EP0548185B1 - Kontrollsystem für das schussbehandlungssystem und die mess- und liefervorrichtung - Google Patents

Kontrollsystem für das schussbehandlungssystem und die mess- und liefervorrichtung Download PDF

Info

Publication number
EP0548185B1
EP0548185B1 EP91916396A EP91916396A EP0548185B1 EP 0548185 B1 EP0548185 B1 EP 0548185B1 EP 91916396 A EP91916396 A EP 91916396A EP 91916396 A EP91916396 A EP 91916396A EP 0548185 B1 EP0548185 B1 EP 0548185B1
Authority
EP
European Patent Office
Prior art keywords
weft
signal
correction
control function
passing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91916396A
Other languages
English (en)
French (fr)
Other versions
EP0548185A1 (de
Inventor
Pär JOSEFSSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iro AB
Original Assignee
Iro AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iro AB filed Critical Iro AB
Publication of EP0548185A1 publication Critical patent/EP0548185A1/de
Application granted granted Critical
Publication of EP0548185B1 publication Critical patent/EP0548185B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/28Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed
    • D03D47/30Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed by gas jet
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/34Handling the weft between bulk storage and weft-inserting means
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/28Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed
    • D03D47/30Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed by gas jet
    • D03D47/3026Air supply systems
    • D03D47/3033Controlling the air supply
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/28Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed
    • D03D47/30Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed by gas jet
    • D03D47/3026Air supply systems
    • D03D47/3033Controlling the air supply
    • D03D47/304Controlling of the air supply to the auxiliary nozzles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/28Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed
    • D03D47/30Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed by gas jet
    • D03D47/3066Control or handling of the weft at or after arrival
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/34Handling the weft between bulk storage and weft-inserting means
    • D03D47/36Measuring and cutting the weft
    • D03D47/361Drum-type weft feeding devices
    • D03D47/362Drum-type weft feeding devices with yarn retaining devices, e.g. stopping pins
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/34Handling the weft between bulk storage and weft-inserting means
    • D03D47/36Measuring and cutting the weft
    • D03D47/361Drum-type weft feeding devices
    • D03D47/362Drum-type weft feeding devices with yarn retaining devices, e.g. stopping pins
    • D03D47/363Construction or control of the yarn retaining devices

