EP0545667A2 - Procédé et dispositif de commande de direction des roues arrières d'un véhicule - Google Patents
Procédé et dispositif de commande de direction des roues arrières d'un véhicule Download PDFInfo
- Publication number
- EP0545667A2 EP0545667A2 EP92310943A EP92310943A EP0545667A2 EP 0545667 A2 EP0545667 A2 EP 0545667A2 EP 92310943 A EP92310943 A EP 92310943A EP 92310943 A EP92310943 A EP 92310943A EP 0545667 A2 EP0545667 A2 EP 0545667A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- correction
- steering
- phase
- amount
- road surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/06—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
- B62D7/08—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in a single plane transverse to the longitudinal centre line of the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/06—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
- B62D7/14—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
- B62D7/15—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
- B62D7/159—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S706/00—Data processing: artificial intelligence
- Y10S706/90—Fuzzy logic
Definitions
- the present invention relates to a control method and device for steering the rear wheels of a vehicle, whereby the rear wheels are steered in accordance with the steering of the front wheels.
- the steering amount for the rear wheels which matches the steering amount of the front wheels and the car speed, is determined so that the rear wheels are steered in the same phase as the front wheels according to the determined rear-wheel steering amount. Steering the rear wheels in the same phase in this manner makes it possible to improve the posture of the vehicle, i.e., the traveling stability at the time of turning.
- the conventional common rear-wheel steering control method is, however, based on an assumption that a vehicle travels on a traveling road surface which is flat and whose road surface friction coefficient (road surface ⁇ ) is large. This means that the rear-wheel steering amount is determined merely from the steering amount of the front wheels and the car speed.
- an appropriate steering amount of the rear wheels may not be obtained at the time of turning because of the longitudinal shifting of the load on the vehicle.
- the load on the rear wheels of the vehicle decreases, causing the gripping power of the rear wheels to decrease. This in turn causes the vehicle to develop rear-end shaking, and the turn of the vehicle shows an apparent oversteer tendency.
- the turning performance becomes unreliable when the driving road surface has a low ⁇ or when a vehicle ascends or descends a slope.
- the unreliability increases especially when traveling on a low- ⁇ road or descending a slope.
- the present invention is based on the aforementioned circumstances, and its object is to provide a control method and device for steering the rear wheels of a vehicle whereby, when the vehicle makes a turn, a rear-wheel steering amount suited for the traveling condition is determined to ensure high traveling stability and also stabilized turning responsiveness even when the vehicle is traveling on a low- ⁇ road or a slope.
- a control method for steering the rear wheels of a vehicle comprises a first step wherein a 1 reference steering amount for the rear wheels is determined in accordance with the steering condition of the front wheels when the vehicle makes a turn, a second step wherein the rear-wheel steering amount is determined by correcting the aforesaid reference steering amount in accordance with the condition of the road surface on which the vehicle is traveling, and a third step wherein the rear wheels are steered in accordance with the rear-wheel steering amount.
- the aforesaid second step in the control method of the present invention comprises a fuzzy reasoning step wherein a plurality of fuzzy rules, which include the friction coefficient and surface gradient of a driving road surface as fuzzy variables, are established in advance, the levels of contribution of a driving condition, which is represented by the detected values of the road surface friction coefficient and road surface gradient, to the plurality of fuzzy rules are calculated, and at least one correction amount is determined according to correction values, which are respectively set in the rules in a manner that each rule includes at least one correction value concerned, and the levels of contribution; and a correction step wherein the reference steering amount is corrected in accordance with the correction amount.
- a fuzzy reasoning step wherein a plurality of fuzzy rules, which include the friction coefficient and surface gradient of a driving road surface as fuzzy variables, are established in advance, the levels of contribution of a driving condition, which is represented by the detected values of the road surface friction coefficient and road surface gradient, to the plurality of fuzzy rules are calculated, and at least one correction amount is determined according to correction values, which are respectively set in the rules
- the correction amount is determined from the road surface friction coefficient and road surface gradient according to the fuzzy reasoning, and the reference steering amount is corrected according to the correction amount, making it possible to perform proper correction under any road surface conditions, thus assuring stable turning performance.
- control method according to the present invention can be applied to a control method wherein rear wheels are steered in the same phase as front wheels in accordance with the steering angle of the front wheels.
- corrections are made by adding a correction steering amount to a reference in-phase steering amount, and it is desirable to provide this addition with a time lag.
- the in-phase steering amount can be corrected without sacrificing the turning responsiveness of a vehicle.
- both in-phase steering systems wherein rear wheels are steered in the same phase as front wheels in accordance with the steering angle of the front wheels
- anti-phase systems wherein rear wheels are steered in the opposite phase from front wheels in accordance with the steering angular velocity of the front wheels to instantaneously steer the rear wheels in the opposite phase in the early stage of steering.
- both in-phase steering components and instantaneous anti-phase steering components can be properly corrected. Therefore, both turning stability and turning responsiveness can be improved at a high level regardless of road surface conditions.
- FIG. 1 a 4-wheel steering (4WS) system of a vehicle is schematically illustrated.
- This 4WS system is equipped with tandem oil pumps 2 and 3 which are driven by an engine 1 of the vehicle, these tandem oil pumps 2 and 3 being connected to an oil reservoir 4.
