger Trend nach ca. 8,5 min. erkennbar. Der Verlauf von CO/N₂ in Abhängigkeit von der Frischzeit wird in Fig. 4 dargestellt. Auch in diesem Fall ist ein deutlicher Abfall nach ca. 8,5 min. zu sehen.
  • Das Verfahren basiert auf dem Ertasten der oben angegebenen zeitveränderlichen Größen. Dazu ist es erforderlich, ein Rechnerprogramm zu erstellen, wie es schematisch in Fig. 5 dargestellt ist, und die Analogwerte in Digitaldaten umzusetzen. Das Rechnerprogramm erzeugt zunächst einmal die abgeleiteten Größen und vergleicht ständig die zeitliche Veränderung mit dem Soll-Zustand.
  • Damit dieser Vergleich nicht schon am Anfang des Frischverfahrens bzw. am Anfang der Meßzeit erfolgt, in einem Bereich also, in dem noch keine sinnvollen Entscheidungen getroffen werden können, wird das Programm erst zu einem späteren Zeitpunkt gestartet. Im vorliegenden Beispiel erst 5 Minuten nach dem Kohlestop.
  • Am Beginn der Messung ist das Massenspektrometer völlig mit Stickstoff beaufschlagt. Beginnt nun die Messung, d. h. werden dem Massenspektrometer die zu untersuchenden Abgase zugeführt, sinkt der Eichgas-Stickstoff-Anteil im Massenspektrometer. Sinkt er unter 95 %, wird durch Reset das Programm erst einmal außer Funktion gesetzt. Sind die 5 min. nach Ende der Kohlenstoffzufuhr erreicht, wird wieder abgefragt, ob der Eichgasanteil des Massenspektrometers auf unter 95 % abgesunken ist. Wird diese Frage bejaht, wird der Zähler im Programm auf 0 gesetzt und die erste Bedingung wird abgefragt. In diesem Fall lautet die Bedingung "steigt der Stickstoffgehalt". Wird dies verneint, wird der Durchlauf neu gestartet. Ist die Bedingung erfüllt, wird die zweite Bedingung abgefragt, in diesem Fall "steigt der Kohlendioxidgehalt". Wird dies verneint, wird der Durchlauf neu gestartet, wird dies bejaht, wird die dritte Bedingung abgefragt, in diesem Fall "fällt der Kohlenmonoxidanteil". Wird dies verneint, wird erneut gestartet. Anderenfalls werden noch andere Bedingungen berücksichtigt, so z. B. fällt der zeitliche Verlauf des Verhältnisses von CO zu N₂. Eine weitere Bedingung könnte sein, ob der Gradient der abfallenden Flanke dieses Verhältnisses (CO/N₂) einen bestimmten Wert überschreitet. Sind alle Bedindungen erfüllt, wird der Zähler um eins höhergesetzt und die Abfragung der Bedingungen erfolgt für den nächsten Meßpunkt. Erreicht die Anzahl der Durchläufe (Loopings) einen vorher eingestellten Wert, wird das Verfahren beendet und das Signal zum Abschalten der Sauerstoffzufuhr erzeugt.
  • Das eben erläuterte Flußdiagramm aus Fig. 5 ist rein beispielsweise zu verstehen. So ist es natürlich möglich, daß lediglich zwei Bedingungen abgefragt werden und daß die Anzahl der Durchläufe zwischen n = 2 und n = 10, vorteilhafterweise jedoch auf 7 vorher festgelegt werden kann.

Claims (7)

  1. Verfahren zur Bestimmung des Endpunktes für den Frischprozeß in Sauerstoffkonvertern bei der Stahlerzeugung, bei dem während des Frischens fortlaufend aus dem Konverter entweichende Abgasbestandteile analysiert werden,
    dadurch gekennzeichnet,
    daß die zeitlichen Änderungen der massenspektrometrisch analysierten Abgasbestandteile und/oder daraus abgeleiteter Parameter mit Hilfe eines Rechnerprogramms fortlaufend mit einer Sollkurve verglichen werden, und nachdem über eine bestimmte Anzahl von hintereinander liegenden Meßwerten die vorgebenenen Bedingungen vom Rechner als erfüllt erkannt worden sind, die Sauerstoffzufuhr beendet wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß als Abgasbestandteile C0 und/oder CO₂ und N₂ analysiert werden, aus deren gemessenen Wert die Parameter abgeleitet werden.
  3. Verfahren nach Anspruch 2,
    dadurch gekennzeichnet,
    daß als Parameter die Abgasrate GA und/oder Konvertergas GK und/oder dC/dO₂ und/oder CO (100 - N₂)/100
    Figure imgb0005
    und/oder CO/N₂ und/oder CO² (1/N₂ - 1/100)
    Figure imgb0006
    aus den gemessenen Werten der Abgasbestandteile ermittelt werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    daß am Beginn der Endpunktbestimmungsmessung der Kohlenmonoxidanteil über 40 Vol-% und der Stickstoffanteil unter 40 Vol-% im Abgasstrom betragen soll.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß die gemessenen Werte Analogwerte sind, die digitalisiert werden und dann dem Rechner zugeführt werden.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    daß der Rechner im DDC-Modus die Sauerstoffzufuhr selbständig beendet.
  7. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    daß der Rechner das Signal zur Beendigung der Sauerstoffzufuhr über einen digitalen Ausgang zum Konverterleitstand sendet, wo dann die Sauerstoffzufuhr abgeschaltet wird..
EP93107946A 1992-05-30 1993-05-15 Verfahren zur Bestimmung des Endpunktes für den Frischprozess in Sauerstoffkonvertern Expired - Lifetime EP0572848B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4217933A DE4217933C2 (de) 1992-05-30 1992-05-30 Verfahren zur Bestimmung des Endpunktes für den Frischprozeß in Sauerstoffkonvertern
DE4217933 1992-05-30

