EP0563509B1 - Quelluftdurchlass für raumlufttechnische Anlagen - Google Patents

Quelluftdurchlass für raumlufttechnische Anlagen Download PDF

Info

Publication number
EP0563509B1
EP0563509B1 EP93100311A EP93100311A EP0563509B1 EP 0563509 B1 EP0563509 B1 EP 0563509B1 EP 93100311 A EP93100311 A EP 93100311A EP 93100311 A EP93100311 A EP 93100311A EP 0563509 B1 EP0563509 B1 EP 0563509B1
Authority
EP
European Patent Office
Prior art keywords
air
source
incoming
air passage
passage according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93100311A
Other languages
English (en)
French (fr)
Other versions
EP0563509A2 (de
EP0563509A3 (en
Inventor
Detlef Makulla
Marten Dr. Brunk
Hans Leyer
Necmi Basaran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
H Krantz TKT GmbH
Original Assignee
Krantz TKT GmbH
H Krantz TKT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krantz TKT GmbH, H Krantz TKT GmbH filed Critical Krantz TKT GmbH
Publication of EP0563509A2 publication Critical patent/EP0563509A2/de
Publication of EP0563509A3 publication Critical patent/EP0563509A3/de
Application granted granted Critical
Publication of EP0563509B1 publication Critical patent/EP0563509B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F13/068Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser formed as perforated walls, ceilings or floors