Definitions

  • the invention relates to a method for controlling a weft processing system according to the precharacterizing part of claim 1 and to a measuring feeder according to the precharacterizing part of claim 12.
  • weft passing signals are used for measuring the length of the weft section that is to be released for one insertion.
  • the same weft passing signals are used to actuate as an auxiliary control function, an array of weft conveying nozzles provided within the shed of the jet weaving machine.
  • the said nozzles are actuated in consecutive groups with an overlap between adjacent groups. Each group must be actuated shortly before the weft tip reaches the first nozzle of the group and may be deactuated as soon as the weft tip has passed the group.
  • a withdrawal-balloon is formed in which a considerable length of the weft is stored throughout the insertion.
  • the control unit in the measuring feeder simulates the movement of the weft tip through the shed based on the weft passing signals, i.e., as if the weft section were inserted in a completely stretched out state with the weft tip moving in synchronism with the weft leaving the measuring feeder.
  • the weft tip in the shed is delayed relative to its position as defined by the weft passing signals.
  • a surveying circuit determines a theoretical time- or length-window. This is done within each insertion-cycle by simulating the movement of the weft through the shed on the basis of pre-set, stored values and the weft passing signals. Said window at the end of the weft insertion reaches from 80 % to 99.5 % of the time or weft length of a complete insertion-cycle.
  • the surveying circuit only generates a good completion signal if an arrival signal indicating that the weft tip has reached an arrival sensor, occurs within said window. Erroneously generated arrival signals for example, due to dust or lint, outside said window, can be disregarded. If no arrival signal comes within said window, a fault signal is generated by said surveying circuit.
  • Activating components for yarn conveying nozzles are connected with said surveying circuits. None is disclosed as to how said activating components are controlled by said surveying circuit.
  • the entire insertion-cycle is shifted by a control device, so that the arrival signal always falls into a pre-set target range.
  • the pressure control or the timing of the weft transporting nozzles are not affected.
  • the insertion-cycle is shifted in relation to the crankshaft angle of the weaving machine, so that the actual arrival signal lies within the target range.
  • the auxiliary control function is the actuation of a weft brake for measuring the weft section.
  • a plurality of weft passing sensors and stopping devices is provided for gaining the necessary high resolution for the measurement of the weft section on a fixed diameter storage surface.
  • the movement of the weft as defined by the passing signals deviates from the true movement of the weft tip through the shed. Initiating any auxiliary control functions related to the true movement of the weft tip through the shed is incorrect if it is carried out on the basis of the passing signals.
  • At least the initiation of the auxiliary control function which initiation is carried out on the basis of the weft passing signals, is adapted to the true movement of the weft tip through the shed with the help of the correction values.
  • the correction values take the deviation between the assumed movement of the yarn and the true movement of the yarn into consideration and enable the control unit to simulate the true movement of the weft tip in the shed even though the initiation is carried out on the basis of the weft passing signals.
  • the method is self-learning and continuously adapting in order to compensate the individual error caused by, for example, the withdrawal-balloon.
  • the method is based on the fact that only the arrival signal truly represents the position of the weft tip when it reaches the distant end of the shed, whereas its actual movement through the shed is different from the theoretical movement as represented by the weft passing signals.
  • the control unit is able to simulate the true movement of the weft through the shed for at least one later insertion on the basis of the weft passing signals with the help of the associated correction values.
  • the method adapts itself, for example, to the yarn quality or the size of the withdrawal-balloon, because, with a bigger withdrawal-balloon, the deviation is larger and, consequently, the correction values become larger.
  • the method can be carried out through a starting- or adjusting-phase of the system, or can even be carried out throughout the entire operation of the system in order to reach optimum insertion conditions for the jet weaving machine.
  • Adaptation of the auxiliary control function means that the initiation and/or the switching-off, as well as the level of the auxiliary function, will be adapted alternatively or in addition.
  • the level of the auxiliary function for example, is the braking-level or -intensity, the pressure supplied to the main nozzle, the pressure or nominal flow rate value in the relay nozzles, etc.
  • the adaption of the auxiliary control function will, in some cases, be carried out proportionally to the detected deviation but, in other cases, inversionally proportionally to the magnitude of the detected deviation, e.g., an adaptation to a higher braking level for a faster moving weft and vice versa.
  • a time-related correction or adaptation is made by means of correction times for the weft passing signals.
  • the correction time that is assigned to said relevant weft passing signal is taken into consideration before the auxiliary control function is initiated. The initiation takes place at a point in time at which the weft tip is present at a predetermined position.
  • the control unit becomes enabled to initiate the auxiliary control function in relation to the true position of the weft tip in the shed by means of individual correction lengths as soon as the control unit is prepared to initiate the auxiliary control function upon occurrence of a weft passing signal that indicates a theoretical position of the weft tip in the shed.
  • the correction length is taken into consideration so that the weft tip actually reaches the predetermined position when the auxiliary control function is initiated.
  • said correction lengths can easily be derived by means of the detected time difference and the maximum weft speed during the insertion with approximately linear increase from one weft passing signal to the next weft passing signal.
  • the correction time can be derived with approximately linear increase from one weft passing signal to the next weft passing signal so that each later occurring weft passing signal has associated therewith a larger correction time than the preceding one.
  • the individual correction times can be calculated precise enough on the basis of the length of the weft stored in at least the withdrawal-balloon.
  • the switching off of the auxiliary control function is corrected in a time-related way.
  • the switching-off correction time can be longer than the correction time for the initiation of the auxiliary control function.
