EP1890207A1 - Verfahren zum Erstellen eines Prozessmodells - Google Patents

Verfahren zum Erstellen eines Prozessmodells Download PDF

Info

Publication number
EP1890207A1
EP1890207A1 EP06017105A EP06017105A EP1890207A1 EP 1890207 A1 EP1890207 A1 EP 1890207A1 EP 06017105 A EP06017105 A EP 06017105A EP 06017105 A EP06017105 A EP 06017105A EP 1890207 A1 EP1890207 A1 EP 1890207A1
Authority
EP
European Patent Office
Prior art keywords
neural network
distribution
plant
values
process model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06017105A
Other languages
English (en)
French (fr)
Other versions
EP1890207B1 (de
Inventor
Franz Wintrich
Thomas Vesper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Powitec Intelligent Technologies GmbH
Original Assignee
Powitec Intelligent Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP06017105A priority Critical patent/EP1890207B1/de
Priority to DE502006005791T priority patent/DE502006005791D1/de
Priority to AT06017105T priority patent/ATE453881T1/de
Priority to ES06017105T priority patent/ES2336351T3/es
Priority to PL06017105T priority patent/PL1890207T3/pl
Application filed by Powitec Intelligent Technologies GmbH filed Critical Powitec Intelligent Technologies GmbH
Priority to US11/837,950 priority patent/US7610252B2/en
Priority to KR1020070082845A priority patent/KR101436057B1/ko
Publication of EP1890207A1 publication Critical patent/EP1890207A1/de
Application granted granted Critical
Publication of EP1890207B1 publication Critical patent/EP1890207B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/42Function generator

Definitions

  • the invention relates to a method for creating a process model, having the features of the preamble of claim 1.
  • the input channels are empirically selected and then maintained so that there is a static topology. There is thus the risk that significant channels are not taken into account, as well as that computer power is consumed for non-significant channels.
  • the present invention has for its object to improve a method of the type mentioned in that it can run automatically. This object is achieved by a method having the features of claim 1. Further advantageous embodiments are the subject of the dependent claims.
  • the significance of an input channel is determined according to the invention by checking the predictions for a deterioration in the failure of the input channel, the failure being simulated by means of the replacement of the input channel by a distribution, in particular in a typical interval.
  • the significance of an input channel is in the context of the scheduled and trained neural network, so that an input channel determined to be significant for a particular neural network may not be significant in another network. It is also common such that of several theoretically equivalent input channels, only one input channel is determined to be significant.
  • the invention can be used in various stationary thermodynamic systems, in particular power plants, waste incineration plants and cement works.
  • a plant 1 for example a coal, oil or gas-fired power station, a waste incineration plant or a cement plant, comprises a furnace 3, which is also to be understood as a grate, at least one observation device 5 which encloses the interior of the furnace 3 (or the grate). can record, preferably further sensors 7, at least one adjusting device 9, and a computer 11, to which the observation device (s) 5, further sensors 7 and adjusting device (s) 9 are connected.
  • a furnace 3 which is also to be understood as a grate
  • at least one observation device 5 which encloses the interior of the furnace 3 (or the grate).
  • can record preferably further sensors 7, at least one adjusting device 9, and a computer 11, to which the observation device (s) 5, further sensors 7 and adjusting device (s) 9 are connected.
  • the furnace 3 is fuel or other material to be reacted, referred to as Good G for short, for example, coal, oil, gas, refuse, lime or the like, and primary air (or oxygen) and secondary air (or oxygen), short as air L referred, supplied, this supply is controlled by the controllable by the computer 11 actuators 9.
  • Good G for short
  • a combustion process takes place.
  • the resulting flame body F (and, where appropriate, emissions of the walls of the furnace 3) is continuously detected by the observation devices 5.
  • the observation devices 5 each include adjacent to a wall of the furnace 3 penetrating optical access, such as a lance or in the EP 1 621 813 A1 (whose disclosure content is expressly incorporated) disclosed device, nor a camera or the like, which operates in the optical range or adjacent areas of electromagnetic waves.
  • Preferred is a temporally, spatially and spect
  • the images of the flame body F are evaluated in the computer 11, for example according to an eigenvalue method, that in the WO 2004/018940 A1 is described, the disclosure of which is expressly incorporated.
  • a control loop is defined. It is also possible to provide a conventional control loop only with furnace 3, sensors 7, computer 11 and adjusting devices 9 and without the monitoring device (s) 5, the regulation of which takes into account only a few state variables S t (ie is low-dimensional) and then by the inclusion of the observation device (en) 5 is optimized.
  • the system in Appendix 1, for example, can be regulated to specific setpoint values or to a stable process (ie a quiet, quasi-stationary operation of system 1).
  • At least one neural network is implemented in the computer 11, which stores as a process model the reactions of the states of the system to actions, ie the (non-linear) Associations between the values of the state variables at a certain point in time and the actions then taken on the one hand and the resulting values of the state variables at a later time (ie later at a specific time interval) on the other hand, at as many times in the past as possible.
  • the process model stores as a process model the reactions of the states of the system to actions, ie the (non-linear) Associations between the values of the state variables at a certain point in time and the actions then taken on the one hand and the resulting values of the state variables at a later time (ie later at a specific time interval) on the other hand, at as many times in the past as possible.
  • disturbances as (unwanted) actions can be included in the process model.
  • a process model that is to come to usable predictions in real time does not take into account all the available state variables. Rather, the method according to the invention determines which state variables are necessary and good with which parameters in order to create a good process model based on a neural network from a given data set.
  • This significance of state variables is not an absolute feature of these state variables, but can always only in context with the nature and configuration of the neural Network and with the totality of all state variables used. For example, if a RPROP is used as a neural network, either the PROP algorithm would have to be part of the signficance analysis or a normally trained network would be subjected to a corresponding investigation. With the method according to the invention neither the numerous possibilities are stubbornly tried nor a single training algorithm taken as the core of a mathematical evaluation, which would be valid only for this training algorithm.
  • a neural network of a certain type is chosen as an approach, and a configuration with a presumably meaningful combination of state variables is taken.
  • state variables can be roughly differentiated between input channels K, which rather describe the possibilities of influencing the process, for example the manipulated variables, and output channels S, which rather describe the results of the process, for example the steam output.
  • a piece of data for example the temporally first 10% of the data, taken from a data record measured over time, referred to briefly as measurement data K m (t) and S m (t), is used to train the neural network.
  • the neural network is tested (evaluated) with the remaining measurement data K m (t) and S m (t), ie it is tested how well by the neural network an output channel S in its time course S p (t) is forecasted.
  • a fourth step for each input channel, the actual distribution of the measured data K m (t), taking account of temporal correlations individually and alternately, is replaced by a distribution K v of values within an interval between two quantile values q j , ie values corresponding to an area fraction below the distribution curve, for example 10% or 90% of the area, abbreviated as q 10 and q 90 .
  • the neural network is then reevaluated in a fifth step, ie with the neural network values S v (t, q j ) of the output channel are again calculated, in the case of the exemplary quantile values q 10 and q 90 - initially only with the most frequent 10% of the values K v (q 10 ) of this input channel, then with a little more values K v (q j ) and finally with 90% of the values K v (q90 ), ie the area without the spurs of the distribution K v .
  • S v (t, q 90 ) approximately the S p (t) predicted on the basis of the measured data K m (t) should be reached.
  • a standard deviation ⁇ v (q j ) of the calculated values S v (t, q j ) of the output channel is again determined from the associated measurement data S m (t), ie statistically mean S v (t, q j ) - S m (t).
  • the method according to the invention thus determines the input channels which are significant for the selected neural network on the basis of a deterioration of the predictions, in each case after replacement of an input channel by quantile values of a distribution.
  • the method according to the invention instead of several training runs and to each several test runs, as in known methods, according to the invention, only one training run and a number of test runs dependent on the number of input channels and the division of their distribution into quantile values must be carried out.
  • the neural network is changed so that only the significant input channels are considered. This neural network changed in this way can then be trained again with the measured data K m (t) and S m (t).