Definitions

  • the invention relates to a source air passage for ventilation systems according to the preamble of claim 1.
  • Such source air passages must introduce the supply air over a large area in the floor area with low air speeds and in the same direction. Furthermore, the source air passages require a certain pressure loss at the inlet in order to achieve a uniform loading of several passages when these are supplied with supply air from the same cavity floor. In the interior, it is again important that the outflow cross-section facing the space to be air-conditioned is applied uniformly, so that no local speed peaks occur in the space. It is known from EP-OS 0 311 934 to connect several chambers in series for this purpose and to realize the pressure loss or the uniform distribution of the supply air through a perforated plate or a honeycomb grid. However, the construction of two chambers is expensive and requires a relatively large amount of space. Furthermore, cleaning the source air passage inside is difficult and the use in thin room partitions is only possible to a limited extent.
  • Source air outlets are often installed in connection with air-guiding double floors (DE-PS 36 40 706) and here in particular with cast vaulted floors.
  • the air connection piece of the source air diffuser is cast in and must be positioned very precisely so that the attached source air diffuser is later seated in the right place.
  • An adjustment option for construction tolerances and assembly inaccuracies in the source air passage would save working time for assembly and modification work.
  • source air outlets must be designed so that they can be individually blocked.
  • Motorized butterfly valves are usually installed in the supply line for this purpose. In the case of cast vaulted cavities, however, this solution cannot be used.
  • the motor and the butterfly valve should be in the housing of the displacement air diffuser here.
  • Real source air systems i. H. Systems without induction of warmer room air in the air outlet are limited to around 4 Kelvin in the difference between the supply and room air temperatures, so that the temperature difference between the head and foot area remains within 2 Kelvin for reasons of comfort.
  • the temperature difference cannot be increased further, only the supply air volume flow.
  • the air velocity in the outflow cross section of the source air diffuser must be below 20 cm / s in the comfort range, only an increase in the outflow area is usually possible over the height of the source air diffuser.
  • values twice as high as before the source air outlet can be achieved, which can lead to drafts especially in summer when wearing open shoes.
  • a further requirement for a source air passage is made in the area of acoustics. If source air outlets in adjacent rooms are connected to the same air-bearing cavity floor, there is a risk of noise being transmitted by air. The sound then passes from one room into the neighboring room via the path of source air passage in the transmission room, cavity floor and source air passage in the reception room. A sound-absorbing lining of the entire cavity floor is usually ruled out for cost reasons.
  • the invention has for its object to design the known source air passage in such a way that the escaping air reaches the area where the people are staying with a speed distribution that is uniform over the height, and that the possibility of easy accessibility of the distribution box, a reduction in noise transmission, an air barrier and one Adaptation to building tolerances is given.
  • the outflow element according to the invention causes a uniform application to the honeycomb grid acting as a flow straightener.
  • the outer perforated plate creates a backflow effect, which ensures an even air flow within the honeycomb grille.
  • the outer perforated plate divides the supply air entering the room to be air-conditioned into many individual jets, which rapidly reduce the air speed due to mutual induction.
  • Such an angular position creates an increase in the layer height of the flowing supply air layer in the room to be air-conditioned.
  • the initial inclination of the air jets counteracts a downward velocity component, which results from the higher density of the cooler supply air compared to the ambient air and which would lead to an increase in the flow velocity in the lower region of the flowing air layer.
  • the outflow element can be carried out completely in a simple manner Removable from maintenance and assembly work, so that the units arranged inside the distribution box z. B. trained according to claims 6 and 7 shut-off are easily accessible. Due to the features of claims 8 and 9, tolerances and inaccuracies in the construction area and in the assembly of the displacement air passage can be compensated.
  • a noise transmission between rooms via a plurality of distribution boxes connected to the same floor space can be reduced in that the guide element designed according to claim 11 directs the supply air before exiting the outflow element against the rear wall of the distribution box provided with a sound-absorbing material.
  • a source air passage which contains a distribution box 1.
  • the distribution box 1 is delimited by a ceiling 2, a rear wall 3, a floor 4 and on the outlet side by an outflow element 5.
  • the ceiling 2 and the rear wall 3 can be provided on the outside with a heat-insulating material 28.
  • one or more supply air openings 6 are provided, which are connected to a cavity floor 8 having one or more through openings 7.
  • the distribution box 1 of the source air passage is supplied with supply air via this cavity floor 8.
  • the source air passage is arranged according to FIG. 1 in the area of the parapet of the window wall.
  • the source air outlet can also be accommodated in room partitions, in the cupboard base area or on and around columns.
  • the outflow element 5 (FIGS. 5, 6) is formed by a honeycomb grid 9, acting as a rectifier, made of honeycombs of round, square or polygonal cross section, which is delimited by an inner perforated plate 10 and an outer perforated plate 11.
  • the perforated plates 10, 11 form with the honeycomb grid 9 a component that can be removed from the distribution box 1.
  • the free cross section of the holes in the perforated plates 10, 11 is smaller than the free cross section of the honeycomb of the honeycomb grid 9.
  • the longitudinal axis of the honeycomb of the honeycomb grid 9 is directed obliquely upward in the direction of flow of the supply air and forms an angle with the vertical of less than 90 ° .
  • the angle that the honeycomb axis forms with the vertical can also be 90 °. This can be advantageous if the source air passage is only low and if there are small temperature differences between the supply air and the room air.
  • a nonwoven fabric or a porous plate for example made of foam, can also be used as a rectifier.
  • FIG. 7 shows the flow conditions which occur immediately before and after the outflow element 5 according to the invention.
  • the distribution box 1 which is characterized by the area A
  • the supply air flows in obliquely and unevenly.
  • region B the flow within the honeycombs of the honeycomb grid 9 is rectified.
  • a swirl takes place in the area C, which is followed by the area D with a low-turbulence displacement flow.
  • FIG. 1 to 3 show the flow profiles of the emerging displacement flow for various outflow elements.
  • the length of the arrows gives a measure of the size of the flow velocity and the direction of the arrow indicates the direction of flow.
  • the speed profile generated directly by the honeycomb grille of the honeycomb grille directly behind the outflow element is, according to FIG. 1, uniform over the height of the air flow and has an overall upward direction. Since the supply air has a lower temperature than the room air and therefore has a higher density, there is a speed component in the direction of the floor. Due to the upward outflow, the downward velocity component is effectively counteracted by the higher density of the supply air.
  • the flow speed in the lower area can be more than twice as high as in the upper area.
  • the honeycomb grille with horizontal honeycombs remains limited to applications in which the source passage has a low overall height and in which there is a small temperature difference between supply air and room air.
  • the diameter of the holes in the perforated plates 10, 11 is matched to the desired pressure loss.
  • care must be taken that all honeycombs are acted upon. This is the case if the honeycomb diameter or the clear width of the individual honeycomb is equal to or greater than the hole division.
  • a honeycomb is assigned to each hole of the inner perforated plate 10. The same applies to the outer perforated plate 11. It may well be that the wall of a honeycomb comes to rest in the area of a hole. This does not affect the air flow pattern in the room to be air-conditioned.
  • the holes 12 in the upper region of the outer perforated plate 11 are designed like nozzles, while the holes 13 in the lower part are simple openings.
  • the honeycombs in the area of the holes 12 formed as nozzles are preferably acted upon higher than the honeycombs in the lower area of the honeycomb grid 9.
  • shut-off device is located inside the distribution box 1 to block the source air passage, if necessary.
  • This shut-off device consists of a cover 15 which is connected to the end of a threaded rod 16 designed as a rising spindle.
  • a drive motor 17 engages the threaded rod 16 and is fastened to the ceiling 2 of the distribution box 1 via a bracket 18.
  • the installation of perforated disks 19 transversely in the distribution box 1 can influence the action of the air volume flow of the outflow element 5. This can be particularly useful in the corner areas of rooms if the source air diffusers meet at right angles there and the air velocity would increase.
  • shut-off device consists of a perforated plate cylinder 20 which is placed on the supply air connector 14.
  • the perforated plate cylinder 20 is surrounded by a solid wall cylinder 21 which is vertically adjustable. The adjustment is carried out via a threaded rod 16 and a drive motor 17.
  • This type of shut-off device is recommended if, in particular with long displacement air passages with only a supply air nozzle requires a more uniform action on the source air passage and in particular the outflow element.
  • the hole pattern of the perforated plate cylinder 20 is chosen so that a corresponding adaptation to the desired pressure loss and a desired air distribution in the interior of the distribution box 1 is achieved.
  • the supply air connector 14 is provided with a right-angled edge flange 22.
  • the outer diameter of the edge flange 22 is larger than the cross section of the supply air opening 6 in the bottom 4 of the distribution box 1.
  • the supply air connector 14 is displaceable relative to the distribution box 1 and temporarily receives an insert 23 made of rigid foam during assembly.
  • the procedure is such that the insert 23 is inserted into the supply air connection 14 and this is fastened to the supply air connection 14 on the raw concrete ceiling 29.
  • the inlet air connection 14 can now be adjusted in height on the insert 23 to the required dimension of the cavity floor 8.
  • the insert 23 is removed again.
  • the distribution box 1 is placed on the edge flange 22 of the supply air connector 14 and aligned, displacement in two planes being possible. Finally, the distribution box 1 is screwed to the edge flange 22.
  • FIG. 10 Another embodiment for compensating for construction tolerances is shown in FIG. 10.
  • a continuous slot 24 is arranged as a supply air opening in the bottom 4 of the distribution box 1.
  • the slot 24 can also be interrupted by webs.
  • This design of a slot-shaped supply air opening in the bottom 4 of the distribution box 1 of the source air passage is particularly suitable for narrow room partition walls.
  • the distribution box 1 is sealed off from the cavity floor 8 by a circumferential seal 25. If the area of the supply air opening designed as a slot 24 is smaller than the area enclosed by the circumferential seal 25, the inside Cavity floor 8 existing passage opening 7 for the supply air does not exactly match the slot-shaped supply air opening in the floor 4 of the distribution box 1. This also allows for adaptation to tolerances by moving in two planes.
  • FIGS. 13 to 15 serves to reduce the possible transmission of noise between neighboring rooms via the source air passages and a common cavity floor 8.
  • the supply air is fed via the supply air connection 14 through the supply air opening 6 to the distribution box 1, the rear wall 3 and the ceiling 2 of which are provided with a sound-absorbing material 26.
  • a guide element 27 which is curved as a half-cylinder shell, is installed in the distribution box 1.
  • the closed side of the bowl-shaped curved guide element 27 is the outflow element 5 and the open side is facing the rear wall 3.
  • the guide element 27 extends over the height of the distribution box 1 between the floor 4 and the ceiling 2.
  • the supply air entering through the supply air opening 6 is directed by the guide element 27 onto the rear wall 3 provided with the sound-absorbing material 26.
  • the deflection extends the path of the sound and the sound waves are brought into contact with the sound-absorbing material 26, most of which is absorbed.
  • the guide element 27 can consist of sound-absorbing material or of a sheet metal coated with sound-absorbing material. Instead of providing the entire ceiling 2 with a sound-absorbing material 26, only the area of the ceiling 2 which is above the supply air opening 6 can also be lined.
  • the guide element 27 does not necessarily have to be semi-cylindrical, but can also have a different geometric shape.
  • the guide element 27 according to FIG. 16 is angled, while the guide element 27 according to FIG. 17 has the shape of a stepped shell. In both cases, the closed side faces the outflow element 5 and the open side faces the rear wall 3. Priority to the shape of the shell is its orientation and thus the extension of the sound path and the enlargement of the sound absorption area.