  • a signal of an arrival sensor is used to derive the correction times or the correction lengths.
  • the arrival sensor is positioned outside the shed in a position where it generates a clear and precise arrival signal.
  • a maximum yarn tension signal of a tensiometer can be used as the arrival signal indicating that the weft tip has reached a predetermined position in the shed or the end of the shed. Due to an unavoidable whip-lash-effect at the end of each insertion-cycle, a weft tension peak occurs when the weft becomes stretched out. The time difference between the occurrence of said tension peak and the last passing signal is used as an indicative deviation value for deriving correction values.
  • the auxiliary control function is braking the weft at the end of the insertion in order to avoid an excessive tension increase. It is of particular importance that the braking action starts precisely when the weft tip has reached a predetermined position on its movement through the shed and is maintained over a predetermined weft-travel so that the free end comes to a standstill at the end of the shed. If these prerequisites cannot be maintained, the insertion time becomes longer than allowed which disturbs the operation of the jet weaving machine or the braking effect becomes too weak so that the tension increase in the weft is too high.
  • the braking function precisely to the true movement of the weft tip through the shed, an optimum insertion condition is assured. This means that even the braking level will be adapted.
  • the auxiliary control function is the actuation of a main nozzle and/or of relay nozzles.
  • An adaptation of the actuation of said nozzles means a correction of the initiation and/or switching-off point in time and/or a correction of the nozzle pressure or the nominal nozzle flow rate value.
  • the correction module assists the control unit in adapting at least the initiation of the auxiliary control function to the true movement of the weft tip through the shed even though the control unit responds to the weft passing signals which cannot represent a true movement of the weft.
  • the correction module derives correction values from the detected deviation and, thus, enables the control unit to wait either exactly to the point in time where the weft tip has reached the predetermined position or to wait for the correction length with which the weft tip reaches the predetermined position.
  • the correction module is structurally integrated into the control unit so that the measuring feeder continuously adapts at least the initiation of the auxiliary control function to the true movement of the weft tip.
  • the correction module is a removable controller that is connected to the control unit solely during a startingor adjustment-operation-phase in order to adapt the system of the measuring feeder and its jet weaving machine to the individual insertion conditions.
  • a measuring feeder M is associated to a jet weaving machine W, preferably an airjet weaving machine, for delivering measured sections of equal length of a weft D
  • the measuring feeder M comprises a stationary housing 1' containing a drive 2' for a rotating winding-on member 3'.
  • a storage body 4' forms a drum-like storage surface 5' for windings 6 of the weft D.
  • Said storage body 4' is mounted on said housing 1' in a coaxial position.
  • the weft D is withdrawn from a reserve bobbin (not shown) and is guided through the housing 1' and the winding-on member 3' towards said storage surface 5'.
  • At least one stopping device 8 is mounted on housing 1'. It contains a stop element 9 which is movable into the path of the weft in order to stop the weft from being withdrawn. In a retracted position, said stop element 9 allows withdrawal of the weft.
  • a weft passing sensor 10 is provided which surveys the weft passing below the stopping device 8.
  • a control unit 11 which is either structurally integrated into the housing 1' or provided at a distance from said housing 1' controls drive 2' for winding-on member 3' in order to maintain a sufficient number of windings 6 on the storage surface 5'.
  • Control unit 11 comprises a control part 12 which serves to measure each weft section during its release on the basis of weft passing signals generated by weft passing sensor 10. Stopping device 8 is actuated as soon as the required weft section length is reached ( Figure 1).
  • the diameter of the storage body 4' can be adjusted in order to adapt the weft section length to a full number of windings 6.
  • the diameter of the storage body 4' is fixed. The weft section length then is adjusted by selecting the respective stop element 9 which is to be actuated at the end of an insertion cycle (not shown).
  • Control unit 11 further serves to actuate, for example, devices 16,17,18 for auxiliary control functions relating to the movement of the weft through shed 15 of jet weaving machine W.
  • Device 18 is a so-called insertion brake for braking the weft at the end of the insertion cycle in order to avoid excessive tension peaks in the weft.
  • Device 17 is a series of so-called conveying nozzles that are arranged within shed 15. They are used to transport the weft through the shed 15.
  • Device 16 is a nozzle at the entrance of shed 15 for withdrawing weft D from measuring feeder M and to hold the weft in stretched position between insertions between the jet weaving machine W and the measuring feeder M.
  • Each of the devices 16,17,18 can be connected to control part 12 of control unit 11 so that it can be actuated and deactuated by control unit 11, respectively. Since control unit 11 has information on the position of the weft in the shed or the position of the weft tip on its travel through the shed 15 by means of weft passing signals of the weft passing sensor 10, said weft passing signals are used to time not only the actuation and deactuation of stop element 9 but also of at leapt one of the devices 16,17,18 in relation to the position of the weft tip.
  • Control unit 11 further comprises a correction module 13 which is connected to control part 12 and serves to adapt the control of the auxiliary functions of devices 16,17,18 to the true movement of the weft through shed 15 which true movement is different from the movement of the weft through shed 15 as defined on the basis of the weft passing signals.
  • a correction module 13 which is connected to control part 12 and serves to adapt the control of the auxiliary functions of devices 16,17,18 to the true movement of the weft through shed 15 which true movement is different from the movement of the weft through shed 15 as defined on the basis of the weft passing signals.
  • an arrival sensor 19 is provided which surveys whether the weft tip reaches the end of the shed or not and which generates an arrival signal as soon as the weft end arrives.
  • a tensiometer 7 can be provided which continuously checks the tension in the weft. Said tensiometer 7 automatically detects a maximum tension and generates a respective signal at the end of an insertion cycle when the weft has become stretched out and the