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Evolutionary Computation (AREA)
  • Automation & Control Theory (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Business, Economics & Management (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Feedback Control In General (AREA)
  • Incineration Of Waste (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

Bei einem Verfahren zum Erstellen eines Prozessmodells für die Regelung eines Verbrennungsprozesses wird in einem ersten Schritt ein neuronales Netz angesetzt, in einem zweiten Schritt das neuronale Netz mit Messdaten der Zustandsvariablen, welche Messdaten (K m (t)) von Eingangskanälen und Messdaten wenigstens eines Ausgangskanals umfassen, trainiert wird, in einem dritten Schritt das neuronale Netz mit weiteren Messdaten (K m (t)) der Eingangskanäle und Messdaten des Ausgangskanals getestet, wobei aus den Abweichungen der prognostizierten Werte des Ausgangskanals von den Messdaten des Ausgangskanals eine prognostizierte Standardabweichung ermittelt wird, in einem vierten Schritt die Messdaten (K m (t)) wenigstens eines Eingangskanals ersetzt durch eine Verteilung (K v ) und in einem fünften Schritt mit der Verteilung (K v ) oder Anteilen derselben erneut Werte des Ausgangskanals berechnet und eine Standardabweichung der berechneten Werte des Ausgangskanals von den zugehörigen Messdaten ermittelt, wobei im Falle einer Vergrößerung der Standardabweichung gegenüber der prognostizierten Standardabweichung der Eingangskanal signifikant für das im ersten Schritt angesetzte und im zweiten Schritt trainierte neuronale Netz ist.