Description

  • Die Erfindung betrifft einen Quelluftdurchlaß für raumlufttechnische Anlagen gemäß dem Oberbegriff des Patentanspruches 1.
  • Derartige Quelluftdurchlässe (DE-PS 36 40 706) müssen die Zuluft großflächig im Fußbodenbereich mit geringen Luftgeschwindigkeiten und gleichgerichtet einleiten. Ferner benötigen die Quelluftdurchlässe einen bestimmten Druckverlust am Eintritt, um eine gleichmäßige Beaufschlagung mehrerer Durchlässe zu erreichen, wenn diese von dem gleichen Hohlraumboden mit Zuluft versorgt werden. Im Inneren ist wiederum die gleichmäßige Beaufschlagung des dem zu klimatisierenden Raum zugewandten Ausströmquerschnittes wichtig, damit in dem Raum keine örtlichen Geschwindigkeitsspitzen auftreten. Es ist aus der EP-OS 0 311 934 bekannt, zu diesem Zweck mehrere Kammern hintereinander zu schalten und den Druckverlust bzw. die gleichmäßige Verteilung der Zuluft durch ein Lochblech oder ein Wabengitter zu realisieren. Der Bau von zwei Kammern ist jedoch materialaufwendig und benötigt verhältnismäßig viel Platz. Ferner ist die Reinigung des Quelluftdurchlasses im Inneren erschwert und der Einsatz in dünnen Raumtrennwänden nur beschränkt möglich.
  • Quelluftdurchlässe werden oftmals in Verbindung mit luftführenden Doppelböden (DE-PS 36 40 706) und hier insbesondere mit gegossenen Gewölbeböden installiert. Der Luftanschlußstutzen des Quelluftdurchlasses wird mit eingegossen und muß sehr exakt positioniert werden, damit später der aufgesetzte Quelluftdurchlaß an der richtigen Stelle sitzt. Eine Anpassungsmöglichkeit für Bautoleranzen und Montageungenauigkeiten im Quelluftdurchlaß würden Arbeitszeit für Montage- und Änderungsarbeiten einsparen.
  • In bestimmten Anwendungsfällen müssen Quelluftdurchlässe einzeln absperrbar gestaltet werden. Hierzu werden üblicherweise in die Zuleitung motorische Absperrklappen eingebaut. Bei gegossenen Gewölbehohlräumen scheidet diese Lösung jedoch aus. Der Motor und die Absperrklappe müßten sich hier im Gehäuse des Quelluftdurchlasses befinden.
  • Echte Quelluftsysteme, d. h. Systeme ohne Induktion von wärmerer Raumluft im Luftdurchlaß, sind in der Differenz zwischen Zu- und Raumlufttemperatur auf etwa 4 Kelvin begrenzt, damit die Temperaturdifferenz zwischen Kopf- und Fußbereich aus Behaglichkeitsgründen innerhalb von 2 Kelvin bleibt. Um höhere Kühllasten abzuführen, kann also nicht die Temperaturdifferenz weiter erhöht werden, sondern nur der Zuluftvolumenstrom. Da jedoch die Luftgeschwindigkeit im Ausströmquerschnitt des Quelluftdurchlasses im Komfortbereich unter 20 cm/s liegen muß, ist nur eine Vergrößerung der Ausströmfläche in der Regel über die Höhe des Quelluftdurchlasses möglich. Dies führt aber zu dem unangenehmen Nebeneffekt, daß sich aufgrund der notwendigen Untertemperatur der Zuluft und der daraus resultierenden höheren Dichte im Verlauf der Strömung eine Verminderung der Luftgeschwindigkeit im oberen Bereich einstellt. Im Fußbereich können so doppelt so hohe Werte wie vor dem Quelluftdurchlaß erreicht werden, die besonders im Sommer beim Tragen von offenen Schuhen zu Zugerscheinungen führen.
  • Eine weitere Anforderung an einen Quelluftdurchlaß wird aus dem Bereich der Akustik gestellt. Sind Quelluftdurchlässe in benachbarten Räumen an den gleichen luftführenden Hohlraumboden angeschlossen, so besteht die Gefahr einer Geräuschübertragung auf dem Luftweg. Der Schall tritt dabei von einem Raum in den Nachbarraum über den Weg Quelluftdurchlaß im Senderaum, Hohlraumboden und Quelluftdurchlaß im Empfangsraum über. Eine schallabsorbierende Auskleidung des kompletten Hohlraumbodens scheidet aus Kostengründen in der Regel aus.
  • Der Erfindung liegt die Aufgabe zugrunde, den bekannten Quelluftdurchlaß derart zu gestalten, daß die austretende Luft mit einer über die Höhe vergleichmäßigten Geschwindigkeitsverteilung den Aufenthaltsbereich der Personen erreicht und daß dabei die Möglichkeit einer leichten Zugänglichkeit des Verteilkastens, einer Verminderung der Geräuschübertragung, einer Luftabsperrung und einer Anpassung an Bautoleranzen gegeben ist.
  • Diese Ausfgabe wird bei einem gattungsgemäßen Quelluftdurchlaß erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Das erfindungsgemäße Ausströmelement bewirkt durch den Druckverlust des inneren Lochbleches eine gleichmäßige Beaufschlagung des als Strömungsgleichrichter wirkenden Wabengitters. Das äußere Lochblech erzeugt einen Rückstaueffekt, der für eine Vergleichmäßigung der Luftströmung innerhalb des Wabengitters sorgt. Außerdem teilt das äußere Lochblech die in den zu klimatisierenden Raum eindringende Zuluft in viele Einzelstrahlen auf, durch die aufgrund gegenseitiger Induktion die Luftgeschwindigkeit schnell abgebaut wird. Diese Maßnahmen sorgen dafür, daß am Boden des Aufenthaltsbereiches eine über die Breite des Quelluftdurchlasses gleichmäßige und turbulenzarme Verdrängungsströmung vorliegt. Die Geschwindigkeitszunahme im unteren Bereich der strömenden Luft wird vermindert, wenn die