  • a withdrawal-balloon 14 is formed which stores a certain length S of the weft during insertion. Due to the withdrawal-balloon 14, the weft tip travels with a certain lag behind the respective positions which are assumed on the basis of the deft passing signals in control unit 11. In other words, control unit 11, is constantly informed of the position of the weft tip in the shed because, with each weft passing signal, one winding has been consumed and the weft tip should have moved further for that distance. However, due at least to the withdrawal-balloon 14, the true movement of the weft tip does not correspond to the assumed movement. Correction module 13 is used to detect the deviation between the true movement of the weft tip and the assumed movement of the weft tip and to assist control unit 11 in adapting the actuation of devices 16,17,18 to the true movement of the weft tip.
  • Control unit 11 Devices 16,17,18, as well as arrival sensor 19 or tensiometer 7 and weft passing sensor 10, are connected to control unit 11 either for signal transmission or for actuation.
  • the diagram of Figure 3 depicts two speed profiles.
  • the horizontal axis represents the time axis; the vertical axis, the weft speed.
  • Curve VD represents the weft speed in the vicinity of weft passing sensor 10.
  • Curve VT represents the speed of the weft tip.
  • Vertical lines 1 to 5 represent the consecutively generated weft passing signals.
  • Arrow t9 illustrates the point in time when the weft becomes caught by stop element 9. Due to at least the withdrawal balloon 14, the weft tip profile VT is different from the speed profile VD. As soon as the weft becomes caught at stop element 9 and becomes decelerated, the weft tip continues to travel as long as the balloon diminishes and the weft becomes stretched out.
  • Time-difference a represents the time between the last weft passing signal(s) and the arrival signal X. During time difference a, the weft tip becomes decelerated from approximately maximum weft speed to zero. Time difference a is detected in control unit 11 and is used to derive, with the assistance of correction module 13, at least one correction time for the adaptation of the initiation of at least one of the auxiliary control functions to the true movement of the weft tip.
  • Figure 4 illustrates how the insertion brake 18 is actuated as the auxiliary control function. Insertion brake 18 must be actuated at a time-period t18 after occurrence of weft passing signal 4, provided that the weft tip has reached a predetermined position. Since there is the deviation of the true movement from the movement of the weft tip as defined on the basis of the weft passing signals, weft tip has not reached the predetermined position when t18 has expired after occurrence of weft passing signal 4. However, correction module 13 has derived a correction time K from the measured time-difference a and has assigned a correction time K to weft passing signal 4.
  • correction time K and, secondly, time-period t18 pass before insertion brake 18 becomes actuated.
  • insertion brake 18 will not immediately start to brake the weft because it has a certain response time.
  • said response time is constant and is taken into consideration per se.
  • control unit 11 is prepared to actuate insertion brake 18 upon occurrence of weft passing signal 4 and passage of t18.
  • correction module 13 has assigned correction time K to weft passing signal 4 so that control unit 11 actuates insertion brake 18 upon occurrence of weft passing signal 4 after the expiration of correction time K and passage of t18, i.e., after expiration of time-period t18' which is longer than time-period t18.
  • the actuation of insertion brake 18 takes place exactly when the weft tip has reached the position at which the actuation of the brake should take place.
  • time-period a the value of time-period a is converted by calculation to the maximum weft speed in speed profile VD.
  • the short time difference between the last weft passing signal 5 and point in time t9 can be neglected because the weft is normally caught by the stop element 9 immediately after the weft has passed passing sensor 10 the last time. If there is a considerable time-period between the last passing signal and the point in time t9, a constant value (depending on the known speed) can be brought into the calculation of correction time K. In the case of a measuring feeder with a plurality of stop elements and several weft passing sensors, the time delay between the last weft passing signal and a point in time where the weft is caught by the respective and selected stop element can be taken into consideration by means of the known average speed which easily allows the calculation of when the weft reaches the activated stop element.
  • Figure 5 illustrates how conveying nozzles 17 are actuated in two groups and in relation to the true movement of the weft tip.
  • Group I is to be actuated upon occurrence of weft passing signal 2 plus time period tI and should be active over duration lI.
  • Group II is to be actuated upon occurrence of weft passing signal 3 plus time-period tII, provided that the weft tip has already reached two predetermined respective positions in the shed. Due to the deviation between the true movement of the weft tip and the movement of the weft tip as assumed on the basis of the weft passing signals, a correction time K is associated with weft passing signals 2 and 3.
  • group I is actuated during a later insertion cycle upon occurrence of weft passing signal 2 and expiration of time-period tI plus correction time K
  • group II is actuated upon occurrence of weft passing signal 3 and expiration of time-period tII plus correction time K.
  • the two groups I and II are precisely actuated in relation to the true position of the weft tip.
  • correction lengths can be associated with the respective weft passing signal when the control unit controls the auxiliary control function in direct relation to the travel of the weft tip through the shed.
  • the momentary position of the weft tip is known at least upon occurrence of the respective weft passing signal because the maximum weft speed and the length of each winding are known.
  • Figure 6 illustrates a method for deriving individual correction times K1 to K5 for the respective weft passing signals 1-5.
  • the vertical axis represents length S.
  • the detected time difference a ( Figure 3) is converted by calculation into maximum length Sa of weft that is stored at least in withdrawal-balloon 14.
  • Said length Sa is approximately equal to a times Vmax divided by two, because the deceleration between the last passing signal 5 and point X can be assumed as approximately linear. Then, over the entire insertion time, an approximately linear length-increase is assumed from zero to Sa.
  • individual partial lengths S1,S2,S3, and S4 can be found.
  • Each partial length is then converted by calculation to the maximum weft speed Vmax ( Figure 3) so that individual correction times K1 to K5 are found which are then associated with the respective weft passing signals.
  • correction time K3 approximately equals S3 divided by Vmax.
  • the respective calculations are carried out with the help of correction module 13.
  • the correction times or correction lengths are then associated with the respective weft passing signal and are taken into consideration for at least one later insertion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Looms (AREA)