- One of the oil pumps or the oil pump 2 is connected to a power steering unit 6 via an oil supply line 5. More specifically, the oil supply line 5 is connected to a pair of pressure chambers 9 and 10 of a front-wheel power cylinder 8 via a steering control valve (not shown) which is built in a gear box 7 of the power steering unit 6. Both ends of the piston rod in the front-wheel power cylinder 8 are respectively linked to the right and left front wheels FW, but the drawing shows only the front-wheel FW on one side.
- the steering control valve whose action is switched by operating a steering wheel 11 is operable to select the flowing direction of the oil to be supplied to the front-wheel power cylinder 8 in accordance with the steering direction of the steering wheel 11, thus permitting supply of the oil to a corresponding one of the pressure chambers of the cylinder.
- a return line 12 extends from the gear box 7, one end of the return line 12 being connected to the steering control valve while the other end being connected to the oil reservoir 4.
- the oil pump 3 is connected to a rear-wheel hydraulic control valve 14 via an oil supply line 13.
- the rear-wheel hydraulic control valve 14 includes a 4-port, 3-position, electromagnetic directional control valve as illustrated, and the oil supply line 13 is connected to an input port I of the valve.
- a return port R of the rear-wheel hydraulic control valve 14 is connected to the oil reservoir 4 via the return line 15, a pair of output ports 01 and 02 thereof being connected to a rear-wheel power cylinder 18 via oil supply lines 16 and 17.
- the rear-wheel power cylinder 18 has a pair of pressure chambers 19 and 20, the oil supply lines 16 and 17 being connected to these pressure chambers 19 and 20, respectively. Both ends of the piston rod of the rear-wheel power cylinder 18 are linked to the right and left rear wheels RW, and a centering spring 21 is incorporated in the rear-wheel power cylinder 18. This centering spring 21 energizes the piston rod to place the piston rod in the neutral position when the rear-wheel power cylinder 18 is not in operation, thus maintaining the straight-ahead advancement of the rear wheels RW.
- the aforesaid oil supply line 13 and the return line 15 are interconnected through a bypass line 22, and the bypass line 22 is provided with a hydraulic directional control valve 23 having an electromagnetic switching valve.
- the rear-wheel hydraulic control valve 14 and the hydraulic directional control valve 23 each receive a command signal from an electronic control unit (ECU) 24 for their switching operation. To this end, the solenoids of the rear-wheel hydraulic control valve 14 and the hydraulic directional control valve 23 are electrically connected to the ECU 24.
- ECU electronice control unit
- the rear-wheel hydraulic control valve 14 is switched from the neutral position illustrated to a corresponding one switching position. Accordingly, for the first time, the oil is supplied from the rear-wheel hydraulic control valve 14 to a corresponding one pressure chamber of the rear-wheel power cylinder 18 via an associated one of the oil supply lines 16 and 17, and the other pressure chamber is connected to the return line 15 via the other of the oil supply line 16 or 17, so that the rear-wheel power cylinder 18 is moved to one side. As a result, the rear wheels RW are steered by a specified rear-wheel steering amount.
- the rear wheels RW are steered in the same phase as the front wheels FW, and the rear-wheel steering amount is decided by the ECU 24 according to the steering condition of the front wheels FW and the traveling condition of the vehicle.
- various types of sensors are electrically connected to the ECU 24. These sensors include a steering wheel angle sensor 25 for detecting a steering wheel angle ⁇ H of a steering wheel, a pair of pressure sensors 26 and 27 for detecting the pressures in the pressure chambers 9 and 10, respectively, of the front-wheel power cylinder 8, a car speed sensor 28 for detecting a car speed from the revolutions of an output axle of a transmission (not shown) in the engine 1, a wheel velocity sensor 29 for detecting the wheel velocity of the front wheels FW, a rear-wheel steering angle sensor 30 for detecting an actual rear-wheel steering amount ⁇ A of the rear wheels RW, a road surface gradient sensor 31 which detects the gradient of a traveling road surface, and a lateral G sensor 32 for detecting lateral acceleration (lateral G) applied to the vehicle.
- a steering wheel angle sensor 25 for detecting a steering wheel angle ⁇ H of a steering wheel
- a pair of pressure sensors 26 and 27 for detecting the pressures in the pressure chambers 9 and 10, respectively, of the front-
- a stroke sensor for example, can be used, which detects the stroke of the piston rod in the rear-wheel power cylinder 18. Based on a sensor signal of the stroke sensor, the actual rear-wheel steering amount ⁇ A can be determined by the ECU 24.
- the road surface gradient sensor 31 it is difficult to actually detect the gradient of a traveling road surface; therefore, a clinometer for detecting the inclination of a car body can be used as the road surface gradient sensor 31, thus making it possible to detect the gradient of the road surface from a sensor signal issued by the clinometer.
- the ECU 24 incorporates a detector circuit for detecting a road surface ⁇ of the road surface on which a vehicle travels.
- Various methods are considered for detecting the road surface ⁇ .
- the detector circuit in this embodiment is designed to detect the road surface ⁇ from the steering wheel angle ⁇ H detected by the steering wheel angle sensor 25, the car speed V detected by the car speed sensor 28, and the pressure values detected by the pressure sensors 26 and 27 of the front-wheel power cylinder 8.