Waben des Wabengitters gegenüber der Vertikalen angestellt sind. Eine solche Winkelstellung erzeugt in dem zu klimatisierenden Raum eine Vergrößerung der Schichthöhe der strömenden Zuluftschicht. Gleichzeitig wirkt die anfängliche Schrägstellung der Luftstrahlen einer nach unten gerichteten Geschwindigkeitskomponente entgegen, die sich aus der höheren Dichte der im Vergleich zur Raumluft kühleren Zuluft ergibt und die zu einer Erhöhung der Strömungsgeschwindigkeit im unteren Bereich der strömenden Luftschicht führen würde. Das Ausströmelement ist in einfacher Weise komplett zur Durchführung von Wartungs- und Montagearbeiten entfernbar, so daß die im Inneren des Verteilkastens angeordneten Aggregate z. B. das gemäß den Patentansprüchen 6 und 7 ausgebildete Absperrorgan leicht zugänglich sind. Durch die Merkmale der Patentansprüche 8 und 9 können Toleranzen und Ungenauigkeiten im Baubereich und bei der Montage des Quelluftdurchlasses ausgeglichen werden. Eine Geräuschübertragung zwischen Räumen über mehrere an den gleichen Hohraumboden angeschlossene Verteilkästen kann vermindert werden, indem das gemäß Patentanspruch 11 ausgebildete Leitelement die Zuluft vor dem Austreten aus dem Ausströmelement gegen die mit einem schallabsorbierenden Material versehene Rückwand des Verteilkastens lenkt.
  • Mehrere Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher erläutert. Es zeigen:
  • Fig. 1
    im Querschnitt teilweise einen zu klimatisierten Raum mit einem Quelluftdurchlaß,
    Fig. 2 und 3
    den zu klimatisierenden Raum gemäß Fig. 1 mit einem anderen Quelluftdurchlaß,
    Fig. 4
    den Blick in das Innere eines Quelluftdurchlasses,
    Fig. 5
    den Schnitt V - V nach Fig. 4,
    Fig. 6
    die Einzelheit Z nach Fig. 5,
    Fig. 7
    die Strömungsverhältnisse im Bereich des Austrittes eines Quelluftdurchlasses,
    Fig. 8
    den Schnitt V - V nach Fig. 4 mit einer anderen Ausführungsform,
    Fig. 9
    die Einzelheit Y nach Fig. 3,
    Fig. 10
    in perspektivischer Darstellung einen Quellendurchlaß in einer anderen Ausführungsform,
    Fig. 11
    die Einzelheit X nach Fig. 1 gemäß einer anderen Ausführungsform
    Fig. 12
    den Längsschnitt durch Fig. 11,
    Fig. 13
    den Blick in das Innere eines Quelluftdurchlasses gemäß einer weiteren Ausführunsform,
    Fig. 14
    den Schnitt XIV - XIV nach Fig. 13,
    Fig. 15
    den Schnitt XV - XV nach Fig. 13 und
    Fig. 16 und 17
    den Schnitt XV - XV nach Fig. 13 für weitere Ausführungsformen.
  • Im Fußbodenbereich eines zu klimatisierenden Raumes ist ein Quelluftdurchlaß angeordnet, der einen Verteilkasten 1 enthält. Der Verteilkasten 1 ist durch eine Decke 2, eine Rückwand 3, einen Boden 4 und auf der Austrittsseite durch ein Ausströmelement 5 begrenzt. Die Decke 2 und die Rückwand 3 können außen mit einem wärmeisolierenden Material 28 versehen sein. In dem Boden 4 ist eine oder mehrere Zuluftöffnungen 6 vorgesehen, die mit einem eine oder mehrere Durchtrittsöffnungen 7 aufweisenden Hohlraumboden 8 verbunden ist. Über diesen Hohlraumboden 8 wird der Verteilkasten 1 des Quelluftdurchlasses mit Zuluft versorgt. Der Quelluftdurchlaß ist gemäß Fig. 1 im Bereich der Brüstung der Fensterwand angeordnet. Der Quelluftdurchlaß kann auch in Raumtrennwänden, im Schranksockelbereich oder an und um Säulen untergebracht sein.
  • Das Ausströmelement 5 (Fig. 5, 6) ist durch ein als Gleichrichter wirkendes Wabengitter 9 aus Waben von rundem, quadratischem oder mehreckigem Querschnitt gebildet, das durch ein inneres Lochblech 10 und ein äußeres Lochblech 11 begrenzt ist. Die Lochbleche 10, 11 bilden mit dem Wabengitter 9 ein aus dem Verteilkasten 1 herausnehmbares Bauteil. Der freie Querschnitt der Löcher der Lochbleche 10, 11 ist geringer als der freie Querschnitt der Waben des Wabengitters 9. Die Längsachse der Waben des Wabengitters 9 ist in Strömungsrichtung der Zuluft schräg nach oben gerichtet und bildet mit der Vertikalen einen Winkel von kleiner als 90°. Daraus ergibt sich eine Zuluftströmung, die schräg nach oben in den zu klimatisierten Raum weist. Als Sonderfall kann der Winkel, den die Wabenachse mit der Vertikalen bildet, auch 90° betragen. Dies kann bei nur geringen Bauhöhen des Quelluftdurchlasses und bei geringen Temperaturdifferenzen zwischen Zuluft und Raumluft vorteilhaft sein. Anstelle eines Wabengitters kann auch ein Faservlies oder eine poröse Platte, z.B. aus Schaumstoff, als Gleichrichter verwendet werden.
  • In Fig. 7 sind die Strömungsverhältnisse gezeigt, die sich unmittelbar vor und hinter dem erfindungsgemäßen Ausströmelement 5 einstellen. In dem Verteilkasten 1, der durch den Bereich A gekennzeichnet ist, strömt die Zuluft schräg und ungleichmäßig an. In dem Bereich B wird die Strömung innerhalb der Waben des Wabengitters 9 gleichgerichtet. Unmittelbar hinter dem Austritt aus dem Ausströmelement 5 findet im Bereich C eine Verwirbelung statt, an die sich der Bereich D mit einer turbulenzarmen Verdrängungsströmung anschließt.