Claims (14)

  1. Verfahren zum Steuern eines Schußfaden-Verarbeitungssystems, das aus wenigstens einem Meß-Speicher- und Liefergerät (M) und einer Düsenwebmaschine (W) besteht, wobei bei dem Verfahren Abschnitte einer vorbestimmten Länge eines Schußfadens (D) für die Düsenwebmaschine (W) nacheinander abgemessen werden und das Abmessen durch Verarbeiten aufeinanderfolgend erzeugter Schußfaden-Durchgangssignale (1 bis 5) wenigstens eines Schußfaden-Durchgangssensors (10) in dem Meß-Speicher- und liefergerät (M) in einer Steuereinheit (11) durchgeführt wird, und bei dem wenigstens eine Hilfssteuerfunktion in Relation zu der Bewegung des Schußfadens (D) im Fach (15) der Düsenwebmaschine (W) auf der Basis der Schußfaden-Durchgangssignale (1 bis 5) während eines Eintragzyklusses eingeleitet wird,
    gekennzeichnet durch folgende Schritte:
    a) Feststellen einer Abweichung der tatsächlichen Bewegung der Schußfadenspitze von der theoretischen Bewegung der Schußfadenspitze, wobei die theoretische Bewegung durch einen Vielzahl der Schußfaden-Durchgangssignale (1 bis 5) definiert wird, welche durch den Schußfaden (D) während eines Eintragzyklusses erzeugt werden, und wobei die Feststellung durch Vergleichen des letzten Schußfaden-Durchgangssignals (5) aller Schußfaden-Durchgangssignale (1 bis 5) des Eintragzyklusses mit einem Ankunftssignal (X) durchgeführt wird, das die Ankunft der Schußfadenspitze am dem Meß-Speicher- und Liefergerät (M) abgewandten Ende des Faches repräsentiert,
    b) Ableiten einer Abzahl von Korrekturwerten von der festgestellten Abweichung, wobei die Anzahl der Korrekturwerte gleich der Abzahl der Schußfaden-Durchgangssignale ist und jeder der Korrekturwerte zu der Abweichung proportional ist, wobei jeweils einer der proportionalen Korrekturwerte einem der Schußfaden-Durchgangssignale (1 bis 5) zugeordnet wird zum Korregieren jedes dieser Schußfaden-Durchgangssignal (1 bis 5), und
    c) Einleiten der Hilfssteuerfunktion während wenigstens eines nachfolgenden Eintragzyklusses auf der Basis eines korrigierten Schußfaden-Durchgangssignals, um die Hilfssteuerfunktion, z.B. deren Beginn, während des nachfolgenden Eintragzyklusses an die tatsächliche Bewegung der schußfadenspitze im Fach während des vorhergehenden Abzugszyklus anzupassen, während welchem die Abweichung festgestellt wurde.
  2. Verfahren nach Anspruch 1, gekennzeichnet durch folgende Schritte:
    a) Feststellen einer Zeitdifferenz (a) zwischen dem letzten Schußfaden-Durchgangssignal (5) und dem Ankunftssignal (X),
    b) Ableiten von Korrekturzeiten (K, K1 bis K5) für alle Schußfaden-Durchgangssignale (1 bis 5) eines Eintragszyklusses von der festgestellten Zeitdifferenz (a) und Zuteilen der Korrekturzeiten (K, K1 bis K5) zu den Schußfaden-Durchgangssignalen (1 bis 5) zum Korrigieren der Schußfaden-Durchgangssignale (1 bis 5),
    c) Auswählen eines relevanten Schußfaden-Durchgangssignals zum Einleiten der Hilfssteuerfunktion, und
    d) Aktivieren der Hilfssteuerfunktion während wenigstens eines späteren Eintragszyklusses auf der Basis eines derart ausgewählten und zeitkorrigierten relevanten Schußfaden-Durchgangssignals.
  3. Verfahren nach Anspruch 1, gekennzeichnet durch folgende Schritte:
    a) Feststellen einer linearen Längendifferenz (Sa) zwischen der Position der Schußfadenspitze im Fach (15) wie durch das letzte Schußfaden-Durchgangssignal (5) definiert und der tatsächlichen Position der Schußfadenspitze wie durch das Ankunftssignal (X) definiert während eines Eintragszyklusses,
    b) Ableiten von Korrekturlängen (S1, S2, S3, S4) von der festgestellten Längendifferenz (Sa), wobei die Korrekturlängen in ihrer Anzahl der Anzahl der Schußfaden-Durchgangssignale (1 bis 5) entsprechen und jede Korrekturlänge der festgestellten linearen Längendifferenz (Sa) proportional ist, und Hinzuaddieren jeder proprotionalen Korrekturlänge (S1, S2, S3, S4) zu den Schußfaden-Durchgangssignalen (1 bis 5) zum Korrigieren der Schußfaden-Durchgangssignale,