- the principle of detecting the road surface ⁇ is based on the following factors: first, the working pressure of the front-wheel power cylinder 8 is determined from a difference between the pressure values detected by the pressure sensors 26 and 27, respectively; second, the working pressure is proportional to the cornering force of the front wheels FW; third, the cornering force is proportional to the product of the side skid angle of the front wheels FW and the road surface ⁇ ; and fourth, the side skid angle is represented in terms of the car speed V, the steering wheel angle ⁇ H, and the road surface ⁇ .
- the ECU 24 is capable of calculating the steering wheel angular velocity ⁇ HA from a sensor signal received from the steering wheel angle sensor 25. More specifically, the steering wheel angular velocity ⁇ HA can be calculated by the ECU 24 from the difference between a steering wheel angle ⁇ H(n-1) detected previously and a steering wheel angle ⁇ H(n) detected this time.
- FIG. 2 a procedure for calculating the rear-wheel steering amount ⁇ in the ECU 24 is shown in a block diagram. The following portion describes this calculating procedure.
- the steering wheel angle ⁇ H, car speed V, steering wheel angular velocity ⁇ HA, road surface ⁇ , road surface gradient ⁇ , and lateral G are all detected in the manner described above, then the car speed V is supplied to a block 33, and a reference in-phase steering coefficient KB is computed in this block 33.
- the car speed V can be determined based on the sensor signal received from the aforesaid car speed sensor 28, but the car speed V can also be calculated from a sensor signal received from the wheel velocity sensor 29.
- the graph shown in FIG. 3 can be used to calculate the reference in-phase steering coefficient KB.
- the reference in-phase steering coefficient KB for the car speed V is determined beforehand.
- the reference in-phase steering coefficient KB is applied in a specified car speed range in which the car speed V is equal to or larger than a specified value V0 (e.g., 60km/h), and KB is set so that it rapidly increases as the car speed V increases, while its increasing rate gradually reduces as the car speed V further increases until KB settles down to its maximum value.
- V0 e.g. 60km/h
- the reference in-phase steering coefficient KB obtained in the block 33 is then supplied to a block 34.
- the reference in-phase steering amount ⁇ RB of the rear wheels RW is determined by computation. Specifically, the steering wheel angle ⁇ H in addition to the reference in-phase steering coefficient KB is supplied to the block 34.
- the reference in-phase steering amount ⁇ RB obtained in the block 34 will increase as the steering wheel 11 is turned when the car speed V exceeds V0. After that, the reference in-phase steering amount ⁇ RB is supplied to the adding unit 35.
- the foregoing car speed V is also supplied to a block 36, and this block 36 also receives a first correction amount X from a block 37. Therefore, in the block 36, an in-phase correction steering coefficient KC is calculated based on the car speed V and the correction amount X. Specifically, the in-phase correction steering coefficient KC can be determined from the graph in FIG. 4.
- the in-phase correction steering coefficient KC has a characteristic which draws, under a condition where the correction amount X takes positive values, an approximate triangular shape in which the in-phase correction steering coefficient KC gradually increases as the car speed V increases from a time point at which the car speed V reaches a certain car speed but gradually decreases as the car speed V further increases.
- this characteristic varies with the magnitude of the correction amount X, and as the correction amount X grows larger, the triangular shape of the characteristic grows larger.
- the relationship of the correction amounts X1, X2, X3, and X4 shown in FIG. 4 can be expressed, for example, by the following formula: X1 > X2 > X3 > X4 > 0
- the correction amount X takes negative values, i.e., in the case of the characteristic represented by X5, for example, the characteristic draws an inverted triangular shape in contrast to the triangular shape characteristic in which the correction amount X takes positive values. Accordingly, when the correction amount X is a negative value, the in-phase correction steering coefficient KC also takes a negative value.
- the in-phase correction steering coefficient KC takes values other than a value "0," as long as the car speed V stays within a specified car speed range, while the in-phase correction steering coefficient KC takes the value "0" when the car speed V is outside the specified car speed range, and the in-phase correction steering coefficient KC carries the same sign as that of the correction amount X. Additionally, a lower limit car speed value that defines the specified car speed range decreases as the correction amount X increases.
- the car speed values V1, V2, V3, V4, V5, and V6 shown in FIG. 4 are set, for example, to 20km/h, 30km/h, 40km/h, 50km/h, 60km/h, and 100km/h, respectively.
- the correction amount X is calculated in the block 37.
- the road surface ⁇ , road surface gradient ⁇ , and lateral G are supplied to the block 37, and the block 37 permits computation of the correction amount X from the road surface ⁇ , road surface gradient ⁇ and lateral G according to the fuzzy reasoning to be discussed later.
- the in-phase correction steering coefficient KC computed in the block 36 is then supplied to a block 38 to calculate the in-phase correction steering amount ⁇ RC.
- the block 38 also receives the steering wheel angle ⁇ H, and the in-phase correction steering amount ⁇ RC is the product of the in-phase correction steering coefficient KC and the steering wheel angle ⁇ H.
- the in-phase correction steering amount ⁇ RC computed in this manner is supplied to the aforesaid adding unit 35, and by adding the in-phase correction steering amount ⁇ RC to the reference in-phase steering amount ⁇ RB in the adding unit 35, the rear-wheel in-phase steering amount (corrected in-phase steering amount) ⁇ R is calculated.
- the block 38 is not directly connected to the adding unit 35, but is connected to the adding unit 35 via a block 39 lying between them.
- This block 39 is a first-order low-pass filter whose transfer function is 1/(1+Ts), i.e., a first-order lag element (the symbol "s" denotes a Laplacean operator).