  • In den Fig. 1 bis 3 sind für verschiedene Ausströmelemente die Strömungsprofile der austretenden Verdrängungsströmung gezeigt. Dabei gibt die Länge der Pfeile ein Maß für die Größe der Strömungsgeschwindigkeit und die Pfeilrichtung die Strömungsrichtung an. Das durch die geneigt angeordneten Waben des Wabengitters erzeugte Geschwindigkeitsprofil unmittelbar hinter dem Ausströmelement ist gemäß Fig. 1 über die Höhe der Luftströmung gleichmäßig und hat insgesamt eine nach oben weisende Richtung. Da die Zuluft eine geringere Temperatur aufweist als die Raumluft und dementsprechend eine höhere Dichte hat, ergibt sich eine Geschwindigkeitskomponente in Richtung auf den Fußboden. Durch die nach oben gerichtete Ausströmung wird quasi der nach unten gerichteten Geschwindigkeitskomponente durch die höhere Dichte der Zuluft entgegengewirkt. Wie das 2. und das 3. Strömungsprofil in Fig. 1 zeigen, geht die schräg nach oben weisende Strömungsrichtung durch die höhere Dichte der Zuluft in eine waagerechte Strömungsrichtung über. Im weiteren Verlauf erhöht sich dann die Strömungsgeschwindigkeit der Zuluft im Fußbereich wieder etwas. Beim Eintritt in den Aufenthaltsbereich ist zwar die Strömungsgeschwindigkeit im Fußbereich größer als in der oberen Luftschicht, insgesamt ist aber die Geschwindigkeitsverteilung über die Höhe der strömenden Luftschicht recht gleichmäßig. Die etwas höhere Strömungsgeschwindigkeit im bodennahen Bereich ist aber deutlich geringer als bei einem Wabengitter mit waagerechten Waben unter sonst gleichen Bedingungen, wie in Fig. 2 dargestellt ist. Bei einem solchen Ausströmelement vergrößert sich die Strömungsgeschwindigkeit im unteren Teil der strömenden Luftschicht ständig, weil die Zuluft gegenüber der Raumluft eine niedrigere Temperatur und damit eine höhere Dichte aufweist. Beim Eintritt in den Aufenthaltsbereich (4. Geschwindigkeitsprofil) kann die Strömungsgeschwindigkeit im unteren Bereich mehr als doppelt so hoch sein wie im oberen Bereich. Das Wabengitter mit waagerechten Waben bleibt auf Anwendungsfälle beschränkt, in denen der Quelldurchlaß eine geringe Bauhöhe aufweist und in denen eine geringe Temperaturdifferenz zwischen Zuluft und Raumluft besteht.
  • Der Durchmesser der Löcher in den Lochblechen 10, 11 ist auf den gewünschten Druckverlust abgestimmt. Bei der Wahl des Lochdurchmessers und der Lochteilung für das innere und das äußere Lochblech 10, 11 sowie bei der Auswahl des Durchmessers der Waben des Wabengitters 9 ist darauf zu achten, daß alle Waben beaufschlagt werden. Das ist dann der Fall, wenn der Wabendurchmesser bzw. die lichte Weite der einzelnen Wabe gleich oder größer als die Lochteilung ist. Für die praktische Ausführung ist es nicht von Bedeutung, daß, wie in Fig. 6 und 7 gezeigt, jedem Loch des inneren Lochbleches 10 eine Wabe genau zugeordnet ist. Das gleiche gilt für das äußere Lochblech 11. Es kann durchaus sein, daß die Wand einer Wabe im Bereich eines Loches zu liegen kommt. Das Luftströmungsbild in dem zu klimatisierenden Raum wird dadurch nicht beeinflußt.
  • Bei dem in Fig. 9 dargestellten Ausströmelement 5 sind die Löcher 12 im oberen Bereich des äußeren Lochbleches 11 düsenartig ausgebildet, während die Löcher 13 im unteren Teil einfache Durchbrechungen sind. Durch die Wahl der Durchmesser der Löcher 12, 13 ist es möglich, die Waben des Wabengitters 9 unterschiedlich mit Luft zu beaufschlagen. Dabei werden vorzugsweise die Waben im Bereich der als Düsen ausgeformten Löcher 12 höher beaufschlagt als die Waben im unteren Bereich des Wabengitters 9.
  • Mit Hilfe des in Fig. 9 dargestellten Ausströmelementes 5 stellt sich die in Fig. 3 wiedergegebene Strömungsverteilung ein. Im oberen Bereich ist durch die höhere Beaufschlagung der oberen Waben des Wabengitters 9 auch die Strömungsgeschwindigkeit der austretenden Luft höher. Dadurch wird dem durch die Untertemperatur der Zuluft in diesem Bereich bewirkten Abfall der Strömungsgeschwindigkeit entgegengewirkt, so daß beim Eintritt in den Aufenthaltsbereich die Strömungsgeschwindigkeit über die Höhe der strömenden Luftschicht trotz der ständigen Erhöhung der Strömungsgeschwindigkeit im Fußbereich nahezu gleich ist.
  • Gemäß den Fig. 4 und 5 schließt sich an die Zuluftöffnung 6 ein in den Hohlraumboden 8 hineinragender Zuluftstutzen 14 an. Für eine eventuell notwendige Absperrung des Quelluftdurchlasses befindet sich im Inneren des Verteilkastens 1 ein Absperrorgan. Dieses Absperrorgan besteht aus einem Deckel 15, der mit dem Ende einer als steigende Spindel ausgebildeten Gewindestange 16 verbunden ist. An die Gewindestange 16 greift ein Antriebsmotor 17 an, der über eine Konsole 18 an der Decke 2 des Verteilkastens 1 befestigt ist.
  • Besonders bei langen Quelluftdurchlässen kann durch den Einbau von Lochscheiben 19 quer in dem Verteilkasten 1 eine Beeinflussung der Beaufschlagung des Luftvolumenstromes des Ausströmelementes 5 erreicht werden. Dies kann insbesondere auch in den Eckbereichen von Räumen sinnvoll sein, wenn die Quelluftdurchlässe dort rechtwinklig gegeneinander stoßen und sich dadurch die Raumluftgeschwindigkeit erhöhen würde.