    c) Auswählen eines relevanten Schußfaden-Durchgangssignals für eine Position der Schußfadenspitze im Fach, bei dessen Auftreten die Hilfssteuerfunktion einzuleiten ist, und
    d) Betätigen der Hilfssteuerfunktion während wenigstens eines späteren Eintragszyklusses, bei dem ausgewählten relevanten und korrigierten Schußfaden-Durchgangssignal.
  4. Verfahren nach Anspruch 3, gekennzeichnet durch folgende Schritte:
    a) Berechnen der linearen Längendifferenz (Sa) mittels der maximalen Schußfadengeschwindigkeit (Vmax) während des Eintragszyklusses, und Berechnen der Zeitdifferenz (a) zwischen dem letzten Schußfaden-Durchgangssignal (5) und dem Ankunftssignal (X), und
    b) Ableiten der Korrekturlängen (S1 bis S4) für die jeweiligen Schußfaden-Durchgangssignale (1 bis 4) von der berechneten linearen Längendifferenz (Sa) und Zuteilen der Korrekturlängen (S1 bis S4) zu den jeweils zugehörigen Schußfaden-Durchgangssignalen (1 bis 4), derart, daß sich eine im wesentlichen lineare Zunahme der Korrekturlängen von einem Schußfaden-Durchgangssignal zum nächsten ergibt.
  5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß
    die jeweiligen Korrekturzeiten (K, K1 bis K5) von der Zeitdifferenz (a) mit im wesentlichen linearer Zunahme von einem Schußfaden-Durchgangssignal zum nächsten Schußfaden-Durchgangssignal abgeleitet sind.
  6. Verfahren nach den Ansprüchen 2 und 5, gekennzeichnet durch folgende Schritte:
    a) Feststellen der Zeitdifferenze (a) zwischen dem letzten Schußfaden-Durchgangssignal (5) und dem Ankunftssignal (X),
    b) Berechnen der Länge (Sa) des Schußfadens (D), die zumindest im Abzugs-Ballon (14) zurückgehalten ist, wobei die Berechnung auf der festgestellten Zeitdifferenz (a) basiert, die in der Verzögerungsphase des Schußfadens (D) von seiner maximalen Schußfadengeschwindigkeit (Vmax) bis auf Null auftritt,
    c) Ableiten einer individuellen Teillänge (S1 bis S4) von der unter b) berechneten Länge (Sa) für jedes Schußfaden-Durchgangssignal (1 bis 4) mit einer im wesentlichen linearen Zunahme von Null bis auf die berechnete Länge (SA) vom Schußfaden-Durchgangssignal (1) bis zum Schußfaden-Durchgangssignal (4), und
    d) Berechnen einer individuellen Korrekturzeit (K, K1 bis K5) auf der Basis der maximalen Schußfadengeschwindigkeit (Vmax) und der individuellen Teillänge (S1 bis S4) für jedes Schußfaden-Durchgangssignal (1 bis 5).
  7. Verfahren nach den Ansprüchen 1, 2, 5 und 6, dadurch gekennzeichnet,
    daß die Einleitung der Hilfssteuerfunktion mit der individuellen Korrekturzeit (K, K1 bis K5), die jeweils dem relevanten Schußfaden-Durchgangssignal (1 bis 4) zugeteilt ist, bei Auftreten des jeweils relevanten Schußfaden-Durchgangssignals (1 bis 5) verzögert wird, und
    daß das Abschalten der Hilfssteuerfunktion mit einer anderen individuellen Korrekturzeit (K, K1 bis K5) verzögert wird bei Auftreten eines späteren Schußfaden-Durchgangssignals, das für das Abschalten der Hilfssteuerfunktion als relevant angesehen wird, wobei die andere individuelle Korrekturzeit (K, K1 bis K5) diesem späteren Schußfaden-Durchgangssignal (1 bis 5) zugeordnet ist.
  8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet,
    daß ein Signal eines Ankunftssensors (19) als das Ankunftssignal (X) benutzt wird, wobei der Ankunftssensor (19) außerhalb des Fachs (15) angeordnet ist, um die Schußfadenspitze zu überwachen.
  9. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet,
    daß ein maximales Spannungssignal eines Tensiometers (7) als das Ankunftssignal (X) benutzt wird, wobei der Tensiometer (7) vorgesehen ist, um die Schußfaden-Spannung während des Eintrags zu überwachen.