Description

  • Die Erfindung betrifft ein Verfahren zum Erstellen eines Prozessmodells, mit den Merkmalen des Oberbegriffs des Anspruches 1.
  • Bei einem bekannten Verfahren dieser Art werden für den Ansatz des neuronalen Netzes die Eingangskanäle empirisch ausgewählt und dann beibehalten, so dass eine statische Topologie vorliegt. Es besteht damit sowohl die Gefahr, dass signifikante Kanäle nicht berücksichtigt werden, als auch dass Rechnerleistung für nicht signifikante Kanäle verbraucht wird.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art dahingehend zu verbessern, dass es automatisiert ablaufen kann. Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruches 1 gelöst. Weitere vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
  • Die Signifikanz eines Eingangskanals wird erfindungsgemäß bestimmt, indem die Vorhersagen auf eine Verschlechterung beim Ausfall des Eingangskanals geprüft werden, wobei der Ausfall mittels des Ersatzes des Eingangskanals durch eine Verteilung, insbesondere in einem typischen Intervall, simuliert wird. Die Signifikanz eines Eingangskanals steht im Kontext des angesetzten und trainierten neuronalen Netzes, so dass ein für ein bestimmtes neuronales Netz als signifikant ermittelter Eingangskanal bei einem anderen Netz nicht signifikant sein kann. Es ist auch häufig so, dass von mehreren theoretisch gleichwertigen Eingangskanälen nur ein Eingangskanal als signifikant ermittelt wird.
  • Die Erfindung kann bei verschiedenen stationären thermodynamischen Anlagen, insbesondere Kraftwerken, Müllverbrennungsanlagen und Zementwerken, eingesetzt werden.
  • Im folgenden ist die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen
  • Fig. 1
    eine schematische Darstellung von Messdaten eines Eingangskanals und eines Ausgangskanals,
    Fig. 2
    eine schematische Darstellung des Testens eines trainierten Prozessmodells mit dem Vergleich von prognostizierten Werten und Messdaten des Ausgangskanals von Fig. 1,
    Fig. 3
    eine schematische Darstellung der Berechnung einer Standardabweichung des prognostizierten Verlaufs von den Messdaten von Fig. 2,
    Fig. 4
    das Ersetzen der Messdaten eines Eingangskanals durch eine Verteilung und deren Quantilwerte,
    Fig. 5
    eine schematische Darstellung des Vergleichs von mit der Verteilung und den Quantilwerten berechneten Werten des Ausgangskanals und den Werten von Fig. 2,
    Fig. 6
    eine schematische Darstellung der Berechnung einer Standardabweichung der unter Verwendung eines kleinen Quantilwertes berechneten Werte des Ausgangskanals,
    Fig. 7
    eine schematische Darstellung der Berechnung einer Standardabweichung der unter Verwendung eines kleinen Quantilwertes berechneten Werte des Ausgangskanals, und
    Fig. 8
    eine schematische Darstellung eine Anlage.
  • Eine Anlage 1, beispielsweise ein Kohle-, Öl- oder Gaskraftwerk, eine Müllverbrennungsanlage oder ein Zementwerk, umfasst einen Ofen 3, worunter auch ein Rost verstanden werden soll, wenigstens eine Beobachtungsvorrichtung 5, welche das Innere des Ofens 3 (bzw. den Rost) bildlich erfassen kann, vorzugsweise weitere Sensoren 7, wenigstens eine Stellvorrichtung 9, und einen Rechner 11, an welchen die Beobachtungsvorrichtung(en) 5, weiteren Sensoren 7 und Stellvorrichtung(en) 9 angeschlossen sind.
  • Dem Ofen 3 wird Brennstoff oder anderes umzusetzendes Material, kurz als Gut G bezeichnet, beispielsweise Kohle, Öl, Gas, Müll, Kalk oder dergleichen, sowie Primärluft (bzw. -Sauerstoff) und Sekundärluft (bzw. -Sauerstoff), kurz als Luft L bezeichnet, zugeführt, wobei diese Zufuhr durch die vom Rechner 11 ansteuerbaren Stellvorrichtungen 9 gesteuert wird. Im Ofen 3 findet ein Verbrennungsprozess statt. Der dadurch erzeugter Flammenkörper F (sowie gegebenenfalls Emissionen der Wände des Ofens 3) wird von den Beobachtungsvorrichtungen 5 laufend erfasst. Die Beobachtungsvorrichtungen 5 umfassen jeweils neben einem die Wand des Ofens 3 durchdringenden optischen Zugang, wie beispielsweise einer Lanze oder einer in der EP 1 621 813 A1 (deren Offenbarungsgehalt ausdrücklich einbezogen wird) offenbarten Vorrichtung, noch eine Kamera oder dergleichen, welche im optischen Bereich oder benachbarten Bereichen elektromagnetischer Wellen arbeitet. Bevorzugt ist eine zeitlich, örtlich und spektral hochauflösende Kamera, wie sie beispielsweise in der WO 02/070953 A1 beschrieben ist, deren Offenbarungsgehalt ausdrücklich einbezogen wird.