  • Ein weiteres Absperrorgan ist in Fig. 8 dargestellt. Dieses Absperrorgan besteht aus einem Lochblechzylinder 20, der auf den Zuluftstutzen 14 aufgesetzt ist. Der Lochblechzylinder 20 ist von einem Vollwandzylinder 21 umgeben, der vertikal verstellbar ist. Die Verstellung erfolgt über eine Gewindestange 16 und einen Antriebsmotor 17. Diese Art des Absperrorgans empfiehlt sich dann, wenn besonders bei langen Quelluftdurchlässen mit nur einem Zuluftstutzen eine gleichmäßigere Beaufschlagung des Quelluftdurchlasses und insbesondere des Ausströmelementes erforderlich wird. Das Lochbild des Lochblechzylinders 20 wird so gewählt, daß eine entsprechende Anpassung an den gewünschten Druckverlust und eine gewünschte Luftverteilung im Inneren des Verteilkastens 1 erzielt wird.
  • Um Toleranzen im Baubereich sowie bei der Montage des Zuluftstutzens 14 ausgleichen zu können, ist der Zuluftstutzen 14 mit einem rechtwinkligen Randflansch 22 versehen. Der äußere Durchmesser des Randflansches 22 ist größer als der Querschnitt der Zuluftöffnung 6 im Boden 4 des Verteilkastens 1. Der Zuluftstutzen 14 ist gegenüber dem Verteilkasten 1 verschiebbar und nimmt während der Montage vorübergehend einen Einsatz 23 aus Hartschaumstoff auf. Bei der Montage des Zuluftstutzens 14 im Hohlraumboden 8 wird so vorgegangen, daß in den Zuluftstutzen 14 der Einsatz 23 eingesteckt und dieser mit dem Zuluftstutzen 14 auf der Rohbetondecke 29 befestigt wird. Der Zuluftstutzen 14 kann nun auf dem Einsatz 23 in der Höhe bis auf das geforderte Maß des späteren Hohlraumbodens 8 eingestellt werden. Nachdem der Hohlraumboden 8 gegossen wurde, wird der Einsatz 23 wieder entfernt. Danach wird der Verteilkasten 1 auf den Randflansch 22 des Zuluftstutzens 14 aufgesetzt und ausgerichtet, wobei ein Verschieben in zwei Ebenen möglich ist. Zuletzt wird der Verteilkasten 1 mit dem Randflansch 22 verschraubt.
  • Eine andere Ausführungsform zum Ausgleichen von Bautoleranzen ist in Fig. 10 gezeigt. Hier ist in dem Boden 4 des Verteilkastens 1 ein durchlaufender Schlitz 24 als Zuluftöffnung angeordnet. Der Schlitz 24 kann auch durch Stege unterbrochen sein. Besonders bei schmalen Raumtrennwänden bietet sich diese Gestaltung einer schlitzförmigen Zuluftöffnung im Boden 4 des Verteilkastens 1 des Quelluftdurchlasses an. Dabei wird das Abdichten des Verteilkasten 1 gegenüber dem Hohlraumboden 8 durch eine umlaufende Dichtung 25 erreicht. Wenn die Fläche der als Schlitz 24 ausgebildeten Zuluftöffnung kleiner ist als die von der umlaufenden Dichtung 25 umschlossene Fläche, muß die im Hohlraumboden 8 vorhandene Durchtrittsöffnung 7 für die Zuluft nicht genau mit der schlitzförmigen Zuluftöffnung im Boden 4 des Verteilkastens 1 übereinstimmen. Dadurch ist ebenfalls eine Anpassung an Toleranzen durch Verschieben in zwei Ebenen gegeben.
  • Um eine mögliche Geräuschübertragung zwischen Nachbarräumen über die Quelluftdurchlässe und einen gemeinsamen Hohlraumboden 8 zu vermindern, dient die in den Fig. 13 bis 15 dargestellte Ausführungsform. Dabei wird die Zuluft über den Zuluftstutzen 14 durch die Zuluftöffnung 6 dem Verteilkasten 1 zugeleitet, dessen Rückwand 3 und dessen Decke 2 mit einem schallabsorbierenden Material 26 versehen sind. Zwischen der Verlängerung der Zuluftöffnung 6 und dem Ausströmelement 5 ist in dem Verteilkasten 1 ein als Halbzylinderschale gewölbtes Leitelement 27 installiert. Die geschlossene Seite des schalenförmig gewölbten Leitelementes 27 ist dem Ausströmelement 5 und die offene Seite ist der Rückwand 3 zugewandt. Das Leitelement 27 erstreckt sich über die Höhe des Verteilkastens 1 zwischen dem Boden 4 und der Decke 2. Die durch die Zuluftöffnung 6 eintretende Zuluft wird durch Leitelement 27 auf die mit dem schallabsorbierenden Material 26 versehene Rückwand 3 gelenkt. Durch die Umlenkung wird der Weg des Schalls verlängert, und die Schallwellen werden in Kontakt mit dem schallabsorbierenden Material 26 gebracht, wobei sie zum großen Teil absorbiert werden.
  • Das Leitelement 27 kann aus schalldämmendem Material oder aus einem mit schalldämmendem Material beschichteten Blech bestehen. Statt die gesamte Decke 2 mit einem schallabsorbierendem Material 26 zu versehen, kann auch nur der Bereich der Decke 2 ausgekleidet sein, der sich oberhalb der Zuluftöffnung 6 befindet.
  • Wie in den Fig. 16 und 17 aufgezeigt ist, muß das Leitelement 27 nicht unbedingt halbzylinderförmig sein, sondern kann auch eine davon abweichende geometrische Form aufweisen. Das Leitelement 27 gemäß Fig. 16 ist gewinkelt, während das Leitelement 27 gemäß Fig. 17 die Form einer stufenförmigen Schale hat. In beiden Fällen weist die geschlossene Seite zum Ausströmelement 5 und offene Seite zur Rückwand 3. Vorrangig vor der Form der Schale ist deren Ausrichtung und damit die Verlängerung des Schallweges und die Vergrößerung der Schallabsorptionsfläche.