  10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet,
    daß die Hilfssteuerfunktion eine Schußfaden-Bremsfunktion ist, die durch eine Schußfaden-Eintragbremse (18) durchgeführt wird, wobei sich die Schußfaden-Eintragbremse (18) stromab des Meß-Speicher- und -liefergeräts (M) befindet.
  11. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß
    die Hilfssteuerfunktion die Betätigung einer Hauptdüse (16) am Einlaß in das Fach (15) und/oder die Betätigung von Stafettendüsen (17) ist, die entlang des Faches (15) angeordnet sind und, vorzugsweise in Gruppen I, II und mit einer Überlappung zwischen den Gruppen, aktiviert und deaktiviert werden.
  12. Meß-Speicher- und -liefergerät (M) für eine Düsenwebmaschine (W), mit einer Speicherfläche (5') für einen Schußfaden (D), der in Windungen (6) aufgewickelt ist und spiralig und intermittierend in einzeln freigesetzten abgemessenen Abschnitten während der Eintragzyklen abgezogen wird, mit einer wenigstens eine Stopvorrichtung (8) aufweisenden Meßvorrichtung (12), deren Stopvorrichtung (8) der Speicherfläche (5') zugeordnet ist und ein Stopelement (9) aufweist, das in den Abzugspfad des Schußfadens (D) hineinbewegbar ist, mit wenigstens einem Schußfaden-Durchgangssensor (10), der beim Überwachen des Abzugspfades des Schußfadens (D) Schußfaden-Durchgangssignale (1 bis 5) erzeugt, und mit einer wenigstens einen Mikroprozessor enthaltenden Steuereinheit (11), die in signalübertragender Verbindung mit dem Schußfaden-Durchgangssensor (10) und einem ein Ankunftssignal erzeugenden Sensor (19) steht, der auf die Bewegung des Schußfadens durch das Fach (15) der Düsenwebmaschine (W) anspricht, wobei zusätzliche Vorrichtungen (16, 17, 18) für wenigstens eine Zusatzsteuerfunktion, deren Betätigung auf die Bewegung des Schußfadens durch das Fach bezogen ist, mit der Steuereinheit (11) in Betätigungsverbindung stehen, die zur Betätigungssteuerung der Vorrichtungen (16, 17, 18) auf der Basis von Schußfaden-Durchgangssignalen (1 bis 5) ausgebildet ist, dadurch gekennzeichnet,
    daß die Steuereinheit (11) mit wenigstens einem Korrekturmodul (13) zum Verzögern der Betätigung der Hilfssteuerfunktion der Vorrichtungen (16, 17, 18) ausgestattet ist,
    daß das Korrektur-Modul (13) auf eine Abweichung der tatsächlichen Schußfaden-Bewegung, wie auf der Basis des Ankunftssignals (X) während eines Eintragszyklusses, von der theoretischen Schußfaden-Bewegung anspricht, die mit den Schußfaden-Durchgangssignalen (1 bis 5) der Steuereinheit (11) definiert ist, und
    daß die Betätigung der Hilfssteuerfunktions-Vorrichtungen (16, 17, 18) während wenigstens eines späteren Eintragszyklusses mittels des Korrekturmoduls (13) an die vorhergehende tatsächliche Schußfaden-Bewegung anpaßbar ist.
  13. Meß-Speicher- und -liefergerät nach Anspruch 12, dadurch gekennzeichnet,
    daß das Korrekturmodul (13) baulich in die Steuereinheit (11) integriert ist.
  14. Meß-Speicher- und -liefergerät nach Anspruch 12, dadurch gekennzeichnet,
    daß das Korrekturmodul ein programmierbarer und abnehmbarer Controller ist, und daß die Steuereinheit (11) mit einer Anschluß-Schnittstelle zum zumindest zeitweisen Anschließen des Controllers an die Steuereinheit ausgestattet ist, z.B. während einer Anlauf- oder Einstellungsbetriebsphase des Meß-Speicher- und -liefergeräts (M).
EP91916396A 1990-09-10 1991-09-10 Kontrollsystem für das schussbehandlungssystem und die mess- und liefervorrichtung Expired - Lifetime EP0548185B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9002892A SE9002892D0 (sv) 1990-09-10 1990-09-10 Styrd utgaangsbroms vid fournissoer foer textilmaskiner, foeretraeesvis av luft- eller vatten-jet-typ
SE9002892 1990-09-10
PCT/EP1991/001724 WO1992004490A1 (en) 1990-09-10 1991-09-10 Method for controlling a weft processing system and measuring feeder