  • Die Bilder des Flammenkörpers F (und der eventuellen Emissionen der Wände des Ofens 3) werden im Rechner 11 ausgewertet, beispielsweise nach einem Eigenwert-Verfahren, das in der WO 2004/018940 A1 beschrieben ist, deren Offenbarungsgehalt ausdrücklich einbezogen wird. Die aus den Bildern des Flammenkörpers F gewonnenen Daten sowie die Daten der weiteren Sensoren 7, welche beispielsweise die Zufuhr des Gutes G und der Luft L, Schadstoffkonzentrationen in den Abgasen oder die Konzentration des Freikalks (FCAO) messen, werden als Zustandsvariablen s(t) behandelt, die (zeitabhängig) den Zustand des Systems in der Anlage 1 im allgemeinen und des Verbrennungsprozesses im besonderen beschreiben und als Vektor zu betrachten sind.
  • Durch den Ofen 3 als (Regel-)Strecke, die Beobachtungsvorrichtung(en) 5 und die weiteren Sensoren 7, den Rechner 11 und die Stellvorrichtungen 9 wird ein Regelkreis definiert. Es kann auch ein konventioneller Regelkreis nur mit Ofen 3, Sensoren 7, Rechner 11 und Stellvorrichtungen 9 und ohne die Beobachtungsvorrichtung(en) 5 vorgesehen sein, dessen Regelung nur wenige Zustandsvariablen St berücksichtigt (d.h. niederdimensional ist) und dann durch die Einbeziehung der Beobachtungsvorrichtung(en) 5 optimiert wird. Das System in der Anlage 1 ist beispielsweise auf bestimmte Soll-Werte oder auf einen stabilen Prozess (d.h. einen ruhigen, quasistationären Betrieb der Anlage 1) hin regelbar. In beiden Fällen werden der durch die Ist-Werte der Zustandsvariablen beschriebene Zustand bewertet und gegebenenfalls geeignete Stellaktionen (Stelleingriffe), kurz als Aktionen bezeichnet, ausgewählt, welche von den Stellvorrichtungen 9 auszuführen sind. Neben der Zufuhr von Gut G und Luft L können weitere Tätigkeiten von Stellvorrichtungen 9 und gegebenenfalls auch eine Probenentnahme eine Aktion in erfindungsgemäßen Sinne sein. Auch Störungen können als ungewollte Aktionen behandelt werden. Es sind einstellbare Kombinationen der beiden vorgenannten Regelungsfälle denkbar, die dann Kompromisse darstellen.
  • Die Bewertung des Zustandes und die Auswahl der geeigneten Aktionen kann beispielsweise gemäß einem Verfahren erfolgen, wie es in der WO 02/077527 A1 beschrieben ist, deren Offenbarungsgehalt ausdrücklich einbezogen wird. Im Rechner 11 ist wenigstens ein neuronales Netz implementiert, welches als ein Prozessmodell die Reaktionen der Zustände des Systems auf Aktionen speichert, also die (nichtlinearen) Verknüpfungen zwischen den Werten der Zustandsvariablen zu einem bestimmten Zeitpunkt und den dann getätigten Aktionen einerseits und den resultierenden Werten der Zustandsvariablen zu einem späteren (d.h. um ein bestimmtes Zeitintervall späteren) Zeitpunkt andererseits, und zwar zu möglichst vielen Zeitpunkten in der Vergangenheit. In diesem Sinne können auch Störungen als (ungewollte) Aktionen in das Prozessmodell einbezogen werden. Eine vom Prozessmodell, d.h. den gespeicherten Verknüpfungen unabhängige, Situationsbewertung, die in der Art einer vereinfachten Güte konzipiert ist, bewertet für einen bestimmten Zeitpunkt die Werte der Zustandsvariablen in Hinblick auf vorgegebene Optimierungsziele, d.h. wie nahe der Zustand des Systems zu diesem Zeitpunkt dem optimalen Zustand ist. Mit einer Bewertung eines - mit dem Prozessmodell in Abhängigkeit von einer bestimmten Aktion - vorhergesagten Zustandes zu einem zukünftigen Zeitpunkt lässt sich die Eignung der bestimmten Aktion zur Annäherung an das Optimierungsziel feststellen.
  • Zur Verbesserung der Genauigkeit werden nicht nur die Prozessmodelle durch die tatsächlichen Entwicklungen der Zustandsvariablen als Reaktion auf Aktionen laufend ergänzt, sondern es findet ein Wettbewerb mehrerer Prozessmodelle hinsichtlich der Qualität der Vorhersagen statt. Hierzu werden im Hintergrund altemative Prozessmodelle, beispielsweise mit anderen Topologien, erstellt und trainiert, deren Vorhersagen mit dem oder den aktuell verwendeten Prozessmodell(en) verglichen werden, um letztere gegebenenfalls zu ersetzen, wie es beispielsweise in der EP 1 396 770 A1 beschrieben ist, deren Offenbarungsgehalt ausdrücklich einbezogen wird.
  • Ein Prozessmodell, das in Echtzeit zu verwertbaren Vorhersagen kommen soll, berücksichtigt nicht sämtliche zur Verfügung stehenden Zustandsvariablen. Mit dem erfindungsgemäßen Verfahren wird vielmehr festgestellt, welche Zustandsvariablen mit welchen Parametern nötig und gut sind, um ein gutes Prozessmodell auf Basis eines neuronalen Netzes, von einem gegebenen Datensatz zu erstellen. Diese Signifikanz von Zustandsvariablen ist kein absolutes Merkmal dieser Zustandsvariablen, sondern kann immer nur im Kontext mit der Art und Konfiguration des neuronalen Netzes und mit der Gesamtheit aller verwendeten Zustandsvariablen gesehen werden. Wenn also beispielsweise ein RPROP als neuronales Netz verwendet wird, müsste entweder der PROP-Algorithmus Bestandteil der Signfikanzanalyse sein oder ein normal trainiertes Netz einer entsprechenden Untersuchung unterzogen werden. Mit dem erfindungsgemäßen Verfahren werden weder die zahlreichen Möglichkeiten stur durchprobiert noch ein einzelner Trainingsalgorithmus als Kern einer mathematischen Auswertung genommen, die nur für die diesen Trainingsalgorithmus gültig wäre.