- a time constant T of the first-order lag element is supplied from the block 40.
- the time constant T is calculated based on the car speed V and the foregoing correction amount X from the graph shown in FIG. 5. Therefore, the correction amount X calculated by the fuzzing reasoning in the block 37 described above is also supplied to the block 40.
- the time constant T takes a specified value as long as the correction amount X takes positive values and the car speed V stays in a specified speed range from V7 (e.g., 30km/h), and the time constant T decreases as the car speed V deviates from the specified speed range and increases toward a car speed V8 (e.g., 80km/h). Further, when the correction amount X takes a negative value, the time constant T unconditionally becomes "0".
- the in-phase correction steering amount ⁇ RC calculated in the block 38 is supplied to the adding unit 35 with a specified lag due to the presence of the first-order lag element from the block 39.
- the time constant T takes a positive value which is smaller than the specified value
- a lag which is smaller than the specified lag results.
- the car speed V is supplied to a block 41 in addition to the aforesaid blocks 33 and 36.
- the anti-phase steering coefficient KG of the rear wheels RW is calculated.
- the anti-phase steering coefficient KG can be determined based on the car speed V from the graph of FIG. 6.
- the anti-phase steering coefficient KG has a characteristic in which the anti-phase steering coefficient KG rapidly increases as the car speed V increases when the car speed V reaches or exceeds V7, and then maintains a constant value until a specified car speed is reached.
- the anti-phase steering coefficient KG gradually decreases as the car speed V increases until it becomes 0 when the car speed reaches V9 (e.g., 125km/h).
- the anti-phase steering coefficient KG determined in the block 41 is supplied to the subsequent block 42 where a reference anti-phase steering amount ⁇ GB is calculated.
- This reference anti-phase steering amount ⁇ GB is the product of the anti-phase steering coefficient KG and the steering wheel angular velocity ⁇ HA.
- the calculated reference anti-phase steering amount ⁇ GB is multiplied by a correction factor Y in the following block 43 to give a corrected anti-phase steering amount (rear-wheel anti-phase steering amount) ⁇ G, and this corrected anti-phase steering amount ⁇ G is supplied to an adding unit 44.
- This adding unit 44 receives a rear-wheel in-phase steering amount (corrected in-phase steering amount) ⁇ R from the adding unit 35, and therefore, the adding unit 44 adds the rear-wheel in-phase steering amount ⁇ R to the corrected anti-phase steering amount ⁇ G to determine the final rear-wheel steering amount ⁇ .
- the corrected anti-phase steering amount ⁇ G takes negative values in contrast to the rear-wheel in-phase steering amount ⁇ R.
- the corrected anti-phase steering amount ⁇ G is calculated in accordance with the steering wheel angular velocity ⁇ HA, and therefore, its calculation responsiveness is better than that for the rear-wheel in-phase steering amount ⁇ R which is computed based on the steering wheel angle ⁇ H.
- the ECU 24 controls, in accordance with a sensor signal received from the rear-wheel steering angle sensor 30, the action of the foregoing rear-wheel power cylinder 18, i.e., the rear-wheel hydraulic control valve 14, so that the actual rear-wheel steering amount ⁇ A coincides with the rear-wheel steering amount ⁇ .
- the proportion occupied by the corrected anti-phase steering amount ⁇ G in the rear-wheel steering amount ⁇ is larger in comparison with the rear-wheel in-phase steering amount ⁇ R.
- the correction factor (the second correction amount) Y of the aforesaid block 43 is supplied from a block 45.
- the block 45 receives the road surface ⁇ , road surface gradient ⁇ , and lateral G, so that the correction factor Y is calculated from the road surface ⁇ , road surface gradient ⁇ , and lateral G according to the fuzzy reasoning.
- the correction amount X and the correction factor Y are computed based on the same parameters for determining the vehicle traveling condition according to the fuzzy reasoning in the blocks 37 and 45, respectively.
- each of the symbols S, M, B, and A indicates the label which shows a fuzzy subset in a whole space or universe of discourse (carrier set) for a corresponding one of the road surface friction coefficient ⁇ , road surface gradient ⁇ , and lateral acceleration G.
- the respective fuzzy sets are represented by membership functions to be discussed later.
- the rule 1 defines that the correction values x1 and y1 are used if the traveling condition stays within the high road-surface friction coefficient range (high ⁇ range), downward-pitch range, and low lateral acceleration range (low lateral G range).
- the following portion briefly describes the rules 2 through 9.
- Rule 2 If the traveling condition is in the high- ⁇ range, downward-pitch range, and high lateral G range, then the correction values x2 and y2 are used.
- Rule 3 If the traveling condition is in the high- ⁇ range, flat gradient range, and low lateral G range, then the correction values x3 and y3 are used. Table Rule No.
- Rule 5 If the traveling condition is in the high- ⁇ range, upward-pitch range, and low lateral G range, then the correction values x5 and y5 are used.
- Rule 6 If the traveling condition is in the high- ⁇ range, upward-pitch range, and high lateral G range, then the correction values x6 and y6 are used.
- Rule 7 If the traveling condition is in the low- ⁇ range and downward-pitch range, then the correction values x7 and y7 are used regardless of the lateral G.
- Rule 8 If the traveling condition is in the low- ⁇ range and flat gradient range, then the correction values x8 and y8 are used regardless of the lateral G.