Claims (12)

  1. Quelluftdurchlaß für raumlufttechnische Anlagen mit einem Verteilkasten (1), der über eine oder mehrere im Boden (4) des Verteilkastens (1) angeordnete Zuluftöffnungen (6) an einen die Zuluft führenden Hohlraumboden (8) angeschlossen ist und der an der Austrittsseite mit einem Gleichrichter versehen ist, dadurch gekennzeichnet, daß der Gleichrichter zu beiden Seiten von Lochblechen (10, 11) umgeben und mit diesen zu einem aus dem Verteilkasten (1) herausnehmbaren Bauteil verbunden ist.
  2. Quelluftdurchlaß nach Anspruch 1, dadurch gekennzeichnet, daß der Gleichrichter aus einem Wabengitter (9) besteht.
  3. Quelluftdurchlaß nach Anspruch 2, dadurch gekennzeichnet, daß die Waben des Wabengitters (9) in Strömungsrichtung schräg nach oben gerichtet sind.
  4. Quelluftdurchlaß nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß im oberen Teil des auf der Austrittsseite angeordneten Lochbleches (11) die Löcher (12) düsenartig geformt sind.
  5. Quelluftdurchlaß nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sich an die Zuluftöffnung (6) im Boden (4) des Verteilkastens (1) ein Zuluftstutzen (14) anschließt, der in den Hohlraumboden (8) hineinragt.
  6. Quelluftdurchlaß nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Zuluftöffnung (6) durch einen vertikal verstellbaren Deckel (15) verschließbar ist, der auf der dem Verteilkasten (1) zugewandten Seite mit einer steigenden Spindel (16) verbunden ist, an die ein Antrieb (17) angreift.
  7. Quelluftdurchlaß nach Anspruch 5, dadurch gekennzeichnet, daß im Inneren des Verteilkastens (1) auf den Zuluftstutzen (14) ein Lochblechzylinder (20) gesetzt ist, der von einem vertikal über eine steigende, angetriebene Spindel (16) verstellbaren Vollwandzylinder (21) umgeben ist.
  8. Quelluftdurchlaß nach Anspruch 5, dadurch gekennzeichnet, daß der Zuluftstutzen (14) mit einem rechtwinkligen Randflansch (22) versehen ist, dessen äußere Begrenzung größer ist als der Querschnitt der Zuluftöffnung (6) und daß der Zuluftstutzen (14) gegenüber dem Verteilkasten (1) verschiebbar und über einen vorübergehend in den Zuluftstutzen (14) einfügbaren Einsatz (23) auf der Rohbetondecke (29) ausrichtbar ist.
  9. Quelluftdurchlaß nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Zuluftöffnung als Schlitz (24) ausgebildet ist, daß der Boden (4) des Verteilkastens (1) auf dem Hohlraumboden (8) über eine umlaufende den Schlitz (24) mit Abstand umgebende Dichtung (25) aufruht und daß die von der Dichtung (25) umschlossene Fläche größer ist als die Querschnittsfläche des Schlitzes (24).
  10. Quelluftdurchlaß nach einem oder mehreren der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß die lichte Weite der einzelnen Wabe des Wabengitters (9) gleich oder größer ist als die Lochteilung der Löcher der Lochbleche (10, 11).
  11. Quelluftdurchlaß nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Rückwand (3) des Verteilkastens (1) mit einem schallabsorbierenden Material (26) versehen ist und daß zwischen der vertikalen Verlängerung der Zuluftöffnung (6) und dem Ausströmelement (5) in dem Verteilkasten (1) ein schalenförmig gewölbtes Leitelement (27) angeordnet ist, dessen geschlossene Seite dem Ausströmelement (5) und dessen offene Seite der Rückwand (3) zugewandt ist.
  12. Quelluftdurchlaß nach Anspruch 11, dadurch gekennzeichnet, daß das Leitelement (27) mit einem schallabsorbierenden Material (26) versehen ist oder aus diesem besteht.
EP93100311A 1992-03-28 1993-01-12 Quelluftdurchlass für raumlufttechnische Anlagen Expired - Lifetime EP0563509B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4210279A DE4210279A1 (de) 1992-03-28 1992-03-28 Quelluftdurchlaß für raumlufttechnische Anlagen
DE4210279 1992-03-28

Publications (3)

Publication Number Publication Date
EP0563509A2 EP0563509A2 (de) 1993-10-06
EP0563509A3 EP0563509A3 (en) 1993-12-29
EP0563509B1 true EP0563509B1 (de) 1996-05-15

Family

ID=6455353

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93100311A Expired - Lifetime EP0563509B1 (de) 1992-03-28 1993-01-12 Quelluftdurchlass für raumlufttechnische Anlagen

Country Status (4)