  • In einem ersten Schritt wird als Ansatz ein neuronales Netz eines bestimmten Typs gewählt und eine Konfiguration mit einer mutmaßlich sinnvollen Zusammenstellung von Zustandsvariablen genommen. Zum besseren Verständnis sei angenommen, dass die Zustandsvariablen grob unterschieden werden können zwischen Eingangskanälen K, welche eher die Einwirkungsmöglichkeiten auf den Prozess beschreiben, beispielsweise die Stellgrößen, und Ausgangskanälen S, welche eher die Ergebnisse des Prozesses beschreiben, beispielsweise die Dampfleistung.
  • In einem zweiten Schritt wird von einem über die Zeit gemessenen Datensatz, kurz als Messdaten Km(t) und Sm(t) bezeichnet, ein Teil, beispielsweise die zeitlich ersten 10% der Daten, genommen und damit das neuronale Netz trainiert.
  • In einem dritten Schritt wird mit den restlichen Messdaten Km(t) und Sm(t) das neuronale Netz getestet (evaluiert), d.h. es wird getestet, wie gut durch das neuronale Netz ein Ausgangskanal S in seinem Zeitverlauf Sp(t) prognostiziert wird. Die Streuung der prognostizierten Werte Sp(t) um die Messdaten Sm(t), also ein statistisch mittleres Sp(t) - Sm(t), ergibt eine bestimmte Zahl, die im folgenden als prognostizierte Standardabweichung σp bezeichnet ist.
  • Nun wird in einem vierten Schritt für jeden Eingangskanal einzeln und abwechselnd die tatsächliche Verteilung der Messdaten Km(t) unter Berücksichtigung zeitlicher Korrelationen - ersetzt durch eine Verteilung Kv von Werten innerhalb eines Intervalls zwischen zwei Quantilwerten qj, d.h. Werten, die einem Flächenanteil unter der Verteilungskurve entsprechen, beispielsweise 10% oder 90% der Fläche, abgekürzt als q10 und q90.
  • Mit diesen Verteilungen Kv und ihren Intervallen von Quantilwerten qj, wird dann in einem fünften Schritt das neuronale Netz erneut evaluiert, d.h. mit dem neuronalen Netz werden erneut Werte Sv(t, qj) des Ausgangskanals berechnet, und zwar - im Falle der beispielhaften Quantilwerten q10 und q90- stufenweise zunächst nur mit den häufigsten 10% der Werte Kv(q10) dieses Eingangskanals, dann mit etwas mehr Werten Kv(qj) und schließlich mit 90% der Werte Kv(q90), also dem Bereich ohne die Ausläufer der Verteilung Kv. Mit der letzten Berechnung Sv(t, q90) sollten ungefähr die aufgrund der Messdaten Km(t) prognostizierten Sp(t) erreicht werden.
  • Für sämtliche dieser Berechnungen von Sv(t, qj) wird jeweils wieder eine Standardabweichung σv(qj) der berechnete Werte Sv(t, qj) des Ausgangskanals von den zugehörigen Messdaten Sm(t) ermittelt, also ein statistisch mittleres Sv(t, qj)- Sm(t). Sind diese Standardabweichungen σv(qj) größer als die prognostizierte Standardabweichung σp, d.h. weichen die berechneten Werte Sv(t, qj) des Ausgangskanals bei kleinerem qj stärker von den zugehörigen Messdaten Sm(t) ab, so ist der durch die Verwendung der Verteilung K v(qj) geänderte Eingangskanal signifikant für das ausgewählte neuronale Netz.
  • Das erfindungsgemäße Verfahren bestimmt also die für das gewählte neuronale Netz signifikanten Eingangskanäle anhand einer Verschlechterung der Vorhersagen jeweils nach Ersatz eines Eingangskanals durch Quantilwerte einer Verteilung. Anstelle von mehreren Trainingsläufen und dazu jeweils mehrere Testläufe, wie bei bekannten Verfahren, müssen erfindungsgemäß hierfür nur ein Trainingslauf und eine von der Zahl der Eingangskanäle und der Unterteilung ihrer Verteilung in Quantilwerte abhängige Anzahl von Testläufe durchgeführt werden.
  • In einem letzten Schritt wird das neuronale Netz so geändert, dass nur noch die signifikanten Eingangskanäle berücksichtigt werden. Dieses so geänderte neuronale Netz kann dann nochmals mit den Messdaten Km(t) und Sm(t) trainiert werden.
  • Bezugszeichenliste
  • 1
    Anlage
    3
    Ofen
    5
    Beobachtungsvorrichtung
    7
    Sensor
    9
    Stellvorrichtung
    11
    Rechner
    F
    Flammenkörper
    G
    Gut
    L
    Luft
    Km(t)
    Eingangskanal, gemessen
    Kv(qj)
    Eingangskanal gemäß Verteilung und Quantil
    qj
    Quantilwert
    q10
    Quantilwert 10%
    q90
    Quantilwert 90%
    Sm(t)
    Ausgangskanal, gemessen
    Sp(t)
    Ausgangskanal, prognostiziert
    Sv(t,qj)
    Ausgangskanal, berechnet mit Verteilung und Quantilwert
    σp
    Standardabweichung, prognostiziert
    σv(qj)
    Standardabweichung, berechnet mit Verteilung und Quantil