- Rule 9 If the traveling condition is in the low- ⁇ range and upward-pitch range, then the correction values x9 and y9 are used regardless of the lateral G.
- the membership functions h ⁇ B and h ⁇ S which define the two fuzzy sets S and B, respectively, in the carrier set related to the road surface ⁇
- the membership functions h ⁇ S, h ⁇ M and h ⁇ B which define the three fuzzy sets S, M and B, respectively, in the carrier set related to the road surface gradient ⁇
- the membership functions hGS and hGB which define the two fuzzy sets S and B in the carrier set related to the lateral acceleration G are established in advance as shown in FIG. 7 and stored in a memory.
- the membership function h ⁇ S related to the road surface ⁇ is set so that the level of contribution, i.e., the degree of conformity "w," takes 1.0 when the road surface ⁇ stays between 0 and 0.2, while the level of contribution "w” decreases from 1.0 to 0 as the road surface ⁇ increases from 0.2 to 0.8.
- the membership function h ⁇ B is set so that the level of contribution "w” increases from 0 to 1.0 as the road surface ⁇ increases from 0 to 0.8, while the level of contribution "w” becomes 1.0 when the road surface ⁇ is equal to or larger than 0.8.
- the membership function h ⁇ S related to the road surface gradient ⁇ is set so that the level of contribution "w" takes 1.0 if the road surface has a downward pitch which is steeper than a specified downward pitch, while the level of contribution “w” decreases from 1.0 to 0 as the downward pitch of the road surface is less steep than the specified downward pitch (the level of contribution "w” becomes 0 on a flat road surface).
- the membership function h ⁇ M is set so that the level of contribution "w” increases from 0 to 1.0 as the downward pitch of the road surface grows gentler than the specified downward pitch, while the level of contribution "w” decreases from 1.0 to 0 as the upward pitch of the road surface grows to the specified upward pitch (the level of contribution "w” takes 1.0 on a flat road surface).
- the membership function h ⁇ B is set so that the level of contribution "w" increases from 0 to 1.0 as the upward pitch of the road surface grows to the specified upward pitch, while the level of contribution "w” takes 1.0 when the road surface has an upward pitch which is steeper than the specified upward pitch (the level of contribution "w” becomes 0 on a flat road surface).
- ⁇ (+) denotes the upward pitch
- ⁇ (-) denotes the downward pitch.
- the membership function hGS related to the lateral acceleration G is set so that the level of contribution "w” takes 1.0 as long as the lateral acceleration G stays within the range of 0G to 0.3G, while the level of contribution "w” decreases from 1.0 to 0 as the lateral acceleration G increases from 0.3G to 0.6G.
- the membership function hGB is set so that the level of contribution "w” increases from 0 to 1.0 as the lateral acceleration G increases from 0.3G to 0.6G, while the level of contribution "w” becomes 1.0 if the lateral acceleration G is equal to or larger than 0.6G.
- the values of the membership functions for respective rules "i," that is, the levels of contribution wxi are calculated based on the supplied values.
- the correction amount X is the weighted mean of the correction values xi and the levels of contribution wxi associated with the respective rules "i".
- the level of contribution, i.e., the degree of conformity (wx1, wy1), of the detected traveling condition for the rule 1 will be the smallest value, 0.3, among the determined membership values 1.0, 0.3, and 0.8.
- the levels of contribution wxi and wyi for the respective rules "i" are calculated as described above, and the correction amount X and correction factor Y can be calculated from the formulas shown above.
- the graphs and membership functions of FIG. 3 through FIG. 7 are mapped and stored beforehand in a non-volatile memory (not shown) in the ECU 24.
- the values of the reference in-phase steering coefficient KB, in-phase correction steering coefficient KC, time constant T, anti-phase steering coefficient KG, and membership functions can be read from those maps.
- the correction amount X which determines the in-phase correction steering amount ⁇ RC
- the correction factor Y which determines the corrected anti-phase steering amount ⁇ G
- the correction amount X is mainly determined in accordance with the rule 7 or 8.
- the correction values x7 and x8 of the rules 7 and 8, respectively are set to values which are larger than the correction values of other rules; therefore, in this case, the correction amount X calculated will take a positive large value.
- the rear end of a vehicle shakes at the time of making a turn, thus causing oversteering during the turn, but the gripping power of the rear-wheel tires is enhanced by increasingly correcting the in-phase steering component of the rear-wheel steering amount ⁇ , thereby canceling the oversteer to assure adequate traveling stability.
- either rule 7 or 8 applies also to the correction factor Y.
- the correction factors y7 and y8 of the rules 7 and 8 are set for 3.0 and 2.5, respectively; therefore, the correction factor Y will be a large value, and the corrected anti-phase steering amount ⁇ G determined from the product of the correction factor Y and the reference anti-phase steering amount ⁇ GB will be significantly and increasingly corrected For this reason, at the time of making a turn, the instantaneous anti-phase steering component of the rear wheels RW at the early stage of the turn is increasingly corrected, for thereby assuring adequate head turning performance of the vehicle in the early stage of the turn.
- the values for the rule 7 are set larger than those for the rule 8 because the rear-wheel load decreases on a downward-pitch road surface with consequent larger reduction in the gripping power of the rear-wheel tires compared with that on a flat road.
- the rule 9 applies to the correction amount X and correction factor Y.