Publications (2)

Publication Number Publication Date
EP0548185A1 EP0548185A1 (de) 1993-06-30
EP0548185B1 true EP0548185B1 (de) 1995-01-18

Family

ID=20380327

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91916396A Expired - Lifetime EP0548185B1 (de) 1990-09-10 1991-09-10 Kontrollsystem für das schussbehandlungssystem und die mess- und liefervorrichtung

Country Status (6)

Country Link
EP (1) EP0548185B1 (de)
JP (1) JP3041458B2 (de)
KR (1) KR100189686B1 (de)
DE (1) DE69106882T2 (de)
SE (1) SE9002892D0 (de)
WO (1) WO1992004490A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080996A1 (en) * 2018-10-18 2020-04-23 Iro Aktiebolag Yarn feeding device with learning procedure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50109401D1 (de) * 2000-10-18 2006-05-18 Iropa Ag Verfahren zum eintragen von schussfäden und fadenliefervorrichtung
JP2004339674A (ja) 2003-04-29 2004-12-02 Sultex Ag 横糸を挿入するための方法および装置
EP1473391B1 (de) * 2003-04-29 2006-11-08 Sultex AG System und verfahren zum eintragen eines schussfadens
JP4399228B2 (ja) * 2003-10-08 2010-01-13 株式会社豊田自動織機 ジェットルームにおける緯入れ制御装置
JP2006063498A (ja) * 2004-08-30 2006-03-09 Tsudakoma Corp 緯糸ブレーキ装置の制御方法および緯糸ブレーキ装置
EP1662030B1 (de) 2004-11-22 2009-10-14 ITEMA (Switzerland) Ltd. Verfahren zum Abbremsen eines Schussfadens einer Webmaschine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH646470A5 (de) * 1980-09-05 1984-11-30 Rueti Ag Maschf Duesenwebmaschine.
SE8207096D0 (sv) * 1982-12-10 1982-12-10 Iro Ab System for temporer upplagring och matning av uppmetta garnlengder foretredesvis till dysvevmaskiner
SE8207098D0 (sv) * 1982-12-10 1982-12-10 Iro Ab Anordning for temporer upplagring och matning av uppmetta garnlengder, foretredesvis till dysvevmaskiner
JPS62117853A (ja) * 1985-11-15 1987-05-29 津田駒工業株式会社 よこ入れ制御方法およびその装置
EP0247225B1 (de) * 1986-05-30 1990-10-31 Aktiebolaget Iro Vorrichtung für die Kontrolle eines Schusseintrages
BE905471A (nl) * 1986-09-23 1987-03-23 Picanol Nv Werkwijze om bij weefmaschines de lengte van de in de gaap te brengen inslagdraad te regelen en inrichtingen hierbij aangewend.
JPH0759774B2 (ja) * 1986-10-04 1995-06-28 津田駒工業株式会社 無杼織機のよこ入れ自動調整方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080996A1 (en) * 2018-10-18 2020-04-23 Iro Aktiebolag Yarn feeding device with learning procedure

Also Published As

Publication number Publication date
DE69106882D1 (de) 1995-03-02
KR100189686B1 (ko) 1999-06-01
EP0548185A1 (de) 1993-06-30
DE69106882T2 (de) 1995-05-18
JPH06500833A (ja) 1994-01-27
SE9002892D0 (sv) 1990-09-10
JP3041458B2 (ja) 2000-05-15
KR930702568A (ko) 1993-09-09
WO1992004490A1 (en) 1992-03-19

Similar Documents

Publication Publication Date Title
US4744393A (en) Picking operation control method and controller for carrying out same
EP0229432B1 (de) Fehlschussdiagnosesystem für eine Düsenwebmaschine
US4722370A (en) Method for conveying a weft thread by means of a flowing fluid through the weaving shed in a shuttleless weaving machine, as well as weaving machine adapted for applying said method
EP0548185B1 (de) Kontrollsystem für das schussbehandlungssystem und die mess- und liefervorrichtung
KR100685554B1 (ko) 삽입브레이크를 갖춘 직기
KR890000561B1 (ko) 위입 제어방법 및 그 장치
EP0176987B1 (de) Verfahren zum Steuern einer Garnspeicher-, Zuführ- und Messvorrichtung
US4658865A (en) Loom equipped with weft picking control system
EP0285872B1 (de) Verfahren zum Kontrollieren und Auswechseln eines Wickelkörpers
EP0112555A2 (de) Steuereinrichtung für eine Webmaschine
EP0256487B1 (de) Verfahren und Vorrichtung zum Kontrollieren des Schusseintrags
US4784189A (en) Device for surveying the insertion of a weft yarn
US7063109B2 (en) System and method for inserting a weft thread
US4178590A (en) Electronic weft thread monitor for shuttleless weaving machines
EP3947793B1 (de) Verfahren zur kontaktlosen optischen erfassung von garn an einer arbeitsstelle einer garnherstellungstextilmaschine, optischer garnsensor und textilmaschine
US5067527A (en) Adjustment of weft yarn stretch in a shed of an air jet loom
US4781224A (en) Loom equipped with weft picking control system
KR930004535A (ko) 유체 제트 직기 및 그 작동방법
EP1259667B1 (de) Kontrollverfahren für eine webvorrichtung und webvorrichtung zur durchführung dieses verfahrens
US3995417A (en) Process and apparatus for counting yarn breakages
JP2522245B2 (ja) ジェットル―ムにおける緯入れ方法
EP3498902B1 (de) Verfahren zur diagnose der schussfadeneinführung in einer luftdüsenwebmaschine
EP0584738A1 (de) Vorrichtung zum Entfernen von Schlussfehlern in einer Webmaschine
JPS62125049A (ja) 無杼織機のよこ入れ自動調整方法およびその装置
JPS6312738A (ja) ジエツトル−ムにおける緯入れ方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930201

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE IT LI NL SE

17Q First examination report despatched

Effective date: 19940125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE IT LI NL SE

REF Corresponds to:

Ref document number: 69106882

Country of ref document: DE

Date of ref document: 19950302

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980928

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990929

EUG Se: european patent has lapsed

Ref document number: 91916396.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20021001

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20040830

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040901

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041027

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060401

BERE Be: lapsed

Owner name: *IRO A.B.

Effective date: 20050930