Claims (9)

  1. Verfahren zum Erstellen eines Prozessmodells für die Regelung eines Verbrennungsprozesses in einer Anlage (1), insbesondere einem Kraftwerk, einer Müllverbrennungsanlage oder einem Zementwerk, in welcher Gut (G) unter Zufuhr von Luft (L) mittels des Verbrennungsprozesses unter Ausbildung wenigstens eines Flammenkörpers (F) umgesetzt wird und der Zustand des Systems in der Anlage (1) durch Zustandsvariablen (K, S) beschrieben wird, wobei in einem ersten Schritt ein neuronales Netz angesetzt, in einem zweiten Schritt das neuronale Netz mit Messdaten (Km(t), Sm(t)) der Zustandsvariablen (K, S), welche Messdaten (Km(t)) von Eingangskanälen und Messdaten (Sm(t)) wenigstens eines Ausgangskanals umfassen, trainiert wird, und in einem dritten Schritt das neuronale Netz mit weiteren Messdaten (Km(t)) der Eingangskanäle und Messdaten (Sm(t)) des Ausgangskanals getestet wird, wobei aus den Abweichungen der prognostizierten Werte (Sp(t)) des Ausgangskanals von den Messdaten (Sm(t)) des Ausgangskanals eine prognostizierte Standardabweichung (σp) ermittelt wird, dadurch gekennzeichnet, dass in einem vierten Schritt die Messdaten (Km(t)) wenigstens eines Eingangskanals ersetzt werden durch eine Verteilung (Kv) und dass in einem fünften Schritt mit der Verteilung (Kv) oder Anteilen derselben erneut Werte (Sv(t, qj)) des Ausgangskanals berechnet und eine Standardabweichung σv(qj) der berechneten Werte (Sv(t, qj)) des Ausgangskanals von den zugehörigen Messdaten (Sm(t)) ermittelt wird, wobei im Falle einer Vergrößerung der berechneten Standardabweichung σv(qj) gegenüber der prognostizierten Standardabweichung (σp) der Eingangskanal (K) signifikant für das im ersten Schritt angesetzte und im zweiten Schritt trainierte neuronale Netz ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass im vierten Schritt die Messdaten (Km(t)) des Eingangskanals (K) ersetzt werden durch die Verteilung (Kv) über einem Intervall von Quantilwerten (qj) als Anteile der Verteilung (Kv), wobei mit jedem Quantilwert (qj) der fünfte Schritt durchzuführen ist.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als Grenzen des Intervalls ein kleiner Quantilwert (q10), welcher den Bereich der häufigsten Werte der Verteilung (Kv) abdeckt, und ein großer Quantilwert (q90), welcher den Bereich ohne die Ausläufer der Verteilung (Kv) abdeckt, gewählt werden.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei mehreren Eingangskanälen im vierten Schritt für jeden Eingangskanal einzeln und abwechselnd die Messdaten (Km(t)) durch eine Verteilung (Kv) ersetzt werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem letzten Schritt das neuronale Netz so geändert wird, dass nur noch die signifikanten Eingangskanäle berücksichtigt werden.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Prozessmodell im Hintergrund erstellt wird, während ein aktuell verwendetes Prozessmodell der Regelung des Verbrennungsprozesses in der Anlage (1) dient.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das erstellte Prozessmodell das aktuell verwendete Prozessmodell ersetzt, wenn die Qualität der Vorhersagen besser ist.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zustandsvariablen (K, S) unter Verwendung wenigstens einer den Flammenkörper (F) bildlich erfassenden Beobachtungsvorrichtung (5) und weiterer Sensoren (7) ermittelt und in einem Rechner (11) bewertet werden, worauf gegebenenfalls geeignete Aktionen auswählt werden, um Stellvorrichtungen (9) für wenigstens die Zufuhr von Gut (G) und/oder Luft (L) anzusteuern.
  9. Regelkreis zur Regelung eines Verbrennungsprozesses in einer Anlage (1), insbesondere einem Kraftwerk, einer Müllverbrennungsanlage oder einem Zementwerk, mit einer Strecke (3) zum Umsetzen von Gut (G) unter Zufuhr von Luft (L) mittels des Verbrennungsprozesses unter Ausbildung wenigstens eines Flammenkörpers (F), wenigstens einer den Flammenkörper (F) bildlich erfassenden Beobachtungsvorrichtung (5) und weiterer Sensoren (7) zur Ermittlung der den Zustand des Systems in der Anlage (1) beschreibenden Zustandsvariablen (K, S), einem Rechner (11) zur Bewertung der Zustandsvariablen (K, S) und gegebenenfalls Auswahl geeigneter Aktionen und durch die Aktionen ansteuerbare Stellvorrichtungen (9) für wenigstens die Zufuhr von Gut (G) und/oder Luft (L), wobei der Rechner (11) mit einem Verfahren nach einem der vorhergehenden Ansprüche ein Prozessmodell erstellt.
EP06017105A 2006-08-17 2006-08-17 Verfahren zum Erstellen eines Prozessmodells Not-in-force EP1890207B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE502006005791T DE502006005791D1 (de) 2006-08-17 2006-08-17 Verfahren zum Erstellen eines Prozessmodells
AT06017105T ATE453881T1 (de) 2006-08-17 2006-08-17 Verfahren zum erstellen eines prozessmodells
ES06017105T ES2336351T3 (es) 2006-08-17 2006-08-17 Metodo para elaborar un modelo de procedimiento.
PL06017105T PL1890207T3 (pl) 2006-08-17 2006-08-17 Sposób tworzenia modelu procesu
EP06017105A EP1890207B1 (de) 2006-08-17 2006-08-17 Verfahren zum Erstellen eines Prozessmodells
US11/837,950 US7610252B2 (en) 2006-08-17 2007-08-13 Method for developing a process model
KR1020070082845A KR101436057B1 (ko) 2006-08-17 2007-08-17 공정 모델을 형성하기 위한 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06017105A EP1890207B1 (de) 2006-08-17 2006-08-17 Verfahren zum Erstellen eines Prozessmodells

Publications (2)

Publication Number Publication Date
EP1890207A1 true EP1890207A1 (de) 2008-02-20
EP1890207B1 EP1890207B1 (de) 2009-12-30

Family

ID=37775558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06017105A Not-in-force EP1890207B1 (de) 2006-08-17 2006-08-17 Verfahren zum Erstellen eines Prozessmodells

Country Status (7)