Publications (3)

Publication Number Publication Date
EP0572848A2 true EP0572848A2 (de) 1993-12-08
EP0572848A3 EP0572848A3 (en) 1994-08-10
EP0572848B1 EP0572848B1 (de) 1998-07-08

Family

ID=6460082

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93107946A Expired - Lifetime EP0572848B1 (de) 1992-05-30 1993-05-15 Verfahren zur Bestimmung des Endpunktes für den Frischprozess in Sauerstoffkonvertern

Country Status (3)

Country Link
EP (1) EP0572848B1 (de)
AT (1) ATE168137T1 (de)
DE (2) DE4217933C2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633322A1 (de) * 1993-06-15 1995-01-11 MANNESMANN Aktiengesellschaft Verfahren zur Herstellung von Stahl mit niedrigem Phosphorgehalt
WO2005036166A1 (de) * 2003-10-06 2005-04-21 Zimmer Aktiengesellschaft Analyseautomat und verfahren zur überwachung der polymerherstellung mittels massenspektroskopie
US7482584B2 (en) 2003-10-06 2009-01-27 Lurgi Zimmer Gmbh Method for the automatic analysis of refuse containing polymers and an automatic analytical device for this purpose
WO2011076615A3 (de) * 2009-12-23 2011-09-22 Sms Siemag Ag Steuerung des konverterprozesses durch abgassignale
CN113388712A (zh) * 2021-06-15 2021-09-14 马鞍山钢铁股份有限公司 一种低碳lf炉工艺钢转炉冶炼方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4412236C2 (de) * 1993-06-15 1998-04-16 Mannesmann Ag Verfahren zur Herstellung von Stahl mit niedrigem Phosphorgehalt
DE102006050888A1 (de) 2006-10-27 2008-04-30 Siemens Ag Verfahren zur Regelung des Kohlenmonoxid-Austrags bei einem metallurgischen Schmelzverfahren
RU2652663C2 (ru) * 2015-11-27 2018-04-28 Общество Ограниченной Ответственности "Научно-производственное объединение "Санкт-Петербургская электротехническая компания" Способ управления процессом продувки конвертерной плавки с использованием информации отходящих газов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836694A1 (de) * 1977-08-22 1979-03-08 Kobe Steel Ltd Verfahren zum kontrollieren des endzeitpunkts des windfrischvorgangs in einem konverter
DE2839316A1 (de) * 1977-09-10 1979-03-22 Nisshin Steel Co Ltd Verfahren zur steuerung eines stahlherstellungsverfahrens unter atmosphaerischem druck
DE2835548A1 (de) * 1978-08-14 1980-02-28 Kloeckner Werke Ag Verfahren zum bestimmen des gehaltes einer charge eines metallurgischen systems an einem oder mehreren elementen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836694A1 (de) * 1977-08-22 1979-03-08 Kobe Steel Ltd Verfahren zum kontrollieren des endzeitpunkts des windfrischvorgangs in einem konverter
DE2839316A1 (de) * 1977-09-10 1979-03-22 Nisshin Steel Co Ltd Verfahren zur steuerung eines stahlherstellungsverfahrens unter atmosphaerischem druck
DE2835548A1 (de) * 1978-08-14 1980-02-28 Kloeckner Werke Ag Verfahren zum bestimmen des gehaltes einer charge eines metallurgischen systems an einem oder mehreren elementen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
STAHL UND EISEN, Bd.102, Nr.10, 17. Mai 1982, DUSSELDORF DE Seiten 515 - 519 K. W. LANGE 'Zur Prozess-Steuerung bei Sauerstoffblasverfahren' *
STAHL UND EISEN, Bd.92, Nr.25, 7. Dezember 1972, DUSSELDORF DE Seiten 1278 - 1283 K. D. SCHUY ET AL. 'Massenspektrometrische Prozessgasanalyse ....' *
TRANSACTIONS ISIJ, Bd.28, 1988, TOKIO, JP Seiten 59 - 67 T. TAKAWA ET AL. 'Analysis of Converter Process ....' *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0633322A1 (de) * 1993-06-15 1995-01-11 MANNESMANN Aktiengesellschaft Verfahren zur Herstellung von Stahl mit niedrigem Phosphorgehalt
WO2005036166A1 (de) * 2003-10-06 2005-04-21 Zimmer Aktiengesellschaft Analyseautomat und verfahren zur überwachung der polymerherstellung mittels massenspektroskopie
US7482584B2 (en) 2003-10-06 2009-01-27 Lurgi Zimmer Gmbh Method for the automatic analysis of refuse containing polymers and an automatic analytical device for this purpose
WO2011076615A3 (de) * 2009-12-23 2011-09-22 Sms Siemag Ag Steuerung des konverterprozesses durch abgassignale
US8494679B2 (en) 2009-12-23 2013-07-23 Sms Siemag Aktiengesellschaft Control of the converter process by means of exhaust gas signals
RU2539501C2 (ru) * 2009-12-23 2015-01-20 Смс Зимаг Аг Управление конвертерным процессом посредством сигналов отходящего газа
CN113388712A (zh) * 2021-06-15 2021-09-14 马鞍山钢铁股份有限公司 一种低碳lf炉工艺钢转炉冶炼方法