- the in-phase correction steering amount ⁇ RC i.e., the in-phase steering component of the rear-wheel steering amount ⁇ is increasingly corrected, but the correction value x9 in the rule 9 is smaller than the correction values x7 or x8 of the rule 7 or 8; therefore, the in-phase steering component of the rear-wheel steering amount ⁇ in this case is smaller than it would in a case where the road has a low ⁇ and downward-pitch slope as previously described.
- the rear-wheel load increases in contrast to the case of a downward pitch, and therefore, it is desirable that the in-phase steering component of the rear-wheel steering amount ⁇ be decreased by that increase in the load.
- the value of the correction value y9 is set for a value (2.7) which lies between the correction value in the rule 7 and the correction value in the rule 8; therefore, also in this case, the corrected anti-phase steering amount ⁇ G, i.e., the instantaneous anti-phase steering component in the early stage of the turn, is increasingly corrected by increasing the correction factor Y, which leads to enhanced head turning performance of the vehicle. This consequently permits sharp turning performance of the vehicle.
- the rule 5 or 6 applies.
- the correction values x5 and x6 of the correction amount X in these rules 5 and 6 are both negative values, while the correction values y5 and y6 of the correction factor Y are positive values. Accordingly, under such a traveling condition, the correction amount X also becomes a negative value; therefore, the in-phase correction steering amount ⁇ RC also becomes a negative value, and the in-phase steering component of the rear-wheel steering amount ⁇ is decreasingly corrected.
- the aforesaid understeer tendency can be corrected by decreasing the in-phase steering component of the rear-wheel steering amount ⁇ , and further, even in this case, the instantaneous anti-phase component of the rear-wheel steering amount ⁇ is increasingly corrected, thus ensuring adequate head turning performance of the vehicle.
- the rule 5 applies better when the lateral G is in a normal range, while the rule 6 applies better when the lateral G grows larger, and deviates from the normal range.
- the traveling condition which conforms to the rule 6 means a sharp turn of a vehicle; therefore in this case, as is obvious from the relationship in magnitude of a value between the correction values x5 and x6, and y5 and y6, the in-phase steering component of the rear-wheel steering amount 6 is further decreasingly corrected, while the instantaneous anti-phase steering component is further increasingly corrected.
- the head turning performance of the vehicle is further enhanced, thus allowing stable turning to be implemented.
- the in-phase steering component of the rear-wheel steering amount ⁇ is not corrected, and the anti-phase steering component is not corrected because the correction values x3 and y3 of the rule 3 are 0.0 and 1.0, respectively.
- the rear-wheel steering amount ⁇ is the value obtained simply by adding the reference in-phase steering amount ⁇ RB and the reference anti-phase steering amount ⁇ GB.
- the calculated in-phase correction steering amount ⁇ RC is not immediately supplied to the adding unit 35, but calculated in-phase correction steering amount ⁇ RC goes through the first-order lag element of the block 39 before being supplied to the adding unit 35. Accordingly, as is obvious from FIG. 5, under a condition where the correction amount X takes a positive value and the car speed V lies between V7 and V8, the time constant T also takes a specified positive value; therefore, the in-phase correction steering amount ⁇ RC is added to the reference in-phase steering amount ⁇ RB with a specified time lag.
- the reference in-phase steering amount ⁇ RB directly provides the rear-wheel in-phase steering amount ⁇ R in the early stage of the turning. This is advantageous in that the instantaneous anti-phase steering component of the rear-wheel steering amount ⁇ is allowed to work effectively, for assuring adequate head turning performance of the vehicle, even if the steering wheel angular velocity is low when the steering wheel 11 is turned sharply under a traveling condition which conforms to either rule 7 or 8.
- the present invention is not limited to the one embodiment described above but various modifications thereof may be made.
- the correction amount X and the correction factor Y are calculated according to the fuzzy reasoning, but other methods may be employed to calculate X or Y, and the X-based correction system or the Y-based correction system may be deleted.
- the control method according to the present invention applies to a steering system which has an in-phase steering system and an instantaneous anti-phase steering system, but the method according to the present invention is also applicable to a steering system which has only the in-phase steering system or the instantaneous anti-phase steering system.
- the present invention is also applicable to a control system wherein the anti-phase steering is performed at low speeds, while the in-phase steering is performed at high speeds.