Country Link
US (1) US7610252B2 (de)
EP (1) EP1890207B1 (de)
KR (1) KR101436057B1 (de)
AT (1) ATE453881T1 (de)
DE (1) DE502006005791D1 (de)
ES (1) ES2336351T3 (de)
PL (1) PL1890207T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2080953A1 (de) * 2008-01-15 2009-07-22 Powitec Intelligent Technologies GmbH Regelkreis und Verfahren zum Erstellen eines Prozessmodells hierfür
IT201800010468A1 (it) 2018-11-20 2020-05-20 Aixprocess Gmbh Metodo e dispositivo per controllare un processo all'interno di un sistema, in particolare un processo di combustione all'interno di una centrale elettrica
EP3696462A1 (de) * 2019-02-17 2020-08-19 Uniper Technologies GmbH Verfahren zum steuern eines kessels einer müllverbrennungsanlage durch ein trainiertes neuronales netz und verfahren zum trainieren eines neuronalen netzes zum steuern eines kessels einer müllverbrennungsanlage

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1967792B1 (de) * 2007-03-01 2014-12-17 STEAG Powitec GmbH Regelkreis zur Regelung eines Verbrennungsprozesses
ES2352976T3 (es) * 2007-10-12 2011-02-24 Powitec Intelligent Technologies Gmbh Circuito regulador, para la regulación de un proceso, en particular un proceso de combustión.
EP2246755A1 (de) * 2009-04-22 2010-11-03 Powitec Intelligent Technologies GmbH Regelkreis
JP6204204B2 (ja) * 2014-01-20 2017-09-27 中国電力株式会社 ボイラー燃料投入量決定装置
KR102035389B1 (ko) * 2017-09-29 2019-10-23 전자부품연구원 히스토리 데이터 기반 뉴럴 네트워크 학습을 통한 공정 제어 방법 및 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077527A1 (de) * 2001-03-02 2002-10-03 Powitec Intelligent Technologies Gmbh Verfahren zur regelung eines thermodynamischen prozesses, insbesondere eines verbrennungsprozesses
US20050154477A1 (en) * 1996-05-06 2005-07-14 Martin Gregory D. Kiln control and upset recovery using a model predictive control in series with forward chaining

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4974071A (en) * 1987-04-28 1990-11-27 Canon Kabushiki Kaisha Color image data encoding apparatus having improved resolution/efficiency characteristics
US5421337A (en) * 1989-04-14 1995-06-06 Massachusetts Institute Of Technology Spectral diagnosis of diseased tissue
US5481260A (en) * 1994-03-28 1996-01-02 Nordson Corporation Monitor for fluid dispensing system
JP2860782B2 (ja) * 1996-07-23 1999-02-24 川崎重工業株式会社 カラー画像を利用した燃焼判定・制御方法および判定・制御装置
ATE293232T1 (de) 2001-03-02 2005-04-15 Powitec Intelligent Tech Gmbh Messvorrichtung, insbesondere zur flammenbeobachtung während eines verbrennungsprozesses
EP1391655A1 (de) 2002-08-16 2004-02-25 Powitec Intelligent Technologies GmbH Verfahren zur Überwachung eines thermodynamischen Prozesses
DE50210420D1 (de) 2002-08-16 2007-08-16 Powitec Intelligent Tech Gmbh Verfahren zur Regelung eines thermodynamischen Prozesses
US20050137995A1 (en) 2002-08-16 2005-06-23 Powitec Intelligent Technologies Gmbh Method for regulating a thermodynamic process by means of neural networks
PL1621813T3 (pl) 2004-07-27 2010-07-30 Powitec Intelligent Tech Gmbh Urządzenie obserwacyjne

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050154477A1 (en) * 1996-05-06 2005-07-14 Martin Gregory D. Kiln control and upset recovery using a model predictive control in series with forward chaining
WO2002077527A1 (de) * 2001-03-02 2002-10-03 Powitec Intelligent Technologies Gmbh Verfahren zur regelung eines thermodynamischen prozesses, insbesondere eines verbrennungsprozesses

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2080953A1 (de) * 2008-01-15 2009-07-22 Powitec Intelligent Technologies GmbH Regelkreis und Verfahren zum Erstellen eines Prozessmodells hierfür
IT201800010468A1 (it) 2018-11-20 2020-05-20 Aixprocess Gmbh Metodo e dispositivo per controllare un processo all'interno di un sistema, in particolare un processo di combustione all'interno di una centrale elettrica
US12031717B2 (en) 2018-11-20 2024-07-09 Aixprocess Gmbh Method and device for regulating a process within a system, in particular a combustion process in a power station
EP3696462A1 (de) * 2019-02-17 2020-08-19 Uniper Technologies GmbH Verfahren zum steuern eines kessels einer müllverbrennungsanlage durch ein trainiertes neuronales netz und verfahren zum trainieren eines neuronalen netzes zum steuern eines kessels einer müllverbrennungsanlage

Also Published As

Publication number Publication date
ES2336351T3 (es) 2010-04-12
US7610252B2 (en) 2009-10-27
KR101436057B1 (ko) 2014-08-29
ATE453881T1 (de) 2010-01-15
PL1890207T3 (pl) 2010-06-30
DE502006005791D1 (de) 2010-02-11
EP1890207B1 (de) 2009-12-30
US20080046391A1 (en) 2008-02-21
KR20080016500A (ko) 2008-02-21