Country Link
EP (1) EP0563509B1 (de)
AT (1) ATE138181T1 (de)
DE (2) DE4210279A1 (de)
ES (1) ES2088165T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018278A1 (de) * 2004-04-13 2005-11-17 Thermosoft Klimatechnik Gmbh Decke, insbesondere Kühl-oder Heizdecke

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9303289U1 (de) * 1993-03-06 1993-05-27 "Schako" Metallwarenfabrik Ferdinand Schad Kg, 7201 Kolbingen, De
US5558919A (en) * 1993-09-20 1996-09-24 United Technologies Corporation Duct cover for directing a fluid therethrough
DE19523625C2 (de) * 1995-04-27 1999-11-11 Mayer Georg In einem zu klimatisierenden Raum installierte lufttechnische Einrichtung
NO310792B1 (no) 1996-01-30 2001-08-27 Hesco Pilgersteg Ag Luftutlöp
DE10058701B4 (de) * 2000-11-25 2008-02-28 E.On Ruhrgas Ag Einrichtung zum Prüfen eines Durchflußmeßgerätes
CA2789747C (en) * 2010-02-15 2017-06-13 Koken Ltd. Local clean zone forming apparatus
CH703924A1 (de) * 2010-10-13 2012-04-13 Trox Hesco Schweiz Ag Ebenflächige Ausströmwand eines Luftdurchlasses.
DE102012208621A1 (de) * 2012-05-23 2013-12-12 BSH Bosch und Siemens Hausgeräte GmbH Abdeckgitter für eine Ein- oder Austrittsöffnung eines von einem gasförmigen Medium durchströmten Kanals

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3059564A (en) * 1959-10-30 1962-10-23 Robertson Co H H Low noise air distributor
US3200734A (en) * 1963-05-08 1965-08-17 Pyle National Co Combination acoustic ceiling panel and air diffuser
DE2614559B2 (de) * 1976-04-03 1981-06-19 MERO-Werke Dr.-Ing. Max Mengeringhausen, GmbH & Co, 8700 Würzburg Doppelbodenplatte mit in einem Einsatzelement vorgesehenen Luft-Durchtrittsöffnungen
DE3640706A1 (de) * 1986-07-08 1988-01-28 Herbst Donald Vorrichtung zur belueftung von raeumen
DE8713694U1 (de) * 1987-10-13 1989-02-09 Heinrich Nickel Gmbh, 5240 Betzdorf, De
DE4037287C2 (de) * 1989-12-29 1997-10-02 Schako Metallwarenfabrik Auslaß

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004018278A1 (de) * 2004-04-13 2005-11-17 Thermosoft Klimatechnik Gmbh Decke, insbesondere Kühl-oder Heizdecke
DE102004018278B4 (de) * 2004-04-13 2006-01-19 Thermosoft Klimatechnik Gmbh Decke, insbesondere Kühl-oder Heizdecke

Also Published As

Publication number Publication date
DE4210279A1 (de) 1993-09-30
ATE138181T1 (de) 1996-06-15
EP0563509A2 (de) 1993-10-06
EP0563509A3 (en) 1993-12-29
DE59302557D1 (de) 1996-06-20
ES2088165T3 (es) 1996-08-01

Similar Documents

Publication Publication Date Title
EP0497296B1 (de) Filter-Ventilator-Einrichtung zur Verwendung bei Reinräumen
EP1586823B1 (de) Decke, insbesondere Kühl- oder Heizdecke
EP0641977B1 (de) Reinraumanlage
DE2754699C2 (de)
EP0563509B1 (de) Quelluftdurchlass für raumlufttechnische Anlagen
EP3584511A1 (de) Lüftungsgerät mit schalldämpferaufsatz
DE2609030C3 (de) Vorrichtung zum Führen von aus einer luftdurchlässigen perforierten Fläche austretenden Luftströmen
DE69912031T2 (de) Vorrichtung zum Belüften, Kühlen und/oder Beheizen eines Raumes
EP1078205B1 (de) Luftkühlelement, verfahren zu seinem betrieb sowie luftkühlanordnung
DE2130255A1 (de) Vorrichtung zur Aufrechterhaltung einer staub- und bakterienfreien Zone in einem Raum
DE2328186C2 (de) Induktionsgerät
DE102016111195A1 (de) Heiz- und Kühlsegel mit mindestens einem Ventilator
EP2587179B1 (de) Luftdurchlass
EP3686505B1 (de) Lufteinlass und anordnung zur führung von luft
DE3242215A1 (de) Injektor-raumklimageraet
DE19626884C2 (de) Luftauslaß
EP2498016A1 (de) Volumenstromstelleinrichtung sowie lufttechnische Vorrichtung zum Belüften, Heizen und/oder Kühlen eines Raumes eines Gebäudes
DE19848003A1 (de) Betondecken- und Wandelement
EP3587943A2 (de) Vorrichtung zur belüftung und temperierung eines raums eines gebäudes
DE4103026C1 (de)
DE2525977C2 (de) Lüftungsgitter für die Belüftung von Innenräumen
DE19525551B4 (de) Anschlußkasten
DE19738172C1 (de) Einrichtung zum Temperieren von Gebäuden
DE2163690A1 (de) Sauna-entlueftungsvorrichtung
DE19912567A1 (de) Luftleiteinrichtung für einen Luftdurchlaß

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB LI LU NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: H.KRANTZ - TKT GESELLSCHAFT MIT BESCHRAENKTER HAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB LI LU NL

17P Request for examination filed

Effective date: 19940210

17Q First examination report despatched

Effective date: 19950328

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB LI LU NL

REF Corresponds to:

Ref document number: 138181

Country of ref document: AT

Date of ref document: 19960615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALTSBUERO EDER AG

REF Corresponds to:

Ref document number: 59302557

Country of ref document: DE

Date of ref document: 19960620

REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2088165

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960620

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2088165

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040108

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050103

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050112

Year of fee payment: 13

Ref country code: AT

Payment date: 20050112

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050117

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050209

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050419

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060112

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060112

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060801

BERE Be: lapsed

Owner name: *H.KRANTZ - TKT G.M.B.H.

Effective date: 20060131