- the handling of the lateral G is not limited to that in the above embodiment; it is needless to say that the method in accordance with the present invention can be implemented even if the lateral G is not considered, and the lateral G can be considered in various other ways.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP319260/91 | 1991-12-03 | ||
JP3319260A JP2643702B2 (ja) | 1991-12-03 | 1991-12-03 | 車両の後輪操舵制御方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0545667A2 true EP0545667A2 (fr) | 1993-06-09 |
EP0545667A3 EP0545667A3 (fr) | 1994-02-02 |
EP0545667B1 EP0545667B1 (fr) | 1997-02-19 |
Family
ID=18108214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92310943A Expired - Lifetime EP0545667B1 (fr) | 1991-12-03 | 1992-12-01 | Procédé et dispositif de commande de direction des roues arrières d'un véhicule |
Country Status (5)
Country | Link |
---|---|
US (1) | US5392214A (fr) |
EP (1) | EP0545667B1 (fr) |
JP (1) | JP2643702B2 (fr) |
KR (1) | KR960005853B1 (fr) |
DE (1) | DE69217538T2 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2574394A (en) * | 2018-06-01 | 2019-12-11 | Jaguar Land Rover Ltd | An apparatus and a method for controlling steering |
WO2021121547A1 (fr) * | 2019-12-16 | 2021-06-24 | Volvo Truck Corporation | Procédé de commande d'un ensemble arbre de roue |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0633853A1 (fr) * | 1993-02-05 | 1995-01-18 | Digi Sens Ag Digitale Messtechnik | Procede et dispositif anti-derapage pour vehicules |
JP2950096B2 (ja) * | 1993-06-01 | 1999-09-20 | 三菱自動車工業株式会社 | 電子制御式パワーステアリング装置 |
KR950017622A (ko) * | 1993-12-14 | 1995-07-20 | 전성원 | 4륜 조향 시스템 |
JP3595609B2 (ja) * | 1995-07-10 | 2004-12-02 | 株式会社エーアンドエーマテリアル | 補強用竹繊維及びその製造方法並びに該補強用竹繊維を使用した無機質成形体及びその製造方法 |
US6131691A (en) * | 1996-09-13 | 2000-10-17 | Morch & Sonner A/S | System for guided steering of at least one set of wheels of a semi-trailer or a trailer |
DE10244070A1 (de) * | 2002-09-06 | 2004-03-11 | Volkswagen Ag | Vorrichtung und Verfahren zur Lenkunterstützung für Fahrzeuge mit elektromechanischer Lenkung |
DE10248214A1 (de) | 2002-10-16 | 2004-05-13 | Siemens Ag | Schaltung mit mindestens einem Piezoaktor |
US8267666B2 (en) * | 2009-08-06 | 2012-09-18 | Campbell Hausfeld/Scott Fetzer Company | Air flow control apparatus |
DE102011000434B4 (de) * | 2011-02-01 | 2020-02-27 | Robert Bosch Automotive Steering Gmbh | Verfahren und Vorrichtung zum Abgleichen eines ermittelten Lenkwinkels mit einem gemessenen Lenkwinkel |
KR102190095B1 (ko) * | 2014-10-17 | 2020-12-11 | 현대모비스 주식회사 | 후륜 조향장치 및 그 제어방법 |
KR20190119295A (ko) * | 2018-04-12 | 2019-10-22 | 현대모비스 주식회사 | 분리형 후륜 조향 제어 장치 및 방법 |
IT201800009334A1 (it) * | 2018-10-11 | 2020-04-11 | Dana Motion Systems Italia Srl | Sistema di sterzatura per veicoli ad assi indipendenti. |
KR102081835B1 (ko) * | 2019-11-29 | 2020-02-26 | 바우컴퍼니주식회사 | 작업능력 향상을 위한 4륜조향 시스템을 가진 작업차량 |
KR102703074B1 (ko) * | 2019-12-20 | 2024-09-06 | 현대자동차주식회사 | 후륜 조향 제어 장치 및 후륜 조향 제어 방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2153311A (en) * | 1984-01-13 | 1985-08-21 | Honda Motor Co Ltd | Steering system for vehicle |
JPS628871A (ja) * | 1985-07-08 | 1987-01-16 | Mazda Motor Corp | 車両の4輪操舵装置 |
EP0278366A1 (fr) * | 1987-02-03 | 1988-08-17 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Dispositif de commande du braquage des roues d'un véhicule |
JPH02144261A (ja) * | 1988-11-25 | 1990-06-04 | Toyota Motor Corp | 前後輪操舵車の後輪操舵制御装置 |
EP0379143A1 (fr) * | 1989-01-18 | 1990-07-25 | Mazda Motor Corporation | Dispositif de braquage des roues arrières d'un véhicule |
JPH037675A (ja) * | 1989-06-02 | 1991-01-14 | Omron Corp | 四輪操舵装置 |
WO1992005994A1 (fr) * | 1990-09-29 | 1992-04-16 | Robert Bosch Gmbh | Procede pour la commande de l'angle de braquage |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0698903B2 (ja) * | 1986-08-06 | 1994-12-07 | 本田技研工業株式会社 | 車両走行制御装置 |
JPH01190585A (ja) * | 1988-01-27 | 1989-07-31 | Mazda Motor Corp | 車両の後輪操舵装置 |
US5313389A (en) * | 1988-09-13 | 1994-05-17 | Aisin Seiki Kabushiki Kaisha | Fail-safe mechanism for vehicle stability augmentation steering system |
JPH0390481A (ja) * | 1989-09-01 | 1991-04-16 | Nissan Motor Co Ltd | 後輪操舵制御装置 |
JP2779020B2 (ja) * | 1989-12-01 | 1998-07-23 | 豊田工機株式会社 | 動力舵取装置の制御装置 |
JPH03258650A (ja) * | 1990-03-09 | 1991-11-18 | Toyota Motor Corp | 路面摩擦係数検出装置 |
-
1991
- 1991-12-03 JP JP3319260A patent/JP2643702B2/ja not_active Expired - Lifetime
-
1992
- 1992-12-01 DE DE69217538T patent/DE69217538T2/de not_active Expired - Fee Related
- 1992-12-01 EP EP92310943A patent/EP0545667B1/fr not_active Expired - Lifetime