Similar Documents

Publication Publication Date Title
EP1890207B1 (de) Verfahren zum Erstellen eines Prozessmodells
EP2048553B1 (de) Regelkreis zur Regelung eines Prozesses, insbesondere Verbrennungsprozesses
EP2080953B1 (de) Regelkreis und Verfahren zum Erstellen eines Prozessmodells hierfür
EP1364163B1 (de) Verfahren zur regelung eines thermodynamischen prozesses, insbesondere eines verbrennungsprozesses
EP2246755A1 (de) Regelkreis
DE102007036247B4 (de) Prozesssteuerungs- und optimierungstechnik unter Verwendung immunologischer Konzepte
EP1906092B1 (de) Verfahren zur Regelung eines Verbrennungsprozesses
DE102012210090B4 (de) Teststation für tragbare Gasmessgeräte
EP3268713B1 (de) Verfahren zum erstellen eines modell-ensembles zur kalibrierung eines steuergerätes
EP1850069B1 (de) Verfahren und Regelkreis zur Regelung eines Verbrennungsprozesses
DE19509412C2 (de) Verfahren und Vorrichtung zur Feuerungsregelung einer Dampferzeugeranlage
EP1967792B1 (de) Regelkreis zur Regelung eines Verbrennungsprozesses
DE60210157T2 (de) Gerät zur Abschätzung von Brennkammerdruckschwankungen, Anlage und Gasturbinenanlage
WO2010149687A2 (de) Verfahren zur regelung eines verbrennungsprozesses, insbesondere in einem feuerraum eines fossilbefeuerten dampferzeugers, und verbrennungssystem
WO2004018940A1 (de) Verfahren zur überwachung eines thermodynamischen prozesses
EP2347178A1 (de) Verfahren und vorrichtung zum überwachen der verbrennung von brennmaterial in einem kraftwerk
EP1051585B1 (de) Verfahren und vorrichtung zum betreiben einer verbrennungsanlage
EP3861256B1 (de) Verfahren und vorrichtung zur regelung eines prozesses innerhalb eines systems, insbesondere eines verbrennungsprozesses innerhalb eines kraftwerks
EP1693558A1 (de) Verfahren zur Schadstoffemissionsvorhersage von Verbrennungsprozessen
EP4073277A1 (de) Verfahren zur bestimmung und steuerung oder regelung des phosphor-gehaltes in einer metallischen schmelze während eines frischprozesses einer metallischen schmelze in einem metallurgischen reaktor
EP2347179B1 (de) Verfahren und vorrichtung zum überwachen der verbrennung eines kraftwerks auf der grundlage einer realen konzentrations- und temperaturverteilung eines stoffes
WO2020200783A1 (de) Verfahren zum steuern einer gasturbine
DE102019214640A1 (de) Steuervorrichtung und steuerverfahren
EP2996001A1 (de) Verfahren zur rechnergestützten Analyse eines Datensatzes aus Beobachtungen
WO2010055046A2 (de) Verfahren und vorrichtung zum überwachen der verbrennung eines kraftwerks auf der grundlage zweier realer konzentrationsverteilungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080305

17Q First examination report despatched

Effective date: 20080404

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006005791

Country of ref document: DE

Date of ref document: 20100211

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2336351

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20100400710

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20091230

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 7059

Country of ref document: SK

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100430

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100330

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100430

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091230

BERE Be: lapsed

Owner name: POWITEC INTELLIGENT TECHNOLOGIES G.M.B.H.

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100817

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 453881

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006005791

Country of ref document: DE

Representative=s name: HOSENTHIEN-HELD UND DR. HELD, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006005791

Country of ref document: DE

Representative=s name: HOSENTHIEN-HELD UND DR. HELD, DE

Effective date: 20130424

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006005791

Country of ref document: DE

Owner name: STEAG ENERGY SERVICES GMBH, DE

Free format text: FORMER OWNER: POWITEC INTELLIGENT TECHNOLOGIES GMBH, 45219 ESSEN, DE

Effective date: 20130424

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006005791

Country of ref document: DE

Owner name: STEAG POWITEC GMBH, DE

Free format text: FORMER OWNER: POWITEC INTELLIGENT TECHNOLOGIES GMBH, 45219 ESSEN, DE

Effective date: 20130424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20140828

Year of fee payment: 9

Ref country code: CZ

Payment date: 20140703

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140723

Year of fee payment: 9

Ref country code: PL

Payment date: 20140731

Year of fee payment: 9

Ref country code: ES

Payment date: 20140812

Year of fee payment: 9

Ref country code: SK

Payment date: 20140703

Year of fee payment: 9

Ref country code: TR

Payment date: 20140704

Year of fee payment: 9

Ref country code: GB

Payment date: 20140801

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140828

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006005791

Country of ref document: DE

Owner name: STEAG ENERGY SERVICES GMBH, DE

Free format text: FORMER OWNER: STEAG POWITEC GMBH, 45219 ESSEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006005791

Country of ref document: DE

Representative=s name: HOSENTHIEN-HELD UND DR. HELD, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006005791

Country of ref document: DE

Owner name: STEAG POWITEC GMBH, DE

Free format text: FORMER OWNER: STEAG POWITEC GMBH, 45219 ESSEN, DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150817

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150817

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150817

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 7059

Country of ref document: SK

Effective date: 20150817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20100400710

Country of ref document: GR

Effective date: 20160303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006005791

Country of ref document: DE

Representative=s name: HOSENTHIEN-HELD UND DR. HELD, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006005791

Country of ref document: DE

Owner name: STEAG ENERGY SERVICES GMBH, DE

Free format text: FORMER OWNER: STEAG POWITEC GMBH, 45128 ESSEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150817

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200512

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006005791

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301