Also Published As

Publication number Publication date
ATE168137T1 (de) 1998-07-15
EP0572848A3 (en) 1994-08-10
DE59308730D1 (de) 1998-08-13
EP0572848B1 (de) 1998-07-08
DE4217933C2 (de) 1995-03-23
DE4217933A1 (de) 1993-12-02

Similar Documents

Publication Publication Date Title
DE1433443B2 (de) Verfahren zur ueberwachung und regelung der sauerstoffauf blasverfahren
EP0572848A2 (de) Verfahren zur Bestimmung des Endpunktes für den Frischprozess in Sauerstoffkonvertern
EP2516685B1 (de) Steuerung des konverterprozesses durch abgassignale
EP1890207A1 (de) Verfahren zum Erstellen eines Prozessmodells
DE2839315A1 (de) Verfahren zur steuerung der stahlherstellung
EP1310573B1 (de) Verfahren zur Herstellung einer Metallschmelze an Hand eines dynamischen Prozessmodells, inklusiv Korrekturmodell
DE2839316C2 (de) Verfahren zur Kontrolle eines Stahlherstellungsverfahren
DE2755587C2 (de) Einrichtung zur Schnellbestimmung der Bindungsformen von Gasen, wie Sauerstoff oder Stickstoff in festen oder flüssigen kleinen Metallproben
DE2445190A1 (de) Verfahren zum herstellen von stahl
WO2021116324A1 (de) Verfahren zur bestimmung und steuerung oder regelung des phosphor-gehaltes in einer metallischen schmelze während eines frischprozesses einer metallischen schmelze in einem metallurgischen reaktor
DE2707502C2 (de) Verfahren zum Steuern der Temperatur und des Kohlenstoffgehalts einer Stahlschmelze in einem Sauerstoffblaskonverter
DE2836694C2 (de) Verfahren zum Überwachen des Endpunktes beim Frischen von kohlenstoffarmem Stahl im Sauerstoffkonverter
EP0281504B1 (de) Verfahren und Vorrichtung zur Entgasungsbehandlung einer Stahlschmelze in einer Vakuumanlage
DE1508245C3 (de) Verfahren zur Steuerung des Kohlenstoffgehaltes in geschmolzenem Stahl während des Sauerstoffaufblasverfahrens
DD151965A5 (de) Verfahren und vorrichtung zur steuerung der vakuumentgasung einer stahlschmelze
AT406587B (de) Verfahren zum bestimmen des blaseendes während des frischens einer stahlschmelze in einem konverter
DE19641432A1 (de) Verfahren und Einrichtung zur Vorausberechnung von vorab unbekannten Parametern eines industriellen Prozesses
DE19547010C2 (de) Verfahren und Vorrichtung zur Überwachung des Prozeßablaufs bei der Strahlerzeugung nach dem Sauerstoffaufblasverfahren
DE1965073A1 (de) Verfahren zur Bestimmung des Kohlenstoffgehaltes von geschmolzenem Stahl
DE1433443C (de) Verfahren zur Überwachung und Regelung der Sauerstoffaufblasverfahren
DE2438122A1 (de) Verfahren zum vakuumentkohlen von metallschmelzen
DE2657540A1 (de) Verfahren zur steuerung von abgasen in einem sauerstoffblaskonverter
DE1931725A1 (de) Verfahren zur automatischen Steuerung des Frischens bei Roheisen
DE2234204A1 (de) Verfahren zum frischen von roheisen
EP4112750A1 (de) Verfahren zum bestimmen des phosphorgehalts in stahl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930515

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19960423

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GEORGSMARIENHUETTE GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980708

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19980708

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980708

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980708

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980708

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980708

REF Corresponds to:

Ref document number: 168137

Country of ref document: AT

Date of ref document: 19980715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59308730

Country of ref document: DE

Date of ref document: 19980813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981008

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19980708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990515

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

26N No opposition filed
BERE Be: lapsed

Owner name: GEORGSMARIENHUTTE G.M.B.H.

Effective date: 19990531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120702

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59308730

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130516