- 1992-12-02 KR KR1019920023063A patent/KR960005853B1/ko not_active IP Right Cessation
- 1992-12-03 US US07/985,149 patent/US5392214A/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2153311A (en) * | 1984-01-13 | 1985-08-21 | Honda Motor Co Ltd | Steering system for vehicle |
JPS628871A (ja) * | 1985-07-08 | 1987-01-16 | Mazda Motor Corp | 車両の4輪操舵装置 |
EP0278366A1 (fr) * | 1987-02-03 | 1988-08-17 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Dispositif de commande du braquage des roues d'un véhicule |
JPH02144261A (ja) * | 1988-11-25 | 1990-06-04 | Toyota Motor Corp | 前後輪操舵車の後輪操舵制御装置 |
EP0379143A1 (fr) * | 1989-01-18 | 1990-07-25 | Mazda Motor Corporation | Dispositif de braquage des roues arrières d'un véhicule |
JPH037675A (ja) * | 1989-06-02 | 1991-01-14 | Omron Corp | 四輪操舵装置 |
WO1992005994A1 (fr) * | 1990-09-29 | 1992-04-16 | Robert Bosch Gmbh | Procede pour la commande de l'angle de braquage |
Non-Patent Citations (3)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 11, no. 180 (M-597)16 June 1987 & JP-A-62 008 871 (MAZDA MOTOR CORP) 16 January 1987 * |
PATENT ABSTRACTS OF JAPAN vol. 14, no. 384 (M-1013)(4327) 20 August 1990 & JP-A-02 144 261 (TOYOTA MOTOR CORP) 4 June 1990 * |
PATENT ABSTRACTS OF JAPAN vol. 15, no. 113 (M-1094)18 March 1991 & JP-A-03 007 675 (OMRON TATEISI ELECTRON CO) 14 January 1991 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2574394A (en) * | 2018-06-01 | 2019-12-11 | Jaguar Land Rover Ltd | An apparatus and a method for controlling steering |
GB2574394B (en) * | 2018-06-01 | 2021-05-12 | Jaguar Land Rover Ltd | An apparatus and a method for controlling steering of rear wheels of a vehicle |
WO2021121547A1 (fr) * | 2019-12-16 | 2021-06-24 | Volvo Truck Corporation | Procédé de commande d'un ensemble arbre de roue |
US20230015462A1 (en) * | 2019-12-16 | 2023-01-19 | Volvo Truck Corporation | Method for controlling a wheel axle assembly |
US12116067B2 (en) * | 2019-12-16 | 2024-10-15 | Volvo Truck Corporation | Method for controlling a wheel axle assembly |
Also Published As
Publication number | Publication date |
---|---|
EP0545667A3 (fr) | 1994-02-02 |
EP0545667B1 (fr) | 1997-02-19 |
DE69217538T2 (de) | 1997-09-04 |
JPH05155349A (ja) | 1993-06-22 |
DE69217538D1 (de) | 1997-03-27 |
US5392214A (en) | 1995-02-21 |
JP2643702B2 (ja) | 1997-08-20 |
KR960005853B1 (ko) | 1996-05-03 |
KR930012498A (ko) | 1993-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0545667B1 (fr) | Procédé et dispositif de commande de direction des roues arrières d'un véhicule | |
EP0510365B1 (fr) | Système de direction des roues arrière pour véhicule | |
EP0338588B1 (fr) | Dispositif de commande de couple de roue d'entraînement pour véhicule | |
JP2600986B2 (ja) | 後輪の操舵制御方法 | |
EP0278366B1 (fr) | Dispositif de commande du braquage des roues d'un véhicule | |
US5964819A (en) | Vehicle yawing behavior control apparatus | |
US5019982A (en) | Method of controlling rear wheels of a four-wheel steering motor vehicles | |
CA2220905C (fr) | Systeme de regulation de moment de lacet pour vehicule | |
EP0416480B1 (fr) | Commande de direction des roues arrière pour véhicule | |
EP0415450A2 (fr) | Commande de direction des roues arrière pour véhicule | |
EP0350019B1 (fr) | Commande de direction sur les roues arrières pour véhicule | |
EP0311098B1 (fr) | Dispositif de répartition de la force motrice dans la transmission d'un véhicule à quatre roues motrices | |
US5180026A (en) | Rear wheel steering angle control system for vehicle | |
JP3388861B2 (ja) | 車両の操舵特性判定方法及び車両の挙動制御装置 | |
EP0384400B1 (fr) | Système pour la commande de braquage des roues arrières d'un véhicule | |
JPH0679905B2 (ja) | 走行路面状態判別装置 | |
JPH07223526A (ja) | 車両状態推定装置及び制動制御装置 | |
JP2643701B2 (ja) | 車両の後輪同相操舵制御方法 | |
JPH0319107B2 (fr) | ||
JPH0640051B2 (ja) | 走行路面状態判別装置 | |
JP2746002B2 (ja) | 四輪操舵装置付き四輪駆動車の駆動力配分装置 | |
JP2643700B2 (ja) | 車両の後輪同相操舵制御方法 | |
JPS62255282A (ja) | 走行路面状態判別装置 | |
JP2996023B2 (ja) | 四輪操舵装置付き四輪駆動車の駆動力配分装置 | |
EP0398182B1 (fr) | Dispositif de direction auxiliaire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19940725 |
|
17Q | First examination report despatched |
Effective date: 19950703 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 69217538 Country of ref document: DE Date of ref document: 19970327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19971124 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19971205 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19971209 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19981201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991001 |